
Query Languages for Data Exchange:
Beyond Unions of Conjunctive Queries

Marcelo Arenas1 Pablo Barceĺo2 Juan Reutter3

1 Dept. of Computer Science, Pontificia Universidad Católica de Chile
2 Dept. of Computer Science, Universidad de Chile

3 School of Informatics, University of Edinburgh

Abstract

The class of unions of conjunctive queries (UCQ) has been shown to be particularly well-behaved for data ex-
change; its certain answers can be computed in polynomial time (in terms of data complexity). However, this is not
the only class with this property; the certain answers to anyDATALOG program can also can be computed in polyno-
mial time. The problem is that both UCQ and DATALOG do not allow negated atoms, as adding an unrestricted form
of negation to these languages yields to intractability.

In this paper, we propose a language called DATALOGC(6=) that extends DATALOG with a restricted form of nega-
tion, and study some of its fundamental properties. In particular, we show that the certain answers to a DATALOGC(6=)

program can be computed in polynomial time (in terms of data complexity), and that every union of conjunc-
tive queries with at most one inequality or negated relational atom per disjunct, can be efficiently rewritten as a
DATALOGC(6=) program in the context of data exchange. Furthermore, we show that this is also the case for a syntac-
tic restriction of the class of unions of conjunctive queries with at most two inequalities per disjunct. This syntactic
restriction is given by two conditions that are optimal, in the sense that computing certain answers becomes intractable
if one removes any of them. Finally, we provide a thorough analysis of the combined complexity of computing certain
answers to DATALOGC(6=) programs and other related query languages. In particular,we show that this problem is
EXPTIME-complete for DATALOGC(6=), even if one restricts to conjunctive queries with single inequalities, which is
a fragment of DATALOGC(6=) by the result mentioned above. Furthermore, we show that thecombined complexity is
CONEXPTIME-complete for the case of conjunctive queries withk inequalities, for everyk ≥ 2.

1 Introduction

Data exchange is the problem of computing an instance of atarget schema, given an instance of asourceschema
and a specification of the relationship between source and target data. Although data exchange is considered to be an
old database problem, its theoretical foundations have only been laid out very recently by the seminal work of Fagin,
Kolaitis, Miller and Popa [9]. Both the study of data exchange and schema mappings have become an active area of
research during the last years in the database community (see e.g. [9, 10, 4, 8, 18, 14, 19, 13]).

In formal terms, a data exchange setting is a tripleM = (S, T, Σst), whereS is asourceschema,T is a target
schema, andΣst is a mapping defined as a set ofsource-to-targetdependencies of the form∀x̄(φS(x̄)→ ∃ȳψT(x̄, ȳ)),
whereφS andψT are conjunctions of relational atoms overS andT, respectively (some studies have also included
target constraints, but here we focus on data exchange settings without dependencies overT). Given a source instance
I, the goal in data exchange is to materialize a target instanceJ that is asolutionfor I, that is,J together withI must
conform to the mappingΣst.

An important issue in data exchange is that the existing specification languages usually do not completely deter-
mine the relationship between source and target data and, thus, there may be many solutions for a given source instance.
This immediately raises the question of which solution should be materialized. Initial work on data exchange [9] has
identified a class of “good” solutions, calleduniversalsolutions. In formal terms, a solution is universal if it canbe

1

homomorphically embedded into every other solution. It wasproved in [9] that for the class of data exchange settings
studied in this paper, a particular universal solution – called thecanonicaluniversal solution – can be computed in
polynomial time. It is important to notice that in this result the complexity is measured in terms of the size of the
source instance, and the data exchange specificationΣst is assumed to be fixed. Thus, this result is stated in terms of
datacomplexity [22].

A second important issue in data exchange is query answering. Queries in the data exchange context are posed
over the target schema, and –given that there may be many solutions for a source instance– there is a general agreement
in the literature that their semantics should be defined in terms ofcertainanswers [15, 1, 16, 9]. More formally, given
a data exchange settingM = (S,T,Σst) and a queryQ overT, a tuplet̄ is said to be a certain answer toQ overI
underM, if t̄ belongs to the evaluation ofQ over every possible solutionJ for I underM.

The definition of certain answers is highly non-effective, as it involves computing the intersection of (potentially)
infinitely many sets. Thus, it becomes particularly important to understand for which classes of relevant queries, the
certain answers can be computed efficiently. In particular,it becomes relevant to understand whether it is possible to
compute the certain answers to any of these classes by using some materialized solution. Fagin, Kolaitis, Miller, and
Popa [9] have shown that this is the case for the class of unionof conjunctive queries (UCQ); the certain answers to
each union of conjunctive queriesQ over a source instanceI can be computed in polynomial time by directly posing
Q over the canonical universal solution forI. Again, it is important to notice that this result is stated in terms of data
complexity, that is, the complexity is measured in terms of the size of the source instance, and both the data exchange
specificationΣst and the queryQ are assumed to be fixed.

The good properties of UCQ for data exchange can be completely explained by the fact that unions of conjunctive
queries are preserved under homomorphisms. But this is not the only language that satisfies this condition, as queries
definable in DATALOG, the recursive extension of UCQ, are also preserved under homomorphisms. Thus, DATALOG

retains several of the good properties of UCQs for data exchange purposes. In particular, the certain answers to a
DATALOG programΠ over a source instanceI, can be computed efficiently by first materializing the canonical univer-
sal solutionJ for I, and then evaluatingΠ overJ (since the data complexity of a DATALOG program is polynomial).

Unfortunately, both UCQ and DATALOG keeps us in the realm of the positive, while most database query languages
are equipped with negation. Thus, the first goal of this paperis to investigate what forms of negation can be added
to DATALOG while keeping all the good properties of DATALOG, and UCQ, for data exchange. It should be noticed
that this is not a trivial problem, as there is a trade-off between expressiveness and complexity in this context. On the
one hand, one would like to have a query language expressive enough to be able to pose interesting queries in the data
exchange context. But, on the other hand, it has been shown that adding an unrestricted form of negation to DATALOG

(or even to conjunctive queries) yields to intractability of the problem of computing certain answers [1, 9]. In this
respect, the following are our main contributions.

• We introduce a query language called DATALOGC(6=) that extends DATALOG with a restricted form of negation,
and that has the same good properties for data exchange as DATALOG. In particular, we prove that the certain
answers to a DATALOGC(6=) programΠ over a source instanceI can be computed by evaluatingΠ over the
canonical universal solution forI. As a corollary, we obtain that computing certain answers toa DATALOGC(6=)

program can be done in polynomial time (in terms of data complexity).

• To show that DATALOGC(6=) can be used to express interesting queries in the data exchange context, we prove
that every union of conjunctive queries with at most one inequality or negated relational atom per disjunct, can
be efficiently expressed as a DATALOGC(6=) program in the context of data exchange.

• It follows from the previous result that the certain answers to every union of conjunctive queries with at most one
inequality or negated relational atom per disjunct, can be computed in polynomial time (in terms of data com-
plexity). Although this corollary is not new (it is a simple extension of a result in [9]), the use of DATALOGC(6=)

in the context of data exchange opens the possibility of finding new tractable classes of query languages with
negation. In fact, we also use DATALOGC(6=) to find a tractable fragment of the class of conjunctive queries with
two inequalities.

It is known that for the class of conjunctive queries with inequalities, the problem of computing certain answers
is CONP-complete [1, 9] (in terms of data complexity). In fact, ithas been shown that the intractability holds

2

even for the case of two inequalities [20]. However, very little is known about tractable fragments of these
classes. In this paper, we provide a syntactic restriction for the class of unions of conjunctive queries with at most
two inequalities per disjunct, and prove that every query conforming to it can be expressed as a DATALOGC(6=)

program in the context of data exchange. It immediately follows that the data complexity of computing certain
answers to a query conforming to this restriction is polynomial.

The syntactic restriction mentioned above is given by two conditions. We conclude this part of the investiga-
tion by showing that these conditions are optimal for tractability, in the sense that computing certain answers
becomes intractable if one removes any of them. It should be noticed that this gives a new proof of the fact that
the problem of computing certain answer to a conjunctive query with two inequalities isCONP-complete.

The study of the complexity of computing certain answers to DATALOGC(6=) programs will not be complete if one
does not consider the notion ofcombinedcomplexity. Although the notion of data complexity has shown to be very
useful in understanding the complexity of evaluating a query language, one should also study the complexity of this
problem when none of its parameters is considered to be fixed.This corresponds to the notion of combined complexity
introduced in [22], and it means the following in the contextof data exchange. Given a data exchange settingM, a
queryQ over the target and a source instanceI, one considersI as well asQ andM as part of the input when
computing the certain answers toQ overI underM. In this paper, we study this problem and establish the following
results.

• We show that the combined complexity of the problem of computing certain answers to DATALOGC(6=) pro-
grams is EXPTIME-complete, even if one restricts to the class of conjunctivequeries with single inequalities
(which is a fragment of DATALOGC(6=) by the result mentioned above). This refines a result in [14] that shows
that the combined complexity of the problem of computing certain answers tounionsof conjunctive queries
with at most one inequality per disjunct is EXPTIME-complete.

• We also consider the class of conjunctive queries with an arbitrary number of inequalities per disjunct.
More specifically, we show that the combined complexity of the problem of computing certain answers is
CONEXPTIME-complete for the case of conjunctive queries withk inequalities, for everyk ≥ 2.

• One of the reasons for the high combined complexity of the previous problems is the fact that if data exchange
settings are not considered to be fixed, then one has to deal with canonical universal solutions of exponential
size. A natural way to reduce the size of these solutions is tofocus on the class of LAV data exchange settings
[16], which are frequently used in practice.

For the case of DATALOGC(6=) programs, the combined complexity is inherently exponential, and thus focusing
on LAV settings does not reduce the complexity of computing certain answers. However, we show in the
paper that if one focuses on LAV settings, then the combined complexity is considerably lower for the class of
conjunctive queries with inequalities. More specifically,we show that the combined complexity goes down to
NP-complete for the case of conjunctive queries with singleinequalities, and toΠp

2-complete for the case of
conjunctive queries withk inequalities, for everyk ≥ 2.

Proviso. As we mentioned above, target dependencies are usually considered in the data exchange literature in
addition to source-to-target dependencies. Those target dependencies represent the usual database constraints that
exchanged data must satisfy. We decided not to include target dependencies in this work for the sake of readability,
but we certainly think that this is a class that deserves attention. In fact, we are currently working on extending the
setting presented in this paper to take into account usual target constraints studied in the data exchange literature (e.g.
equality-generatingdependencies andtuple-generatingdependencies).

Organization of the paper. In Section 2, we introduce the terminology used in the paper.In Section 3, we define
the syntax and semantics of DATALOGC(6=) programs. In Section 4, we study some of the fundamental properties of
DATALOGC(6=) programs concerning complexity and expressiveness. In Section 5, we study a syntactic restriction
that leads to tractability of the problem of computing certain answers for unions of conjunctive queries with two
inequalities. In Section 6, we provide a thorough analysis of the combined complexity of computing certain answers
to DATALOGC(6=) programs and other related query languages. Concluding remarks are in Section 7.

3

2 Background

A schemaR is a finite set{R1, . . . , Rk} of relation symbols, with eachRi having a fixed arityni > 0. Let D be
a countably infinite domain. AninstanceI of R assigns to each relation symbolRi of R a finite ni-ary relation
RI

i ⊆ Dni . Thedomaindom(I) of instanceI is the set of all elements that occur in any of the relationsRI
i . We often

define instances by simply listing the tuples attached to thecorresponding relation symbols.
We assume familiarity with first-order logic (FO) and DATALOG. In this paper, CQ is the class of conjunctive

queries and UCQ is the class of unions of conjunctive queries. If we extend these classes by allowing inequalities or
negation (of relational atoms), then we use superscripts6= and¬, respectively. Thus, for example, CQ6= is the class of
conjunctive queries with inequalities, and UCQ¬ is the class of unions of conjunctive queries with negated relational
atoms but no inequalities. As usual in the database literature, we assume that every queryQ in UCQ6=,¬ is safe: (1)
if Q1 andQ2 are disjuncts ofQ, thenQ1 andQ2 have the same free variables, (2) ifQ1 is a disjunct ofQ andx 6= y
is a conjunct ofQ1, thenx andy appear in some non-negated relational atoms ofQ1, (3) if Q1 is a disjunct ofQ and
¬R(x̄) is a conjunct ofQ1, then every variable in̄x appears in a non-negated relational atom ofQ1.

2.1 Data exchange settings and solutions

As is customary in the data exchange literature, we considerinstances with two types of values: constants and nulls
[9, 10]. More precisely, letC andN be infinite and disjoint sets of constants and nulls, respectively, and assume that
D = C ∪N. If we refer to a schemaS as asourceschema, then whenever we consider an instanceI of S, we will
assume that dom(I) ⊆ C. On the other hand, if we refer to a schemaT as atargetschema, then for every instance
J of T, it holds that dom(J) ⊆ C ∪N. Slightly abusing notation, we also useC to denote a built-in unary predicate
such thatC(a) holds if and only ifa is a constant, that isa ∈ C. refer to a source schema andT to

A data exchange settingis a tupleM = (S,T,Σst), whereS is a source schema,T is a target schema,S andT do
not have predicate symbols in common andΣst is a set of FO-dependencies overS∪T (in [9] and [10] a more general
class of data exchange settings is presented, that also includestarget dependencies). As usual in the data exchange
literature (e.g., [9, 10]), we restrict the study to data exchange settings in whichΣst consists of a set ofsource-to-target
tuple-generatingdependencies. A source-to-target tuple-generating dependency (st-tgd) is an FO-sentence of the form
∀x̄ (φ(x̄) → ∃ȳ ψ(x̄, ȳ)), whereφ(x̄) is a conjunction of relational atoms overS andψ(x̄, ȳ) is a conjunction of
relational atoms overT.1 A source(resp.target) instanceK forM is an instance ofS (resp.T). We usually denote
source instances byI, I ′, I1, . . . , and target instances byJ, J ′, J1,

The class of data exchange settings considered in this paperis usually called GLAV (global-&-local-as-view) in the
database literature [16]. One of the restricted forms of this class that has been extensively studied for data integration
and exchange is the class of LAV settings. Formally, a LAV setting (local-as-view) [16] is a data exchange setting
M = (S,T,Σst), in which every st-tgd inΣst is of the form∀x̄ (S(x̄) → ψ(x̄)), for someS ∈ S (it is important to
notice that variables of tuplēx are not assumed to be pairwise distinct).

An instanceJ of T is said to be asolutionfor an instanceI underM = (S,T,Σst), if the instanceK = (I, J) of
S∪T satisfiesΣst, whereSK = SI for everyS ∈ S andTK = T J for everyT ∈ T. IfM is clear from the context,
we shall say thatJ is a solution forI.

