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Graph databases make use of logics that combine traditional first-order features with navigation on paths,
in the same way logics for model checking do. However, modern applications of graph databases impose a
new requirement on the expressiveness of the logics: they need comparing labels of paths based on word
relations (such as prefix, subword, or subsequence). This has led to the study of logics that extend basic
graph languages with features for comparing labels of paths based on regular relations, or the strictly more
powerful rational relations. The evaluation problem for the former logic is decidable (and even tractable
in data complexity), but already extending this logic with such a common rational relation as subword or
suffix turns evaluation undecidable.

In practice, however, it is rare to have the need for such powerful logics. Therefore, it is more realistic to
study the complexity of less expressive logics that still allow comparing paths based on practically motivated
rational relations. Here we concentrate on the most basic such languages, which extend graph pattern
logics with path comparisons based only on suffix, subword or subsequence. We pinpoint the complexity
of evaluation for each one of these logics, which shows that all of them are decidable in elementary time
(Pspace or NExptime). Furthermore, the extension with suffix is even tractable in data complexity (but
the other two are not). In order to obtain our results we establish a link between the evaluation problem for
graph logics and two important problems in word combinatorics: word equations with regular constraints
and longest common subsequence.

Categories and Subject Descriptors: H.2.3 [Database Management]: Languages—Query Languages

General Terms: Algorithms, Languages, Theory

Additional Key Words and Phrases: complexity of evaluation, logics for graphs, rational relations, regular
path queries, shuffle, word equations

ACM Reference Format:
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1. INTRODUCTION

Graph databases are important for applications in which the topology of data is as
important as data itself. Intuitively, a graph database represents objects (the nodes)
and relationships between those objects (often modeled as labeled edges). The last
years have witnessed an increasing interest in graph databases, due to the uprise of
applications that need to manage and query massive and highly-connected data. This
include, e.g., the semantic web, social networks and biological networks. Some surveys
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on graph database models and graph logical languages have been published as of late
[Angles and Gutiérrez 2008; Wood 2012; Barceló 2013].

The logics used for specifying properties of graph databases combine standard first-
order features with navigational ones. The latter allow to recursively traverse the
edges of the graph while checking for the existence of paths satisfying given condi-
tions. These navigational features are close in spirit to the ones used in logics for
model checking [Clarke et al. 1979]. Notably, basic evaluation tasks for both families
of languages can be carried out using similar techniques based on automata.

The building block for navigational languages over graph databases is the class of
regular path queries [Cruz et al. 1987], or RPQs, that define pairs of nodes linked by a
path whose label satisfies a regular expression. Closing RPQs under conjunction and
existential quantification gives rise to the conjunctive RPQs, or CRPQs [Calvanese
et al. 2000]. For instance,

∃y∃z(x
ρ1:L1
−→ y ∧ x

ρ2:L2
−→ z)

is a CRPQ that defines the set of nodes x that are the origin of paths ρ1 and ρ2 labeled
by words matching regular expressions L1 and L2, respectively. Evaluation of CRPQs
is NP-complete, but its data complexity – i.e., the complexity when the formula is as-
sumed to be fixed – is tractable (NLOGSPACE). The latter is considered to be acceptable
in the database context, in which a typically small formula is evaluated over a large
dataset [Vardi 1982].

CRPQs fall short of expressive power for modern applications of graph databases
due to their inability to compare paths [Barceló et al. 2012]. For instance, semantic
web languages compare paths based on semantic associations and biological sequences
are compared in terms of their mutual edit distance, but these requirements cannot be
expressed with CRPQs. To overcome this limitation, a family of extended CRPQs has
been proposed [Barceló 2013]. The logics in this family extend CRPQs with the ability
to compare labels of paths with elements from a set S of relations on words. Each such
logic is denoted CRPQ(S) (or simply CRPQ(S) in the case when S = {S}).

The first such logic to be studied was CRPQ(REG) [Barceló et al. 2012], where REG is
the class of regular relations on words [Eilenberg et al. 1969], or equivalently, relations
defined by synchronous n-ary automata. The class REG includes important relations on
strings, such as prefix, equal length of words, and fixed edit distance. As an example,
assume that �pref is the binary relation that consists of all pairs (w1, w2) of words such
that w1 is a prefix of w2. Then the CRPQ(REG) formula

∃y∃z
(

x
ρ1:L1
−→ y ∧ x

ρ2:L2
−→ z ∧ ρ1 �pref ρ2

)

defines the set of nodes in a graph database that are the origin of paths ρ1 and ρ2
labeled in L1 and L2, respectively, and such that the label of ρ1 is a prefix of the la-
bel of ρ2. Using automata tools it can be shown that CRPQ(REG) preserves the good
data complexity properties of CRPQs (i.e., evaluation of CRPQ(REG) formulas is in
NLOGSPACE in data complexity). Still, the expressiveness of this logic is limited for
many applications; e.g., in biological networks or the semantic web one deals with sub-
words and subsequences (see, e.g., [Anyanwu et al. 2007; Gusfield 1997]), but these
relations are not regular. They are rational; i.e., they are still defined by automata, but
those whose heads move asynchronously [Berstel 1979].

Adding rational relations to CRPQs has to be done carefully since the evaluation
problem for CRPQ(RAT) is undecidable. However, we are not interested in all ratio-
nal relations, but only in some particular ones often encountered in practice. The
approach taken by Barceló, Figueira and Libkin [Barceló et al. 2013] was study-
ing to what extent rational relations such as subword �sw, suffix �suff or subse-
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quence �ss, can be added to CRPQ(REG) without losing decidability of evaluation.
It was shown that this is not possible for the first two; i.e., evaluation for both
CRPQ(REG ∪ {�sw}) and CRPQ(REG ∪ {�suff}) is undecidable. On the other hand,
evaluation for CRPQ(REG ∪ {�ss}) is decidable, but with very high data complexity
(non-elementary, i.e., not bounded by any stack of exponentials). In conclusion, these
languages are completely impractical.

In practice, however, it is uncommon to have the need to compare paths based on
both the aforementioned rational relations and arbitrary regular relations in REG.
Therefore, a more realistic approach would be to study the complexity of evaluation
for less expressive logics, starting from those of the form CRPQ(�) – for � one of �sw,
�suff or �ss – which only allow to compare paths based on a single rational relation of
interest. Our goal is to understand what is the cost of evaluation for such logics and,
in particular, if any of them can be evaluated efficiently in data complexity.

Some partial results, obtained using automata techniques, show that this restriction
dramatically reduces the complexity of evaluation for CRPQ(�ss): the problem is in
NEXPTIME, and even in NP in data complexity [Barceló et al. 2013]. On the other
hand, such techniques were insufficient for determining the precise complexity of this
problem and for establishing the decidability of evaluation for the logic CRPQ(�sw).
In particular, they provide no answer to the question if any of these logics have good
behavior in terms of data complexity.

This shows that some important problems – of both theoretical and practical impact
– remain unanswered regarding the complexity of evaluation for these languages:

(1) Is the evaluation for the logic CRPQ(�sw) decidable? If so, what is its computational
cost?

(2) What is the precise complexity of evaluating formulas in CRPQ(�ss), for which
so far we only have an NEXPTIME upper bound and an NP upper bound in data
complexity?

(3) Very much related to the previous questions, we would like to know if the complex-
ity of evaluation for any of these languages is well-suited for practical applications.
In complexity-theoretical terms, this asks whether any of them can be evaluated
efficiently in data complexity.

In this paper we provide complete answers to the previous questions by establish-
ing a “missing link” between the evaluation problem for these logics and important
problems in word combinatorics. Before explaining those techniques and our results
in depth, it is worth mentioning that our results do not intend to be specific to the
aforementioned rational relations. For instance, our positive results are obtained in
the most general possible way, so that they could be later used to obtain tractability
of evaluation for CRPQs extended with different relations. Also, our negative lower
bounds might serve as the ground over which the intractability of other graph logics
can be established.

Proof techniques and main results. We start by noticing that both �suff and �sw are
definable by word equations, which implies that the evaluation problem for the log-
ics CRPQ(�suff ) and CRPQ(�sw) can be reduced in PSPACE to the solvability of word
equations with regular constraints. The latter has been shown to be decidable in
PSPACE [Schulz 1990; Diekert et al. 2005], based on ideas generated by the sophis-
ticated Makanin’s algorithm [Makanin 1977]. This immediately answers one of the
questions left open by Barceló, Figueira, and Libkin [Barceló et al. 2013]: evalua-
tion for CRPQ(�sw) is decidable in PSPACE. The evaluation of both CRPQ(�sw) and
CRPQ(�suff) is known to be PSPACE-hard [Barceló et al. 2013]; therefore, both prob-
lems are PSPACE-complete (matching the complexity of evaluation for first-order logic).
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We then move to study whether any of these logics can be evaluated in polynomial
time in data complexity (i.e., assuming the formula to be fixed). We start by proving
the quite surprising result that evaluation of CRPQ(�sw) is PSPACE-complete even
in data complexity (i.e., there is a fixed CRPQ(�sw) formula for which evaluation is
PSPACE-complete). As a corollary to our techniques we obtain the following result of
independent interest: There is a word equation e, such that checking solvability of e
under regular constraints is PSPACE-complete. In other words, solving word equations
with regular constraints is not simpler when the equation is fixed in advance. This was
not previoulsy known in the literature.

In striking contrast, we show that CRPQ(�suff) can be efficiently evaluated in data
complexity. This follows by an easy reduction to the problem of evaluating CRPQ(REG)
formulas in data complexity, which is known to be tractable [Barceló et al. 2013]. How-
ever simple, this reduction does not provide us with a general criterion for identifying
when a (syntactic fragment of a) logic of the form CRPQ(S), for S a relation definable
by word equations (such as suffix or subword), can be efficiently evaluated in data
complexity. We provide here one such criterion based on a semantic condition. This cri-
terion establishes that the word equation with regular constraints to which the eval-
uation of CRPQ(S) formulas in the fragment reduces only allows for a finite number
of principal solutions. We then show that not only CRPQ(�suff) satisfies this criterion
(which provides an alternative proof to the fact that this logic can be efficiently evalu-
ated in data complexity), but also a natural syntactic restriction of a general family of
logics of the form CRPQ(S), where S lies beyond the class of rational relations.

In the second part of the paper we study the complexity of evaluation for CRPQ(�ss).
This case is different since we cannot reduce it to solvability of word equations with
regular constraints. Instead, we have to use different techniques to prove that the pre-
vious bounds obtained for this problem in [Barceló et al. 2013] are sharp. We start by
showing that the evaluation problem for CRPQ(�ss) is NP-complete in data complexity.
The lower bound is obtained by a reduction from longest common subsequence (LCS).
We also prove that, in general, evaluation for CRPQ(�ss) is NEXPTIME-complete. In
this case, we use a more cumbersome reduction from a suitable succinct version of
LCS. This proves that, in its full generality, the language CRPQ(�ss) is impractical.

Inverses. It is practically convenient to extend CRPQs with the ability to traverse
edges in both directions. This gives rise to the well-studied class of CRPQs with in-
verses, or C2RPQs [Calvanese et al. 2000; 2002]. In order to simplify the presentation
we only deal with CRPQs in the paper. Nevertheless, it is easy to see that all our
complexity bounds for the evaluation problem continue to hold when basic CRPQs are
extended with inverses. In order to explain this we introduce the notion of “completion”
G± of a graph database G. This completion is obtained from G by adding the “inverse”

u
a−

−−→ v of every edge v
a
−→ u in G (for a a symbol in the alphabet). Then clearly evalua-

tion of a C2RPQ(S) formula φ overG corresponds to evaluation of the same φ, seen now
as a formula in CRPQ(S), over G±. Since G± can be constructed in LOGSPACE from G,
and all complexity classes considered in this paper are closed under LOGSPACE reduc-
tions, the latter shows that all our upper bounds continue to hold in the presence of
inverses. Lower bounds, on the other hand, follow directly from the ones for CRPQs.

Organization. We present basic notation and results in Section 2 and a review of
logics over graph databases in Section 3. Our results on the complexity of evaluation
for the logics CRPQ(�suff) and CRPQ(�sw) are presented in Section 4, and those on
the data complexity in Section 5. Results on the complexity of evaluation for the logic
CRPQ(�ss) can be found in Section 6. We finish with our final remarks in Section 7.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



Graph Logics with Rational Relations : The Role of Word Combinatorics A:5

2. PRELIMINARIES AND BASIC CONCEPTS

Relations on words. For a finite alphabet Σ, we study practically motivated binary
relations over Σ∗ such as prefix, subword, suffix and subsequence, which are defined
as follows. Consider words w, p, x, s ∈ Σ∗ such that w = pxs. Then:

(1) p is a preffix of w (written as p �pref w).
(2) x is a subword of w (written as x �sw w).
(3) s is a suffix of w (written as s �suff w).

Furthermore, for w,w′ ∈ Σ∗ we call w′ a subsequence of w (written as w′ �ss w) if w′ is
obtained from w by removing some letters (perhaps none) from w; that is, w = a1 . . . an,
and w′ = ai1ai2 . . . aik , where 1 ≤ i1 < i2 < . . . < ik ≤ n.

Regular and rational relations. Recall that a nondeterministic finite automata

(NFA) is a tuple A = (Σ, Q, q0, F, δ), where (i) Σ is a finite alphabet, (ii) Q is a finite
set of states, (iii) q0 ∈ Q is the initial state, (iv) F ⊆ Q is the set of final states, and
(v) δ ⊆ Q × Σ × Q is the transition relation. A run of A over a word w = a1a2 . . . an in
Σ∗ is a sequence q0q1q2 . . . qn of states of A (starting in the initial state q0) such that
(qi−1, ai, qi) ∈ δ, for each 1 ≤ i ≤ n. The run is accepting if qn ∈ F . We denote by L(A)
the language defined by A, that is, the set of words w ∈ Σ∗ such that A has an accept-
ing run over w. A language L ⊆ Σ∗ is regular if it is of the form L(A) for some NFA
A over Σ. A classical result in automata theory establishes that the regular languages
are precisely the ones defined by regular expressions.

We now define the class of regular relations. Let Σ be a finite alphabet, ⊥ 6∈ Σ a new
alphabet letter, and Σ⊥ := Σ ∪ {⊥}. Each tuple w̄ = (w1, . . . , wn) of words from Σ∗ can
be viewed as a word over Σn

⊥ as follows: pad words wi with ⊥ so that they all are of the
same length, and use as the k-th symbol of the new word the n-tuple of the k-th symbols
of the padded words. Formally, let |wi| be the length of the word wi and ℓ = maxi |wi|.
Then w1 ⊗ . . . ⊗ wn is a word of length ℓ whose k-th symbol is (a1, . . . , an) ∈ Σn

⊥ such
that:

ai =

{

the kth letter of wi if |wi| ≥ k,

⊥ otherwise.

A relation R ⊆ (Σ∗)n is called a regular n-ary relation over Σ if there is an NFA (or
equivalently, a regular expression) over Σn

⊥ that defines {w1 ⊗ . . .⊗ wn | (w1, . . . , wn) ∈
R}. The class of regular relations is denoted by REG, and we write REGn to denote the
restriction of REG to relations of arity n. (It is worth remarking that NFAs recognising
regular relations are known by many different names in the literature, e.g., synchro-
nised automata [Blumensath and Grädel 2000; Frougny and Sakarovitch 1993], letter-
to-letter transducers [Abdulla et al. 2004; Benedikt et al. 2003], synchronised rational
transducers [To and Libkin 2010], and aligned multi-track automata [Yu et al. 2011]).

Example 2.1. The binary relation �Σ
pref is regular, for each finite alphabet Σ, as

witnessed by the expression
(
⋃

a∈Σ(a, a)
)∗
·
(
⋃

a∈Σ(⊥, a)
)∗

. On the other hand, there is

a finite alphabet Σ such that �Σ
sw is not regular. Similarly for �suff and �ss. ✷

There are two equivalent ways to define rational relations over Σ (e.g. see [Bers-
tel 1979; Sakarovitch 2009]). One uses regular expressions, which are now built from
tuples ā ∈ (Σ∪{ε})n, where ε is the empty word, applying the operations of union, con-
catenation, and Kleene star. Alternatively, rational relations can be defined by means
of n-tape automata, that have n heads for the tapes and one additional finite control;
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at every step, based on the state and the letters it is reading, the automaton can enter
a new state and move some (but not necessarily all) tape heads.

More formally, an n-tape NFA over the alphabet Σ is a tuple A = (Γ, Q, q0, F, δ),
where Γ := (Σ∪{ε})n, such that A is syntactically an NFA over Γ. A tuple w̄ ∈ (Σ∗)n is
accepted by A if there exists a word σ1σ2 . . . σn ∈ Γ∗ for which the following holds: (a) if
we treatA as an NFA, then σ1σ2 . . . σn belongs to L(A), and (b) w̄ = σ1◦σ2◦. . .◦σn, where
◦ denotes an operator that first acts like the word concatenation operator extended to
tuples over words component-wise (i.e., (v1, v2) ◦ (w1, w2) = (v1w1, v2w2)), and then
deletes every apperance of the empty word ε from the resulting tuple of words (e.g.,
(aε, b) ◦ (cd, εe) = (acd, be)).

An n-ary relation R of words over Σ (i.e., R ⊆ (Σ∗)n) is said to be rational if there is
an n-tape NFA which accepts precisely the tuples in R. We denote by RAT the class of
rational relations, and write RATn to denote the restriction of RAT to relations of arity
n. Notice that it is immediate from the definition that the class of regular relations is
a subset of the rational relations, that is, REGn ⊆ RATn for each n ≥ 1.

Example 2.2. For each Σ, the relations �Σ
suff , �Σ

sw, and �Σ
ss are rational:

— The expression
(
⋃

a∈Σ(ε, a)
)∗
·
(
⋃

a∈Σ(a, a)
)∗

defines �suff .
— The relation �sw is defined by the expression:

(

⋃

a∈Σ

(ε, a)
)∗
·
(

⋃

a∈Σ

(a, a)
)∗
·
(

⋃

a∈Σ

(ε, a)
)∗
.