Example 2.1 LetM = (S,T,Σst) be a data exchange setting. Assume thatS consists of one binary relation symbol
P , andT consists of two binary relation symbolsQ andR. Further, assume thatΣst consists of st-tgdsP (x, y) →
Q(x, y) andP (x, y)→ ∃zR(x, z). ThenM is also a LAV setting.

Let I = {P (a, b), P (a, c)} be a source instance. ThenJ1 = {Q(a, b), Q(a, c), R(a, b)} andJ2 = {Q(a, b),
Q(a, c),R(a, n)}, wheren ∈ N, are solutions forI. In fact,I has infinitely many solutions. 2

2.2 Universal solutions and canonical universal solution

It has been argued in [9] that the preferred solutions in dataexchange are theuniversalsolutions. In order to define
this notion, we first have to revise the concept ofhomomorphismin data exchange. LetK1 andK2 be instances of

1We usually omit universal quantification in front of st-tgdsand express them simply asφ(x̄) → ∃ȳ ψ(x̄, ȳ).

4

the same schemaR. A homomorphismh from K1 to K2 is a functionh : dom(K1) → dom(K2) such that: (1)
h(c) = c for everyc ∈ C∩ dom(K1), and (2) for everyR ∈ R and every tuplēa = (a1, . . . , ak) ∈ RK1 , it holds that
h(ā) = (h(a1), . . . , h(ak)) ∈ RK2 . Notice that this definition of homomorphism slightly differs from the usual one,
as the additional constraint that homomorphisms are the identity on the constants is imposed.

LetM be a data exchange setting,I a source instance andJ a solution forI underM. ThenJ is a universal
solutionfor I underM, if for every solutionJ ′ for I underM, there exists a homomorphism fromJ to J ′.

Example 2.2 (Example 2.1 continued)SolutionJ2 is a universal solution forI, while J1 is not since there is no
homomorphism fromJ1 to J2. 2

It follows from [9] that for the class of data exchange settings studied in this paper, every source instance has universal
solutions. In particular, one of these solutions - called the canonical universal solution- can be constructed in poly-
nomial time from the given source instance (assuming the setting to be fixed), using thechaseprocedure [5]. We shall
define canonical universal solutions directly as in [4, 18].

In what follows, we show how to compute the canonical universal solution of a source instanceI in a data exchange
setting(S,T,Σst). For each st-tgd inΣst of the form:

φ(x̄, ȳ) → ∃w̄ (T1(x̄1, w̄1) ∧ · · · ∧ Tk(x̄k, w̄k)),

wherex̄ = x̄1 ∪ · · · ∪ x̄k andw̄ = w̄1 ∪ · · · ∪ w̄k, and for each tuplēa from dom(I) of length|x̄|, find all tuples
b̄1, . . . , b̄m such thatI |= φ(ā, b̄i), i ∈ [1,m]. Then choosem tuplesn̄1, . . . , n̄m of length|w̄| of fresh distinct null
values overN. RelationTi (i ∈ [1, k]) in the canonical universal solution forI contains tuples(πx̄i

(ā), πw̄i
(n̄j)), for

eachj ∈ [1,m], whereπx̄i
(ā) refers to the components ofā that occur in the positions of̄xi. Furthermore, relationTi

in the canonical universal solution forI only contains tuples that are obtained by applying this algorithm.
Notice that the algorithm for constructing the canonical universal solution, as defined above, corresponds to what

is known as thenäıvechase applied to the st-tgds in the setting. In the naı̈ve chase all dependencies are fired in parallel.
Our definition differs from the one given in [9], where a canonical universal solution is obtained by using thestandard
chase procedure. The standard chase procedure fires st-tgdsone by one, but only populates the target instanceJ with
new factsT (t̄) such thatT (t̄) cannot bededucedfrom J itself. The problem with using the standard chase in data
exchange is that its result is not necessarily unique (it depends on the order in which the chase steps are applied), and
thus, there may be multiple non-isomorphic canonical universal solutions. Clearly, under our definition, the canonical
universal solution is unique up to isomorphism and can be computed in polynomial time fromI. For a fixed data
exchange settingM = (S,T,Σst), we denote by CAN the transformation from source instances to target instances,
such that CAN(I) is the canonical universal solution forI underM.

2.3 Certain answers

Queries in a data exchange settingM = (S,T,Σst) are posed over the target schemaT. Given that there may be
(even infinitely) many solutions for a given source instanceI with respect toM, the standard approach in the data
exchange literature is to define the semantics of the query based on the notion of certain answers [15, 1, 16, 9].

Let I be a source instance. For a queryQ of arity n ≥ 0, in any of our logical formalisms, we denote by
certainM(Q, I) the set ofcertain answersof Q overI underM, that is, the set ofn-tuplest̄ such that̄t ∈ Q(J),
for everyJ that is a solution forI underM. If n = 0, then we say thatQ is Boolean, andcertainM(Q, I) = true

iff Q holds for everyJ that is a solution forI underM. We writecertainM(Q, I) = false if it is not the case that
certainM(Q, I) = true.

LetM = (S,T,Σst) be a data exchange setting andQ a query overT. The main problem studied in this paper is:

PROBLEM : CERTAIN-ANSWERS(M,Q).
INPUT : A source instanceI and a tuplēt of constants fromI.
QUESTION : Is t̄ ∈ certainM(Q, I)?

Since in the above definition both the setting and the query are fixed, it corresponds (in terms of Vardi’s taxonomy
[22]) to thedata complexity of the problem of computing certain answers. Later, in Section 6, we also study the
combinedcomplexity of this problem.

5

3 Extending Query Languages for Data Exchange:DATALOGC(6=) Programs

The class of unions of conjunctive queries is particularly well-behaved for data exchange; the certain answers of each
union of conjunctive queriesQ can be computed by directly posingQ over an arbitrary universal solution [9]. More
formally, given a data exchange settingM, a source instanceI, a universal solutionJ for I underM, and a tuple
t̄ of constants,̄t ∈ certainM(Q, I) if and only if t̄ ∈ Q(J). This implies that for each data exchange settingM,
the problem CERTAIN-ANSWERS(M, Q) can be solved in polynomial time ifQ is a union of conjunctive queries
(because the canonical universal solution forI can be computed in polynomial time andQ has polynomial time data
complexity).

The fact that the certain answers of a union of conjunctive queriesQ can be computed by posingQ over a universal
solution, can be fully explained by the fact thatQ is preservedunder homomorphisms, that is, for every pair of
instancesJ, J ′, homomorphismh from J to J ′, and tuplēa of elements inJ , if ā ∈ Q(J), thenh(ā) ∈ Q(J ′). But
UCQ is not the only class of queries that is preserved under homomorphisms; also DATALOG, therecursiveextension
of the class UCQ, has this property. Since DATALOG has polynomial time data complexity, we have that the certain
answers of each DATALOG queryQ can be obtained efficiently by first computing a universal solution J , and then
evaluatingQ overJ . Thus, DATALOG preserves all the good properties of UCQ for data exchange.

Unfortunately, both UCQ and DATALOG keep us in the realm of the positive (i.e. negated atoms are not allowed
in queries), while most database query languages are equipped with negation. It seems then natural to extend UCQ
(or DATALOG) in the context of data exchange with some form of negation. Indeed, query languages with different
forms of negation have been considered in the data exchange context [3, 7], as they can be used to express interesting
queries. Next, we show an example of this fact.

Example 3.1 Consider a data exchange setting withS = {E(·, ·), A(·), B(·)}, T = {G(·, ·), P (·), R(·)} and

Σst = {E(x, y)→ G(x, y), A(x)→ P (x), B(x)→ R(x)}.

Notice that ifI is a source instance, then the canonical universal solutionCAN(I) for I is such thatEI = GCAN(I),
AI = P CAN(I) andBI = RCAN(I).

LetQ(x) be the following UCQ¬ query overT:

∃x∃y (P (x) ∧R(y) ∧G(x, y)) ∨ ∃x∃y∃z (G(x, z) ∧G(z, y) ∧ ¬G(x, y)).

It is not hard to prove that for every source instanceI, certainM(Q, I) = true iff there exist elementsa, b ∈
dom(CAN(I)) such thata belongs toP CAN(I), b belongs toRCAN(I) and(a, b) belongs to the transitive closure of the
relationGCAN(I). That is,certainM(Q, I) = true iff there exist elementsa, b ∈ dom(I) such thata belongs toAI , b
belongs toBI and(a, b) belongs to the transitive closure of the relationEI . 2

It is well-known (see e.g. [17]) that there is no union of conjunctive queries (indeed, not even an FO-query) that
defines the transitive closure of a graph. Thus, ifQ andM are as in the previous example, then there is no union
of conjunctive queriesQ′ such thatQ′(CAN(I)) = certainM(Q′, I) = certainM(Q, I), for every source instance
I. It immediately follows that negated relational atoms add expressive power to the class UCQ in the context of data
exchange (see also [4]). And not only that, it follows from [9] that inequalities also add expressive power to UCQ in
the context of data exchange.

In this section, we propose a language that can be used to posequeries with negation, and that has all the good
properties of UCQ for data exchange.

3.1 DATALOGC(6=) programs

Unfortunately, adding an unrestricted form of negation to DATALOG (or even to CQ) not only destroys preservation
under homomorphisms, but also easily yields to intractability of the problem of computing certain answers [1, 9]. More
precisely, there is a settingM and a queryQ in CQ6= such that the problem CERTAIN-ANSWERS(M, Q) cannot be
solved in polynomial time (unless PTIME = NP). In particular, the set of certain answers ofQ cannot be computed
by evaluatingQ over a polynomial-time computable universal solution. Next we show that there is a natural way of

6

adding negation to DATALOG while keeping all of the good properties of this language fordata exchange. In Section
4, we show that such a restricted form of negation can be used to express many relevant queries (some including
negation) for data exchange.

Definition 3.2 (DATALOGC(6=) programs) A constant-inequality Datalog ruleis a rule of the form:

S(x̄) ← S1(x̄1), . . . , S`(x̄`),C(y1), . . . ,C(ym), u1 6= v1, . . . , un 6= vn,

where

(a) S, S1, . . ., S` are (non necessarily distinct) predicate symbols,

(b) every variable in̄x is mentioned in some tuplēxi (i ∈ [1, `]),

(c) every variableyj (j ∈ [1,m]) is mentioned in some tuplēxi (i ∈ [1, `]), and

(d) every variableuj (j ∈ [1, n]), and every variablevj , is equal to some variableyi (i ∈ [1,m]).

Moreover, aconstant-inequality Datalog program(DATALOGC(6=) program) Π is a finite set of constant-inequality
Datalog rules.

For example, the following is a constant-inequality Datalog program:

R(x, y) ← T (x, z), S(z, y),C(x),C(z), x 6= z

S(x) ← U(x, u, v, w),C(x),C(u),C(v),C(w), u 6= v, u 6= w

For a rule of the form (3.2), we say thatS(x̄) is its head. The set of predicates of a DATALOGC(6=) programΠ, denoted
by Pred(Π), is the set of predicate symbols mentioned inΠ, while the set of intensional predicates ofΠ, denoted by
IPred(Π), is the set of predicates symbolsR ∈ Pred(Π) such thatR(x̄) appears as the head of some rule ofΠ.

Fix a DATALOGC(6=) programΠ and letI be a database instance of the relational schemaPred(Π). ThenT (I)
is an instance ofPred(Π) such that for everyR ∈ Pred(Π) and every tuplēt, it holds thatt̄ ∈ RT (I) if and only
if there exists a ruleR(x̄) ← R1(x̄1), . . . , R`(x̄`),C(y1), . . . ,C(ym), u1 6= v1, . . . , un 6= vn in Π and a variable
assignmentσ such that (a)σ(x̄) = t̄, (b)σ(x̄i) ∈ RI

i , for everyi ∈ [1, `], (c) σ(yi) is a constant, for everyi ∈ [1,m],
and (d)σ(ui) 6= σ(vi), for everyi ∈ [1, n]. OperatorT is used to define the semantics of constant-inequality Datalog
programs. More precisely, defineT 0

Π(I) to beI andT n+1
Π (I) to beT (T n

Π (I)) ∪ T n
Π (I), for everyn ≥ 0. Then the

evaluation ofΠ overI is defined asT ∞
Π (I) =

⋃
n≥0 T

n
Π (I).

A constant-inequality Datalog programΠ is said to be defined over a relational schemaR if R = Pred(Π) r

IPred(Π) and ANSWER ∈ IPred(Π). Given an instanceI of R and a tuplēt in dom(I)n, wheren is the arity of
ANSWER, we say that̄t ∈ Π(I) if t̄ ∈ ANSWERT

∞

Π (I0), whereI0 is an extension ofI defined as:RI0 = RI for
R ∈ R andRI0 = ∅ for R ∈ IPred(Π).

As we mentioned before, the homomorphisms in data exchange are not arbitrary; they are the identity on the
constants. Thus, given that inequalities are witnessed by constants in DATALOGC(6=) programs, we have that these
programs are preserved under homomorphisms. From this we conclude that the certain answers to a DATALOGC(6=)

programΠ can be computed by directly evaluatingΠ over a universal solution.

Proposition 3.3 LetM = (S,T,Σst) be a data exchange setting,I a source instance,J a universal solution for
I underM, andΠ a DATALOGC(6=) program overT. Then for every tuplēt of constants,̄t ∈ certainM(Π, I) iff
t̄ ∈ Π(J).

This proposition will be used in Section 4 to show that DATALOGC(6=) programs preserve the good properties of
conjunctive queries for data exchange.

7

4 On the Complexity and Expressiveness ofDATALOGC(6=) Programs

We start this section by studying the expressive power of DATALOGC(6=) programs. In particular, we show that these
programs are expressive enough to capture the class of unions of conjunctive queries with at most one negated atom per
disjunct. This class has proved to be relevant for data exchange, as its restriction with inequalities (that is the classof
queries in UCQ6= with at most one inequality per disjunct) not only can express relevant queries but also is one of the
few known extensions of the class UCQ for which the problem ofcomputing certain answers is tractable [9]. Indeed,
as it is shown in [9], this class remains tractable even in thepresence of restricted classes of target dependencies.

Theorem 4.1 LetQ be aUCQ6=,¬ query over a schemaT, with at most one inequality or negated relational atom
per disjunct. Then there exists aDATALOGC(6=) program ΠQ over T such that for every data exchange setting
M = (S,T,Σst) and instanceI of S, certainM(Q, I) = certainM(ΠQ, I). Moreover,ΠQ can be effectively
constructed fromQ in polynomial time.

Before presenting the proof of Theorem 4.1, we sketch the proof by means of an example.

Example 4.2 LetM be a data exchange setting such thatS = {E(·, ·), A(·)}, T = {G(·, ·), P (·)} and

Σst = {E(x, y)→ ∃z(G(x, z) ∧G(z, y)), A(x)→ P (x)}.

Also, letQ(x) be the following query in UCQ6=,¬:

(P (x) ∧G(x, x)) ∨ ∃y (G(x, y) ∧ x 6= y) ∨ ∃y∃z (G(x, z) ∧G(z, y) ∧ ¬G(x, y)).

We construct a DATALOGC(6=) programΠQ such thatcertainM(Q, I) = certainM(ΠQ, I). The set of intensional
predicates of the DATALOGC(6=) programΠQ is {U1(·, ·, ·), U2(·, ·), dom(·), EQUAL(·, ·, ·), ANSWER(·)}. The pro-
gramΠQ overT is defined as follows.

• First, the program collects in dom(x) all the elements that belong to the active domain of the instance ofT
whereΠQ is evaluated:

dom(x) ← G(x, z) (1)

dom(x) ← G(z, x) (2)

dom(x) ← P (x) (3)

• Second, the programΠQ includes the following rules that formalize the idea that EQUAL(x, y, z) holds ifx and
y are the same elements:

EQUAL(x, x, z)← dom(x), dom(z) (4)

EQUAL(x, y, z)← EQUAL(y, x, z) (5)

EQUAL(x, y, z)← EQUAL(x,w, z),EQUAL(w, y, z) (6)

Predicate EQUAL includes an extra argument that keeps track of the elementz where the query is being
evaluated. Notice that we cannot simply use the rule EQUAL(x, x, z) ← to say that EQUAL is reflexive, as
DATALOGC(6=) programs aresafe, i.e. every variable that appears in the head of a rule also has to appear in its
body.

• Third,ΠQ includes the rules:

U1(x, y, z) ← G(x, y), dom(z) (7)

U2(x, z) ← P (x), dom(z) (8)

U1(x, y, z) ← U1(u, v, z),EQUAL(u, x, z),EQUAL(v, y, z) (9)

U2(x, z) ← U2(u, z),EQUAL(u, x, z) (10)

Intuitively, the first two rules create inU1 andU2 a copy ofG andP , respectively, but again with an extra
argument for keeping track of the element whereΠQ is being evaluated. The last two rules allow to replace
equal elements in the interpretation ofU1 andU2.

8

• Fourth,ΠQ includes the following rule for the third disjunct ofQ(x):

U1(x, y, x) ← U1(x, z, x), U1(z, y, x) (11)

Intuitively, this rule expresses that ifa is an element that does not belong to the set of certain answers toQ(x),
then for every pair of elementsb andc such that(a, b) and(b, c) belong to the interpretation ofG, it must be the
case that(a, c) also belongs to it.

• Fifth, ΠQ includes the following rule for the second disjunct ofQ(x):

EQUAL(x, y, x) ← U1(x, y, x) (12)

Intuitively, this rule expresses that ifa is an element that does not belong to the set of certain answers toQ(x),
then for every elementb such that the pair(a, b) belongs to the interpretation ofG, it must be the case thata = b.

• Finally,ΠQ includes two rules for collecting the certain answers toQ(x):

ANSWER(x)← U2(x, x), U1(x, x, x),C(x) (13)

ANSWER(x)← EQUAL(y, z, x),C(y),C(z), y 6= z (14)

Intuitively, rule (13) says that if a constanta belongs to the interpretation ofP and(a, a) belongs to the inter-
pretation ofG, thena belongs to the set of certain answers toQ(x). Indeed, this means that ifJ is an arbitrary
solution where the program is being evaluated, thena belongs to the evaluation of the first disjunct ofQ(x) over
J .

Rule (14) says that if in the process of evaluatingΠQ with parametera, two distinct constantsb and c are
declared to be equal (EQUAL(b, c, a) holds), thena belongs to the set of certain answers toQ(x). We show the
application of this rule with an example. LetI be a source instance, and assume that(a, n) and(n, b) belong to
G in the canonical universal solution forI, wheren is a null value. By applying rule (1), we have that dom(a)
holds in CAN(I). Thus, we conclude by applying rule (7) thatU1(a, n, a) andU1(n, b, a) hold in CAN(I) and,
therefore, we obtain by using rule (12) that EQUAL(a, n, a) holds in CAN(I). Notice that this rule is trying to
prove thata is not in the certain answers toQ(x) and, hence, it forcesn to be equal toa. Now by using rule (5),
we obtain that EQUAL(n, a, a) holds in CAN(I). But we also have that EQUAL(b, b, a) holds in CAN(I) (by
applying rules (2) and (4)). Thus, by applying rule (9), we obtain thatU1(a, b, a) holds in CAN(I). Therefore,
by applying rule (12) again, we obtain that EQUAL(a, b, a) holds in CAN(I). This time, rule (12) tries to prove
thata is not in the certain answers toQ(x) by forcing constantsa andb to be the same value. But this cannot
be the case sincea andb are distinct constants and, thus, rule (14) is used to conclude thata is in the certain
answers toQ(x). It is important to notice that this conclusion is correct. If J is an arbitrary solution forI, then
we have that there exists a homomorphismh : CAN(I)→ J . Given thata andb are distinct constants, we have
thata 6= h(n) or b 6= h(n). It follows that there is an elementc in J such thata 6= c and the pair(a, c) belongs
to the interpretation ofG. Thus, we conclude thata belongs to the evaluation of the second disjunct ofQ(x)
overJ .

It is now an easy exercise to show that the set of certain answers toQ(x) coincide with the set of certain answers to
ΠQ, for every source instanceI. 2

We now present the proof of Theorem 4.1.

Proof: Assume thatT = {T1, . . . , Tk}, where eachTi has arityni > 0, and thatQ(x̄) = Q1(x̄)∨· · · ∨Q`(x̄), where
x̄ = (x1, . . . , xm) and eachQi(x̄) is a conjunctive query with at most one inequality or negatedrelational atom. Then
the set of intensional predicates of DATALOGC(6=) programΠQ is

{U1, . . . , Uk,DOM,EQUAL,ANSWER},

where eachUi (i ∈ [1, k]) has arityni + m, DOM has arity 1, EQUAL has arity2 + m and ANSWER has aritym.
Moreover, the set of rules ofΠQ is defined as follows.

9

• For every predicateTi ∈ T, ΠQ includes the followingk rules:

DOM(x) ← Ti(x, y2, y3, . . . , yni−1, yni
)

DOM(x) ← Ti(y1, x, y3, . . . , yni−1, yni
)

· · ·

DOM(x) ← Ti(y1, y2, y3, . . . , yni−1, x)

• ΠQ includes the following rules for predicate EQUAL:

EQUAL(x, x, z1, . . . , zm) ← DOM(x),DOM(z1), . . . ,DOM(zm)

EQUAL(x, y, z1, . . . , zm) ← EQUAL(y, x, z1, . . . , zm)

EQUAL(x, y, z1, . . . , zm) ← EQUAL(x,w, z1, . . . , zm),EQUAL(w, y, z1, . . . , zm)

• For every predicateUi, ΠQ includes the following rules:

Ui(y1, . . . , yni
, z1, . . . , zm) ← Ti(y1, . . . , yni

),DOM(z1), . . . ,DOM(zm)

Ui(y1, . . . , yni
, z1, . . . , zm) ← Ui(w1, . . . , wni

, z1, . . . , zm),EQUAL(w1, y1, z1, . . . , zm), . . . ,

EQUAL(wni
, yni

, z1, . . . , zm)

• Let i ∈ [1, `]. First, assume thatQi(x̄) does not contain any negated atom. ThenQi(x̄) is equal to∃ū (Tp1
(ū1)∧

· · · ∧ Tpn
(ūn)), wherepj ∈ [1, k] and every variable in̄uj is mentioned in either̄u or x̄, for everyj ∈ [1, n]. In

this case, programΠQ includes the following rule:

ANSWER(x̄) ← Up1
(ū1, x̄), . . . , Upn

(ūn, x̄),C(x1), . . . ,C(xm) (15)

Notice that this rule is well defined since the setx̄ is the set of free variables of∃ū (Tp1
(ū1) ∧ · · · ∧ Tpn

(ūn)).
Second, assume thatQi(x̄) contains a negated relational atom. ThenQi(x̄) is equal to∃ū (Tp1

(ū1) ∧ · · · ∧
Tpn

(ūn) ∧ ¬Tpn+1
(ūn+1)), wherepj ∈ [1, k] and every variable in̄uj is mentioned in either̄u or x̄, for every

j ∈ [1, n+ 1]. In this case, programΠQ includes the following rule:

Upn+1
(ūn+1, x̄) ← Up1

(ū1, x̄), . . . , Upn
(ūn, x̄). (16)

This rule is well defined since∃ū (Tp1
(ū1) ∧ · · · ∧ Tpn

(ūn) ∧ ¬Tpn+1
(ūn+1)) is a safe query. Finally, assume

thatQi(x̄) contains an inequality. ThenQi(x̄) is equal to∃ū (Tp1
(ū1) ∧ · · · ∧ Tpn

(ūn) ∧ v1 6= v2), where
pj ∈ [1, k] and every variable in̄uj is mentioned in either̄u or x̄, for everyj ∈ [1, n], andv1, v2 are mentioned
in ū or x̄. In this case, programΠQ includes the following rules:

EQUAL(v1, v2, x̄) ← Up1
(ū1, x̄), . . . , Upn

(ūn, x̄) (17)

ANSWER(x̄) ← EQUAL(u, v, x̄),C(u),C(v), u 6= v,C(x1), . . . ,C(xm)

We note that the first rule above is well defined since∃ū (Tp1
(ū1) ∧ · · · ∧ Tpn

(ūn) ∧ v1 6= v2) is a safe query.

Let ā be a tuple of elements from the domain of a source instanceI. Each predicateUi in ΠQ is used as a copy
of Ti but withm extra arguments that store tupleā. These predicates are used when testing whetherā is a certain
answer forQ over I. More specifically, the rules ofΠQ try to construct from CAN(I) a solutionJ for I such that
ā 6∈ Q(J). Thus, if in a solutionJ for I, it holds thatā ∈ Q(J) becausēa ∈ Qi(J), whereQi(x̄) is equal to
∃ū (Tp1

(ū1) ∧ · · · ∧ Tpn
(ūn) ∧ ¬Tpn+1

(ūn+1)), thenΠQ uses rule (16) to create a new solution where the negative
atom ofQi does not hold. In the same way, if in a solutionJ for I, it holds that̄a ∈ Q(J) becausēa ∈ Qi(J), where
Qi(x̄) is equal to∃ū (Tp1

(ū1) ∧ · · · ∧ Tpn
(ūn) ∧ v1 6= v2), thenΠQ uses rule (17) to create a new solution where the

values assigned tov1 andv2 are equal (predicate EQUAL is used to store this fact). Ifv1 or v2 is assigned a null value,
then it is possible to create a solution where the values assigned to these variables are the same. But this is not possible
if both v1 andv2 are assigned constant values. In fact, it follows from [9] that this implies that it is not possible to find

10

a solutionJ ′ for I whereā 6∈ Q(J ′), and in this case rule (18) is used to indicate thatā is a certain answer forQ over
I.

By using the above observations, it is not difficult to prove that for every data exchange settingM = (S,T,Σst)
and for every instanceI of S, it is the case thatcertainM(Q, I) = certainM(ΠQ, I). This concludes the proof of the
theorem. 2

At this point, a natural question about DATALOGC(6=) programs is whether the different components of this lan-
guage are really needed, that is, whether inequalities and recursion are essential for this language. Next, we show that
this is indeed the case and, in particular, we conclude that both inequalities and recursion are essential for Theorem
4.1.

It was shown in [9] that there exist a data exchange settingM and a conjunctive queryQ with one inequality
for which there is no first-order queryQ? such thatcertainM(Q, I) = Q?(CAN(I)) holds, for every source instance
I. Thus, given that a non-recursive DATALOGC(6=) program is equivalent to a first-order query, we conclude from
Proposition 3.3 that recursion is necessary for capturing the class of unions of conjunctive queries with at most one
negated atom per disjunct.

Proposition 4.3 ([9]) There exist a data exchange settingM and a Boolean conjunctive queryQ with a single in-
equality such that for every non-recursiveDATALOGC(6=) programΠ, it holds thatcertainM(Q, I) 6= certainM(Π, I)
for some source instanceI.

In the following proposition, we show that the use of inequalities is also necessary for capturing the class of unions
of conjunctive queries with at most one negated atom per disjunct. We note that this cannot be obtained from the
result in [9] mentioned above, as there are DATALOGC(6=) programs without inequalities that are not expressible in
first-order logic. The proof of this proposition follows from the fact that DATALOGC(6=) programs without inequalities
are preserved under homomorphisms, while conjunctive queries with inequalities are only preserved under one-to-one
homomorphisms.

Proposition 4.4 There exist a data exchange settingM and a Boolean conjunctive queryQ with a single inequality
such that for everyDATALOGC(6=) programΠ without inequalities,certainM(Q, I) 6= certainM(Π, I) for some
source instanceI.

Proof: LetM = (S,T,Σst) be a data exchange setting defined as follows:

• The source schemaS consists of one binary relation symbolM , and the target schema consists of one binary
relation symbolN ; and

• the setΣst of source-to-target dependencies consists only of the single stdM(x, y)→ N(x, y).

Moreover, letQ be the query∃x∃y(N(x, y) ∧ x 6= y). We show that for every DATALOGC(6=) programΠ without
inequalities,certainM(Q, I) 6= certainM(Π, I) for some instanceI of S.

For the sake of contradiction, assume that there exists a DATALOGC(6=) programΠ0 without inequalities such that
for every source instanceI, certainM(Q, I) = certainM(Π0, I) holds, and letI1 = {M(a, b)} andI2 = {M(c, c)}.
It is not hard to see thatcertainM(Q, I1) = true andcertainM(Q, I2) = false.

Let J1 = {N(a, b)} andJ2 = {N(c, c)} be target instances. It is easy to see thatJ1 andJ2 are universal
solutions forI1 and I2, respectively. Given thatcertainM(Q, I1) = true, we have thatΠ0(J1) = true. Let
h be a function from dom(J1) to dom(J2) defined ash(a) = h(b) = c. SinceΠ0 is a DATALOGC(6=) program
without inequalities, it must be preserved underh (becauseh maps constants to constants, and maps the pair
(a, b) ∈ NJ1 into the pair(h(a), h(b)) = (c, c) ∈ NJ2). We conclude thatΠ0(J2) = true. Hence, given thatJ2 is
a universal solution forI2, we conclude from Proposition 3.3 thatcertainM(Π0, I2) = true. But we assume that
certainM(Q, I2) = certainM(Π0, I2) and, therefore, we obtain a contradiction sincecertainM(Q, I2) = false. 2

Notice that as a corollary of Proposition 4.4 and Theorem 4.1, we obtain that DATALOGC(6=) programs are strictly
more expressive than DATALOGC(6=) programs without inequalities.