— The expression
(
⋃

a∈Σ(ε, a) ∪ (a, a)
)∗

defines �ss. ✷

Clearly, RAT1 = REG1, as both correspond to the class of regular languages. On the
other hand, REGn ( RATn for each n > 1 (see, e.g., [Berstel 1979]). For instance, there
is a finite alphabet Σ such that �Σ

suff ∈ RAT2 − REG2. Same for �sw and �ss.
In the rest of the paper we do not distinguish between an NFA (resp., regular ex-

pression) S and the set of tuples of words it defines; e.g., we write w̄ ∈ S to denote that
the tuple w̄ of words belongs to the language defined by S. Also, we abuse notation and
write �sw to denote the set that consists of each rational relation �Σ

sw, for Σ a finite
alphabet. Equivalently for �suff and �ss.

The generalized intersection problem. The evaluation problem for logics of the form
CRPQ(S) (for S ⊆ RAT) can be stated in language-theoretical terms [Barceló et al.
2013]. Such reformulation is known as the generalized intersection problem. We in-
troduce such problem below; its relationship with the complexity of evaluation is ex-
plained in Section 3.

For the sake of our results, it is sufficient to concentrate on the case when S is a set
of binary relations on words. We write [m] for {1, . . . ,m}. For an index set I ⊆ [m]2, we
assume that mappings λ : I → 2S are always of finite range, i.e., |λ(i, j)| is finite, for
each pair (i, j) ∈ I. The generalized intersection problem for S is the following decision
problem:

PROBLEM: GENINT(S)
INPUT: A tuple (L1, . . . , Lm, I, λ) such that

the Li’s are NFAs over Σ, I ⊆ [m]2, and λ : I → 2S .
QUESTION: Are there words wi ∈ Li, for i ∈ [m],

such that (wi, wj) ∈ S for all (i, j) ∈ I and S ∈ λ(i, j)?
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Intuitively, GENINT(S) asks if there are wordswi ∈ Li, for 1 ≤ i ≤ m, that satisfy the
constraints specified by I and λ. Each such constraint forces a particular pair (wi, wj)
to belong to every relation in λ(i, j).

For a fixed index set I ⊆ [m]2, we shall write GENINTI(S); in that case, the input to
the problem consists of the NFAs L1, . . . , Lm and the (finite range) mapping λ only.

Example 2.3. In several of our proofs we make use of the index set:

I⋄ = {(1, 2), (1, 3), (2, 4), (3, 4)}.

In particular, if S is a binary relation on Σ∗ then the inputs to GENINTI⋄(S) are of the
form (L1, L2, L3, L4, λ), where the Li’s are NFAs over Σ for 1 ≤ i ≤ 4, and λ(i, j) = {S}
for each (i, j) ∈ I⋄. ✷

In the case when S = (REG2 ∪ �), for � one of �sw, �suff or �ss, there is a particular
restriction of GENINT(S) we are interested in. This takes as input a regular relation
R ∈ REG2 over Σ, and the problem is determining whether the intersection of R and
� is nonempty. Notice that this corresponds to the restriction of GENINT(S) in which
I = {(1, 2)} is fixed, and inputs are of the form (L1 = Σ∗, L2 = Σ∗, λ) for some λ that
satisfies λ(1, 2) = {R,�Σ}, for R ∈ REG2. We denote this restriction by (REG2 ∩ �). In
case that the alphabet Σ is also fixed, we write (REG2 ∩Σ �).

Next we present some important results from [Barceló et al. 2013] regarding the
complexity of the generalized intersection problem. We later explain how they can be
used to determine the complexity of evaluation for graph logics. We start with classes
that extend REG2 with rational relations �sw, �suff or �ss. In this case the problem
becomes either undecidable or highly intractable:

PROPOSITION 2.4. [Barceló et al. 2013] The following holds:

(1) If � is one of �sw or �suff , then there is a finite alphabet Σ such that the problem
(REG2 ∩Σ �) is undecidable.

(2) The problem GENINT(REG2 ∪�ss) is decidable, but there is a finite alphabet Σ such
that (REG2 ∩Σ �ss) is non-elementary.

We consider now the cases when S = �ss. This restriction allows us to reduce the
complexity of GENINT(S).

PROPOSITION 2.5. [Barceló et al. 2013] The problem GENINT(�ss) is in NEXPTIME.
For each fixed I, the problem GENINT(�ss) is in NP.

The case of GENINT(�sw) GENINT(�suff) were left open in [Barceló et al. 2013].

3. LOGICS FOR GRAPH DATABASES

Graph databases. The standard abstraction of graph databases [Angles and

Gutiérrez 2008] is finite Σ-labeled graphs G = (V,E), where V is a finite set of nodes,
and E ⊆ V × Σ× V is a set of labeled edges. A path ρ from v0 to vm in G is a sequence

(v0, a0, v1)(v1, a1, v2) . . . (vm−1, am−1, vm)

of edges from E, for some m ≥ 0. The label of ρ, denoted by κ(ρ), is the word
a0 · · · am−1 ∈ Σ∗. Notice that κ(ρ) is the empty word ε if ρ = v, for v ∈ V .

Each graph database G = (V,E) can be naturally interpreted as an NFA A(G) over
Σ without initial and final states. The states of A(G) are the nodes in V , and there is a
transition labeled a from state u to v in A(G) if and only if (u, a, v) ∈ E. In our proofs,
we typically do not distinguish between G and A(G).

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



A:8 P. Barceló and P. Muñoz

Graph logics. The main building block for graph logics are regular path queries, or
RPQs [Cruz et al. 1987]; they are expressions of the form:

φ(x, y) = x
L
−→ y,

where L is a regular language (given as an NFA)1 over Σ. Given a Σ-labeled graph G =
(V,E), an RPQ φ(x, y) of the form above, and v, v′ nodes of G, we have that G |= φ(v, v′)
if and only if there is a path ρ from v to v′ in G with κ(ρ) ∈ L.

Conjunctive RPQs, or CRPQs [Calvanese et al. 2000], are the closure of RPQs under
conjunction and existential quantification. Formally, they are expressions of the form

φ(x̄) = ∃ȳ
m
∧

i=1

(ui
Li−→ u′i), (1)

where variables ui, u
′
is come from x̄, ȳ. The semantics naturally extends the semantics

of RPQs: φ(ā) is true in G if and only if there is a tuple b̄ of nodes such that |b̄| = |ȳ|
and for every i ≤ m and every vi, v

′
i interpreting ui and u′i in (ā, b̄), respectively, there

is a path ρi in G from vi to v′i whose label κ(ρi) is in Li.
CRPQs can further be extended to compare labels of paths. For that, we need to

name path variables and choose a class S of allowed binary relations on paths. The
class CRPQ(S) consists of all formulas of the form:

φ(x̄) = ∃ȳ
(

m
∧

i=1

(ui
χi:Li
−→ u′i) ∧

∧

(i,j)∈I

∧

S∈λ(i,j)

S(χi, χj)
)

,

where I ⊆ [m]2 and λ : I → 2S . We use variables χ1, . . . , χm to denote paths; these are
quantified existentially. That is, the semantics of G |= φ(ā) is that there is a tuple b̄ of
nodes and paths ρk, for k ≤ m, between vk and v′k (where, as before, vk, v

′
k are elements

of ā, b̄ interpreting uk, u
′
k) such that (κ(ρi), κ(ρj)) ∈ S whenever (i, j) ∈ I and S ∈ λ(i, j).

For instance, CRPQ(REG2) extends CRPQs with the ability to compare pairs of labels
of paths with regular relations, and CRPQ(REG2 ∪ �ss) extends the latter with the
possibility to compare labels of paths with the subsequence relation.

Example 3.1. The CRPQ(�ss) formula

∃y, y′
(

(x
χ:Σ∗a
−→ y) ∧ (x

χ′:Σ∗b
−→ y′) ∧ χ �ss χ

′
)

finds nodes v such that there are two paths starting from v, the first one ending with an
a-edge and the second one with a b-edge, and the label of the first path is a subsequence
of the label of the second one. ✷

The evaluation problem. For a logic CRPQ(S) this is the problem of, given a graph
database G, a tuple ā of nodes, and a formula φ(x̄) in CRPQ(S), determine whether
G |= φ(ā). This corresponds to the combined complexity of evaluation. In the context of
databases, one is also interested in data complexity, which fixes the (typically small)
formula φ and defines the input as consisting solely of the (large) graph databaseG and
the tuple ā. More specifically, let φ be a formula in CRPQ(S). The evaluation problem
for φ takes as input (G, ā), and asks whether G |= φ(ā) . Let C be a complexity class.
We say that the evaluation of CRPQ(S) is in C in data complexity, if the evaluation
problem for each formula in CRPQ(S) is in C. The evaluation of CRPQ(S) is C-hard in

1In examples and proofs we typically use regular expressions to specify regular languages, as this helps
readability. Each regular expression can be easily translated into an equivalent NFA in polynomial time,
and, therefore, this does not have any effect on our results.
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data complexity, if there is a formula in CRPQ(S) for which the evaluation problem is
C-hard. Also, CRPQ(S) evaluation is C-complete if it is both in C and C-hard.

The complexity of evaluation for the logic CRPQ(REG2) was studied using standard
automata tools. In particular, this logic is tractable in data complexity.

PROPOSITION 3.2. (see [Barceló et al. 2012; Barceló 2013]) The evaluation prob-
lem for CRPQ(REG2) is PSPACE-complete, and NP-complete for CRPQ. The evaluation
problem for CRPQ(REG2) is NLOGSPACE-complete in data complexity.

On the other hand, determining the complexity of logics of the form CRPQ(S), where
S ⊆ RAT2, is more difficult; in particular, it is equivalent to determining the complexity
of GENINT(S) if the latter belongs to a class that is closed under PSPACE reductions.
This is stated in the next lemma, which uses techniques from [Barceló et al. 2013].

LEMMA 3.3. Let C be a complexity class closed under PSPACE reductions. Then:

(1) If GENINT(S) is in C, then evaluation of CRPQ(S) is in C.
(2) If GENINT(S) is C-hard, then evaluation of CRPQ(S) is C-hard.

PROOF. For the first statement, it is sufficient to prove that there is a PSPACE re-
duction from the evaluation problem for CRPQ(S) to GENINT(S) (since C is closed
under PSPACE reductions). Consider an input to the evaluation problem for CRPQ(S)
given by a graph database G = (V,E) over Σ, a tuple ā of nodes, and a formula

φ(x̄) = ∃ȳ
(

m
∧

i=1

(ui
χi:Li
−→ u′i) ∧

∧

(i,j)∈I

∧

S∈λ(i,j)

S(χi, χj)
)

.

We construct a PSPACE algorithm that solves the evaluation problem using
GENINT(S) as an oracle. The algorithm cycles through all tuples of nodes b̄ from G
such that |b̄| = |ȳ|. Notice that each such tuple b̄ can be stored using log(|V |) · |ȳ| bits,
which is linear in the size of the input. For each 1 ≤ i ≤ m, let vi and v′i be the nodes
in {ā, b̄} interpreting the variables ui and u′i, respectively, and assume that Ai is the
NFA over Σ which is obtained from G by setting vi and v′i as the unique initial and
final state, respectively. Recall that Li, for 1 ≤ i ≤ m, is an NFA over Σ. It is easy to
see that the NFA Ai×Li which defines the product ofAi and Li accepts precisely those
words w ∈ Σ∗ such that there is a path ρ from ui to vi in G for which κ(ρ) ∈ Li. Clearly
then,G |= φ(ā) if and only if (A1×L1, ...,Am×Lm, I, λ) belongs to GENINT(S). Further,
(A1 × L1, ...,Am × Lm, I, λ) can be constructed in polynomial time from G and φ.

For the second part, let (L1, ..., Lm, I, λ) be an input instance to GENINT(S). We con-
struct in PTIME a graph database G = (V,E), a tuple ā of nodes in G, and a CRPQ(S)
formula φ(x̄), such that (L1, ..., Lm, I, λ) belongs to GENINT(S) if and only if G |= φ(ā).
Let {f1, ..., fm} be fresh nodes and # a symbol not in Σ. We define a graph database G
by first taking the disjoint union of the NFAs/graph databases Li, for 1 ≤ i ≤ m, and
then inserting fresh nodes {t1, ..., tm} and edges (fi,#, ti), for each 1 ≤ i ≤ m and final
state fi in Ai. According to this construction, for each 1 ≤ i ≤ m all paths in G from
qi to ti, where qi is the initial state of the NFA Li, are of the form w# with w ∈ Li.
Conversely, for each 1 ≤ i ≤ m and path in G from qi to ti which is labeled with a
word of the form w̃ = w#, it is the case that wi ∈ Li (since # is not in Σ and ti has
no outcoming edges). Notice that G can be constructed in polynomial time (actually, in
logarithmic space) from L1, . . . , Lm.

The formula φ(x̄) ∈ CRPQ(S) we consider is the following:

∃x′1, . . . , x
′
m

∧

i∈[m]

(

xi
χi: Σ

∗

−−−−→ x′i ∧ x
′
i

χ′

i: #−−−−→ yi

)

∧
∧

(i,j)∈I

∧

S∈λ(i,j)

S(χi, χj), (2)
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A:10 P. Barceló and P. Muñoz

where x̄ = (x1, y1, . . . , xm, ym). Clearly, φ can be constructed in polynomial time from
I, Σ, and λ. From our previous remarks it follows that G |= φ(q1, t1, . . . , qm, tm) if and
only if there are words w1, ..., wm in L1, ..., Lm, respectively, such that (wi, wj) ∈ S for
each (i, j) ∈ I and S ∈ λ(i, j). This concludes the proof.

Again applying techniques from [Barceló et al. 2013] we can prove that the data
complexity of evaluation for CRPQ(S) can be studied in terms of suitable restrictions
of GENINT(S). Recall that GENINTI(S) corresponds to the restriction of GENINT(S)
in which the index set I is fixed. We also denote by GENINTI,Σ,λ(S) the restriction of
GENINT(S) in which the index set I ⊆ [m]2, the alphabet Σ, and the mapping λ : I →
2S are fixed. Thus, the input to this problem consists only of regular expressions Li,
for 1 ≤ i ≤ m, over the fixed alphabet Σ.

LEMMA 3.4. Let C be a complexity class closed under LOGSPACE reductions.

(1) If for each I ⊆ [m]2 it is the case that GENINTI(S) is in C, then evaluation of
CRPQ(S) is in C in data complexity.

(2) If there is an index set I ⊆ [m]2, a finite alphabet Σ, and a mapping λ : I → 2S ,
such that GENINTI,Σ,λ(S) is C-hard, then evaluation of CRPQ(S) is C-hard in data
complexity.

PROOF. The proof of this lemma follows directly from that of Lemma 3.3. For the
first item, notice that if the formula is fixed the space needed to store each tuple b̄ of
nodes such that |b̄| = |ȳ| is O(log |V |). Furthermore, it is not hard to see that for each
1 ≤ i ≤ m the NFA Ai × Li can be constructed in LOGSPACE. Therefore, since the for-
mula is fixed, the tuple (A1×L1, ...,Am×Lm, I, λ) can also be constructed in LOGSPACE.
Notice that I is fixed in this case, and hence this tuple is an input to GENINTI(S). Now
the result follows from the facts that LOGSPACE computable functions are closed under
composition and C is closed under LOGSPACE reductions.

For the second item, notice that the reduction used in the second part of the proof
of Lemma 3.3 constructs a formula φ(x̄) (in Equation (2)) which only depends on I ⊆
[m]2, the alphabet Σ, and λ : I → 2S . These parameters are all fixed, and, therefore,
the formula φ itself is fixed. Furthermore, the graph database G and the tuple ā =
(q1, t1, . . . , qm, tm) of nodes used in such reduction can be constructed in LOGSPACE

from L1, . . . , Lm. This implies our result.

Applying these two lemmas, together with Propositions 2.4 and 2.5, we can find com-
plexity bounds for the evaluation for some important graph logics. This is summarized
in the next two corollaries. The first one talks about logics of the form CRPQ(REG2 ∪ �),
for � one of �sw, �suff or �ss.

COROLLARY 3.5. [Barceló et al. 2013] The following holds:

(1) Let S = (REG2 ∪ �), for � one of �sw or �suff . There is a CRPQ(S) formula φ such
that the evaluation problem for φ is undecidable.

(2) The evaluation problem for CRPQ(REG2 ∪ �ss) is decidable, but non-elementary
even in data complexity.

In other words, these logics are completely impractical, since the evaluation prob-
lem for them is either undecidable or very expensive in data complexity. Notice that
the upper bound for CRPQ(REG2 ∪ �ss) follows directly from Lemma 3.3 and Propo-
sition 2.4. On the other hand, the lower bounds follow from Lemma 3.4 and Propo-
sition 2.4. This is because (REG2 ∩Σ �), for � one of �sw, �suff or �ss, is of the form
GENINTI,Σ′,λ(REG2 ∪ �), for some I, Σ′ and λ [Barceló et al. 2013].
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The next corollary deals with the logic CRPQ(�ss). It is shown that this restric-
tion reduces dramatically the complexity of evaluation. The proof follows directly from
Proposition 2.5 and Lemmas 3.3 and 3.4.

COROLLARY 3.6. [Barceló et al. 2013] The evaluation problem for CRPQ(�ss) can
be solved in NEXPTIME, and in NP in data complexity.

The case of CRPQ(�sw) was left open in previous work [Barceló et al. 2013]. Our goal
is determining the precise complexity of evaluation for logics of the form CRPQ(�), for
� one of �sw, �suff or �ss. We do this in the following sections. Since the generalized
intersection problem is of independent interest and admits a clean presentation, we
concentrate on studying the complexity of such problem and then transfer the results
to the complexity of evaluation for the corresponding logics using Lemmas 3.3 and 3.4.

4. COMBINED COMPLEXITY OF LOGICS CRPQ(�SUFF) AND CRPQ(�SW)

We start by studying the combined complexity of evaluation for logics CRPQ(�suff )
and CRPQ(�sw). The relations �suff and �sw share an important property: they
can be defined by word equations. This observation implies that GENINT(�suff) and
GENINT(�sw) can be reduced in polynomial time to the problem of solving word equa-
tions with regular constraints, which is known to be in PSPACE [Diekert et al. 2005].
It follows that evaluation of both CRPQ(�suff ) and CRPQ(�sw) is PSPACE-complete.

4.1. Word equations and the generalized intersection problem

Let X be a countably infinite set of variables. A word equation over Σ [Makanin 1977]
is an expression e of the form φ = ψ, where both φ and ψ are words over Σ ∪ X . A
solution for e is a mapping h from the variables that appear in e to Σ∗ that unifies
both sides of the equation, i.e., h(φ) = h(ψ), assuming that h(a) = a for each symbol
a ∈ Σ.2 A word equation with regular constraints [Schulz 1990] is a tuple (e, ν), where
e is a word equation and ν is a mapping that associates an NFA Lx over Σ with each
variable x that appears in e. A solution for (e, ν) is a solution h for e over Σ that satisfies
h(x) ∈ Lx, for each x ∈ X that is mentioned in e.

In order to simplify notation, we sometimes specify properties using systems of word
equations. These are nothing but finite sets of word equations. A solution for any such
system E is a mapping h from the variables that appear in E to the set of words over
a specified alphabet Σ, such that h is a solution for each word equation in E. Allowing
for systems of word equations come at no cost, as E can always be represented as an
equivalent word equation e. In fact, assume that E is of the form {φi = ψi | 1 ≤ i ≤ n}.
Then E can be represented as

φ1# . . .#φn = ψ1# . . .#ψn,

where # is a fresh symbol that does not appear in E. Notice that the solutions for E
coincide with the solutions for e. Moreover, e can be constructed in LOGSPACE from E.
Therefore, from now on we do not distinguish between a system of word equations and
the single word equation that is equivalent to it.

A deep result due to Makanin states that the problem of existence of solutions for
word equations is decidable [Makanin 1977]. By applying somewhat different tech-
niques, Plandowski proved that the problem is in PSPACE [Plandowski 2004]. Then
Schulz developed an extension of those techniques to prove that the latter holds even
for word equations with regular constraints:

2We assume, as usual, that if φ = t1 . . . tn then h(φ) = h(t1) . . . h(tn).

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



A:12 P. Barceló and P. Muñoz

THEOREM 4.1. [Schulz 1990; Diekert et al. 2005] The problem of existence of solu-
tions for word equations with regular constraints is PSPACE-complete.

Word equations can be used to define relations on words (see, e.g., [Lothaire 1997;
Karhumäki et al. 2000]). Formally, an n-ary relation R over Σ∗ is definable by word
equations, if there is a word equation e over Σ and an ordered tuple (x1, . . . , xn) of
variables appearing in e such that:

R = {(h(x1), . . . , h(xn)) | h is a solution for e}.

We denote by EQ the set of binary relations which are definable by word equations. We
assume that each such binary relation is specified as a word equation that defines it.

Example 4.2. We provide examples of definability in EQ and the relationship of the
latter with REG and RAT:

(1) Both �suff and �sw are in EQ. More precisely, �suff is the set of pairs (x, y) that
satisfy the word equation y = px, and �sw is the set of pairs (x, y) that satisfy the
word equation y = pxs. On the other hand, �ss is not in EQ [Ilie 1999].

(2) REG 6⊂ EQ: the equal length relation (the set of pairs (w1, w2) of words of the same
length) is regular, but not definable by word equations [Karhumäki et al. 2000].

(3) EQ 6⊂ RAT: the conjugacy relation {(ww′, w′w) | w,w′ ∈ Σ∗} is in EQ, as witnessed
by the system of word equation x = yz and x′ = zy, by taking projection over (x, x′).
On the other hand, this relation is not rational. ✷

The fact that relations in EQ can be defined with word equations implies that the
problem GENINT(EQ) boils down to the problem of solving word equations with regular
constraints. We explain this idea first with an example.

Example 4.3. Let us consider the index set I⋄ = {(1, 2), (1, 3), (2, 4), (3, 4)} from
Example 2.3. Furthermore, let (L1, L2, L3, L4, λ) be an instance of the problem
GENINTI⋄(�suff), such that the Li’s are NFAs over Σ for 1 ≤ i ≤ 4, and λ(i, j) = {�Σ

suff}
for each (i, j) ∈ I⋄.

We are thus looking for the existence of wordsw1, w2, w3, w4 over Σ such that for each
pair (i, j) ∈ I⋄ the following holds: wi ∈ Li, wj ∈ Lj , and wi �suff wj . In other words, we
are looking for pairs (wi, wj) that satisfy the equation with regular constraints

(wj = uijwi, νij),

where νij(wj) = Lj , νij(wi) = Li, and νij(uij) = Σ∗.
Putting all this together we can prove that (L1, L2, L3, L4, λ) is in GENINTI⋄(�suff)

if and only if the word equation with regular constraints (e, ν) has a solution, where e
and ν are as follows: First, e is the system of word equations:

w2 = u12w1,

w3 = u13w1,

w4 = u24w2,

w4 = u34w3.

Second, ν(wi) = Li for each 1 ≤ i ≤ 4, and (iii) ν(ui,j) = Σ∗ for each (i, j) ∈ I⋄. Clearly,
(e, ν) can be constructed in polynomial time from (L1, L2, L3, L4, λ). Note that e only
uses variables and its form depends exclusively on I and λ (i.e., it is independent of
the Li’s and Σ). ✷

Generalizing from the idea presented in the previous example, we can prove the
following proposition:
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PROPOSITION 4.4. There is a polynomial time reduction that, given NFAs
L1, . . . , Lm over Σ, an index set I ⊆ [m]2, and a (finite range) mapping λ : I →
2EQ, constructs a word equation with regular constraints (e, ν) over Σ such that
(L1, . . . , Lm, , I, λ) ∈ GENINT(EQ) if and only if (e, ν) has a solution.

Also, the form of e depends exclusively on I and λ. We refer to this equation as e(I, λ).

PROOF. A binary relations S ∈ EQ is defined by the word equation eS := (φS =
ψS), by taking projection over the ordered pair of variables (x1, x2). We call existential
the variables in eS which are different from x1 and x2. We assume without loss of
generality that for each (i, j) ∈ I, each binary relation S ∈ λ(i, j) is defined by the word

equation e
i,j
S := (φi,jS = ψ

i,j
S ) obtained from eS by replacing variables x1, x2 by xi, xj ,

and each existential variable z by zi,j .
Let e1, . . . , eℓ, with ei := (φi = ψi) for each 1 ≤ i ≤ ℓ, be an enumeration of the equa-

tions defining all relations in the sets of the form λ(i, j), for (i, j) ∈ I. This enumeration
exists since λ is of finite range. Let us now define a word equation with regular con-
straints (e, ν) over Σ# such that:

— The word equation e is defined by the set:

{φi = ψi | 1 ≤ i ≤ ℓ}.

Clearly, e is completely determined by I and λ. We can thus denote it as e(I, λ).
— The mapping ν satisfies that ν(xi) = Li for each 1 ≤ i ≤ m, and ν(y) = Σ∗ for each

other variable y mentioned in e(I, λ)

Clearly, (e(I, λ), ν) can be constructed in polynomial time from (L1, . . . , Lm, , I, λ).
Furthermore, it is easy to see from our previous remarks that (L1, . . . , Lm, I, λ) ∈
GENINT(EQ) if and only if (e(I, λ), ν) has a solution.

As a corollary to Proposition 4.4 and Theorem 4.1, we obtain that GENINT(EQ),
and, thus, GENINT(�suff) and GENINT(�sw), are in PSPACE. It follows that the three
problems are complete for this class. This is because the problem of checking for
nonemptiness the language defined by the intersection of NFAs/regular expressions
L1, . . . , Lm, which is known to be PSPACE-hard [Kozen 1977], can be efficiently reduced
to GENINT(�), for � one of �suff and �sw. This reduction can be carried out even in
the restricted case in which the index set I ⊆ [m]2 is acyclic [Barceló et al. 2013], i.e.,
when the undirected graph defined by I over [m] is acyclic. Summing up:

COROLLARY 4.5. The problem GENINT(EQ) is in PSPACE.
In particular, the problems GENINT(�suff) and GENINT(�sw) are PSPACE-complete.

The lower bound holds even in the case in which the index set I is acyclic.

PROOF. The upper bound follows from Proposition 4.4 and Theorem 4.1. The lower
bounds are obtained by a reduction from the problem of checking for nonemptiness
the language defined by the intersection of m NFAs L1, ..., Lm over an alphabet Σ (de-
scribed above). Let � be either �suff or �sw and assume that # is a symbol not in Σ.
Further, for each 1 ≤ i ≤ m let L̃i be the NFA which accepts the language #Li#. We
also define (a) an index set I = {(i, i+1) | 1 ≤ i ≤ m− 1}, and (b) a mapping λ : I → 2�

that associates the relation � with each pair (i, i+ 1) ∈ I. Notice that I is acyclic.

We claim that (L̃1, ..., L̃m, I, λ) ∈ GENINT(EQ) if and only if
⋂

1≤i≤m Li is nonempty.

In fact, assume first that there is a word w ∈
⋂

1≤i≤m Li. Then for each 1 ≤ i ≤ m the

word w̃ = #w# belongs to L̃i. Further, since� is a reflexive relation, all the constraints
imposed by the mapping λ are satisfied. Assume, on the other hand, that there are
words #w1#, . . . ,#wm# such that (a) #wi# ∈ L̃i for each 1 ≤ i ≤ m, and (b) #wi# �
#wi+1# for each 1 ≤ i ≤ m − 1. Then it must be the case that wi ∈ Li for each
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1 ≤ i ≤ m. Further, since # 6∈ Σ, the # symbols at the beginning and end of #wi# and
#wi+1#, respectively, have to match in any witness of #wi# � #wi+1#. Therefore
w1 = w2 = · · · = wm, which implies that w1 ∈

⋂

1≤i≤m Li.

4.2. Complexity of CRPQ(�suff) and CRPQ(�sw)

We can now apply Lemma 3.3, and make use of the results in Corollary 4.5, to deter-
mine the precise complexity of evaluation for the logics CRPQ(EQ), CRPQ(�suff) and
CRPQ(�sw):

THEOREM 4.6. Evaluation for CRPQ(EQ) is in PSPACE.
In particular, the evaluation problem for CRPQ(�), when � is either �suff or �sw, is

PSPACE-complete. This holds even for formulas in which the index set I is acyclic.

5. DATA COMPLEXITY OF LOGICS CRPQ(�SUFF) AND CRPQ(�SW)

Although the logics CRPQ(�suff) and CRPQ(�sw) exhibit similar properties in com-
bined complexity, we show in this section a remarkable difference in their data com-
plexity: CRPQ(�suff) allows for tractable evaluation in data complexity (in particular,
in NLOGSPACE), whereas there are queries in CRPQ(�sw) which are still PSPACE-
hard to evaluate. While the proof of the former is simple, it does not provide us with
a uniform condition for explaining when the evaluation of (a fragment of) a logic of
the form CRPQ(S), for S ∈ EQ, is tractable in data complexity. We provide here one
such condition based on the techniques developed in Section 4 and use it to obtain
tractability in data complexity for relevant fragments of a family of logics of the form
CRPQ(S), where S ∈ EQ.

5.1. Data complexity of CRPQ(�sw)

We start by studying CRPQ(�sw), for which we prove the following:

THEOREM 5.1. The evaluation problem for CRPQ(�sw) is complete for PSPACE in
data complexity.

The upper bound follows from Theorem 4.6. Due to Lemma 3.4, for hardness we only
need to prove the following:

PROPOSITION 5.2. There is an index set I ⊆ [m]2, a finite alphabet Σ, and a map-
ping λ : I → 2�sw , such that GENINTI,Σ,λ(�sw) is PSPACE-hard.

PROOF. We use the index set I⋄ = {(1, 2), (1, 3), (2, 4), (3, 4)} from Example 4.3. It
follows from [Kozen 1977] that there is a finite alphabet Σ such that the following
problem is PSPACE-complete: Given NFAs/regular expressions L1, . . . , Lm over Σ such
that no Li accepts the empty word ε, check whether

⋂

1≤i≤m Li is nonempty. We show

that this problem can be reduced in polynomial time to GENINTI⋄,Σ$,λ⋄
(�sw), where

Σ$ denotes the extension of Σ with the fresh symbol $, and λ⋄ : I⋄ → 2�sw is such that

λ⋄(i, j) = {�
Σ$
sw}, for each (i, j) ∈ I⋄.

Given NFAs L1, . . . , Lm over Σ such that no Li accepts the empty word, we construct
an instance (R1, R2, R3, R4) of GENINTI⋄,Σ$,λ⋄

(�sw) such that the Ri’s are NFAs over
Σ$ that define the following languages:

(1) R1 := $L1$L2$ . . . $Lm$, i.e., R1 accepts words of the form $w1$w2$ . . . $wm$, where
each wi is a (nonempty) word in the language Li.

(2) R2 := Σ+($Σ∗)m$, i.e., R2 accepts words of the form w0$w1$w2$ . . . $wm$, where
w0, w1, . . . , wm are words over Σ and w0 is required to be nonempty.

(3) R3 := ($Σ∗)m$Σ+, i.e., R3 accepts words of the form $w1$w2$ . . . $wm$wm+1, where
w1, . . . , wm, wm+1 are words over Σ and wm+1 is required to be nonempty.
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(4) R4 := ($Σ∗)m+1$, i.e. R4 accepts words of the form $w1$w2$ . . . $wm$wm+1$, where
w1, . . . , wm, wm+1 are words over Σ.

Clearly, (R1, R2, R3, R4) can be constructed in polynomial time from the Li’s.
We claim that

⋂

1≤i≤m Li 6= ∅ if and only if (R1, R2, R3, R4) ∈ GENINTI⋄,Σ$,λ⋄
(�sw).

Assume first there is word w ∈
⋂

1≤i≤m Li. Then w 6= ε. Consider the word u over Σ$

defined as u := ($w)m$, and let w1 := u, w2 := wu, w3 := uw and w4 := $wu. It is
clear that wi ∈ Ri for each 1 ≤ i ≤ 4. Furthermore, it is easy to see that wi �sw wj for
each (i, j) ∈ I⋄ (in fact, w2 is obtained from w4 by removing the first symbol $, and w3

is obtained from w4 by removing the last symbol $). We conclude that (R1, R2, R3, R4)
belongs to GENINTI⋄,Σ$,λ⋄

(�sw).
Assume on the other hand that there are words w1, w2, w3 and w4 such that wi ∈ Ri

for each 1 ≤ i ≤ 4, and wi �sw wj for each (i, j) ∈ I⋄. Since w1 ∈ R1 it must be the case
that w1 is of the form $s1$s2$ . . . $sm$, where each si is a (nonempty) word in Li. We
prove next that s1 = sj , for each 2 ≤ j ≤ m, and thus that s1 ∈

⋂

1≤i≤m Li.

Since w1 �sw w2 and w2 ∈ R2, the structure of R2 implies that w2 must be of the form
s0$s1$s2$ . . . $sm$, for some nonempty word s0 over Σ. Similarly, w3 must be of the form
$s1$s2$ . . . $sm$sm+1, for some nonempty word sm+1 over Σ. Now, since w2 �sw w4 and
w4 ∈ R4, the structure of R4 implies that w4 must be of the form $s0$s1$s2$ . . . $sm$.
Similarly, since w3 �sw w4 and w4 ∈ R4, the structure of R4 implies that w4 must
be of the form $s1$s2$ . . . $sm$sm+1$. But the only way in which this can happen is if
s0 = s1 = s2 = · · · = sm = sm+1. This concludes the proof.

An interesting corollary to the proof of Proposition 5.2 is that there exists a fixed
word equation e such that solving e under regular constraints is PSPACE-complete.
Formally, we denote by WE(e) the problem of evaluating the fixed word equation e
under regular constraints. This problem takes as input an alphabet Σ that extends the
set of constants that are mentioned in e, and a mapping ν that associates an NFA Lx

over Σ with each variable x that is mentioned in e, and the question is whether (e, ν)
has a solution.

COROLLARY 5.3. There is a word equation e and a finite alphabet Σ such that the
problem WE(e) is PSPACE-complete, even if restricted to inputs over Σ.

PROOF. The word equation e corresponds to the system:

w2 = u12w1u
′
12

w3 = u13w1u
′
13

w4 = u24w2u
′
24

w4 = u34w3u
′
34,

where all symbols are variables. In fact, it follows from the proof of Proposition 5.2
that there is a finite alphabet Σ such that GENINTI⋄,Σ$,λ⋄

(�sw) is PSPACE-complete.
This problem can be reduced in polynomial time to WE(e), even for inputs over Σ$.

5.2. Data complexity of CRPQ(�suff)

In sharp contrast to CRPQ(�sw), the logic CRPQ(�suff) can be evaluated in polyno-
mial time in data complexity. This follows by an easy reduction to the problem of evalu-
ating CRPQ(�pref) formulas in data complexity, which is in polynomial time (actually,
in NLOGSPACE) from Proposition 3.2 (since �pref is a binary regular relation).

PROPOSITION 5.4. The evaluation problem for CRPQ(�suff ) is in NLOGSPACE in
data complexity.
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PROOF. Let us start by noticing that for any pair of words u, v ∈ Σ∗ it is the case that
u �suff v if and only if u−1 �pref v

−1, where (·)−1 denotes the word reversal operation.
This allows us to construct a LOGSPACE translation from CRPQ(�suff) evaluation to
CRPQ(�pref) evaluation. The result then follows from the fact that CRPQ(�pref) eval-
uation is in NLOGSPACE in data complexity (since NLOGSPACE-computable functions
are closed under composition).

Let φ(x̄) be a fixed CRPQ(�suff) formula of the following form:

∃ȳ
(

m
∧

i=1

ui
ρi:Li
−→ u′i ∧

∧

(i,j)∈I

ρi �suff ρj
)

.

It is known that the reversal of a regular language L (i.e., the set of words of the form
w−1, for w ∈ L) is also regular. We can assume then that there are NFAs L−1

1 , . . . , L−1
m

that define the reversals of L1, . . . , Lm, respectively. From this we define a CRPQ(�pref)
formula φ′(x̄) as follows:

∃ȳ
(

m
∧

i=1

u′i
ρ′

i:L
−1
i−→ ui ∧

∧

(i,j)∈I

ρ′i �pref ρ
′
j

)

.

Notice that φ′(x̄) only depends on φ(x̄), and thus it is fixed.
Given a graph database G = (V,E) we construct the graph database G−1 by reversing

the edges of G. Formally, G−1 is constructed fromG by replacing each edge (u, a, v) ∈ E
with (v, a, u). From our previous remarks it is clear thatG |= φ(ā), for a tuple ā of nodes
in V , if and only if G−1 |= φ′(ā). Further, (G−1, ā) can be constructed in LOGSPACE from
(G, ā). This concludes the proof.