11

We conclude this section by studying the complexity of the problem of computing certain answers to
DATALOGC(6=) programs. It was shown in Proposition 3.3 that the certain answers of a DATALOGC(6=) program
Π can be computed by directly posingΠ over CAN(I). This implies that for each data exchange settingM, the prob-
lem CERTAIN-ANSWERS(M,Π) can be solved in polynomial time ifΠ is a DATALOGC(6=) program (since CAN(I)
can be computed in polynomial time andΠ has polynomial time data complexity).

Proposition 4.5 The problemCERTAIN-ANSWERS(M,Π) can be solved in polynomial time, for every data exchange
settingM andDATALOGC(6=) programΠ.

From the previous proposition and Theorem 4.1, we conclude that the certain answers to a union of conjunctive
queries with at most one negated atom per disjunct can also becomputed in polynomial time. We note that this
slightly generalizes one of the polynomial time results in [9], which is stated for the class of unions of conjunctive
queries with at most one inequality per disjunct. The proof of the result in [9] uses different techniques, based on the
chase procedure. In Section 5, we show that DATALOGC(6=) programs can also be used to express (some) unions of
conjunctive queries with two inequalities per disjunct.

A natural question at this point is whether the problem CERTAIN-ANSWERS(M,Π) is PTIME-complete for some
data exchange settingM and DATALOGC(6=) programΠ. It is easy to see that this is the case given that the data com-
plexity of the evaluation problem for DATALOG programs is PTIME-complete. But more interestingly, from Theorem
4.1 we have that this result is also a corollary of a stronger result for UCQ6= queries, namely that there exist a data ex-
change settingM and a conjunctive queryQ with one inequality such that the problem CERTAIN-ANSWERS(M, Q)
is PTIME-complete.

Proposition 4.6 There exist aLAV data exchange settingM and a Boolean conjunctive queryQ with one inequality
such thatCERTAIN-ANSWERS(M, Q) is PTIME-complete, underLOGSPACEreductions.

Proof: LetM = (S,T,Σst) be a data exchange setting defined as follows. Source schemaS consists of a unary
relationV , a binary relationS, and a 4-ary relationP . Target schemaT consists of a binary relationT and a 4-ary
relationR. SetΣst consists of the following source-to-target dependencies:

V (x) → ∃y T (x, y) (18)

S(x, y) → T (x, y) (19)

P (x, y, w, z) → R(x, y, w, z) (20)

Furthermore, Boolean queryQ overT is defined as:

∃x∃y∃w∃z∃x′ (R(x, y, w, z) ∧ T (x, x′) ∧ T (y, y) ∧ T (w,w) ∧ T (z, z) ∧ x 6= x′).

Next we show that CERTAIN-ANSWERS(M, Q) is PTIME-complete under LOGSPACEreductions.
Membership of CERTAIN-ANSWERS(M, Q) in PTIME follows from [9]. PTIME-hardness is established from

a LOGSPACEreduction from Horn-3CNF to the complement of CERTAIN-ANSWERS(M, Q), where Horn-3CNF is
the satisfiability problem for propositional formulas in CNF with at most 3 literals per clause, and with at most one
positive literal per clause. This problem is known to be PTIME-complete (see, e.g., [12]). More precisely, for every
Horn-3CNF formulaφ, we construct in logarithmic space an instanceIφ of S such thatφ is satisfiable if and only if
certainM(Q, Iφ) = false.

Without loss of generality, assume that formulaφ = C1 ∧ · · · ∧ Ck, where eachCi (i ∈ {1, . . . , k}) is a clause of
the form eitherp∨¬q ∨¬r or p or¬p∨¬q ∨¬r, beingp, q andr arbitrary propositional variables. Then instanceIφ
is defined as follows:

• The interpretation of unary relationV in Iφ is the set of propositional variables mentioned inφ.

• The interpretation of binary relationS in Iφ is the set of tuples{(b, b), (h, f)}, whereb, h andf are fresh
constants (not mentioned as propositional variables inφ).

12

• For every clauseCi in Iφ (i ∈ {1, . . . , k}), the interpretation of 4-ary relationP in Iφ contains the following
tuple:

– (p, q, r, b) if Ci = p ∨ ¬q ∨ ¬r,

– (p, b, b, b) if Ci = p, and

– (h, p, q, r) if Ci = ¬p ∨ ¬q ∨ ¬r.

Clearly,Iφ can be constructed in logarithmic space fromφ.
Next, we show thatcertainM(Q, Iφ) = false if and only if φ is satisfiable.

(⇒) Assume first thatcertainM(Q, Iφ) = false.
In the settingM, the canonical universal solution CAN(Iφ) for Iφ is as follows. Assume that⊥q is the null

generated by applying rule (19) to each atomV (q) in Iφ. Then the interpretation ofR in CAN(I) is equal to the
interpretation ofP in I, and the interpretation ofT in CAN(I) contains tuples(b, b), (h, f) and (q,⊥q) for every
propositional variableq mentioned inφ.

Given thatcertainM(Q, Iφ) = false, there exists a solutionJ for I such thatQ(J) = false. Leth : CAN(I)→
J be an homomorphism from CAN(I) intoJ , and letσ be the following truth assignment for the propositional variables
mentioned inφ: σ(q) = 1 iff h(⊥q) = q. Next we show thatσ satisfiesφ. More precisely, we prove thatσ(Ci) = 1,
for everyi ∈ {1, . . . , k}. We consider three cases:

• Assume thatCi = p. SinceR(p, b, b, b) belongs toJ , and alsoT (b, b) belongs toJ , it must be the case that
h(⊥p) = p sinceQ(J) = false and(p,⊥p) belongs to the interpretation ofT in CAN(I). We conclude that
σ(p) = 1 and, hence,σ(Ci) = 1.

• Assume thatCi = p ∨ ¬q ∨ ¬r andσ(q) = σ(r) = 1. Then by definition ofh, we have thath(⊥q) = q and
h(⊥r) = r and, therefore,(q, q) and(r, r) belong to the interpretation ofT in J . Thus, given thatR(p, q, r, b)
andT (b, b) belong toJ , it must be the case thath(⊥p) = p sinceQ(J) = false and(p,⊥p) belongs to the
interpretation ofT in CAN(I). We conclude thatσ(p) = 1 and, hence,σ(Ci) = 1.

• Assume thatCi = ¬p ∨ ¬q ∨ ¬r. For the sake of contradiction, assume thatσ(p) = σ(q) = σ(r) = 1. Then
by definition ofh, we have thath(⊥p) = p, h(⊥q) = q andh(⊥r) = r and, therefore,(p, p), (q, q) and(r, r)
belong to the interpretation ofT in J . Thus, given thatR(h, p, q, r), T (h, f) belong toJ andh 6= f holds, we
conclude thatQ(J) = true, which contradicts our initial assumption. We conclude that σ(p) = 0 or σ(q) = 0
or σ(r) = 0, which implies thatσ(Ci) = 1.

(⇐) Assume thatφ is satisfiable, and letσ be a truth assignment for the propositional variables inφ such thatσ(φ) = 1.
Furthermore, assume that CAN(Iφ) is constructed as above. Fromσ, define a functionf from dom(CAN(Iφ)) into
dom(CAN(Iφ)) as follows:

f(v) =

{
q v = ⊥q andσ(q) = 1

v otherwise

Let J? be a solution forIφ underM obtained from CAN(Iφ) by replacing each occurrence of an elementv with f(v).
Next we show thatQ(J?) = false and, thus, we conclude thatcertainM(Q, Iφ) = false.

Assume, for the sake of contradiction, thatQ(J?) = true. Then, there exists a functionh : {x, y, w, z, x′} →
dom(J?) such thatR(h(x), h(y), h(w), h(z)), T (h(x), h(x′)), T (h(y), h(y)), T (h(w), h(w)) andT (h(z), h(z)) are
all tuples inJ?, andh(x) 6= h(x′). To prove that this leads to a contradiction, we consider three cases.

• Assume thath(x) = p, wherep is a propositional variable, andh(y) = h(w) = h(z) = b. Then by definition
ofM andIφ, we have thatp is a clause inφ. But given thath(x) = p, h(x) 6= h(x′) andT (h(x), h(x′)) is a
tuple inJ?, it is the case thath(x′) = ⊥p. Thus, given that⊥p is an element ofJ?, it holds thatσ(p) = 0 since
f(⊥p) = ⊥p. We conclude thatσ(φ) = 0 sinceσ(p) = 0, which contradicts our initial assumption.

13

• Assume thath(x) = p, h(y) = q andh(w) = r, wherep, q andr are propositional variables, andh(z) = b.
Then by definition ofM andIφ, we have thatp∨¬q∨¬r is a clause inφ. But given thath(x) = p, h(x) 6= h(x′)
andT (h(x), h(x′)) is a tuple inJ?, it is the case thath(x′) = ⊥p. Thus, given that⊥p is an element of
J?, it holds thatσ(p) = 0 sincef(⊥p) = ⊥p. Moreover, given thatT (h(y), h(y)) andT (h(w), h(w)) are
tuples inJ?, it holds thatT (q, q) andT (r, r) are tuples inJ?. Thus,f(⊥q) = q andf(⊥r) = r and, hence
σ(q) = σ(r) = 1. We conclude thatσ(φ) = 0 sinceσ(p) = 0 andσ(q) = σ(r) = 1, which contradicts our
initial assumption.

• Assume thath(x) = h, h(y) = p, h(w) = q andh(z) = r, wherep, q andr are propositional variables.
Then by definition ofM andIφ, we have that¬p ∨ ¬q ∨ ¬r is a clause inφ. But given thatT (h(y), h(y)),
T (h(w), h(w)) andT (h(z), h(z)) are all tuples inJ?, it holds thatT (p, p), T (q, q) andT (r, r) are all tuples
in J?. Thus,f(⊥p) = p, f(⊥q) = q andf(⊥r) = r and, henceσ(p) = σ(q) = σ(r) = 1. We conclude that
σ(φ) = 0 sinceσ(p) = σ(q) = σ(r) = 1, which contradicts our initial assumption.

This concludes the proof of the proposition. 2

It is worth mentioning that it follows from Proposition 3.1 in [14] that there exists a data exchange
settingM containing sometarget dependencies and a conjunctive queryQ with one inequality such that
CERTAIN-ANSWERS(M, Q) is PTIME-complete. Proposition 4.6 shows that this result holds even when no target
dependencies are provided.

5 Conjunctive Queries with Two Inequalities

As we mentioned before, computing certain answers to conjunctive queries with more than just one inequality is an
intractable problem. Indeed, there is a LAV settingM and a Boolean conjunctive queryQ with two inequalities such
that the problem CERTAIN-ANSWERS(M, Q) is CONP-complete [20]. Therefore, unless PTIME = NP, Theorem 4.1
is no longer valid if we remove the restriction that every disjunct ofQ must contain at most one inequality.

The intractability for conjunctive queries with two inequalities is tightly related with the use of null values when
joining relations and checking inequalities. In this section, we investigate this relationship, and provide a syntactic
condition on the type of joins and inequalities allowed in queries. This restriction leads to tractability of the problem of
computing certain answers. Indeed, this tractability is a corollary of a stronger result, namely that for every conjunctive
queryQ with two inequalities, ifQ satisfies the syntactic condition, then one can construct a DATALOGC(6=) program
ΠQ such thatcertainM(Q, I) = certainM(ΠQ, I) for every source instanceI. It should be noticed that in this case
DATALOGC(6=) programs are used as a tool for finding a tractable class of queries for the problem of computing certain
answers.

To define the syntactic restriction mentioned above, we needto introduce some terminology. LetM = (S,T,Σst)
be a data exchange setting. Then for everyn-ary relation symbolT in T, we say that thei-th attribute ofT (1 ≤ i ≤ n)
can be nullifiedunderM, if there is an st-tgdα in Σst such that thei-th attribute ofT is existentially quantified in the
right hand side ofα. Notice that for each settingM and source instanceI, if the i-th attribute ofT cannot be nullified
underM, then for every tuple(c1, . . . , cn) that belongs toT in the canonical universal solution forI, it holds thatci
is a constant. Moreover, ifQ is a UCQ6= query overT andx is a variable inQ, then we say thatx can be nullified
underQ andM, if x appears inQ as thei-th attribute of a target relationT , and thei-th attribute ofT can be nullified
underM.

LetM be a data exchange setting andQ a conjunctive query with two inequalities, and assume that if x appears
as a variable in the inequalities ofQ, thenx cannot be nullified underQ andM. In this case, it is straightforward
to prove that CERTAIN-ANSWERS(M, Q) is tractable. Indeed, the previous condition implies that for every source
instanceI, if Q holds in CAN(I), then all the witnesses forQ in CAN(I) make comparisons of the formc 6= c′, where
c andc′ are constants. Thus, we have thatcertainM(Q, I) can be computed by simply evaluatingQ over CAN(I).
Here we are interested in finding less obvious conditions that lead to tractability. In particular, we would like to find
queries that do not restrict the use of null values in such a strict way.

LetQ be a conjunctive query with two inequalities over a target schemaT. Assume that the quantifier free part of
Q is of the formφ(x1, . . . , xm) ∧ u1 6= v1 ∧ u2 6= v2, whereφ is a conjunction of relational atoms overT andu1,

14

v1, u2 andv2 are all mentioned in the set of variablesx1, . . ., xm (Q is a safe query [2]). We are now ready to define
the two components of the syntactic restriction that leads to tractability of the problem of computing certain answers.
We say thatQ hasalmost constant inequalitiesunderM, if u1 or v1 cannot be nullified underQ andM, andu2 or
v2 cannot be nullified underQ andM. Intuitively, this means that to satisfyQ in the canonical universal solution of
a source instance, one can only make comparisons of the formc 6= ⊥ andc 6= c′, wherec, c′ are constants and⊥ is a
null value. Moreover, we say thatQ hasconstant joinsunderM, if for every variablex that appears at least twice in
φ, x cannot be nullified underQ andM. Intuitively, this means that to satisfyQ in the canonical universal solution of
a source instance, one can only use constant values when joining relations.

Example 5.1 LetM be a data exchange setting specified by st-tgds:

P (x, y) → T (x, y),

P (x, y) → ∃z U(x, z).

The first and second attribute ofT , as well as the first attribute ofU , cannot be nullified underM. On the other hand,
the second attribute ofU can be nullified underM.

LetQ(x) be query∃y∃z(T (y, x)∧U(z, x)∧x 6= y∧x 6= z). Then we have thatQ has almost constant inequalities
underM because variablesy andz cannot be nullified underQ andM, butQ does not have constant joins because
variablex appears twice inT (y, x) ∧ U(z, x) and it can be nullified underQ andM. On the other hand, query
U(x, y) ∧ U(x, z) ∧ x 6= z ∧ y 6= z has constant joins but does not have almost constant inequalities, and query
U(x, y) ∧ T (x, z) ∧ x 6= z ∧ y 6= z has both constant joins and almost constant inequalities. 2

Although the notions of constant joins and almost constant inequalities were defined for CQ6= queries with two in-
equalities, they can be easily extended to the case of conjunctive queries with an arbitrary number of inequalities. In
fact, the notion of constant joins does not change in the caseof an arbitrary number of inequalities, while to define the
notion of almost constant inequalities in the general case,one has to say that each inequalityx 6= y in a query satisfies
the condition thatx or y cannot be nullified. With this extension, we have all the necessary ingredients for the main
result of this section.