It is not hard to see that each formula in CRPQ(�sw) can be expressed in the logic
CRPQ(�pref ∪ �suff). This is because an atom of the form χ �sw χ′ can be rewritten as
the formula ∃χ′′(χ′′ �pref χ

′ ∧ χ �suff χ′′) in CRPQ(�pref ∪ �suff ). From Theorem 5.1
we obtain the following:

PROPOSITION 5.5. Evaluation for CRPQ(�pref ∪ �suff) is PSPACE-hard in data
complexity.

This result shows how fragile tractability in data complexity is in this context. In
fact, extending CRPQs with either �pref or �suff preserves tractability in data com-
plexity; in the first case this follows from Proposition 3.2 (since �pref is in REG2), and
in the second one from Proposition 5.4. But adding both relations at the same time
destroys such tractability.

5.3. A general condition for tractability in CRPQ(EQ)

While the proof of Proposition 5.4 is simple, it does not provide us with a uniform con-
dition for explaining when the evaluation (a fragment of) a logic of the form CRPQ(S),
for S ⊆ EQ, is tractable in data complexity. We provide here one possible such condi-
tion. Our condition imposes that the fragment of CRPQ(S) we consider only includes
formulas of the form

∃ȳ(
m
∧

i=1

(ui
χi:Li
−→ u′i) ∧

∧

(i,j)∈I

S(χi, χj))

for which the following holds: Let e(I, λ) be the word equation that represents I and
λ, for λ the mapping that assigns relation S to each element in I, as constructed in
the proof of Proposition 4.4. Then e(I, λ) only allows for a finite number of principal

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



Graph Logics with Rational Relations : The Role of Word Combinatorics A:17

solutions. Moreover, when this holds for each index set I ⊆ [m]2 we can conclude that
the whole logic CRPQ(S) is tractable in data complexity. We explain this below.

5.3.1. Finite number of principal solutions. For the sake of convenience, we assume from
now on that word equations e are expressions of the form φ = ψ, where φ and ψ are
words that consist of variables and constants. We do not assume as before that the al-
phabet Σ, where solutions for e are interpreted, is part of the definition of e. In fact, we
freely interpret e over any alphabet extending the set of constants that are mentioned
in the equation. This is convenient for defining and working with principal solutions
of word equations. In a precise formal sense (stated in Claim 5.9), such principal solu-
tions can be seen as the “generators” of all particular solutions of a word equation with
regular constraints over every given alphabet Σ.

Let e be a word equation and h1, h2 two solutions for e over Σ1 and Σ2, respectively.
We say that h1 divides h2 if there is a continuous morphism α : Σ∗

1 → Σ∗
2 such that

h2 = α ◦ h1. Recall that α is a morphism if (i) α(ε) = ε, and (ii) for each w ∈ Σ∗ such
that w = a1 . . . an, it is the case that α(w) = α(a1) . . . α(an). (We can thus identify
the morphism α with its restriction to Σ1). The morphism α is continuous if it doesn’t
delete symbols, i.e., α(a) 6= ε for each a ∈ Σ. A solution h for e is said to be principal
[Abdulrab and Pécuchet 1989] if it is divided by no other solution but itself (up to
isomorphism). It is known that each word equation that has a solution has a principal
solution [Lothaire 1997]. We denote by Efin the class of word equations e with only a
finite number of principal solutions up to isomorphism.

Example 5.6. The word equation x = yz (which defines the suffix relation on the
pair (x, z)) is in Efin. In fact, its only principal solution h is the one that satisfies h(x) =
ab, h(y) = a and h(z) = b. The same holds for the word equation x = yzw (which defines
the subword relation on (x, z)).

Let us consider the set of word equations {x = uv, y = vu}, which defines on (x, y)
the conjugacy relation ∼ introduced in Example 4.2. This word equation is also in Efin.
In fact, its only principal solution is h(x) = ab, h(y) = ba, h(u) = a and h(v) = b.

On the other hand, the commutativity equation xy = yx does not belong to Efin; its
principal solutions are all solutions of the form hm,n, for m,n > 0 relatively primes,
where hm,n(x) = am and hm,n(y) = an. ✷

The fact that the word equations x = yz and x = yzw (which define the suffix and
subword relations, respectively) have only finitely many principal solutions is part of a
more general phenomenon: Word equations without constants and that do not repeat
variables (such as x = yz and x = yzw) always have a finite number of principal
solutions. This is formalized in the following lemma, which will be useful for the rest
of our proof. While the lemma uses standard techniques, we have not been able to find
it in the literature.

LEMMA 5.7. Let e be a word equation of the form φ = ψ that contains neither
constants nor repeated variables. Then: (1) e has only finitely many principal solutions,
and (2) for each principal solution of the form h : X → ∆∗, where ∆ is a finite alphabet,
it is the case that h(φ) = h(ψ) contains no repeated symbols.

PROOF. It is known that by iteratively guessing the relative lengths of words to be
associated with variables, and solving an equation in a left-to-right fashion by elimi-
nating common prefixes (also known as Lentin’s pig-pug procedure [Lentin 1972]), one
can produce all principal solutions to a word equation without constants. When the
equation admits a finite number of principal solutions, the procedure terminates and
generates them all [Lentin 1972; Abdulrab and Pécuchet 1989].
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We follow this method and exploit the fact that the word equations in question have
no repetitions of variables to achieve the desired properties of the lemma. Let e be a
word equation of the form ψ = φ such that ψ ·φ contains neither constants nor repeated
variables. Let us notice first that it suffices to prove the claim for the class of principal
solutions that can only map variables to non-empty words (the so-called non-erasing
principal solutions). For general principal solutions, one can first choose a subset Y of
the variables in e and replace all occurrences of variables from Y in e by the empty
word, thus obtaining a new word equation e′ whose non-erasing principal solutions
correspond to the general principal solutions of e in which exactly the variables in Y
are assigned the empty word.

The procedure to obtain the non-erasing principal solutions of e is as follows:

(1) Let φ = xφ′, ψ = yψ′, for variables x, y.
(2) Let z be a fresh variable. Then apply one of the following transformations to e:

(a) x← yz,
(b) x← y, or
(c) y ← xz.

(3) After applying this transformation, e can be reduced to a word equation e′ by re-
moving the common prefixes of both its sides. According to which transformation
was used, the following are possible:
(a) e′ is zφ′ = ψ′,
(b) e′ is φ′ = ψ′, or
(c) e′ is φ′ = zψ′.

(4) If both sides of e′ are non-empty, repeat this procedure for e′. If only one of the sides
is the empty word, then reject. If both sides are the empty word, accept.

Since e has no repetition of symbols, the word equation e′ obtained in step (3) has
no repeated symbols either, and, furthermore, |e′| < |e|. Indeed, in step (2) any chosen
transformation will only be applied once. Two of these transformations introduce a new
variable z to the equation, hence enlarging its length by 1. However, all of them remove
both x and y from e. Overall, we have that |e′| ≤ |e| − 1. We conclude inductively that
this process always ends in at most |e| steps, regardless of the transformation chosen
in step (2).

Principal solutions can finally be obtained from the sequence of transformations
used in an accepting run of this procedure. Let Y be the set of variables mentioned in
e and h the identity over the variables in Y . For a variable y ∈ Y , iteratively replace
symbols in h(y) with the assignments they receive after applying the transformations
described in step (2), in the order these transformations where chosen in the accepting
run, until no further replacements can be applied. When this is done for all variables,
the resulting mapping h is a principal solution for e. Notice that since none of the
word equations generated by the process has repeated variables, each variable can
be transformed at most once. Furthermore, when a variable is transformed yielding
a fresh variable z, then this z appears always as a suffix of one of the words in the
equation. If z is later transformed, it can only be replaced by variables that are disjoint
from the ones that have been used in the assignments to previous variables. It follows
that h(φ) = h(ψ) has no repeated symbols.

Next we establish the good behavior of Efin in our context. Recall that WE(e) is the
problem of evaluating the fixed word equation e under given regular constraints. We
prove that WE(e) can be solved in NLOGSPACE every time e belongs to Efin.

THEOREM 5.8. WE(e) is in NLOGSPACE, for each e ∈ Efin.
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PROOF. Consider an input to WE(e) that consists of a finite alphabet Σ and a map-
ping ν that associates an NFA over Σ with each variable that is mentioned in e. Let Y
and Σ0 be the set of variables and constants mentioned in e, respectively. We start by
proving the following claim, which states that checking for the existence of a solution
for (e, ν) over Σ can be reduced to checking for the existence of a principal solution for
e and of a particular morphism from such principal solution to Σ∗:

CLAIM 5.9. It is the case that (e, ν) has a solution over Σ if and only if it has a
solution of the form h = α ◦ h′, where h′ : Y → ∆∗ is a principal solution for e and
α : ∆∗ → Σ∗ is a morphism satisfying α(h′(y)) ∈ ν(y) for each y ∈ Y .

PROOF. The if direction follows immediately since α ◦ h′ : Y → Σ∗ solves both e and
the regular constraints given by ν. For the only if direction, let h : Y → Σ∗ be a solution
for (e, ν) over Σ. If h is already a principal solution for e then we are done, since then
it suffices to consider h′ = h and α equal to the identity. Assume otherwise that h is
not principal. Since any solution of e is divided by some principal solution, there is a
principal solution h′ : Y → ∆∗ for e and a continuous morphism α : ∆∗ → Σ∗ such that
h = α◦h′. Further, since h is a solution for (e, ν) it is the case that h(y) = α(h′(y)) ∈ ν(y)
for each y ∈ Y . This concludes the proof of the claim.

We now continue with the proof of Theorem 5.8. Claim 5.9 states that our problem
can be reduced to checking whether some principal solution h : Y → ∆∗ for e, where ∆
is a finite alphabet, admits a morphism α : ∆∗ → Σ∗ such that α(h(y)) ∈ ν(y) for each
y ∈ Y . The set of principal solutions for e is not only finite but fixed (since e itself is
fixed).3 It remains to show that there is an NLOGSPACE procedure that, given a fixed
principal solution h : Y → ∆∗ for e, checks whether there is a morphism α : ∆∗ → Σ∗

such that α(h(y)) ∈ ν(y) for each y ∈ Y . We illustrate this procedure with an example.

Example 5.10. Suppose that Y = {x, y, z}, ∆ = {a, b, c}, and h satisfies the follow-
ing: (1) h(x) = abc, (2) h(y) = b, and (3) h(z) = ac. Let us assume that we can guess
states q0, q1, q2, q3 in ν(x), states r0, r1 in ν(y), and states s0, s1, s2 in ν(z), such that
(1) q0, r0, s0 are initial states of ν(x), ν(y), and ν(z), respectively, (2) q3, r1, s2 are final
states of ν(x), ν(y), and ν(z), respectively, and (3) the following holds:

— State (q1, s1) is reachable from (q0, s0) reading word w1 over the NFA ν(x) × ν(z).
— State (q2, r1) is reachable from (q1, r0) reading word w2 over the NFA ν(x) × ν(y).
— State (q3, s2) is reachable from (q2, s1) reading word w3 over the NFA ν(x) × ν(z).

Then (e, ν) has a solution α◦h over Σ, where α : ∆∗ → Σ∗ is the morphism that satisfies
the following: (1) h′(x) = w1w2w3, (2) h′(y) = w2, and (3) h′(z) = w1w3. If, on the other
hand, it is not possible to find such states, then we declare that h fails.

It is not hard to see how this idea can be extended to the general case. Notice that
the number of states to be guessed is bounded by the maximum length of a word of
the form h(y), for y ∈ Y , and thus it is fixed. Each such state can be represented using
logarithmic space. Furthermore, the number of variables in Y is fixed, and, therefore,
each one of the reachability tasks can be carried out in NLOGSPACE using standard
“on-the-fly” techniques. We develop these ideas in the rest of the proof. ✷

Fix a principal solution h : Y → ∆∗ for e, where ∆ is a finite alphabet. Observe that
it may be the case that ∆ ∩ Σ0 6= ∅. Let m be the maximum length of a word of the
form h(y), for y ∈ Y . We define a set σ(d) ⊆ Y × {1, . . . ,m}, for each d ∈ ∆, such that
(y, i) ∈ σ(d) if and only if the i-th symbol of h(y) is d. We then define for each d ∈ ∆ \Σ0

3Furthermore, the principal solutions can be generated in this case by applying, e.g., Lentin’s pig-pug pro-
cedure [Lentin 1972]. But this is not needed for our proof.
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an NFA Ld over Σ such that:

Ld =
∏

(y,i)∈σ(d)

ν(y),

i.e., Ld is the product of all NFAs of the form ν(y) such that σ(d) contains a pair of
the form (y, i). Notice that each state in Ld has as many components as the number
|σ(d)| of appearances of the symbol d ∈ ∆ in the set of words {h(y) | y ∈ Y }. Since e,
and thus |σ(d)|, is fixed, this implies the following: (a) each Ld is of polynomial size
in the input, (b) each state in Ld can be encoded using only logarithmic space, and (c)
checking whether there is a transition from state q to state q′ in Ld can be done in
logarithmic space.

We need to decide whether the symbols d ∈ ∆ \ Σ0 can be mapped to words in Σ∗ by
a morphism α, with α(x) = x for each x ∈ Σ0, such that α ◦ h solves each constraint
imposed by ν. The basic idea of the algorithm is to assign a reachability task to each
symbol d ∈ ∆ \ Σ0. Such reachability task amounts simply to checking whether in Ld

a certain state q′ can be reached from another state q (i.e., there is a word w ∈ Σ∗ such
that Ld can read w from state q to q′).

Formally, the algorithm proceeds as follows. For each variable y ∈ Y it guesses a
sequence

q
y
0 , . . . , q

y

|h(y)|

of states in ν(y) such that qy0 is the initial state of ν(y) and q
y

|h(y)| is a final state

of ν(y). For each d ∈ ∆ we then assign the following reachability task to Ld. Let
(y1, i1), (y2, i2), . . . , (yp, ip) be an enumeration of all pairs (y, i) ∈ σ(d). Then do the fol-
lowing for each d ∈ ∆:

(1) if d ∈ Σ0, for each (yj , ij) ∈ σ(d), check whether there is a transition (q
yj

ij−1
, d, q

yj

ij
) in

ν(yj)
(2) if d ∈ ∆ \ Σ0, check whether in Ld the state

(

q
y1

i1
, q

y2

i2
, . . . , q

yp

ip

)

is reachable from the state
(

q
y1

i1−1, q
y2

i2−1, . . . , q
yp

ip−1

)

(In other words, check if there is w ∈ Σ∗ such that for each 1 ≤ j ≤ p the word w
can be read in ν(yj) from q

yj

ij−1 to q
yj

ij
).

The algorithm then accepts if and only if each such reachability task holds.
It is not hard to see that the algorithm runs in NLOGSPACE. In fact, notice that

the reachability task assigned to Ld is no other than the usual reachability over the
“directed graph” defined by Ld. Since reachability can be solved in NLOGSPACE over di-
rected graphs, our remarks (a)-(b)-(c) stated above show that the reachability task over
Ld can be solved in NLOGSPACE. Further, since ∆ is fixed, all reachability tasks can be
performed in NLOGSPACE. Furthermore, each guessed sequence qy0 , . . . , q

y

|h(y)| ∈ ν(y)

of states is of length bounded by the fixed parameter m, and thus can be represented
using logarithmic space.

To finish the proof we only need to show that the previous procedure accepts the
principal solution h : Y → ∆∗ if and only if there is a morphism α : ∆∗ → Σ∗ such that
α(h(y)) ∈ ν(y) for each y ∈ Y . For the if direction, let w(d) := α(d) for each d ∈ ∆, and
assume that h(y) = d

y
1 . . . d

y

|h(y)| ∈ ∆∗, for each y ∈ Y . Since α(h(y)) ∈ ν(y), there is an

accepting run ρ of ν(y) overw(dy1) . . . w(d
y

|h(y)|) ∈ Σ∗. Let us assume that qy0 , q
y
1 , . . . , q

y

|h(y)|
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are the states assigned by ρ to positions 0, |w(dy1)|, . . . , |w(d
y

|h(y)|)|, respectively. Notice

that if (y, i) ∈ σ(d) then there is a run of ν(y) over w(d) from state qyi−1 to qyi .
We claim that the algorithm accepts the guess that assigns the sequence

q
y
0 , q

y
1 , . . . , q

y

|h(y)| of states in ν(y) to each y ∈ Y . We only need to show then that the

reachability task assigned to each d ∈ ∆ is satisfied. If d ∈ ∆ \ Σ0, it is not hard to see
from the way in which Ld is defined that such reachability task not only holds but can
be witnessed by the word w(d). In fact, let (y1, i1), (y2, i2), . . . , (yp, ip) be an enumeration
of all pairs (y, i) ∈ σ(d). Then we need to check whether in Ld the state (qy1

i1
, q

y2

i2
, . . . , q

yp

ip
)

is reachable from the state (qy1

i1−1, q
y2

i2−1, . . . , q
yp

ip−1). By definition of Ld, this boils down

to showing that there is a word w ∈ Σ∗ such that for each 1 ≤ j ≤ p the state q
yj

ij
is

reachable from q
yj

ij−1 in ν(yj) by reading word w. But this clearly holds since for each

1 ≤ j ≤ p it is the case that q
yj

ij
is reachable from q

yj

ij−1 in ν(yj) by reading the word

w(d). On the other hand, if d ∈ Σ0, the accepting run ρ must have used a transition
labeled by d when jumping from state qyi−1 to qyi , as in this case we have that w(d) = d.
Hence, in any case the reachability tasks are satisfied.

For the only if direction, let us assume that the algorithm accepts, i.e., there are
sequences qy0 , . . . , q

y

|h(y)| of states in ν(y), for y ∈ Y , such that the reachability task

holds for each d ∈ ∆. Thus, for each d ∈ ∆ there is a word w(d) ∈ Σ∗ (w(d) = d
if d ∈ Σ0) which can be read in ν(y) from q

y
i−1 to q

y
i for each pair (y, i) ∈ σ(d). Let

us define a morphism α : ∆ → Σ∗ such that α(d) = w(d) for each d ∈ ∆. We prove
next that α(h(y)) ∈ ν(y) for each y ∈ Y . Let h(y) be the word d1 . . . d|h(y)| ∈ ∆∗ for an
arbitrary y ∈ Y . Then α(h(y)) = w(d1) . . . w(d|h(y)|) ∈ Σ∗. Since (y, i) ∈ σ(di) for each
1 ≤ i ≤ |h(y)|, the word w(di) can be read in ν(y) from q

y
i−1 to qyi . Since by definition qy0

and qy|h(y)| are an initial and final state of ν(y), respectively, there is an accepting run

of ν(y) over α(h(y)) = w(d1) . . . w(d|h(y)|).