Theorem 5.2 LetM = (S,T,Σst) be a data exchange setting andQ a UCQ6= query overT such that each disjunct
ofQ either (1) has at most one inequality and constant joins underM, or (2) has two inequalities, constant joins and
almost constant inequalities underM. Then there exists aDATALOGC(6=) programΠQ overT such that for every
instanceI of S, certainM(Q, I) = certainM(ΠQ, I). Moreover,ΠQ can be effectively constructed fromQ andM
in polynomial time.

Proof: LetM andQ be as in the statement of the theorem. Assume thatQ(x̄) is of the formQ1(x̄) ∨ · · · ∨ Q`(x̄),
wherex̄ = (x1, . . . , xm), m ≥ 0. In order to prove the theorem we need to introduce some extraterminology and an
intermediate result (Lemma 5.3).

Let I be an arbitrary source instance. In what follows, we useJ instead of CAN(I) to denote the canonical
universal solution forI underM. Let thent̄ = (t1, . . . , tm) be a tuple of constants fromI that also belong toJ .

Although the proof of this theorem is rather long and technical, the intuitive idea that underlies it is simple to
explain. Our goal is to construct animplicationgraphH(Q, J, t̄) – as in the standard algorithms for 2SAT – such that
t̄ ∈ certainM(Q, I) iff H(Q, J, t̄) contains aconflict. We now show how to construct the graphH(Q, J, t̄) fromQ,
J andt̄. The set of nodes ofH(Q, J, t̄) consists of all pairs of distinct elements ofJ plus two fresh elementsµ andν
that do not appear inJ . The edges ofH(Q, J, t̄) are labeled over the alphabet{blue, red, green} as follows:

• There is an edge labeledred between two nodes inH(Q, J, t̄) iff these two nodes share a null value;

• there is an edge labeledblue between nodesµ andν in H(Q, J, t̄) iff for some1 ≤ i ≤ `,Qi(x̄) is of the form
∃ȳφ(x̄, ȳ), whereφ(x̄, ȳ) is a conjunction of relational atoms overT, andJ |= Qi(t̄);

• there is an edge labeledblue between nodes(p1, p2) and(p3, p4) in H(Q, J, t̄) iff for some1 ≤ i ≤ `, (1)
Qi(x̄) is of the form∃ȳ(φ(x̄, ȳ) ∧ u1 6= u2 ∧ v1 6= v2), whereφ(x̄, ȳ) is a conjunction of relational atoms
overT andu1, u2, v1, v2 ∈ {x̄, ȳ}, and (2) there is an assignmentσ : {x̄, ȳ} → dom(J), such thatσ(x̄) = t̄,
(J, σ) |= φ(x̄, ȳ) ∧ u1 6= u2 ∧ v1 6= v2, σ(u1) = p1, σ(u2) = p2, σ(v1) = p3, andσ(v2) = p4; and

15

• there is a loop labeledgreen on the node(p1, p2) iff for some1 ≤ i ≤ `, (1)Qi(x̄) is of the form∃ȳ(φ(x̄, ȳ) ∧
u1 6= u2), whereφ(x̄, ȳ) is a conjunction of relational atoms overT andu1, u2 ∈ {x̄, ȳ}, and (2) there is an
assignmentσ : {x̄, ȳ} → dom(J), such thatσ(x̄) = t̄, (J, σ) |= φ(x̄, ȳ) ∧ u1 6= u2, σ(u1) = p1, σ(u2) = p2.

A nodeq in H(Q, J, t̄) is openif both of its components are nulls, and it issemi-openif one of its components is
a constant and the other one is a null. The nodeq is openly-reachablefrom a nodeq′ if there is a pathq′q1 · · · qkq in
H(Q, J, t̄), k ≥ 0, such that:

• Every nodeqi is red-adjacent toqi+1, 1 ≤ i < k, q′ is red-adjacent toq1 andqk is red-adjacent toq;

• every nodeqi, 1 ≤ i ≤ k, is open; and

• every nodeqi, 1 ≤ i ≤ k, has agreen-labeled loop.

Finally, we say thatq has acontradictionpath (c-path) inH(Q, J, t̄) if either the components ofq are distinct constants
or there is a pathq = q1q2 · · · q2k+1 in H(Q, J, t̄), k ≥ 0, that satisfies the following:

• Every nodeqi, 1 ≤ i ≤ 2k, is semi-open;

• every node of the formq2i+2, 0 ≤ i ≤ k − 1, is openly-reachable fromq2i+1, but the constant components in
q2i+1 andq2i+2 are different;

• every node of the formq2i, 0 < i ≤ k, is eitherblue-adjacent toq2i+1 or q2i = q2i+1 andq2i has agreen-
labeled loop; and

• eitherq2k has agreen-labeled loop, orq2k+1 has two different constant components, or for some1 ≤ i ≤ k it
is the case that the nodeq2k+1 is openly-reachable fromq2i−1 and the constant components ofq2i−1 andq2k+1

are different.

The following lemma is a key component in the proof of the theorem. It confirms our intuitive idea thatH(Q, J, t̄) is
an implicationgraph, over which one can check whethert̄ ∈ certainM(Q, I) by simply looking forconflicts. Those
conflicts can be identified by detecting the presence of specific paths in the graph. The proof of this lemma is rather
technical and left to Appendix A.1.

Lemma 5.3 LetQ andM be as defined above. For every source instanceI with canonical universal solutionJ , and
tuple t̄ of constants fromJ , it is the case that̄t ∈ certainM(Q, I) iff µ andν are blue-adjacent inH(Q, J, t̄), or
there are two nodesq andq′ in H(Q, J, t̄) such thatq andq′ are blue-adjacent and bothq andq′ havec-paths in
H(Q, J, t̄), or there is a nodeq in H(Q, J, t̄) that has agreen-labeled loop and ac-path inH(Q, J, t̄).

Before we continue with the proof of theorem 5.2, we sketch the proof by means of an example. In what follows, given
a data exchange settingM = (S,T,Σst) and a conjunctive queryQ with two inequalities that satisfies the restrictions
of Theorem 5.2, we construct a DATALOGC(6=) programΠQ such that, when evaluated over the canonical universal
solutionJ for some instanceI, it computes all the tuples̄t for which the graphH(Q, J, t̄) satisfies the conditions
stated in Lemma 5.3.

Example 5.4 LetM be a data exchange setting such thatS = {D(·, ·, ·), E(·, ·, ·)}, T = {P (·, ·, ·), R(·, ·, ·)} and

Σst = {D(x, y, z)→ ∃n(P (x, y, n) ∧ P (x, z, n)), E(x, y, z)→ ∃n(R(x, y, n) ∧R(x, z, n))}.

Also, letQ(x) be the following conjunctive query with two inequalities, constant joins and almost constant inequali-
ties:

∃y∃z∃w (P (x, y, z) ∧R(x, y, w) ∧ y 6= z ∧ y 6= w).

We construct a DATALOGC(6=) programΠQ such thatcertainM(Q, I) = certainM(ΠQ, I), for every source
instanceI. The set of intensional predicates ofΠQ is {U1(·, ·, ·, ·),{U2(·, ·, ·, ·), DOM(·), EQUAL left,1(·, ·, ·, ·, ·, ·),
EQUALright,1(·, ·, ·, ·, ·, ·), ANSWERleft,1(·, ·, ·, ·), ANSWERright,1(·, ·, ·, ·), ANSWER(·)}. The programΠQ overT
is defined as follows.

16

• First, the program collects in dom(x) all the elements that belong to the active domain of the instance ofT
whereΠQ is evaluated:

DOM(z) ← P (x, y, z) (1)

DOM(z) ← P (x, z, y) (2)

DOM(z) ← P (z, x, y) (3)

DOM(z) ← R(x, y, z) (4)

DOM(z) ← R(x, z, y) (5)

DOM(z) ← R(z, x, y) (6)

• We also add a rule that creates inU1 andU2 a copy ofP andR respectively, but with an extra argument for
keeping track of the element whereΠQ is being evaluated:

U1(x, y, z, t) ← P (x, y, z),DOM(t) (7)

U2(x, y, z, t) ← R(x, y, z),DOM(t) (8)

• If an elementa does not belong to the set of certain answers toQ(x), then for every tuple of the form(a, b, c, d)
such that(a, b, c) belongs to the interpretation ofP and(a, b, d) belongs to the interpretation ofR, it is the case
thatb = c or b = d. This is expressed by means of the following rules:

EQUALleft(y, z, y, z, w, x) ← U1(x, y, z, x), U2(x, y, w, x) (9)

EQUALright(y, w, y, z, w, x) ← U1(x, y, z, x), U2(x, y, w, x) (10)

Intuitively, predicate EQUALleft (resp., EQUALright) keeps track that it is the first (resp., second) inequality of
Q that is falsified. For reasons that will become clear later, predicates EQUALleft and EQUALright not only
need to keep track of the element where the query is being evaluated, but also of the elements that witness
the existential quantifiers of the query. This is handled by means of the last four arguments of the predicates
EQUALleft and EQUALright.

• Since EQUALleft(x, y, ·, ·, ·, ·) (resp. EQUAL left(x, y, ·, ·, ·, ·)) holds ifx andy are the same elements, the pro-
gramΠQ must include the following rules,

EQUALleft(v, v, x, y, z, t) ← DOM(v),DOM(x),DOM(y),DOM(z),DOM(t) (11)

EQUAL left(u, v, x, y, z, t) ← EQUAL left(v, u, x, y, z, t) (12)

EQUAL left(v, u, x, y, z, t) ← EQUAL left(v, w, x, y, z, t),EQUALleft(w, u, x, y, z, t) (13)

EQUALright(v, v, x, y, z, t) ← DOM(v),DOM(x),DOM(y),DOM(z),DOM(t) (14)

EQUALright(u, v, x, y, z, t) ← EQUALright(v, u, x, y, z, t) (15)

EQUALright(v, u, x, y, z, t) ← EQUALright(v, w, x, y, z, t),EQUALright(w, u, x, y, z, t) (16)

• Lemma 5.3 shows that in order to check whethera belongs to the certain answers toQ(x), it suffices to show
that there exists a pair(q, q′) of blue-adjacent nodes inH(Q, J, a) that havec-paths. In order to guide the
search for ac-path from a node that witnesses the first (i.e.left) inequality ofQ, we use the following set of
rules:

EQUAL
left(y,w, t, u, v, x) ← U1(x, y, z, x), U2(x, y, w, x),C(y), EQUAL

left(z, s, t, u, v, x),C(s), y 6= s (17)

EQUAL
left(y,w, t, u, v, x) ← U1(x, y, z, x), U2(x, y, w, x),C(z), EQUAL

left(y, s, t, u, v, x),C(s), z 6= s (18)

EQUAL
left(y, z, t, u, v, x) ← U1(x, y, z, x), U2(x, y, w, x),C(y), EQUAL

left(w, s, t, u, v, x),C(s), y 6= s (19)

EQUAL
left(y, z, t, u, v, x) ← U1(x, y, z, x), U2(x, y, w, x),C(w), EQUAL

left(y, s, t, u, v, x),C(s), w 6= s (20)

17

Intuitively, the first of these rules expresses the following. If an elementa does not belong to the set of certain
answers toQ(x), then for every tuple of the form(a, b, c, d) such that(a, b, c) belongs to the interpretation ofP
and(a, b, d) belongs to the interpretation ofR, if b is a constant andc is set to be equal to the constante such
thatb 6= e, then it must be the case thatb = d. The intuition behind the rest of the rules is analogous.

Equivalently, in order to guide the search for ac-path from a node that witnesses the second (i.e.right)
inequality ofQ, we use the following set of rules:

EQUAL
right(y,w, t, u, v, x) ← U1(x, y, z, x), U2(x, y,w, x),C(y), EQUAL

right(z, s, t, u, v, x),C(s), y 6= s (21)

EQUAL
right(y,w, t, u, v, x) ← U1(x, y, z, x), U2(x, y,w, x),C(z), EQUAL

right(y, s, t, u, v, x),C(s), z 6= s (22)

EQUAL
right(y, z, t, u, v, x) ← U1(x, y, z, x), U2(x, y,w, x),C(y), EQUAL

right(w, s, t, u, v, x)),C(s), y 6= s (23)

EQUAL
right(y, z, t, u, v, x) ← U1(x, y, z, x), U2(x, y,w, x),C(w), EQUAL

right(y, s, t, u, v, x),C(s), w 6= s (24)

• The programΠQ also includes the following rules:

ANSWERleft(y, z, w, x) ← EQUAL left(u, v, y, z, w, x),C(u),C(v), u 6= v (25)

ANSWERright(y, z, w, x) ← EQUALright(u, v, y, z, w, x),C(u),C(v), u 6= v (26)

Intuitively, these rules collect in ANSWERleft (resp. ANSWERright) all those nodesq that witness the first (resp.
second) inequality ofQ and that have ac-path.

• Finally, the program includes the following rule that collects certain answers:

ANSWER(x) ← ANSWERleft(y, z, w, x),ANSWERright(y, z, w, x),C(x) (27)

Intuitively, this says that if there areblue-adjacent nodesq andq′ in H(Q, J, a) such that bothq andq′ have
c-paths, thena belongs to the certain answers toQ(x). Notice that it has been necessary to keep track until
this last stage not only of the argument where the query is being evaluated, but also of the whole tuple that
determines theblue-adjacency ofq andq′. This is done by using the last four arguments in the predicates
EQUALleft and EQUALright.

We now show the application of the program with an example. Let I =
{D(a, a, b), D(a, c, d), E(a, b, c), E(a, b, d), E(a, a, c)} be a source instance. Then the canonical universal
solutionJ for I is as follows:

• The interpretation of the relationP in J is {(a, a,⊥1), (a, b,⊥1), (a, c,⊥3), (a, d,⊥3)}.

• The interpretation of the relationR in J is {(a, b,⊥2), (a, c,⊥2), (a, b,⊥4), (a, d,⊥4), (a, a,⊥5), (a, c,⊥5)}.

By applying rules (1) to (6) we first collect all the elements of J in DOM. From rules (7) and (8) we obtain that
U1(a, a,⊥1, a) andU2(a, a,⊥5, a) hold. Then we use rule (9) to show that EQUAL left(a,⊥1, a,⊥1,⊥5, a) holds.
Now we use rule (12) to obtain that EQUALleft(⊥1, a, a,⊥1,⊥5, a) holds.

Next, we apply rules (7) and (8) to obtain thatU1(a, b,⊥1, a) andU2(a, b,⊥2, a) hold. Further, sinceC(a) and
C(b) hold (a andb are constants) andb 6= a, we obtain from rule (17) that EQUALleft(b,⊥2, a,⊥1,⊥5, a) holds, and
by using rule (12) we show that EQUAL left(⊥2, b, a,⊥1,⊥5, a) holds.

We use again rules (7) and (8) to obtain thatU1(a, c,⊥3, a) andU2(a, c,⊥2, a) hold. Sincec andb are different
constants, we can apply rule (19) and obtain that EQUAL left(c,⊥3, a,⊥1,⊥5, a) holds. We then use rule (12) to
show that EQUAL left(⊥3, c, a,⊥1,⊥5, a) also holds inJ . Rules (7) and (8) are applied one more time to obtain
that U1(a, d,⊥3, a) andU2(a, d,⊥4, a) hold. Then, sincec andd are different constant values, we can use rule
(17) for a second time to show that EQUALleft(d,⊥4, a,⊥1,⊥5, a) holds, and next rule (12) is used to show that
EQUALleft(⊥4, d, a,⊥1,⊥5, a) holds.

Rule (8) is used for the last time to obtain thatU2(a, b,⊥4, a) holds. Further, we use rule (19) to show that
EQUALleft(b,⊥1, a,⊥1,⊥5, a) holds. Finally, by applying rule (13) we conclude that EQUALleft,1(a, b, a,⊥1,⊥5, a)
holds inJ , and then we use rule (25) to show that ANSWERleft,1(a,⊥1,⊥5, a) belongs toJ .

Using a procedure very similar to the preceding paragraphs,it can be shown that ANSWERright,1(a,⊥1,⊥5, a)
also holds inJ , and then, sincea is a constant, from rule (27) we obtain thata belongs to the certain answers ofQ for
I underM. 2

18

We now continue with the proof of Theorem 5.2. Assume thatT = {T1, . . . , Tk}, where eachTi has arityni > 0,
and thatQ(x̄) = Q1(x̄) ∨ · · · ∨ Q`(x̄), wherex̄ = (x1, . . . , xm) and eachQi(x̄) is either (1) a conjunctive query,
with at most one inequality and with constant joins, or (2) a conjunctive query with two inequalities but with constant
joins and almost constant inequalities. Further, assume thatW ⊆ {1, . . . , `} is the set of all indexesj such thatQj(x̄)
contains two inequalities, and thatpj is the number of existentially quantified variables inQj . The set of intensional
predicates of the programΠQ is

{U1, , . . . , Uk, DOM, EQUAL, (EQUAL left,j)j∈W , (EQUALright,j)j∈W ,

ANSWER, (ANSWERleft,j)j∈W , (ANSWERright,j)j∈W },

and the arity of each predicate is defined as follows:

• eachUi, for i ∈ [1, k], has arityni +m;

• DOM has arity 1;

• EQUAL has arity2 +m;

• each predicate of the form EQUALleft,j or EQUALright,j, for j ∈ W , has arity2 + pj +m;

• ANSWERhas aritym; and

• each predicate of the form ANSWERleft,j or ANSWERright,j , for j ∈W , has aritypj +m.

The set of rules ofΠQ is defined as follows (ifȳ = (y1, . . . , yn), we use DOM(ȳ) as a shortening for
DOM(y1), . . . ,DOM(yn)).

• For every predicateTi ∈ T, ΠQ includes the followingni rules:

DOM(x) ← Ti(x, y2, y3, . . . , yni−1, yni
)

DOM(x) ← Ti(y1, x, y3, . . . , yni−1, yni
)

· · ·

DOM(x) ← Ti(y1, y2, y3, . . . , yni−1, x)

Intuitively, predicate DOM collects the elements that belong to the domain of the extensional instance.

• ΠQ includes the following rules for predicate EQUAL:

EQUAL(x, x, z̄) ← DOM(x),DOM(z̄)

EQUAL(x, y, z̄) ← EQUAL(y, x, z̄)

EQUAL(x, y, z̄) ← EQUAL(x,w, z̄),EQUAL(w, y, z̄)

• ΠQ includes the following rules for predicate EQUAL left,j , for eachj ∈ W , whereū is a tuple ofpj fresh
variables:

EQUALleft,j(x, x, ū, z̄) ← DOM(x),DOM(ū),DOM(z̄)

EQUALleft,j(x, y, ū, z̄) ← EQUALleft,j(y, x, ū, z̄)

EQUALleft,j(x, y, ū, z̄) ← EQUALleft,j(x,w, ū, z̄),EQUAL left,j(w, y, ū, z̄)

• ΠQ includes the following rules for predicate EQUALright,j, for eachj ∈ W , whereū is a tuple ofpj fresh
variables:

EQUALright,j(x, x, ū, z̄) ← DOM(x),DOM(ū),DOM(z̄)

EQUALright,j(x, y, ū, z̄) ← EQUALright,j(y, x, ū, z̄)

EQUALright,j(x, y, ū, z̄) ← EQUALright,j(x,w, ū, z̄),EQUALright,j(w, y, ū, z̄)

19

• For every predicateUi, i ∈ [1, k], the programΠQ includes the following rules, wherēy = (y1, . . . , yni
), and

z̄ = (z1, . . . , zm) are tuples of fresh variables:

Ui(ȳ, z̄) ← Ti(ȳ),DOM(z̄)

• Let i ∈ [1, `]. First, assume thatQi(x̄) does not contain any inequality. ThenQi(x̄) is equal to∃ū (Ts1
(ū1) ∧

· · · ∧ Tsn
(ūn)), wheresj ∈ [1, k] and every variable in̄uj is mentioned in either̄u or x̄, for everyj ∈ [1, n]. In

this case, programΠQ includes the following rule:

ANSWER(x̄) ← Us1
(ū1, x̄), . . . , Usn

(ūn, x̄),C(x1), . . . ,C(xm)

Notice that this rule is well defined since the setx̄ is the set of free variables of∃ū (Ts1
(ū1) ∧ · · · ∧Tsn

(ūn)).

Second, assume thatQi(x̄) contains an inequality. ThenQi(x̄) is equal to the formula∃ū (Ts1
(ū1) ∧ · · · ∧

Tsn
(ūn)∧v1 6= v2), wheresi ∈ [1, k] and every variable in̄ui is mentioned in either̄u or x̄, for everyi ∈ [1, n],

andv1, v2 are mentioned in̄u or x̄. In this case, programΠQ includes the following rules:

EQUAL(v1, v2, x̄) ← Us1
(ū1, x̄), . . . , Usn

(ūn, x̄)

ANSWER(x̄) ← EQUAL(u, v, x̄),C(u),C(v), u 6= v,C(x1), . . . ,C(xm)

We note that the first rule above is well defined since the query∃ū (Ts1
(ū1) ∧ · · · ∧ Tsn

(ūn) ∧ v1 6= v2) is a
safe query. Further, in this caseΠQ also contains the following rules for eachj ∈ W , assuminḡy is a tuple of
pj fresh variables:

EQUAL left,j(v1, v2, ȳ, x̄) ← Us1
(ū1, x̄), . . . , Usn

(ūn, x̄),DOM(ȳ)

EQUALright,j(v1, v2, ȳ, x̄) ← Us1
(ū1, x̄), . . . , Usn

(ūn, x̄),DOM(ȳ)

We note that the rules above are also well defined since∃ū (Ts1
(ū1) ∧ · · · ∧ Tsn

(ūn)∧ v1 6= v2) is a safe query.

Finally, assume thatQi(x̄) contains two inequalities, andQi has constant joins and almost constant inequalities.
Further, assume thatQi(x̄) is equal to the formula∃ū (Ts1

(ū1) ∧ · · · ∧ Tsn
(ūn) ∧ v1 6= v2 ∧ v3 6= v4), where

eachsj ∈ [1, k] and every variable in̄uj is mentioned in either̄u or x̄, for everyj ∈ [1, n], andv1, v2, v3, and
v4 are mentioned in̄u or x̄. In this case, programΠQ includes the following rules:

EQUALleft,i(v1, v2, ū, x̄) ← Us1
(ū1, x̄), . . . , Usn

(ūn, x̄)

EQUALright,i(v3, v4, ū, x̄) ← Us1
(ū1, x̄), . . . , Usn

(ūn, x̄)

Further, in this caseΠQ also contains the following rules for eachj ∈ W , assuminḡy is a tuple ofpj fresh
variables:

EQUAL
left,j(v3, v4, ȳ, x̄) ← Up1

(ū1, x̄), . . . , Upn
(ūn, x̄),C(v1), EQUAL

left,j(v2, w, ȳ, x̄),C(w), v1 6= w

EQUAL
left,j(v3, v4, ȳ, x̄) ← Up1

(ū1, x̄), . . . , Upn
(ūn, x̄),C(v2), EQUAL

left,j(v1, w, ȳ, x̄),C(w), v2 6= w

EQUAL
left,j(v1, v2, ȳ, x̄) ← Up1

(ū1, x̄), . . . , Upn
(ūn, x̄),C(v3), EQUAL

left,j(v4, w, ȳ, x̄),C(w), v3 6= w

EQUAL
left,j(v1, v2, ȳ, x̄) ← Up1

(ū1, x̄), . . . , Upn
(ūn, x̄),C(v4), EQUAL

left,j(v3, w, ȳ, x̄),C(w), v4 6= w

EQUAL
right,j(v3, v4, ȳ, x̄) ← Up1

(ū1, x̄), . . . , Upn
(ūn, x̄),C(v1), EQUAL

right,j(v2, w, ȳ, x̄),C(w), v1 6= w

EQUAL
right,j(v3, v4, ȳ, x̄) ← Up1

(ū1, x̄), . . . , Upn
(ūn, x̄),C(v2), EQUAL

right,j(v1, w, ȳ, x̄),C(w), v2 6= w

EQUAL
right,j(v1, v2, ȳ, x̄) ← Up1

(ū1, x̄), . . . , Upn
(ūn, x̄),C(v3), EQUAL

right,j(v4, w, ȳ, x̄),C(w), v3 6= w

EQUAL
right,j(v1, v2, ȳ, x̄) ← Up1

(ū1, x̄), . . . , Upn
(ūn, x̄),C(v4), EQUAL

right,j(v3, w, ȳ, x̄),C(w), v4 6= w

Finally, the programΠQ also includes the following rules for eachj ∈ W , assuminḡy is a tuple ofpj fresh
variables:

ANSWERleft,j(ȳ, x̄) ← EQUALleft,j(u, v, ȳ, x̄),C(u),C(v), u 6= v

ANSWERright,j(ȳ, x̄) ← EQUALright,j(u, v, ȳ, x̄),C(u),C(v), u 6= v

ANSWER(x̄) ← ANSWERleft,j(ȳ, x̄),ANSWERright,j(ȳ, x̄),C(x1), . . . ,C(xm)

20

Using Lemma 5.3, it is a tedious but not difficult task to provethat for every data exchange settingM = (S,T,Σst)
and instanceI of S, certainM(Q, I) = certainM(ΠQ, I). This can be done with the help of the intuition provided in
Example 5.4. 2

It immediately follows from Proposition 4.5 that if a data exchange settingM and a UCQ6= queryQ satisfy
the conditions mentioned in Theorem 5.2, then CERTAIN-ANSWERS(M, Q) is in PTIME. Furthermore, it can also
be shown that the properties of having constant joins and almost constant inequalities are helpful in reducing the
complexity of computing certain answers to unions of conjunctive queries with at most one inequality per disjunct.

Proposition 5.5 LetQ be aUCQ6= query with at most one inequality per disjunct. Then (1) if every disjunct ofQ has
constant joins under a settingM, thenCERTAIN-ANSWERS(M, Q) is in NLOGSPACE, and (2) if in addition every
disjunct ofQ has almost constant inequalities underM, thenCERTAIN-ANSWERS(M, Q) is in LOGSPACE.

Proof: Before proving the proposition, we mention a couple of remarks that will be useful in the proof. First, it is
immediate from the definition of canonical universal solution that CAN(I) can be computed not only in polynomial
time, but also in LOGSPACEfor each source instanceI. Second, if tupleT (p1, . . . , pn) belongs to CAN(I) for an
arbitrary source instanceI underM, and thei-th attribute ofT (1 ≤ i ≤ n) is not existentially quantified inM, then
pi has to be a constant.

We now prove the proposition, and start with part (1). LetM = (S,T,Σst) be a data exchange setting andQ a
query that is the union of conjunctive queries, with at most one inequality per disjunct and without negated relational
atoms, and such that each disjunct ofQ has constant joins. We prove next that there exists a queryQ′, such that the
data complexity ofQ′ is in NLOGSPACE andcertainM(Q, I) = Q′(CAN(I)), for every source instanceI. From this
it immediately follows that CERTAIN-ANSWERS(M, Q) is in NLOGSPACE. Indeed an NLOGSPACEprocedure can be
constructed by composing two NLOGSPACEprocedures; the first one that constructs CAN(I) from I and the second
one that evaluatesQ′ over CAN(I). The result then follows from the fact that the class NLOGSPACEis closed under
compositions (c.f. [21]).

The queryQ′ will be defined intransitive closure logic(for a precise definition of this logic, see e.g. Chapter 10.6
in [17]). In order to do so, need to introduce some terminology and an intermediate result (Lemma 5.6).

Assume thatQ isQ1(x̄) ∨ · · · ∨ Q`(x̄), wherex̄ = (x1, . . . , xm), m ≥ 0. Let I be an arbitrary source instance
andt̄ = (t1, . . . , tm) a tuple of constants fromI. We construct an undirected graphG(Q, I, t̄) as follows:

• The nodes ofG(Q, I, t̄) are the elements in CAN(I) plus two fresh elementsµ andν, i.e. neitherµ norν belongs
to CAN(I);

• there exists an edge between elementsp andp′ in G(Q, I, t̄) iff for some i ∈ [1, `], (1)Qi(x̄) is of the form
∃ȳ(φ(x̄, ȳ)∧u 6= v), whereφ(x̄, ȳ) is a conjunction of relational atoms overT, andu, v ∈ {x̄, ȳ}, and (2) there
is an assignmentσ : {x̄, ȳ} → dom(CAN(I)), such thatσ(x̄) = t̄, (CAN(I), σ) |= φ(x̄, ȳ) ∧ u 6= v, σ(u) = p
andσ(v) = p′; and

• there exists an edge betweenµ andν in G(Q, I, t̄) iff for somei ∈ [1, `],Qi(x̄) is of the form∃ȳφ(x̄, ȳ), where
φ(x̄, ȳ) is a conjunction of relational atoms overT, and CAN(I) |= Qi(t̄).

We say thatG(Q, I, t̄) has acontradictionpath (orc-path), if there is a path inG(Q, I, t̄) from a constantc ∈
dom(CAN(I)) to a different constantc′ ∈ dom(CAN(I)), or an edge betweenµ andν. Notice that this construction is
a simplified version of the graph used in the proof of Theorem 5.2. As for the case of Lemma 5.3 in Theorem 5.2, we
present a key lemma that characterizes certain answers in terms of c-paths in the graphG(Q, I, t̄). This can be proved
using techniques along the lines of those used in the proof ofLemma 5.3.