5.3.2. The class Efin and the tractable evaluation of logics. Let us recall from Proposition 4.4
that there is a polynomial time reduction that, given NFAs L1, . . . , Lm over Σ, an index
set I ⊆ [m]2, and a (finite range) mapping λ : I → 2EQ, constructs a word equation
with regular constraints (e(I, λ), ν) over Σ such that (L1, . . . , Lm, , I, λ) ∈ GENINT(EQ)
if and only if (e(I, λ), ν) has a solution. Interestingly, this result can be strengthened.
In fact, by inspecting the proof of Proposition 4.4 it is clear that the reduction from
(L1, . . . , Lm, , I, λ) to (e(I, λ), ν) can be computed in LOGSPACE.

Let S be a binary relation in EQ, i.e., S is definable by a word equation by taking the
projection over an ordered pair (x, y) of variables. Let I ⊆ [m]2 be an index set. Consider
an input (L1, . . . , Lm, λ) to GENINTI(S). Notice that we can assume without loss of
generality that λ(i, j) = {S} for each (i, j) ∈ I, and thus λ is also fixed in this case.
From our previous remarks, there is a LOGSPACE translation that constructs a word
equation with regular constraints (e(I, λ), ν) such that (L1, . . . , Lm, λ) ∈ GENINTI(EQ)
if and only if (e(I, λ), ν) has a solution. Since e(I, λ) only depends on I and λ, it can be
considered to be fixed. From now on we denote such equation by e(I, S), in order to be
explicit about its dependence on I and S only (since λ is determined by I and S). By
combining this with Therorem 4.1 we immediately obtain the following:

PROPOSITION 5.11. Let S be a relation in EQ and I ⊆ [m]2 an index set such that
e(I, S) ∈ Efin. Then GENINTI(S) can be solved in NLOGSPACE.

By combining Proposition 5.11 and the proof of Lemma 3.4 we obtain the following
important corollary:
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COROLLARY 5.12. Let S be a relation in EQ and K a class of CRPQ(S) formulas of
the form

∃ȳ(
m
∧

i=1

(ui
χi:Li
−→ u′i) ∧

∧

(i,j)∈I

S(χi, χj))

such that e(I, S) ∈ Efin. Then the evaluation problem for the formulas in K is in
NLOGSPACE in data complexity (i.e., each fixed formula in K can be evaluated in
NLOGSPACE). In particular, if e(I, S) is in Efin for each index set I ⊆ [m]2 the evalu-
ation for CRPQ(S) is in NLOGSPACE in data complexity.

PROOF. Consider a formula φ(x̄) in C of the form ∃ȳ(
∧m

i=1(ui
χi:Li
−→ u′i) ∧

∧

(i,j)∈I S(χi, χj)). Proposition 5.11 states that GENINTI(S) is in NLOGSPACE. By ap-

plying the proof of the first item of Lemma 3.4 we obtain that the evaluation problem
for φ(x̄) is in NLOGSPACE.

5.3.3. Tractable relations in EQ. Corollary 5.12 provides us with a semantic criterion for
showing that a logic of the form CRPQ(S), for S ∈ EQ, is tractable in data complexity:
We only need to prove that e(I, S) is in Efin for each index set I ⊆ [m]2. We establish next
the robustness of this notion by showing that it holds for S = �suff (which provides an
alternative proof, based on our semantic criterion, to Proposition 5.4).

PROPOSITION 5.13. For each index set I ⊆ [m]× [m] the word equation e(I,�suff) is
in Efin. Hence, evaluation for CRPQ(�suff) is in NLOGSPACE in data complexity.

PROOF. Recall that the suffix relation x1 �suff x2 is definable by the word equation
e�suff

:= (x2 = px1). Remember from the proof of Proposition 4.4 that e(I,�suff) is de-
fined by the system of word equations E = {(xj = pi,jxi) : (i, j) ∈ I}. It is convenient
to represent E as a single word equation. This corresponds to the concatenation of
the left- and right-hand sides of the word equations in E, respectively, properly sepa-
rated by a constant delimiter #, in any ordering of the index set I. Consider one such
ordering {(i1, j1), . . . , (iℓ, jℓ)} of I. The equation defining e(I,�suff) corresponds then to:

φ1# · · ·#φℓ = ψ1# · · ·#ψℓ (3)

where φk = xjk and ψk = pkxik , for all 1 ≤ k ≤ ℓ. We assume from now, without
loss of generality, that # is only a distinguished delimiter that does not appear in the
solutions of φ1# · · ·#φℓ = ψ1# · · ·#ψℓ (recall that such solutions are only defined on
the variables of such equation, and that we assume that such solutions correspond to
the identity on constants, e.g., over #).

Let us define e0 as the trivial word equation ǫ = ǫ, and ek (for 1 ≤ k ≤ ℓ) as the word
equation:

φ1# · · ·#φk = ψ1# · · ·#ψk.

Further, let Yk be the set of variables in ek. The next lemma states an important prop-
erty regarding the form of the principal solutions of ek, for 1 ≤ k ≤ ℓ.

LEMMA 5.14. Let h : Yk → ∆∗ be a principal solution of ek, for 1 ≤ k ≤ ℓ. (In
particular, # does not belong to ∆). Then h = g ◦h0, where h0 : Yk−1 → ∆∗

0 is a principal
solution of ek−1 and g : (Yk \ Yk−1) ∪∆0 → ∆∗ is a principal solution of h0(φk) = h0(ψk)
(assuming h0 to be the identity on Yk \ Yk−1).

PROOF. We prove the lemma inductively for 1 ≤ k ≤ ℓ. We start with the basis case
k = 1. Since e0 is the trivial word equation ǫ = ǫ, its only principal solution is the empty
mapping h0. The property thus trivially follows.
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We now prove for k + 1 assuming that the property holds for 1 ≤ k < ℓ by inductive
hypothesis. Let h : Yk+1 → ∆∗ be a principal solution of ek+1. It is then easy to see that
h is also a solution to the equation ek. If h is a principal solution of ek, then it suffices
to define (1) h0 : Yk → ∆∗ by letting h0 to be h over Yk and the identity over Yk+1 \ Yk,
and (2) g : (Yk+1 \ Yk) ∪∆→ ∆∗ by letting g(x) = h(x) if x ∈ (Yk+1 \ Yk), and g(x) = x if
x ∈ ∆. Then it follows that h = g ◦ h0. Recall that we have assumed that # is a special
delimiter not used by solutions, and thus that h(x) contains the symbol # iff x = #.
Along with the fact that h is a solution for ek+1, this implies that g is a solution of the
equation h0(φk+1) = h0(ψk+1). It is also a principal solution because otherwise h would
not be a principal solution of ek+1.

So now let us assume that h is not a principal solution of ek. It follows then that
there is a principal solution h0 : Yk → ∆∗

0 and a continuous morphism α : ∆∗
0 → ∆∗

such that h corresponds to α◦h0 over Yk. We can assume without loss of generality that
(Yk+1 \ Yk) ∩ ∆0 = ∅, since symbols from Yk+1 \ Yk are not mentioned in the equation
ek. Consider now the morphism g : (Yk+1 \ Yk) ∪∆0 → ∆∗ such that g corresponds to h
over Yk+1 \ Yk and to α over ∆0. Notice that g is well-defined since (Yk+1 \ Yk)∩∆0 = ∅.
Furthermore, g ◦ h0 is precisely h. In fact, if y ∈ Yk+1 \ Yk then g(h0(y)) = g(y) = h(y).
If y ∈ Yk then h0(y) ∈ ∆∗

0, and therefore g(h0(y)) = α(h0(y)) = h(y). Thus, g ◦ h0 is
a solution of ek+1 since h is a solution of ek+1. Again, since h(x) contains the symbol
# iff x = # and h is a solution for ek+1 we have that g is a solution of the equation
h0(φk+1) = h0(ψk+1). It is also a principal solution because otherwise h would not be a
principal solution of ek+1.

An important corollary of this lemma is that in order to prove that e(I,�suff) has
finitely many principal solutions, it is sufficient to inductively prove the following:

(†) For every 1 ≤ k < ℓ and principal solution h : Yk → ∆∗ of ek, there are only
finitely many principal solutions of the word equation h(φk+1) = h(ψk+1) (assuming
that h is the identity on Yk+1 \ Yk).

In fact, since e0 only has one principal solution (the empty mapping), by iteratively
applying Lemma 5.14 together with property (†) we obtain that e(I,�suff) = eℓ has only
finitely many principal solutions.

We finish by proving property (†). Take an arbitrary principal solution h : Yk → ∆∗ of
ek, for 1 ≤ k < ℓ. By definition, φk+1 = ψk+1 corresponds to the word equation xjk+1

=
pk+1xik+1

. Furthermore, pk+1 does not appear in ek and therefore h(pk+1) = pk+1. Thus,
h(φk+1) = h(ψk+1) corresponds to the word equation h(xjk+1

) = h(pk+1xik+1
), which in

turn corresponds to the word equation:

h(xjk+1
) = pk+1h(xik+1

).

We prove next that this word equation has only finitely many principal solutions. So-
lutions of this equation are mappings from the set of symbols that appear in it (i.e.,
(Yk+1 \ Yk) ∪ ∆) to a fresh alphabet ∆′. This means that all symbols in h(xjk+1

) =
pk+1h(xik+1

) can be regarded as variables and, thus, the equation contains no con-
stants. Therefore, in virtue of Lemma 5.7 we only need to consider the case when there
are repeated variables in the equation. The proof in this case relies on the following
important property:

(††) Neither h(xjk+1
) nor h(xik+1

) has repeated variables. On the other hand, assume
that h(xjk+1

) and h(xik+1
) share at least one variable, i.e., for some variable z it is

the case that:

h(xjk+1
) = αzβ and h(xik+1

) = α′zβ′,

where α, β, α′, β′ are words over (Yk+1 \ Yk) ∪∆. Then β = β′.
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What the property intuitively states is the following: Repeated variables in
h(xjk+1

) = pk+1h(xik+1
) do not appear on the same side of the equation. Moreover, if

a variable appears both in h(xjk+1
) and h(xik+1

) then it completely determines its suf-
fix in such words.

Before proving property (††), we show how it implies that h(xjk+1
) = pk+1h(xik+1

) has
only finitely many principal solutions in case the equation contains repeated variables.
In fact, from (††) any such repeated variable z appears both in h(xjk+1

) and h(xik+1
)

and completely determines its suffix in such words. This means that h(xjk+1
) = αzβ

and h(xik+1
) = α′zβ, for words α, α′, β over (Yk+1 \ Yk) ∪ ∆. We can then “simplify”

this equation by getting rid of the common suffixes (i.e., we convert it to α = α′). If
we do this with the leftmost variable that is shared by both words we will end up
with a word equation e which has no repeated variables. This word equation e has
only finitely many principal solutions due to Lemma 5.7. Any principal solution h′ of
h(xjk+1

) = pk+1h(xik+1
) is then obtained from a principal solution h′′ of e as follows: (1)

h′ = h′′ on the variables of e, and (2) h′ is a fresh renaming of the variables in h(xjk+1
) =

pk+1h(xik+1
) that do not appear in e. It follows that h(xjk+1

) = pk+1h(xik+1
) has finitely

many principal solutions, as there is only one way (up to renaming) of extending a
principal solution of e to obtain a principal solution of h(xjk+1

) = pk+1h(xik+1
).

We finish by proving property (††) inductively. We actually need to prove something
stronger for the inductive hypothesis to hold. This is stated in the following claim:

CLAIM 5.15. Let h : Yk → ∆∗ be a principal solution of ek for 0 ≤ k < ℓ and Sh
k the

set of words defined as
⋃

k<k′≤ℓ{h(φk′), h(ψk′ )}. The following holds:

(1) No word s ∈ Sh
k has repeated variables.

(2) For all words s, s′ ∈ Sh
k , if there is a variable z and words α, β, α′, β′ such that

s = αzβ and s′ = α′zβ′, then β = β′ (that is, suffixes of words in Sh
k are completely

determined by their first symbol).

We now prove Claim 5.15 by induction on 0 ≤ k ≤ ℓ. For k = 0 we have e0 to be
the trivial word equation ǫ = ǫ, whose only principal solution h is the empty mapping.
Consider the set Sh

0 =
⋃

1≤k≤ℓ{φk, ψk}. Condition (1) holds trivially since neither φk
nor ψk, for 1 ≤ k ≤ ℓ, has repeated variables. Condition (2) also holds trivially since if
a variable appears in two words in the set Sh

0 =
⋃

1≤k≤ℓ{φk, ψk} then it appears in the

last position of such words. This is because φk = xjk and ψk = pkxik for each 1 ≤ k ≤ ℓ.
We now prove for 1 ≤ k ≤ ℓ assuming that the claim holds by induction hypothesis

for k − 1. Take an arbitrary principal solution h : Yk → ∆∗ for ek. From Lemma 5.14 it
follows that h is of the form g ◦h0, where h0 : Yk−1 → ∆∗

0 is a principal solution for ek−1

and g : (Yk \ Yk−1)∪∆0 → ∆∗ is a principal solution for h0(φk) = h0(ψk). We prove next
that the conditions of the claim are satisfied.

Consider the set Sh
k =

⋃

k<k′≤ℓ{g(h0(φk)), g(h0(ψk)}. We start by proving condition

(1). Take an arbitrary k′ > k and let us consider the word h(φk′ ) (the analysis for
the word h(ψk′ ) is analogous). We prove next that this word has no repeated vari-
ables. By definition, h(φk′ ) = g(h0(φk′ )). Since h0 is a principal solution of ek−1 and

h0(φk′ ) ∈ Sh0

k−1, we have by induction hypothesis that h0(φk′ ) has no repeated variables.
Assume first that no variable in h0(φk′ ) appears in h0(φk) = h0(ψk). Then g is the iden-
tity on each variable of h0(φk′ ), from which we conclude that h(φk′) = g(h0(φk′ )) has
no repeated symbols. Assume otherwise, and let z be the leftmost variable in h0(φk′ )
that appears in h0(φk) = h0(ψk). Then by inductive hypothesis (using condition (2)),
we have that h0(φk′ ) is of the form αzβ, where α does not mention variables from
the equation h0(φk) = h0(ψk) and β is a suffix of either h0(φk) or h0(ψk) (because

{h0(φk′ ), h0(φk), h0(ψk)} ⊆ Sh0

k−1 and shared variables between words in Sh0

k−1 uniquely
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determine the suffixes of such words). It follows that g(h0(φk′ )) = g(α)g(zβ) = αg(zβ).
This word has no repeated symbols. In fact, α is a prefix of h0(φk′ ), which by induction
has no repeated symbols. On the other end, g(zβ) is a suffix of g(h0(φk)) = g(h0(ψk)),
which has no repeated variables for the reasons we explain next. We have that g is
a principal solution of the equation h0(φk) = h0(ψk). According to the inductive hy-
pothesis, these words can be written as h0(φk) = αβ and h0(ψk) = α′β, respectively,
where netiher α, α′, nor β repeats symbols, α does not share symbols with α′, and
β is the largest common suffix of h0(φk) and h0(ψk). This means the word equation
h0(φk) = h0(ψk) corresponds (after simplification) to α = α′, which is an equation
without repetition of variables and variables from the left hand side are disjoint from
those on the right hand side. Therefore, the principal solution g of h0(φk) = h0(ψk)
corresponds to a principal solution g′ of α = α′ by assigning fresh renaiming to those
symbols mentioned in h0(φk) = h0(ψk) but not in α = α′. From Lemma 5.7, we have

that g′(α) does not repeat symbols. Since g(h0(φk)) = g(αβ) = g(α)β̂ we have that
g(h0(φk)) does not repeat symbols as claimed.

It remains to prove condition (2). Consider words s, s′ ∈ Sh
k and assume that

they share a symbol z. Since s, s′ ∈ Sh
k , we know that there are words s0, s

′
0 ∈

⋃

k′>k{h0(φk′ ), h0(ψk′ )} such that s = g(s0) and s′ = g(s′0). Also, since s0 ∈ Sh0

k−1 we
have by induction that there are words α0, β0 such that s0 = α0β0, where α0 is a word
only composed by variables that do not appear in h0(φk) = h0(ψk) and β0 is a (pos-
sibly empty) suffix of either h0(φk) or h0(ψk). This suffix β0 is empty if and only if
the word s0 mentions no variable from the equation h0(φk) = h0(ψk). Analogously, s′0
can be decomposed as α′

0β
′
0 under the same conditions. From this we conclude that

s = g(s0) = g(α0β0) = α0g(β0) and s′ = g(s′0) = α′
0g(β

′
0). We need to make a case analy-

sis relative to where in the words s and s′ the shared symbol z appears. Since g ranges
over fresh symbols (i.e., symbols outside h0(φ1# · · ·#φℓ) = h0(ψ1# · · ·#ψℓ)) there are
only two possibilities:

(1) Symbol z appears in α0 and α′
0, that is, α0 = uzv and α′

0 = u′zv′ for some words

u, v, u′, v′. Since (a) s0 = α0β0 = uzvβ0, (b) s′0 = u′zv′β′
0, and (c) s0, s

′
0 ∈ Sh0

k−1, by
induction we obtain that vβ0 = v′β′

0. It follows that vg(β0) = v′g(β′
0), since v does

not mention symbols from the equation h0(φk) = h0(ψk) which g solves. Plugging
this into the expressions we had for s and s′ we obtain that s = uzvg(β0) and
s0 = u′zv′g(β′

0). Hence the suffixes s = g(s0) and s′ = g(s′0) starting at symbol z,
which correspond to zvg(β0) and zv′g(β′

0), respectively, are equal as claimed.
(2) Symbol z appears in g(β0) and g(β′

0). Since both β0 and β′
0 are suffixes of either

h0(φk) or h0(ψk), and g is a principal solution of the equation h0(φk) = h0(ψk), it
follows that one of the words g(β0) or g(β′

0) is a suffix of the other. Furthermore,
for the same reasons it is the case that neither g(β0) nor g(β′

0) repeat symbols, and
hence in each the symbol z appears once. It follows that the suffixes of these words
starting at symbol z must be equal.

This concludes the proof of Claim 5.15.

It is worth noticing the difference between �suff and �sw in this context: As men-
tioned in Example 5.6, both relations can be defined by equations in Efin. The difference
is that e(I,�suff) is in Efin for each index set I ⊆ [m]2 (Proposition 5.13), while there is
an index set I such that e(I,�sw) is not in Efin (namely, I⋄, as obtained by combining
the proof of Proposition 5.2 and Theorem 5.8).

5.3.4. Tractable fragments of logics of the form CRPQ(S). Corollary 5.12 also provides us
with a semantic criterion for showing that a fragmentK of a logic of the form CRPQ(S),
for S ∈ EQ, is tractable in data complexity: We only need to prove that e(I, S) is in Efin

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



A:26 P. Barceló and P. Muñoz

for each index set I ⊆ [m]2 that is mentioned in a formula in K. We use this to show
that there is an interesting family of logics of the form CRPQ(S), for S ∈ EQ, whose
acyclic fragment is tractable in data complexity. The acyclic fragment of a logic of the
form CRPQ(S) is the one defined by the formulas of the form

∃ȳ(
m
∧

i=1

(ui
χi:Li
−→ u′i) ∧

∧

(i,j)∈I

S(χi, χj)),

where I is acyclic. Recall that an index set I ⊆ [m]2 is acyclic if the undirected graph
defined by I on {1, . . . ,m} is acyclic.

We define a restriction Erfin of the class Efin that is composed by those word equations
e ∈ Efin that satisfy the following: for each principal solution h : X → ∆∗ of e it is the
case that no word of the form h(x), for x ∈ X , has repeated symbols. For instance, it
follows from Example 5.6 that the word equations that define the subword (�sw) and
conjugacy (∼) relations are in Erfin. We then prove the following:

PROPOSITION 5.16. Assume S ∈ EQ is definable by a word equation e in Erfin over a
pair (x, y) of distinct distinguished variables. Then:

(1) For each acyclic index set I ⊆ [m]× [m] the word equation e(I, S) is in Efin.
(2) In particular, evaluation for the acyclic fragment of CRPQ(S) is in NLOGSPACE in

data complexity.

Therefore, as a corollary to Example 5.6 and Proposition 5.16 we obtain that:

COROLLARY 5.17. Evaluation for the acyclic fragments of CRPQ(�sw) and
CRPQ(∼) are in NLOGSPACE in data complexity.

Some important remarks are in order regarding this corollary:

(1) The tractability in data complexity of the acyclic fragment of CRPQ(�sw) follows
from [Barceló et al. 2013]. In fact, it is proved there that the acyclic fragment of
any logic of the form CRPQ(R), where R ∈ RAT, is tractable in data complexity.
Proposition 5.16 can be seen then as a reformulation of this general result in the
context of relations defined by word equations. The difference though is that in
this context it is not possible to obtain the result in full generality (as it was the
case for RAT), which justifies the syntactic restriction imposed on relations from
EQ that we use in the statement of such Proposition.

(2) On the other hand, the tractability in data complexity of the acyclic fragment of
CRPQ(∼) does not follow from existing results (recall that ∼ is in EQ \ RAT).

(3) The acyclicity restriction is, in a sense, optimal. Indeed, recall that CRPQ(�sw)
is intractable in data complexity even if restricted to formulas that are defined
over the simple DAG index set I⋄ = {(1, 2), (1, 3), (2, 4), (3, 4)}. We conjecture that a
similar behaviour holds for CRPQ(∼).

We finish by proving Proposition 5.16:

PROOF OF PROPOSITION 5.16. Assume that S is definable by the word equation
e := (φ = ψ) in Erfin over the distinguished pair (x, y) of distinct variables. Let
z1, . . . , zp be an enumeration of the variables in e that are not distinguished (i.e.,
those that are existentially quantified). Take an acyclic index set I ⊆ [m]2 of the form
{(i1, j1), . . . , (iℓ, jℓ)} ⊆ [m] × [m]. Let {xik , xjk , z

1
ik,jk

, . . . , z
p
ik,jk

| 1 ≤ k ≤ ℓ} be a set of

fresh variables (i.e., variables not mentioned in e). Then the word equation e(I, S) is of
the form:

φ1# · · ·#φℓ = ψ1# · · ·#ψℓ,
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where for each 1 ≤ k ≤ ℓ the words φk and ψk are respectively obtained from φ and ψ
by (1) replacing the distinguished variables x and y by xik and xjk , respectively, and
(2) replacing existential variables z1, . . . , zp with z1ik,jk , . . . , z

p
ik,jk

, respectively.

For 0 ≤ k ≤ ℓ, let ek be the word equation φ1# · · ·#φk = ψ1# · · ·#ψk and Yk the set
of variables mentioned in ek (we assume e0 to be the trivial equation ǫ = ǫ and, thus,
Y0 = ∅). Lemma 5.14 also applies in this case, which implies that for each 1 ≤ k ≤ ℓ
the principal solutions of ek are of the form h = g ◦ h0, where h0 is a principal solution
of ek−1 and g is a principal solution of the equation h0(φk) = h0(ψk). In order to prove
the proposition, it is then sufficient to prove the following:

(†) For every 1 ≤ k ≤ ℓ and principal solution h : Yk−1 → ∆∗ of ek−1, there are only
finitely many principal solutions of the word equation h(φk) = h(ψk) (assuming that
h is the identity on Yk \ Yk−1).

In order to prove this, we prove by induction the following stronger claim:

CLAIM 5.18. For every 1 ≤ k ≤ ℓ and principal solution h : Yk−1 → ∆∗ of ek−1, it is
the case that:

(1) For every existential variable zs, where 1 ≤ s ≤ p, we have that h(zsik,jk) = zsik,jk .

(2) For each t such that k − 1 < t ≤ ℓ, it is the case that h(xit) and h(xjt) share a
symbol only if there is a path from it to jt in the undirected graph induced by
Ik−1 = {(i1, j1), . . . , (ik−1, jk−1)} (assuming that I0 = ∅).

(3) The word h(xik) does not share symbols with h(xjk).
(4) For no variable y in e(I, S) it is the case h(y) has repeated symbols.
(5) There are only finitely many principal solutions of the equation h(φk) = h(ψk).

For the base case k = 1, we have that h is a principal solution of the trivial equation
ǫ = ǫ, and therefore it is the identity over all variables in e(I, S). Thus, the first and
third items hold. The second item holds since I is acyclic, and therefore it 6= jt for
each 1 ≤ t ≤ ℓ. In fact, h(xit) = xit and h(xjt) = xjt , and therefore h(xit) and h(xjt)
are different variables for each such t. The fourth item follows from a similar argu-
ment. Finally, the equation h(φ1) = h(ψ1) corresponds to φ1 = ψ1, which is the original
equation e. Therefore, it has only finitely many principal solutions by hypothesis.

For the inductive step we consider k + 1, where 1 ≤ k < ℓ, and a principal solution
h : Yk → ∆∗ of the word equation ek. We proceed to prove each one of the items of the
claim:

(1) For every existentially quantified variable zs, for 1 ≤ s ≤ p, it is the case that
h(zsik+1,jk+1

) = zsik+1,jk+1
: This is because zsik+1,jk+1

does not appear in ek, and therefore

h is the identity over it.

(2) For each t such that k < t ≤ ℓ, it is the case that h(xit) and h(xjt) share a symbol
only if there is a path from xit to xjt in the undirected graph induced by Ik. First of
all, Lemma 5.14 also holds in this case, i.e., h is of the form h = g ◦ h0, where h0 is a
principal solution of ek−1 and g is a principal solution of h0(φk) = h0(ψk). Consider an
arbitrary t such that k < t ≤ ℓ. We consider two cases:

— Suppose first that h0(xit) shares symbols with h0(xjt). Since h0 is a principal solution
of ek−1, we have by induction hypothesis then that there is a path in Ik−1 from xit
to xjt . This path also exists in Ik.

— Suppose now that h0(xit) does not share symbols with h0(xjt), yet h(xit) = g(h0(xit))
shares some with h(xit) = g(h0(xit)). Since g is a principal solution, it can only have
effect on the variables appearing in the equation it solves, which is h0(φk) = h0(ψk).
Therefore, in order for the strings g(h0(xit)) and g(h0(xjt)) to share symbols while
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this not being the case for h0(xit) and h0(xjt), it must be the case that both h0(xit)
and h0(xjt) mention symbols from the equation h0(φk) = h0(ψk). Among the symbols
mentioned in the equation h0(φk) = h0(ψk) we have those coming from h0(xik) and
h0(xjk), and those coming from h0(z

s
ik,jk

) (for existentially quantified variables zs in
e : φ = ψ). For the latter we have that h0(zik,jk) = zik,jk , since they only appear in the
strings φk or ψk and so are left untouched by g. From this it follows that (1) h0(xit)
shares variables with either h0(xik ) or h0(xjk), and (2) h0(xjt) shares variables with
either h0(xik ) or h0(xjk ). By induction hypothesis we can then conclude that both
it and jt are connected to either ik or jk in Ik−1. Since Ik is precisely Ik−1 plus the
undirected edge {ik, jk}, it follows that, in any case, it is connected to jt in Ik.

(3) There are no symbols appearing both in h(xik+1
) and in h(xjk+1

): Assume otherwise,
i.e., h(xik+1

) shares symbols with h(xjk+1
). It follows from (2) that ik+1 is connected to

jk+1 in Ik. However, the undirected graph induced by Iℓ = I contains both Ik (which
does not contain the undirected edge {ik+1, jk+1}) and the edge {ik+1, jk+1} (which is
in Ik+1 \ Ik). This contradicts the acyclicity of I.

(4 and 5) The word equation h(φk+1) = h(ψk+1) corresponds to the equation φk+1 =
ψk+1 transformed by h. The only symbols in φk+1 = ψk+1 that can actually be
transformed by h are xik+1

and xjk+1
, since the rest are associated with the exis-

tential variables of e : φ = ψ and only appear in the strings φk+1, ψk+1. There-
fore, solving h(φk+1) = h(ψk+1) is equivalent to solving the system of equations
φk+1 = ψk+1 ∧ xik+1

= h(xik+1
) ∧ xjk+1

= h(xik+1
). We can rewrite this system into

one word equation as follows:

φk+1#xik+1
#xjk+1

= ψk+1#h(xik+1
)#h(xjk+1

),

This word equation is hence equivalent to h(φk+1) = h(ψk+1), i.e., they have the same
solutions when restricted to those variables that are neither xik+1

nor xjk+1
. Once again

applying Lemma 5.14 we obtain that the principal solutions g of the latter equation
are of the form g = g3 ◦ g2 ◦ g1 where (a) g1 is a principal solution of φk+1 = ψk+1, (b)
g2 is a principal solution of g1(xik+1

) = g1(h(xik+1
)), and g3 is a principal solution of

g2(g1(xjk+1
)) = g2(g1(h(xjk+1

))). We now prove there can only be finitely many such
principal solutions.

— First, the equation φk+1 = ψk+1 is just a relabelling of the word equation e : φ = ψ
defining S, and has only finitely many principal solutions by hypothesis. So let us
pick any such principal solution g1 : Yk+1 \ Yk → ∆∗

1. Since g1 is a principal solution
for equation e : φ = ψ with variables renamed, we have that for any variable y ∈
Yk+1 \ Yk g1(y) does not have repeated symbols.

— Now we need to prove that there are only finitely many principal solutions for
the equation g1(xik+1

) = g1(h(xik+1
)). Recall that h : Yk → ∆∗ is a principal so-

lution of the equation ek : φ1# · · ·#φk = ψ1# · · ·#ψk, with ∆ a fresh alphabet.
On the other hand, g1 is a principal solution of φk+1 = ψk+1 and can only change
symbols mentioned in it. Hence g1 is the identity over ∆. It thus follows that
g1(h(xik+1

)) = h(xik+1
) and, consequently, the equation g1(xik+1

) = g1(h(xik+1
)) is

reduced to g1(xik+1
) = h(xik+1

). The latter equation has the following properties: (a)
the left hand side does not share symbols with the right hand side (since they are
from disjoint alphabets ∆1 and ∆ respectively), (b) g1(xik+1

) does not repeat sym-
bols by hypothesis because it is a principal solution of the original equation e with
variables renamed, and (c) h(xik+1

) does not repeat symbols by item (4) in the induc-
tive hypothesis. Putting all this together and using Lemma 5.7, we have that the
equation g1(xik+1

) = g1(h(xik+1
)) has finitely many principal solutions. Moreover, for
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each such solution g2 it is the case that g2(y) has no repeated symbols, where y is an
arbitrary variable mentioned in e(I, S).

— Let us pick an arbitrary principal solution g2 : (∆ ∪ ∆1) → ∆∗
2 to the equation

g1(xik+1
) = g1(h(xik+1

)). We finally need to prove that the equation g2(g1(xjk+1
)) =

g2(g1(h(xjk+1
))) has finitely many principal solutions. The proof goes along the lines

of the preceding item. First, as argued above, we have that g1(h(xjk+1
)) = h(xjk+1

).
Furthermore, it is also the case that g2(h(xjk+1

)) = h(xjk+1
). The reason is that

by item (3) of the inductive hypothesis, we have that h(xjk+1
) does not share sym-

bols with h(xik+1
). This means that no symbol from h(xjk+1

) occurs in the equation
which g2 solves, so g2(h(xjk+1

)) = h(xjk+1
) as claimed. The equation g2(g1(xjk+1

)) =
g2(g1(h(xjk+1

))) consequently reduces to g2(g1(xjk+1
)) = h(xjk+1

). Once again we can
use Lemma 5.7 to this equation since: (a) the left hand side does not share symbols
with the right hand side (since they are from disjoint alphabets ∆2 and ∆ respec-
tively), (b) g2(g1(xjk )) does not repeat symbols, since for each variable x neither g1(x)
nor g2(x) repeats symbols, and (c) h(xjk+1

) does not repeat symbols by item (4) in the
inductive hypothesis. Putting all this together, we have from Lemma 5.7 that there
are finitely many principal solutions to the equation g2(g1(xjk+1

)) = g2(g1(h(xjk+1
))),

and that for each such solution g3 it is the case that for each variable y mentioned
in e(I, S) the word g(y) has no repeated symbols.

We conclude that the equation h(φk) = h(ψk) has only finitely many principal so-
lutions. Moreover, for each such solution g it is the case that g(y) has no repeated
symbols, where y is an arbitrary variable mentioned in e(I, S). This finishes the proofs
of the claim and the proposition.

6. THE LOGIC CRPQ(�SS)

We now switch to study the complexity of evaluation for the logic CRPQ(�ss), for which
upper bounds were already obtained: NEXPTIME and NP in combined and data com-
plexity, respectively (see Corollary 3.6). We prove here that both bounds are actually
optimal. For the data complexity of CRPQ(�ss), we give a reduction from the longest
common subsequence problem obtaining an NP lower bound. For the combined com-
plexity, we use a suitable succinct version of the same problem to provide a matching
NEXPTIME lower bound.

6.1. The data complexity of CRPQ(�ss)

We prove here that evaluation of CRPQ(�ss) is NP-complete in data complexity. In
order to obtain the lower bound we use a reduction from the longest common sub-
sequence problem LCS: given a finite alphabet Σ, words u1, . . . , un ∈ Σ∗, and ℓ > 0,
decide whether there is a word u ∈ Σ∗ such that (1) u �ss ui for each i = 1, . . . , n and
(2) |u| = ℓ. When the alphabet Σ is fixed, we denot this problem as LCSΣ.

THEOREM 6.1. Evaluation for CRPQ(�ss) is NP-complete in data complexity.

The upper bound follows from Corollary 3.6. We prove hardness next. Due to Lemma
3.4, we only need to prove the following:

PROPOSITION 6.2. There is an index set I ⊆ [m]2, a finite alphabet Σ, and a map-
ping λ : I → 2�ss , such that the problem GENINTI,Σ,λ(�ss) is NP-hard.

PROOF. We again use the index set

I⋄ = {(1, 2), (1, 3), (2, 4), (3, 4)}

from the proof of Proposition 5.2, but now extend it with the pair (1, 0) to define I :=
I⋄ ∪ {(1, 0)}. We know that there is a finite alphabet Σ such that LCSΣ is NP-hard
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[Maier 1978; Blin et al. 2012]. We show that there is a polynomial time reduction from
this problem to GENINTI,Σ$,λ(�ss), where Σ$ is the extension of Σ with a fresh symbol

$, and λ : I → 2�ss is such that λ(i, j) = {�Σ$
ss } for each (i, j) ∈ I.

Let u1, . . . , un be words over Σ and let ℓ ≥ 0. We want to determine whether these
words have a common subsequence u ∈ Σ∗ of length |u| = ℓ. To this end, consider the
regular languages L0 = {$u1$ · · · $un$} and L1 = {($u)n$ | u ∈ Σℓ} over Σ$. Since each
word in these two languages has exactly n+1 occurrences of the symbol $ 6∈ Σ, and all
the words u, u1, . . . , un lie in Σ∗, it follows that u1, . . . , un have a common subsequence
of length ℓ if and only if there are words w0 ∈ L0 and w1 ∈ L1 such that w1 �ss w0.
Clearly, though, L1 cannot be constructed in polynomial time from the input. Instead,
we make use of I⋄ to encode L1 as a polynomial size generalized intersection instance.
The construction is similar to the one used in the proof of Proposition 5.2.

Consider the following regular expressions over Σ$:

(1) R1 = ($Σℓ)n$,
(2) R2 = $($Σℓ)n$,
(3) R3 = ($Σℓ)n$$, and
(4) R4 = ($Σℓ)n+1$.

These expressions can clearly be constructed in polynomial from u1, . . . , un and ℓ ≥ 0.
The following claim is fundamental for our proof:

CLAIM 6.3. For every words wi (i = 1, 2, 3, 4) over Σ$, the following are equivalent:

(a) wi ∈ Ri for each i = 1, 2, 3, 4 and wi �ss wj for each (i, j) ∈ I⋄.