Lemma 5.6 LetQ be as defined above. For every source instanceI and tuplet̄ of constants fromI, it is the case that

t̄ ∈ certainM(Q, I) ⇔ G(Q, I, t̄) has ac-path.

21

We define the queryQ′ in three steps. Assume, without loss of generality, that foreach1 ≤ i ≤ s ≤ `,Qi(x̄) is of
the form∃ȳi(φi(x̄, ȳi) ∧ ui 6= vi), whereφi(x̄, ȳi) is a conjunction of relational atoms overT, andui, vi ∈ {x̄, ȳi},
and for eachs < j ≤ `, Qj(x̄) is of the form∃ȳjφj(x̄, ȳj), whereφj(x̄, ȳj) is a conjunction of relational atoms over
T. Then:

1. Define a formulaA(z1, z2, x̄) as follows, wherez1 andz2 are fresh variables, i.e.z1 andz2 are not mentioned
in Q(x̄):

A(z1, z2, x̄) ≡
∨

1≤i≤s

∃ȳi(φi(x̄, ȳi) ∧ z1 6= z2 ∧ z1 = ui ∧ z2 = vi).

Intuitively, the formulaA(z1, z2, x̄) defines the adjacency in the graphG(Q, I, x̄), with respect to elements in
CAN(I);

2. define a formulaα(x̄) as follows,

α(x̄) ≡
∨

s<j≤`

∃ȳjφj(x̄, ȳj).

Intuitively α(x̄) checks whether there is an edge betweenµ andν in G(Q, I, x̄); and

3. finally, the queryQ′(x̄) is defined as:

(α(x̄) ∨ ∃w1∃w2(C(w1) ∧C(w2) ∧ w1 6= w2

∧ (w1, w2) ∈ TrCl.A(u, v, x̄))) ∧ C(x1) ∧ . . .C(xm)

where(w1, w2) ∈ TrCl.A(u, v, x̄) expresses that the pair(w1, w2) belongs to the transitive closure of the
adjacency relation defined by the pairs(u, v) that satisfyA parameterized bȳx.

It immediately follows from Lemma 5.6 that for every source instanceI, certainM(Q, I) = Q′(CAN(I)). Further, it
is well-known that the data complexity of any formula in transitive closure logic is in NLOGSPACE(see e.g. Chapter
10.6 in [17]). This concludes the first part of the proposition.

Now we prove part (2). LetQ be as in the first part of the proof, but with the addition that each disjunct ofQ
has almost constant inequalities. Lemma 5.6 continues being the case in this setting, but notice that now if there is
a c-path inG(Q, I, t̄) then there is ac-path of length at most 2. Thus, in this caseQ′(x̄) can be expressed as the
FO formula that checks whether there is an edge betweenµ andν in G(Q, I, t̄), or a c-path of length at most 2 in
G(Q, I, t̄). Since the data complexity of any FO formula is in LOGSPACE(see e.g. Chapter 6 in [17]), we conclude
that the problem of computing certain answers for this classof queries and settings is in LOGSPACE. 2

An obvious question at this point is how natural the conditions used in Theorem 5.2 are. Although we cannot settle
this subjective question, we are at least able to show that these conditions are optimal in the sense that removing any
of them leads to intractability for the class of UCQ6= queries with two inequalities.

Theorem 5.7

(1) There exist aLAV data exchange settingM and a queryQ such thatQ is the union of a Boolean conjunctive
query and a Boolean conjunctive query with two inequalitiesthat has both constant joins and almost constant
inequalities underM, and such thatCERTAIN-ANSWERS(M, Q) is CONP-complete.

(2) There exist aLAV data exchange settingM and a Boolean conjunctive queryQ with two inequalities,
such thatQ has constant joins underM, Q does not have almost constant inequalities underM and
CERTAIN-ANSWERS(M, Q) is CONP-complete.

(3) There exist aLAV data exchange settingM and a Boolean conjunctive queryQ with two inequalities,
such thatQ has almost constant inequalities underM, Q does not have constant joins underM and
CERTAIN-ANSWERS(M, Q) is CONP-complete.

22

Proof: We only present here the proof of the first part of the theorem.For the details of the second and third part see
Appendix A.2. The proof for (1) is as follows: The LAV settingM = (S,T,Σst) is defined as follows. The source
schemaS consists of two relations: A binary relationP and a ternary relationR. The target schemaT consists of three
relations: Two binary relationsT andS, and a ternary relationU . Further,Σst is the following set of source-to-target
dependencies:

P (x, y) → ∃z(T (x, z) ∧ T (y, z) ∧ S(x, y))

R(x, y, z) → U(x, y, z)

Furthermore, Boolean queryQ is defined as:

∃x∃y∃z(U(x, y, z) ∧ T (x, x) ∧ T (y, y) ∧ T (z, z)) ∨

∃x∃y∃w∃z(T (x, y) ∧ T (w, z) ∧ S(x,w) ∧ x 6= y ∧ w 6= z).

We denote the first disjunct ofQ byQ1 and the second byQ2. Clearly,Q2 has constant joins and almost constant in-
equalities inM. On the other hand,Q1 does not have constant joins. Next we show that CERTAIN-ANSWERS(M, Q)
is CONP-complete.

Membership of CERTAIN-ANSWERS(M, Q) in CONP follows from [9]. TheCONP-hardness is established from
a reduction from 3SAT to the complement of CERTAIN-ANSWERS(M, Q). More precisely, for every 3CNF proposi-
tional formulaφ, we construct in polynomial time an instanceIφ of S such thatφ is satisfiable iffcertainM(Q, Iφ) =
false.

Given a propositional formulaφ ≡
∧

1≤j≤m Cj in 3CNF, where eachCj is a clause, letIφ be the following source
instance:

• The interpretation ofP in Iφ contains the pair(q,¬q), for each propositional variableq mentioned inφ; and

• the interpretation ofR in Iφ contains all tuples(α, β, γ) such that for some1 ≤ j ≤ m, Cj = (α ∨ β ∨ γ).

Clearly,Iφ can be constructed in polynomial time fromφ.
The canonical universal solutionJ for Iφ is as follows, where we denote by⊥q (or ⊥¬q) the null generated by

applying the stdP (x, y)→ ∃z(T (x, z) ∧ T (y, z) ∧ S(x, y)) toP (q,¬q):

• The interpretation of the relationT in J contains the tuples(q,⊥q) and(¬q,⊥q), for each propositional variable
q mentioned inφ;

• the interpretation of the relationS in J is just a copy of the interpretation of the relationP in Iφ; and

• the interpretation of the relationU in J is just a copy of the interpretation of the relationR in Iφ.

We prove now thatφ is satisfiable iffcertainM(Q, Iφ) = false.

(⇒) Assume thatφ is satisfiable, and letκ be a truth assignment for the propositional variables ofφ such that
κ(φ) = 1. Fromκ, define a functionf from J into J as follows:

f(v) =






¬q v = ⊥q andκ(q) = 1

q v = ⊥q andκ(q) = 0

v otherwise

Let J∗ be the solution forIφ obtained fromJ by replacing each occurrence of an elementv in J by f(v). We
show next thatQ(J∗) = false, and, thus, thatcertainM(Q, Iφ) = false.

Assume, for the sake of contradiction, thatQ(J∗) = true. ThenQ1(J
∗) = true or Q2(J

∗) = true.
Assume first that the latter holds. Then there is a functionh : {x, y, z, w} → dom(J∗) such thatT (h(x), h(y)),
T (h(z), h(w)), andS(h(x), h(z)) are all tuples inJ∗, andh(x) 6= h(y) andh(z) 6= h(w). SinceS(h(x), h(z))

23

belongs toJ∗, it follows that for some propositional variableq mentioned inφ, h(x) = q andh(z) = ¬q.
Further, sinceT (h(x), h(y)) andT (h(z), h(w)) belong toJ∗, we have thath(y) = f(⊥q) = h(w). But
thenf(⊥q) 6= q andf(⊥q) 6= ¬q, which contradicts the definition ofJ∗. Assume, on the other hand, that
Q1(J

∗) = true. Then there is a functionh : {x, y, z} → dom(J∗) such that the tuplesU(h(x), h(y), h(z)),
T (h(x), h(x)), T (h(y), h(y)), andT (h(z), h(z)) are all tuples inJ∗. Then by definition ofM andIφ, there
exists a clause(α ∨ β ∨ γ) in φ such thath(x) = α, h(y) = β, andh(z) = γ. SinceL(h(x), h(x)) = L(α, α)
belongs toJ∗, it follows thatf(⊥α) = α, and thus, thatκ(α) = 0. Similarly,κ(β) = 0 andκ(γ) = 0. But this
is a contradiction, sinceκ(φ) = 1, and thus,κ(α) = 1 or κ(β) = 1 or κ(γ) = 1.

(⇐) Assume thatcertainM(Q, Iφ) = false. Then there exists a solutionJ ′ such thatQ(J ′) = false. Let h :
J → J ′ be an homomorphism fromJ into J ′, and letκ be the following truth assignment for the propositional
variables mentioned inφ: κ(q) = 1 iff h(⊥q) = ¬q. We show next thatκ(Cj) = 1, for each1 ≤ j ≤ m, and,
thus, thatφ is satisfiable.

Consider an arbitraryj ∈ [1,m], and assume thatCj = (α ∨ β ∨ γ). Then, sinceU(α, β, γ), T (α, h(⊥α)),
T (β, h(⊥β)), andT (γ, h(⊥γ)) belong toJ ′, it must be the case thatα 6= h(⊥α) or β 6= h(⊥β) or γ 6= h(⊥γ).
Further, since eitherS(α,¬α) or S(¬α, α) belongs toJ ′, and bothT (α, h(⊥α)) andT (¬α, h(⊥α)) belong to
J ′, we conclude from the fact thatQ2(J

′) = false thath(⊥α) = α or h(⊥α) = ¬α. Similarly,h(⊥β) = β
or h(⊥β) = ¬β, andh(⊥γ) = γ or h(⊥γ) = ¬γ. Thus,h(⊥α) = ¬α or h(⊥β) = ¬β or h(⊥γ) = ¬γ, and,
therefore, thatκ(α) = 1 or κ(β) = 1 or κ(γ) = 1. We conclude thatκ(Cj) = 1.

This concludes the proof of the first part of the theorem. 2

It is important to notice that although the problem of computing certain answers to UCQ6= queries has been
considered in the literature, none of the results of Theorem5.7 directly follows from any of the known results for this
problem. In particular, Fagin et al. showed in [9] a similar result to (1), namely that the problem of computing certain
answers isCONP-complete even for the union of two queries, the first of which is a conjunctive query and the second
of which is a conjunctive query with two inequalities. The difficulty in our case is that the second query is restricted to
have constant joins and almost constant inequalities, while Fagin et al. considered a query that does not satisfy any of
these conditions. Moreover, Ma̧dry proved in [20] a similarresult to (2) and (3), namely that the problem of computing
certain answers isCONP-complete for conjunctive queries with two inequalities. The difficulty in our case is that we
consider a query that has constant joins in (2) and a query that has almost constant inequalities in (3), while Ma̧dry
considered a query that does not satisfy any of these conditions. In fact, we provide in (2) and (3) two new proofs of
the fact that the problem of computing certain answer to a conjunctive query with two inequalities isCONP-complete.

We conclude this section with a remark about the possibilityof using the conditions defined in this section to obtain
tractability for UCQ6=. As we mentioned above, the notions of constant joins and almost constant inequalities can be
extended to UCQ6= queries with an arbitrary number of inequalities. Thus, onemay wonder whether these conditions
lead to tractability in this general scenario. Unfortunately, the following proposition shows that this is not the case,
even for the class of UCQ6= queries with three inequalities.

Proposition 5.8 There exist aLAV data exchange settingM and a Boolean conjunctive queryQ with three in-
equalities, such thatQ has both constant joins and almost constant inequalities under M, but the problem
CERTAIN-ANSWERS(M, Q) is CONP-complete.

Proof: The LAV settingM = (S,T,Σst) is as follows. The source schemaS consists of two relations: A binary
relationP and a ternary relationR. The target schemaT also consists of two relations: A binary relationT and a
ternary relationS. Further,Σst is the following set of source-to-target dependencies:

P (x, y) → ∃z(T (x, z) ∧ T (y, z))

R(x, y, z) → S(x, y, z)

Furthermore, Boolean queryQ is defined as:

∃x1∃y1∃x2∃y2∃x3∃y3(S(x1, x2, x3) ∧ T (x1, y1) ∧ T (x2, y2) ∧ T (x3, y3) ∧ x1 6= y1 ∧ x2 6= y2 ∧ x3 6= y3).

24

Clearly, Q has almost constant inequalities and constant joins inM. Next we show that the problem
CERTAIN-ANSWERS(M, Q) is CONP-complete.

Membership of CERTAIN-ANSWERS(M, Q) in CONP follows from [9]. TheCONP-hardness is established from
a reduction from 3SAT to the complement of CERTAIN-ANSWERS(M, Q). More precisely, for every 3CNF proposi-
tional formulaφ, we construct in polynomial time an instanceIφ of S such thatφ is satisfiable iffcertainM(Q, Iφ) =
false.

Given a propositional formulaφ ≡
∧

1≤j≤m Cj in 3CNF, where eachCj is a clause, letIφ be the following source
instance:

• The interpretation ofP in Iφ contains the pair(q,¬q), for each propositional variableq mentioned inφ; and

• the interpretation ofR in Iφ contains all tuples(α, β, γ) such that for some1 ≤ j ≤ m, Cj = (α ∨ β ∨ γ).

Clearly,Iφ can be constructed in polynomial time fromφ.
The canonical universal solutionJ for Iφ is as follows, where we denote by⊥q (or ⊥¬q) the null generated by

applying the stdP (x, y)→ ∃z(T (x, z) ∧ T (y, z)) to P (q,¬q):

• The interpretation of the relationT in J contains the tuples(q,⊥q) and(¬q,⊥q), for each propositional variable
q mentioned inφ; and

• the interpretation of the relationS in J is just a copy of the interpretation of the relationR in Iφ.

We prove now thatφ is satisfiable iffcertainM(Q, Iφ) = false.

(⇒) Assume thatφ is satisfiable, and letκ be a truth assignment for the propositional variables ofφ such that
κ(φ) = 1. Fromκ, define a functionf from J into J as follows:

f(v) =






q v = ⊥q andκ(q) = 1

¬q v = ⊥q andκ(q) = 0

v otherwise

Let J∗ be the solution forIφ obtained fromJ by replacing each occurrence of an elementv in J by f(v). We
show next thatQ(J∗) = false, and, thus, thatcertainM(Q, Iφ) = false.