(b) There is a word u ∈ Σℓ such that:

w1 = ($u)n$, w2 = $($u)n$, w3 = ($u)n$$, and w4 = ($u)n+1$.

PROOF. Clearly, (b) implies (a). In fact, each such wi belongs to Ri (for i = 1, 2, 3, 4).
Moreover, it is easy to see that wi �ss wj for each (i, j) ∈ I⋄. To prove that (a) implies
(b), consider words wi ∈ Ri, for i = 1, 2, 3, 4, such that wi �ss wj for each (i, j) ∈ I⋄. Let
(i) α1, . . . , αn, (ii) β1, . . . , βn, (iii) γ1, . . . γn, and (iv) η0, . . . , ηn be the words from Σℓ that
appear between succesive $ symbols in w1, w2, w3, and w4, respectively. More precisely,

(1) w1 = $α1$ · · · $αn$.
(2) w2 = $$β1$ · · · $βn$.
(3) w3 = $γ1$ · · · $γn$$.
(4) w4 = $η0$ · · · $ηn$.

We prove next that:

αi = βi = γi = ηi = ηi−1 (for each 1 ≤ i ≤ n).

This directly implies the claim by choosing u = α1.
First, we have that w1 �ss w2 and the number of occurrences of $ in these words is

n+ 1 and n+ 2, respectively. Since the symbol $ is not in Σ, it follows that αi �ss βi for
each 1 ≤ i ≤ n. But both αi and βi are of length ℓ, and thus αi = βi for each 1 ≤ i ≤ n.
Similarly, from w1 �ss w3 we conclude that αi = γi for each 1 ≤ i ≤ n.

A similar analysis can be carried out for w2 �ss w4. Since both words have exactly
n+2 occurrences of the symbol $, we conclude that βi = ηi for each 1 ≤ i ≤ n. Moreover,
w3 �ss w4, which implies that γi = ηi−1 for each 1 ≤ i ≤ n. Now, since αi = βi = γi for
each 1 ≤ i ≤ n, we obtain on the one hand that η1 = α1, . . . , ηn = αn, and on the other
hand that η0 = α1, . . . , ηn−1 = αn. We conclude that:

α1 = . . . = αn = η0 = η1 = . . . = ηn.

This proves the claim.
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Finally, we claim that the words u1, · · · , un have a common subsequence of length
ℓ if and only if (R0, R1, R2, R3, R4) is accepted by GENINTI,Σ$,λ(�ss), where R0 =
{$u1$ · · · $un$} and R1, R2, R3, R4 are as defined above. This finishes the proof of
the theorem since (R0, R1, R2, R3, R4) can be constructed in polynomial time from
u1, · · · , un and ℓ ≥ 0.

Assume first that (R0, R1, R2, R3, R4) is accepted by GENINTI,Σ$,λ(�ss). Then there
are words wi ∈ Ri for each i = 0, 1, 2, 3, 4 and wi �ss wj for each (i, j) ∈ I. Thus,
from Claim 6.3 we have that w1 is of the form ($u)n$ for u ∈ Σℓ. Since w1 �ss w0 and
w1 ∈ L1, where L1 is the regular language defined at the beginning of the proof, we
conclude that u1, · · · , un have a common subsequence of length ℓ (namely, the word u).
Assume, on the other hand, that u1, · · · , un have a common subsequence u of length ℓ.
It is clear then that the words:

w0 = $u1$ · · · $un$, w1 = ($u)n$, w2 = $($u)n$, w3 = ($u)n$$, and w4 = ($u)n+1$

are a witness for the fact that (R0, R1, R2, R3, R4) is accepted by GENINTI,Σ$,λ(�ss).

6.2. The combined complexity of CRPQ(�ss)

The evaluation problem for CRPQ(�ss) is known to be in NEXPTIME. We prove that
this bound is tight:

THEOREM 6.4. The evaluation problem for CRPQ(�ss) is NEXPTIME-complete.

Due to Lemma 3.3 we only need to prove the following:

PROPOSITION 6.5. The problem GENINT(�ss) is NEXPTIME-hard.

PROOF. We use a reduction from a suitable succinct version of LCS, which we prove
to be NEXPTIME-hard. This succinct version SUCCINCT-LCS is defined as follows: We
are given binary n-bit integers ℓ, q ≥ 0 and regular languages R1, . . . , Rm over (Σ ∪
{$})2, where $ is a delimiter, such that:

m
⋂

i=1

Ri = {($, $)w1 ($, $) . . . ($, $)wq ($, $)},

for w1, . . . , wq words over Σ × Σ. Let us assume that wi = ui ⊗ u′i for each 1 ≤ i ≤ q
(where the operation⊗ is as defined in Section 2). We want to determine whether there
is a word u ∈ Σ∗ such that (1) u �ss ui for each 1 ≤ i ≤ q, and (2) |u| = ℓ.

Using standard techniques based on succinct reductions, it is possible to prove that
this succinct version of LCS is NEXPTIME-hard. The proof of this result can be found
in the appendix:

PROPOSITION 6.6. The problem SUCCINCT-LCS is NEXPTIME-hard.

We now show that the problem SUCCINCT-LCS can be reduced in polynomial time
to GENINT(�ss). The basic idea is to construct a succinct version of the proof of Theo-
rem 6.1. Consider an input instance to SUCCINCT-LCS as defined above. We want to
determine whether the words u1, . . . , uq have a common subsequence of length ℓ.

Let us first explain the idea of the proof. Consider the regular language:

L0 =
⋃

u∈Σℓ

($u)q$.

Observe that since $ does not belong to Σ, the given instance to SUCCINCT-LCS is
positive if and only if there is a word w ∈ L0 such that

w �ss $u1$ . . . $uq$.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



A:32 P. Barceló and P. Muñoz

As in the proof of Proposition 6.2, we build a generalized intersection instance of poly-
nomial size that encodes this constraint. However, this is a bit harder than in Proposi-
tion 6.2 since now ℓ, q > 0 are both exponential in n. On the other hand, we now have
the benefit that neither the index set I nor the alphabet needs to be fixed.

First we deal with L0. Since ℓ, q are exponential in n, we need to keep binary counters
that ensure us that if w is an arbitrary word in L0, then the length of each subword of
w between consecutive $’s is exactly ℓ and the number of such subwords is exactly q.
Thus, it is convenient not to encode L0 but a “padded” version of it, denoted L′0, which
is defined as the union over each word u = a1a2 . . . aℓ ∈ Σℓ of the language:

$
(

a1#[1]#[1] ⋆ a2#[1]#[2] ⋆ · · · ⋆ aℓ#[1]#[ℓ]
)

. . .

$
(

a1#[i]#[1] ⋆ a2#[i]#[2] ⋆ · · · ⋆ aℓ#[i]#[ℓ]
)

. . .

$
(

a1#[q]#[1] ⋆ a2#[q]#[2] ⋆ · · · ⋆ aℓ#[q]#[ℓ]
)

$,

where [i] is the binary n + 1 bit representation of the integer 1 ≤ i ≤ 2n, and # and ⋆
are fresh delimiters. We assume, of course, that the binary integers 0 and 1 are not in
Σ ∪ {$}. Intuitively, a1#[i]#[1] ⋆ a2#[i]#[2] ⋆ · · · ⋆ aℓ#[i]#[ℓ] represents the i-th copy of
the word u = a1, . . . , aℓ in a word in L0, for 1 ≤ i ≤ q.

Next we show that it is possible to construct in polynomial time an instance of the
generalised intersection problem over binary relation �ss, such that L′0 corresponds
to the projection of the corresponding index set over one of its components. To do
this, it is convenient to start by showing that there is an exponential size instance of
GENINT(I⋄,�ss), where I⋄ = {(1, 2), (1, 3), (2, 4), (3, 4)} is the index set used in the proof
of Proposition 6.2, such that L′0 is defined by projecting the solutions of this instance
over its first component.

Let us define a regular language A1 as follows:

$
(

Σ#[1]#[1] ⋆ Σ#[1]#[2] ⋆ · · · ⋆ Σ#[1]#[ℓ]
)

. . .

$
(

Σ#[i]#[1] ⋆Σ#[i]#[2] ⋆ · · · ⋆ Σ#[i]#[ℓ]
)

. . .

$
(

Σ#[q]#[1] ⋆ Σ#[q]#[2] ⋆ · · · ⋆ Σ#[q]#[ℓ]
)

$.

That is, A1 encodes the language of words that are obtained by taking the concatena-
tion of q words of length ℓ over Σ, separated by delimiters. Furthermore, we define A2

as $A1, A3 as A1$, and A4 as the following language:

$
(

Σ#[0]#[1]#[1] ⋆ Σ#[0]#[1]#[2] ⋆ · · · ⋆ Σ#[0]#[1]#[ℓ]
)

. . .

$
(

Σ#[1]#[2]#[1] ⋆ Σ#[1]#[2]#[2] ⋆ · · · ⋆ Σ#[1]#[2]#[ℓ]
)

. . .

$
(

Σ#[i− 1]#[i]#[1] ⋆ Σ#[i− 1]#[i]#[2] ⋆ · · · ⋆ Σ#[i − 1]#[i]#[ℓ]
)

. . .

$
(

Σ#[q]#[q + 1]#[1] ⋆ Σ#[q]#[q + 1]#[2] ⋆ · · · ⋆Σ#[q]#[q + 1]#[ℓ]
)

$.

Thus, compared to A1, in A4 we have added a new binary counter that goes from 0 to
q, while our previous first counter now goes from 1 to q + 1. Notice that n + 1 bits are
still enough to represent each integer in A4.

Further, for each word u = a1a2 . . . aℓ ∈ Σℓ we define A1(u) as:

$
(

a1#[1]#[1] ⋆ a2#[1]#[2] ⋆ · · · ⋆ aℓ#[1]#[ℓ]
)

. . .

$
(

a1#[i]#[1] ⋆ a2#[i]#[2] ⋆ · · · ⋆ aℓ#[i]#[ℓ]
)

. . .

$
(

a1#[q]#[1] ⋆ a2#[q]#[2] ⋆ · · · ⋆ aℓ#[q]#[ℓ]
)

$,
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and A4(u) as:

$
(

a1#[0]#[1]#[1] ⋆ a2#[0]#[1]#[2] ⋆ · · · ⋆ aℓ#[0]#[1]#[ℓ]
)

. . .

$
(

a1#[1]#[2]#[1] ⋆ a2#[1]#[2]#[2] ⋆ · · · ⋆ aℓ#[1]#[2]#[ℓ]
)

. . .

$
(

a1#[i− 1]#[i]#[1] ⋆ a2#[i− 1]#[i]#[2] ⋆ · · · ⋆ aℓ#[i− 1]#[i]#[ℓ]
)

. . .

$
(

a1#[q]#[q + 1]#[1] ⋆ a2#[q]#[q + 1]#[2] ⋆ · · · ⋆ aℓ#[q]#[q + 1]#[ℓ]
)

$.

Notice that A1(u) ∈ A1 and A4(u) ∈ A4, for each u = a1a2 . . . aℓ ∈ Σℓ.
It is then possible to establish the following crucial claim:

CLAIM 6.7. For every words wi (i = 1, 2, 3, 4) over Σ∪{$,#, ⋆}∪ {0, 1}, the following
are equivalent:

(a) wi ∈ Ai for each i = 1, 2, 3, 4 and wi �ss wj for each (i, j) ∈ I⋄.

(b) There is a word u ∈ Σℓ such that:

w1 = A1(u), w2 = $w1, w3 = w1$, and w4 = A4(u).

PROOF. We mimick the proof of Claim 6.3. The reason why we need to include an
extra counter in A4 is explained next. To prove that that (a) implies (b), assume that
w4 is of the form

$
(

Σ#[0]#[1]#[1] ⋆ Σ#[0]#[1]#[2] ⋆ · · · ⋆Σ#[0]#[1]#[ℓ]
)

w′
4

and of the form

w′′
4

(

Σ#[q]#[q + 1]#[1] ⋆ Σ#[q]#[q + 1]#[2] ⋆ · · · ⋆ Σ#[q]#[q + 1]#[ℓ]) $.

Then the proof requires w1 to be a subsequence of both w′
4 and w′′

4 . In the first case, we
match the two counters of w1 with the first and third counters of w′

4, respectively, while
in the second case we do it with the second and third counters of w′′

4 , respectively.

That is, the projection over the first component of the solutions to the instance of
GENINT(I⋄,�ss) given by (A1, A2, A3, A4) defines the language L′0. Of course, the prob-
lem is that the Ai’s, for i = 1, 2, 3, 4, are of exponential size. Nonetheless, we show
next that each one of them can be represented as an intersection of a set of regular
expressions that is constructible in polynomial time:

LEMMA 6.8. For each i = 1, 2, 3, 4, it is possible to construct in polynomial time
regular languages S1, . . . , St such that Ai =

⋂

1≤j≤t Sj .

PROOF. We only provide a sketch, since the full proof is standard but rather tech-
nical. We concentrate on A1 because the other cases are similar. It is known that we
can construct in polynomial time a set of regular expressions whose intersection de-
fines a (2n+2)-bit counter, where every pair of consecutive addresses is separated by a
fresh delimiter [Börger et al. 1997]. In our case, we assume such delimiter to be a word
of the form ⋆Σ#. We slightly modify such construction using standard techniques,
so that the first n + 1 bits of the counter are separated by delimiter # from the last
(n+ 1) bits. Furthermore, the counter defined by the first n+ 1 bits resets every time
it reaches the integer ℓ (in binary), and the counter defined by the last n+ 1 bits stops
once it reaches the integer q (in binary). Furthermore, every time the counter defined
by the first n + 1 bits resets (i.e., reaches the integer ℓ), we force a symbol $ to appear
immediately afterwards.

We would like to replace then each Ai, for i = 1, 2, 3, 4, with the polynomial set
S1, . . . , St of regular expressions that defines Ai. However, it is not possible to do this
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directly since each component of an index set can be constrained by at most one regu-
lar expression. Instead, we replace component i in I⋄ with t new components c1, . . . , ct,
constraint component cj with regular expression Sj , for each 1 ≤ j ≤ t, and add sub-
sequence constraints between every pair (cj , cj′) of such components, for 1 ≤ j, j′ ≤ t.
This implies that all these components are witnessed by the same word in a solution.
The subsequence constraints of the form (i, j) ∈ I⋄ can then be established from an
arbitrary component representing i to an arbitrary component representing j. Fur-
thermore, the projection over an arbitrary component representing the index 1 of the
solutions of this extended instance of the generalised intersection problem defines the
language L′0. It is easy to see that this extended instance can be constructed in polyno-
mial time from our input.

We now continue with the proof of the theorem. Let us recall that we need to con-
struct an instance of the generalized intersection problem that checks whether there
is a word w ∈ L0 such that:

w �ss $u1$ . . . $uq$.

Recall, however, that we only have access to L0 through its padded version L′0. Further-
more, we only have access to the words u1, . . . , uq through

⋂

1≤i≤mRi, where
⋂

iRi is a

single word over (Σ∪{$})2 of the form ($, $)w1($, $) . . . ($, $)wq($, $) such thatwi = ui⊗u
′
i

for each 1 ≤ i ≤ q. In other words, ui corresponds to the projection of wi over its
first component. Thus, in order to check whether there is a word w ∈ L0 such that
w �ss $u1$ . . . $uq$ we use the following construction:

(1) Instead of defining L′0, we define a language L′′0 that accepts precisely those words
of the form w ⊗ w′ over (Σ ∪ {$,#, ⋆} ∪ {0, 1})2 such that w ∈ L′0 and w′ is an
arbitrary word in Σ ∪ {$,#, ⋆} ∪ {0, 1} of the same length than w. Using a slight
extension of our previous arguments, it is is easy to see that an instance of the
generalised intersection problem that defines L′′0 (over one of its components) can
be constructed in polynomial time from the input to our problem.

(2) We then construct in polynomial time an instance of the generalized intersection
problem that defines (over one of its components) a suitable padding (

⋂

iRi)
pad of

⋂

iRi in such a way that the following are equivalent:
— There is a word w ∈ L0 such that w �ss $u1$ . . . $uq$.
— There is a word w′ ∈ L′′0 such that w′ �ss (

⋂

1≤i≤mRi)
pad.

(3) We finish by adding a subsequence constraint from the component that defines L′′0
to the one that defines (

⋂

1≤i≤mRi)
pad.

It only remains to explain how (
⋂

1≤i≤mRi)
pad is defined. Let us assume then that

each word wj , for 1 ≤ j ≤ q, is of the form (a1j , b
1
j) . . . (a

tj
j , b

tj
j ) ∈ (Σ×Σ)tj . Furthermore,

let us define wpad
j as the following padded version of wj :

(a1j , b
1
j)(#,#)[j]⊗(#,#)[1]⊗(#,#)[j]⊗(#,#)[2]⊗(#,#) . . . (#,#)[j]⊗(#,#)[ℓ]⊗ (⋆, ⋆) . . .

(⋆, ⋆) (a
tj
j , b

tj
j )(#,#)[j]⊗(#,#)[1]⊗(#,#)[j]⊗(#,#)[2]⊗(#,#) . . . (#,#)[j]⊗(#,#)[ℓ]⊗,

where [k]⊗ denotes the word [k] ⊗ [k] over {0, 1} × {0, 1}. Notice that wpad
j extends wj

by adding after each symbol akj , for 1 ≤ k ≤ tj , all possible values of the counters that
appear in a word in L′0 between the j-th and the (j + 1)-th delimiter in $. Finally, let
us define (

⋂

iRi)
pad as the following padded version of

⋂

iRi:

($, $)wpad
1 ($, $) . . . ($, $)upadq ($, $).

We now prove that (
⋂

1≤i≤mRi)
pad satisfies our desired property:
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S �suff �sw �ss

comb. comp. PSPACE-complete PSPACE-complete NEXPTIME-complete
of CRPQ(S) (Thm 4.6) (Thm 4.6) (Thm 6.4)
data comp. NLOGSPACE PSPACE-complete NP-complete
of CRPQ(S) (Prop 5.4) (Thm 5.1) (Thm 6.1)

Fig. 1. Combined and data complexity of graph logics CRPQ(�suff ), CRPQ(�sw), and CRPQ(�ss).

CLAIM 6.9. The following are equivalent:

— There is a word w ∈ L0 such that w �ss $u1$ . . . $uq$.

— There is a word w′ ∈ L′′0 such that w′ �ss (
⋂

1≤i≤mRi)
pad.

PROOF. Let u be the natural padding of w that fits the form of L′0. By definition
of (

⋂

1≤i≤mRi)
pad, there is word u′ of the same length than u such that u ⊗ u′ �ss

(
⋂

1≤i≤mRi)
pad. We then define w′ = u⊗ u′. Analogously, assume that w′ is of the form

u⊗ u′. Then w is obtained from u by removing symbols in {⋆,#} and the counters.

Based on Claim 6.9, to finish the proof it is sufficient to show that it is possible to
construct in polynomial time a set of regular expressions that defines the language
(
⋂

iRi)
pad. In fact, if this was the case we could build an instance of the generalized

intersection problem that represents this language (in the same way we did above
to represent each regular language Ai, for i = 1, 2, 3, 4), and then add a subsequence
constraint from the component that represents L′′0 to an arbitrary component in the
new index set. We prove this below:

LEMMA 6.10. It is possible to construct in polynomial time regular languages
S1, . . . , St such that

⋂

1≤j≤t Sj = (
⋂

1≤i≤mRi)
pad.

PROOF. First, we modify the regular languages Ri, for 1 ≤ i ≤ m, so that they now
check that the restriction of the padded language to the alphabet (Σ ∪ {$})× (Σ ∪ {$})
corresponds precisely to

⋂

1≤i≤m Ri. This is simple, as we only need to add to each such

Ri a condition that forces not to do anything (i.e., not to change state) when scanning
a symbol outside (Σ∪ {$})× (Σ∪ {$}). Afterwards, we implement the desired counters
and delimiters between symbols from (Σ∪{$})× (Σ∪{$}). This is done again by using
standard techniques.

This finishes the proof of Proposition 6.5.

7. FINAL REMARKS

Motivated by applications of graph databases that require comparing labels of paths
based on rational relations, we have studied the complexity of evaluation for logics
that extend CRPQs with practical relations such as suffix, subword and subsequence.
This extends and complements previous results from [Barceló et al. 2013], which estab-
lished the prohibitive complexity of evaluation for logics that allow, in addition, path
comparisons based on arbitrary regular relations. Figures 1 and 2 summarize the com-
bined and data complexity of evaluation for the logics we consider in the paper.

Our results show that by disallowing comparisons based on regular relations, but
by admitting comparisons based on rational relations from {�suff ,�sw,�ss}, the com-
plexity of evaluation becomes much more reasonable (it is always decidable, and ele-
mentary). On the other hand, the data complexity of evaluation for two of these logics
(CRPQ(�sw) and CRPQ(�ss)) continues being intractable, and, therefore, further re-
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S (Reg2 ∪ �suff ) (Reg2 ∪ �sw) (Reg2 ∪ �ss)

comb. comp. undecidable undecidable nonelementary
of CRPQ(S) (Coroll. 5.2 in [Barceló et al. 2013]) (Coroll. 5.2 in [Barceló et al. 2013]) (Coroll. 5.13 in [Barceló et al. 2013])
data comp. undecidable undecidable nonelementary
of CRPQ(S) (Coroll. 5.2 in [Barceló et al. 2013]) (Coroll. 5.2 in [Barceló et al. 2013]) (Coroll. 5.13 in [Barceló et al. 2013])

Fig. 2. Combined and data complexity of logics CRPQ(Reg
2
∪ �suff ), CRPQ(Reg

2
∪ �sw), and

CRPQ(Reg
2
∪ �ss).

strictions need to be imposed on them in order to obtain fragments that can be evalu-
ated in practice.

One such restriction was identified: data complexity of evaluation becomes tractable
when index sets I are acyclic; i.e., when the undirected graph defined by the pairs of I
is acyclic [Barceló et al. 2013]. Our lower bounds for the data complexity of CRPQ(�sw)
and CRPQ(�ss) show that lifting this restriction immediately leads to intractability.
In fact, both lower bounds are proved for the index set I✸ = {(1, 2), (1, 3), (2, 4), (3, 4)},
which is a very simple DAG that is not acyclic. It would be interesting to understand
whether less restrictive conditions than acyclicity yield efficient evaluation for our
logics. Another recent restriction proposes to replace rational relations in formulas
with counting overapproximations based on Parikh automata [Figueira and Libkin
2015]. This restriction leads to tractability of evaluation in data complexity for several
classes of formulas of interest, although the approximation provided by it might be a
bit rough in some scenarios.

It is also of interest to study whether there are suitable decidable extensions of the
logics we have studied in this paper that allow to compare paths based on lenghts or
numbers of occurences of labels (in the style of [Barceló et al. 2012]).

Logics that combine the relations {�suff ,�sw,�ss}. Let us finish with a few words re-

garding the decidability status of the logics that combine two of the relations we study
in this paper, i.e., logics of the form CRPQ(�1,�2) for �1,�2 ∈ {�suff ,�sw,�ss}:

(1) The logic CRPQ(�suff ,�sw) is PSPACE-complete from Theorem 4.6, since both �suff

and �sw are in EQ.
(2) The logic CRPQ(�suff ,�ss) is decidable. In fact, a similar argument to the one used

in the proof of Proposition 5.4 shows that there is a polynomial time translation
from the evaluation problem for CRPQ(�suff ,�ss) to the evaluation problem for
CRPQ(�pref,�ss). The latter is contained in CRPQ(Reg2 ∪ �ss) for which the evalu-
ation problem is decidable (see Corollary 3.5). We do not know the exact complexity
of evaluation for CRPQ(�pref ,�ss) at this point.

(3) It is open whether evaluation for the logic CRPQ(�sw,�ss) is decidable. This prob-
lem is directly related to the decidability of word equations with regular and
subsequence constraints (i.e., word equations with regular constraints in which
some pairs (x, y) of variables are forced to be replaced by words (wx, wy) such that
wx �ss wy)), which seems very challenging.
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Pablo Barceló, Diego Figueira, and Leonid Libkin. 2013. Graph Logics with Rational Relations. Logical
Methods in Computer Science 9, 3 (2013).
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Apprendix

Proof of Proposition 6.6:

In order to prove that SUCCINCT-LCS is NEXPTIME-hard, we compose three reduc-
tions. The first one is the standard reduction from the acceptance problem of a nonde-
terministic Turing machine M on input x to the satisfiability of Cook’s formula φM,x.
In our case,M is a nondeterministic machine that works in exponential time, and thus
φM,x is of exponential size. We then use a standard reduction from satisfiability of φM,x

to the problem of determining if a graph GM,x has an independent set of size kM,x ≥ 0.
(In particular, GM,x contains a node for each literal in each clause, and there is an edge
between nodes q and q′ iff q and q′ are in the same clause, or the literal represented by
q is the negation of the one represented by q′. The size kM,x of the desired independent
set corresponds to the number of clauses of φM,x). Finally, we apply on the indepdent
set instance given by (GM , kM,x) a reduction to LCS over a binary alphabet that can be
found in [Blin et al. 2012, Proposition 1]. In this case, the reduction yields an exponen-
tial number of words w1, . . . , wn, each of exponential size, such that M accepts input x
iff w1, . . . , wn share a subsequence of exponential length ℓ ≥ 0.

By looking at the composition of these three reductions, it can be observed that the
words w1, . . . , wn are highly uniform. They are constructed from simple recurring pat-
terns that grow and shrink in a synchronised way. This allows to encode the word
$w1$ . . . $wn$ as the unique word accepted by the intersection of polynomially many
regular languages Ri. Furthermore, the Ri’s can be constructed in polynomial time
given the input x for M . This encoding uses similar techniques as those used to encode
valid sequences of computations of polynomial space Turing machines in intersections
of regular expressions [Kozen 1977, Lemma 3.2.3]. The correctness of the reduction
thus obtained will be implied by the composition of the preceding ones.

Let L ⊆ Σ∗ be an arbitrary NEXPTIME language, and M = (Γ,Σ, Q, δ) a Turing ma-
chine deciding L with the following parameters:

— a tape alphabet Γ = {s1 = ⊥, s2, ..., sγ}, where ⊥ is a blank symbol, and γ > 0,
— an input alphabet Σ ⊆ Γ,
— a set of states Q = {q1, q2 = qy, q3 = qn, q4, ..., qr}, where q1, qy, qn are respectively the

start, accepting and rejecting states of M , and r > 0, and
— a transition function δ : Q× Γ→ 2Q×Γ×{−1,1}.

We assume without loss of generality that M runs in time t(n) = 2n on inputs of size
n. Let x ∈ Σ∗ be a input instance for L of size n = |x|. The first step in the reduction is
to construct an exponential size formula φM,x (Cook’s formula) which is satisfiable iff
M accepts x. Recall that φM,x has variables:

{Qi,k, Hi,j , Si,j,ℓ : 1 ≤ i ≤ t(n), 1 ≤ k ≤ r,−t(n) ≤ j ≤ t(n), 1 ≤ ℓ ≤ γ}

whose interpetation is as follows. When M runs on input x we have that:

—Qi,k is true iff M is in state qk in the i-th step of computation.
—Hi,j is true iff M ’s head is in the j-th cell of the tape in the i-th step of computation.
— Si,j,ℓ is true iff M ’s tape contains the symbol sℓ in its j-th cell in the i-th step of

computation.
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The formula φM,x then corresponds to the conjunction of six sub-formulas
φ1M,x, . . . , φ

6
M,x that together encode valid computations of M on input x. These sub-

formulas, with their intended meaning, are:

— at each step, M is in one and only one state:

φ1M,x =
∧

1≤i≤t(n)

(Qi,1 ∨ · · · ∨Qi,r) ∧
∧

1≤i≤t(n)
1≤j<j′≤r

(¬Qi,j ∨ ¬Qi,j′)

— at each step, M ’s head is in one and only one tape position:

φ2M,x =
∧

1≤i≤t(n)

(Hi,−t(n) ∨ · · · ∨Hi,t(n)) ∧
∧

1≤i≤t(n)
−t(n)≤j<j′≤t(n)

(¬Hi,j ∨ ¬Hi,j′ )

— at every step, each position of M ’s tape has one and only one symbol:

φ3M,x =
∧

1≤i≤t(n)
−t(n)≤j≤t(n)

(Si,j,1 ∨ · · · ∨ Si,j,γ) ∧
∧

1≤i≤t(n)
−t(n)≤j≤t(n)
1≤r<r′≤γ

(¬Si,j,r ∨ ¬Si,j,r′)

— the computation encoded by the variable assignments is valid regarding the transi-
tion function:

ψ
Q
i,j,ℓ =



¬Qi,k ∨ ¬Hi,j ∨ ¬Si,j,ℓ ∨







∨

(qk′ ,s,d)∈δ(qk,sℓ)

Qi+1,k′











ψS
i,j,ℓ =



¬Qi,k ∨ ¬Hi,j ∨ ¬Si,j,ℓ ∨







∨

(q,s,d)∈δ(qk,sℓ)

Hi+1,j+d











ψH
i,j,ℓ =



¬Qi,k ∨ ¬Hi,j ∨ ¬Si,j,ℓ ∨







∨

(q,sℓ′ ,d)∈δ(qk,sℓ)

Si+1,j,ℓ′











φ4M,x =
∧

1≤i≤t(n)
−t(n)≤j≤t(n)

1≤ℓ≤γ

ψ
Q
i,j,ℓ ∧ ψ

H
i,j,ℓ ∧ ψ

S
i,j,ℓ

— the initial conditions are according to the given input: if x = sk1
· · · skn

, then:

φ5M,x = Q1,1 ∧H1,1 ∧ S1,1,k1
∧ · · · ∧ S1,n,kn

∧ S1,n+1,1 ∧ · · · ∧ S1,t(n),1

— the final step of computation has an accepting state:

φ6M,x = Qt(n),2

Given that t(n) = 2n, the number of clauses in φM,x is

kM,x = 23n−1 + 22n−1[3 + γ(γ + 7)] + 2n−1[6 + r(r + 1)] + 3

whose binary encoding [kM,x] requiresO(n) bits. The binary encoding [kM,x] can clearly
be constructed in polynomial time given n ∈ N and constants γ, r > 0.
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The second step in this reduction is to construct an input instance (GM,x, kM,x) for
INDSET such that GM,x is a graph with a large independent set if and only if φM,x

is satisfiable. We use the standard reduction from SAT to INDSET. That is, the set
V (GM,x) of nodes of GM,x corresponds to the set of literals associated with φM,x, i.e.,

V (GM,x) = {Qi,j, Hi,j , Si,j,ℓ,¬Qi,k,¬Hi,j ,¬Si,j,ℓ |

1 ≤ i ≤ t(n), −t(n) ≤ j ≤ t(n), 1 ≤ ℓ ≤ γ, 1 ≤ k ≤ r}.

The set E(GM,x) of edges of GM,x contains all those pairs of literals that either (1)
appear in the same clause together, or (2) one is the negation of the other. From this
construction it is easy to see that φM,x is satisfiable if and only if GM,x has an indepen-
dent set of size kM,x (recall that this is the number of clauses in φM,x).

Finally, we describe the construction of the words such that they have a long common
subsequence iff GM,x has an independent set of size kM,x. To this end, we use a reduc-
tion from [Blin et al. 2012, Proposition 1] which is explained next. Given an undirected
graph G with nodes {1, ...,m}, construct for each edge (i, j) ∈ G (with 1 ≤ i < j ≤ m) a
word wi,j over the alphabet {a, b} as follows:

wi,j = (amb)i−1am(amb)j−iam(amb)m−j.

Further, consider the word w0 = (amb)m. It follows that the words in the set

W (G) = {w0} ∪ {wi,j | (i, j) is an edge of G}

have a common subsequence of length m2 + k if and only if G has an independent
set of size k. In our case, k = kM,x is the number of clauses in Cook’s formula φM,x

and m = O(k) is the number of literals this formula mentions. Thus, m2 + k can be
represented using O(n) bits. Even more, it is is possible to construct in polynomial
time from the input the binary representation of k, m, and m2 + k.

Now, the question is whether starting from the input x it is possible to con-
struct in polynomial time a set of regular expressions that “encodes” (in the form
($, $)w0($, $)w1($, $) . . . ($, $)wq($, $)) the input to LCS that is obtained by composing
the three reductions we explained above. We explain next why this is possible.

First of all, since both the number of words in the set W (GM,x) and their length is
exponential in the size of the input, we need to use counters that ensure consistency
(as we do in the proof of Proposition 6.5). For instance, since the word w0 is in our
case of the form (amb)m, and the binary representation of m can be constructed in
polynomial time from the input, it is possible to construct in polynomial time a set
of regular expressions that defines precisely a “padded” version of w0 with counters
that ensure that the word is of the required form and length (for more details, see the
proof of Lemma 6.8). Similarly, it is possible to construct in polynomial time a set of
regular expressions that defines the “padded” version of the word wi,j , given binary
representations of integers 1 ≤ i, j ≤ m.

Following in this way, we can construct in polynomial time a set SM,x of regular ex-
pressions that defines a padded version of the concatenation of all the words in the
set W (GM,x) separated by delimiter $. In this new padding we add information that
allows to enumerate the pairs that correspond to edges in the graph GM,x. Recall that
such edges appear between elements in the same clause of φM,x, or between comple-
mentary literals. Since φM,x is generated in a very uniform way, it is possible to do this
with special counters. In particular, we should have a counter that specifies the kind
of clause, as well as the indexes of the literals being taken into consideration at the
time. For instance, when specifying that literals Qi,j and Qi,j′ , for 1 ≤ i ≤ t(n) and
1 ≤ j < j′ ≤ r, are adjacent due to the first type of clauses in φM,x (i.e., the ones of the
form Qi,1 ∨ · · · ∨ Qi,r), we will have a counter c1 set to 1 stating that we are codifying
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adjacency produced by clauses of the first sort, another counter c2 set to i (in binary)
stating that we are codifying adjacency with respect to literals of the form Qi,ℓ, and
two counters c3 and c4 set to j and j′, respectively, stating that it is Qi,j and Qi,j′ that
are adjacent. Following this, we will have the word

(amb)ℓ−1am(amb)ℓ
′−ℓam(amb)m−ℓ′

that codifies the existence of this edge in the reduction to LCS. Here, ℓ and ℓ′ are suit-
able binary encodings for the literals Qi,j and Qi,j′ , respectively. If j′ < r, we increase
c4 by 1. If j′ = r and j < r, we increase c3 by 1. If j = j′ = r, we increase c2 by 1 if
i < t(n). Otherwise, we switch to clauses of the second sort by increasing c1 by 1.

Recall that our goal is to check whether the exponential-length words in the
exponential-size set W (GM,x) have a common subsequence of length m2 + k, where
m and k are represented in binary. Further, we would like to do this over a suitable
succinct representation of W (GM,x) given by the intersection of polynomially many
regular expressions. The obvious candidate for this is the set SM,x of regular expres-
sions defined above. The problem is that SM,x represents a padded version of W (GM,x),
and the presence of the padding counters difficults the detection of a common subse-
quence of the desired length for the words in W (GM,x). This can be solved as follows.
Assume that the regular expressions in SM,x are defined over alphabet Σ ∪ {$}, where
$ is the delimiter that separates the different words in W (GM,x) and Σ is the alphabet
that is used to represent the padded versions of such words. Then we define a new set
S′
M,x of regular expressions over (Σ∪{$})× (Σ∪{$}) in such a way that its intersection

accepts the word u × u′, for u, u′ ∈ (Σ ∪ {$})∗, such that u′ is the word accepted by the
intersection of the regular languages in SM,x and u is the word obtained from u′ by
replacing each symbol not in {$, a, b} by a fresh dummy symbol &. In other words, u
is obtained from u′ by replacing any information about the counters with this dummy
symbol and keeping all the information about the words in W (GM,x) and the delimiter
$ that separates them. As before, the set S′

M,x can be constructed in polynomial time.

Furthermore, it is possible to construct in polynomial time a binary integer m′ such
that the following are equivalent:

(1) The words in W (GM,x) have a common subsequence of length m2 + k.
(2) The words u1, . . . , uq have a common subsequence of lengthm′, where u1, . . . , uq are

all the words over Σ that can be found in u among consecutive appearances of the
delimiter $.

It is then possible to reduce in polynomial time the problem of acceptance of x by M
to the instance of SUCCINCT-LCS given by the regular expressions in S′

M,x and the

binary integer m′. This finishes the proof of Proposition 6.6.
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