Assume, for the sake of contradiction, thatQ(J∗) = true. Then there is a functionh : {x1, x2, x3, y1,
y2, y3} → dom(J∗) such thatS(h(x1), h(x2), h(x3)), T (h(x1), h(y1)), T (h(x2), h(y2)), T (h(x3), h(y3))
are all tuples inJ∗, andh(x1) 6= h(y1), h(x2) 6= h(y2), andh(x3) 6= h(y3). Then by definition ofM
andIφ, there exists a clause(α ∨ β ∨ γ) in φ such thath(x1) = α, h(x2) = β, andh(x3) = γ. Since
L(h(x1), h(y1)) = L(α, f(⊥α)) belongs toJ∗, andα = h(x1) 6= h(y1) = f(⊥α), it follows thatκ(α) = 0.
Similarly, κ(β) = 0 andκ(γ) = 0. But this is a contradiction, sinceκ(φ) = 1, and thus,κ(α) = 1, κ(β) = 1,
or κ(γ) = 1.

(⇐) Assume thatcertainM(Q, Iφ) = false. Then there exists a solutionJ ′ such thatQ(J ′) = false. Let h :
J → J ′ be an homomorphism fromJ into J ′, and letκ be the following truth assignment for the propositional
variables mentioned inφ: κ(q) = 1 iff h(⊥q) = q. We show next thatκ(Cj) = 1, for each1 ≤ j ≤ m, and,
thus, thatφ is satisfiable.

Consider an arbitraryj ∈ [1,m], and assume thatCj = (α ∨ β ∨ γ). Then, sinceS(α, β, γ), T (α, h(⊥α)),
T (β, h(⊥β)), andT (γ, h(⊥γ)) belong toJ ′, it must be the case thatα = h(⊥α) or β = h(⊥β) or γ = h(⊥γ).
It follows thatκ(α) = 1 or κ(β) = 1 or κ(γ) = 1, and, thus,κ(Cj) = 1.

This concludes the proof of the proposition. 2

25

6 The Combined Complexity of Query Answering

Beyond the usual data complexity analysis, it is natural to ask for the combined complexity of the problem of comput-
ing certain answers: What is the complexity if data exchangesettings and queries are not considered to be fixed? To
state this problem, we shall extend the notation defined in Section 2. LetDE be a class of data exchange settings and
C a class of queries. In this section, we study the following problem:

PROBLEM: CERTAIN-ANSWERS(DE , C).
INPUT: A data exchange settingM = (S, T, Σst) ∈ DE , a source instanceI,

a queryQ ∈ C and a tuplēt of constants fromI.
QUESTION: Is t̄ ∈ certainM(Q, I)?

It is worth mentioning that a related study appeared in [14].Even though the focus of that paper was the combined
complexity of the existence of solutions problem, some of the results in [14] can be extended to the certain answers
problem. In particular, some complexity bounds for unions of conjunctive queries with inequalities can be proved
by using these results. Nevertheless, in this section we prove stronger lower bounds that consider single conjunctive
queries with inequalities, and which cannot be directly proved by using the results of [14].

We start by stating the complexity for the case of DATALOGC(6=) queries. The study continues by considering
some restrictions of DATALOGC(6=) that lead to lower combined complexity, and which are expressed in the form of
conjunctive queries with single inequalities. We concludethis study by examining unrestricted CQ6= queries, which are
not rewritable in DATALOGC(6=) (under the assumption that PTIME 6= NP). The results of this section are summarized
in Table 1, where we letk-CQ6= be the class of CQ6= queries with at mostk inequalities.

6.1 Combined complexity ofDATALOGC(6=) queries

We showed in Proposition 3.3 that the certain answers of a DATALOGC(6=) program can be computed by directly
posing the query over the canonical universal solution. It can be shown that such an approach can compute the certain
answers to a DATALOGC(6=) program in exponential time, although canonical universalsolutions can be of exponential
size if data exchange settings are not considered to be fixed.And not only that, it can be proved that this is a tight
bound.

Theorem 6.1 CERTAIN-ANSWERS(GLAV ,DATALOGC(6=)) is EXPTIME-complete.

Proof: The EXPTIME-hardness follows directly from Theorems 4.1 and 6.3. More precisely, the problem of comput-
ing certain answers is shown in Theorem 6.3 to be EXPTIME-hard for the class of conjunctive queries with single
inequalities, and it follows from Theorem 4.1 that for each queryQ in this class, one can construct in polynomial time
a DATALOGC(6=) programΠQ such thatcertainM(Q, I) = certainM(ΠQ, I), for every source instanceI.

To show that CERTAIN-ANSWERS(GLAV ,DATALOGC(6=)) is in EXPTIME, assume thatΠ is a DATALOGC(6=)

program,I is a source instance andΣst is a set of st-tgds. In Section 3, it is proved that to compute the certain
answers ofΠ over I underΣst, it suffices to evaluateΠ over CAN(I). Thus, given that CAN(I) can be computed
in exponential time and is of sizeO(‖I‖‖Σst‖), where‖I‖ and‖Σst‖ represent the size ofI andΣst, respectively,
we conclude that the certain answers toΠ overI underΣst can be computed in timeO(‖I‖‖Σst‖·‖Π‖), where‖Π‖
represents the size ofΠ, sinceΠ can be evaluated over an instanceD in timeO(‖D‖‖Π‖) [2, 22].

Note that the above problem has to deal with canonical universal solutions of exponential size. Then restricting these
solutions to be of polynomial size would be a natural approach to reduce the complexity of the problem. There are
at least two ways to do this. The obvious one would be to fix the data exchange settings, and leave only queries
and source instances as input.2 The less obvious but more interesting case is to restrict theclass of data exchange
settings to be LAV settings. However, for the case of DATALOGC(6=) programs, the combined complexity is inherently
exponential, and thus reducing the size of canonical universal solutions does not help in improving the upper bound.

2Indeed, for obtaining a canonical solution of polynomial size it would be enough to fix the maximum arity of a relation symbol in the target
schema.

26

Query GLAV setting LAV setting

DATALOGC(6=) EXPTIME-complete EXPTIME-complete
1-CQ6= EXPTIME-complete NP-complete
k-CQ6=, k ≥ 2 CONEXPTIME-complete Πp

2-complete
CQ6= CONEXPTIME-complete Πp

2-complete

Table 1: Combined complexity of computing certain answers.

Proposition 6.2 CERTAIN-ANSWERS(LAV ,DATALOGC(6=)) is EXPTIME-complete.

Proof: The membership in EXPTIME follows from Theorem 6.1. For the EXPTIME-hardness, we show a reduction
from the problem of checking whether a tuplet̄ belongs to the evaluation of a DATALOG programΠ over an instance
I. This problem is well known to be EXPTIME-hard (see e.g. [2, 22]). LetΠ be a DATALOG program defined over a
schemaS, I an instance ofS andt̄ a tuple of elements fromI. Next we show how to construct a LAV data exchange
settingM = (S,T,Σst) and a DATALOGC(6=) programΠ′ such that̄t ∈ Π(I) if and only if t̄ ∈ certainM(Π′, I),
which shows that there exists a polynomial time reduction from the problem mentioned above to our problem.
DefineT as a schema that contains a relation symbolR̂ of the same arity ofR, for every relation symbolR in S.
Moreover, defineΠ′ as a copy ofΠ where every predicateR from S is replaced by predicatêR, and defineΣst

to include a dependencyR(x̄) → R̂(x̄), for every predicate symbolR in S. Then we have have thatt̄ ∈ Π(I) if
and only ift̄ ∈ Π′(CAN(I)), which implies that̄t ∈ Π(I) if and only if t̄ ∈ certainM(Π′, I) by the results in Section 3.

It was shown in Theorem 4.1 that every conjunctive query withone inequality can be efficiently translated into a
DATALOGC(6=) program. Hence, the class of 1-CQ6= queries form a subclass of the class of DATALOGC(6=) programs.
Thus, it is natural to ask whether the EXPTIME lower bounds proved in this section carry over this class, and whether
the LAV restriction could be useful in this case. These are the motivating questions for the next section.

6.2 Combined complexity ofCQ6=

We leave the DATALOGC(6=) queries to concentrate on the analysis of CQ6= queries in data exchange. We first study
the class1-CQ6=, that is, the class of conjunctive queries with only one inequality. It is worth mentioning that an
EXPTIME lower bound can be obtained from [14] for the case of unions of1-CQ6= queries. We refine this result to the
case of 1-CQ6= queries, and therefore present a stronger lower bound.

Theorem 6.3 CERTAIN-ANSWERS(GLAV , 1-CQ6=) is EXPTIME-complete.

Proof: Membership in EXPTIME is a corollary of Theorems 4.1 and 6.1. The proof of EXPTIME-hardness is a
refinement of a proof given in [14], where it was essentially shown that the problem of computing certain answers
is EXPTIME-hard for a union of two CQ6= queries. The EXPTIME-hardness is established from a reduction from the
Single Rule Datalog Problem [11], which is the following problem: given a DATALOG programΠ consisting of only
one rule and some of facts with only constants, is it the case that a tuplēt belongs to the evaluation ofΠ over the empty
instance? That is, we ask whethert̄ ∈ Π(∅). We shall call these programs Single Rule Datalog Programs (sirup). It
is important to notice that each of these programs contains asingle intensional predicateA, and it may include some
facts with only constants about this predicate, that is, some facts of the formA(c̄). These facts are needed when the
only rule of the program is recursive, as otherwise the evaluation of the program would be empty. The combined
complexity of the aforementioned problem was shown to be EXPTIME-complete by Gottlob and Papadimitriou [11].

As in [14], let Π be a program containing some facts with only constants and a single rule of the formA(x̄) ←
Q1(x̄1), . . . , Qn(x̄n), where each symbolQi (1 ≤ i ≤ n) either represents an extensional database predicate or the
only intensional predicateA. Furthermore, we assume thatt̄ = (c1, . . . , ck) and we say that̄t belongs to the evaluation
of Π over the empty instance if and only ift̄ ∈ AT ∞

Π (∅).

27

The idea of the reduction in [14] is to precompute all the possible tuples that can be returned from the sirup rule
into the canonical universal solution of the source instance, and then simulate the sirup rule with a CQ6= query. A
second query is used to check whethert̄ ∈ Π(∅). The difficulty in our case is to show that the bound remains the same
even for a single CQ6= query with one inequality.

We now define a data exchange settingM = (S,T,Σst), a queryQ and an instanceI of S such that̄t ∈ Π(∅) if
and only ifcertainM(Q, I) = true.

• The source schemaS consists of four unary relationsT , V , F , S plus all the extensional predicate symbolsR1,
. . ., Rm of Π, and two additional relation symbolsA andW . The arity of the relationsRi (1 ≤ i ≤ m) is the
same as the corresponding arity inΠ, denoted byli, the arity of the relationA is k and the arity of the relation
W is k + 1.

• The target schemaT consists of relationsR′
1, . . .,R′

m, T ′ andA′. The arity of relationR′
i is li +3 (1 ≤ i ≤ m),

T ′ is unary, andA′ has arityk + 3.

• Source instanceI is defined as follows:

– The interpretation of predicateRi (1 ≤ 1 ≤ m) in I is the same as inΠ. Furthermore, the interpretation
of predicateA in I consists of all the tuples̄c such thatA(c̄) is a fact inΠ.

– The relationW only contains one tuple, based ont̄: W (c1, . . . , ck, d), whered is a fresh value not occur-
ring elsewhere inI.

– We create a single tuple for each relationT , F andS using constantsc, 1, 2, also not used elsewhere inI:
T (c), F (1) andS(2).

– Finally, we populate the unary relationV with all distinct values fromΠ andt̄.

Intuitively, the constants1 and2 will allow us to use the same query for both simulating the sirup rule and
checking whether̄t ∈ Π(∅); the relations containing value1 will be used for the simulation of the sirup rule,
while the relations containing value2 will be used when checking whethert̄ ∈ Π(∅).

• The setΣst of dependencies is defined as follows. We create a copy of the relationT in T ′:

T (x) → T ′(x)

For everyi ∈ {1, . . . ,m}, we create a copy of the facts aboutRi in the programΠ, so that they can be used
when simulating the sirup rule:

F (z) ∧ T (y) ∧Ri(x1, ..., xli) → R′
i(x1, ..., xli , y, z, z).

Notice that we use the valuez in F to indicate that these tuples will be used for the simulationof the sirup rule.
Next, for everyi ∈ {1, . . . ,m}, we populateR′

i in the target with a series of tuples built using every possible
constant value in the source:

S(z) ∧ T (y) ∧ V (x1) ∧ · · · ∧ V (xli) → R′
i(x1, ..., xli , y, z, z).

It is important to notice that in this case, we use the valuez in S to indicate that these tuples will be used when
checking whether̄t ∈ Π(∅). We then copy the relationA intoA′, to indicate that every fact inΠ also holds in
every solution forI underM:

F (z) ∧ S(w) ∧ T (y) ∧A(x1, ..., xk) → A′(x1, ..., xk, y, z, w). (28)

In this rule, the valuec in the positionk + 1 of A′ indicate that tuple(x1, . . . , xk) belongs to the interpretation
of A in Π. Moreover, we also add toA′ every possible tuple that could be generated with the valuesin Π andt̄:

F (z) ∧ S(w) ∧ V (x1) ∧ · · · ∧ V (xk) → ∃nA′(x1, ..., xk, n, z, w). (29)

28

Notice that in this rule, a null value is placed in the position k + 1 of A′ to indicate that tuple(x1, . . . , xk) has
not yet been shown to belong to the interpretation ofA in Π. As in the previous cases, relationsF andS are
used in the preceding two rules to ensure that the proceduresare run in the correct order, that is, the query must
first compute the tuples, and then check whethert̄ ∈ Π(∅). Finally, we need some extra tuples for the simulation
of the sirup rule. We copy the relationW into A′ and add again every possible tuple to the relationA′, but
considering a different order of predicatesS, F andT :

S(z) ∧ F (y) ∧W (x1, ..., xk, u) → A′(x1, ..., xk, u, z, y), (30)

S(z) ∧ T (y) ∧ V (x1) ∧ · · · ∧ V (xk) → A′(x1, ..., xk, y, z, y). (31)

When showing that the reduction is correct, it will become clear why we need to use different orders of predicate
F , S andT in the preceding rules.

• To define queryQ, recall that we are considering a sirup rule of the formA(x̄) ← Q1(x̄1), ..., Qn(x̄n), where
eachQi can be either one of the extensional databases predicatesRj or the predicateA. Assume that̄x′ is a
tuple containing all the variables in the body of the sirup rule that are not mentioned in̄x. Then queryQ is
defined as follows:

Q = ∃u∃v∃w∃w1 · · · ∃wn∃x1 · · · ∃xk∃y∃z∃x̄
′

[
A′(x1, . . . , xk, z, u, w) ∧

T ′(y) ∧A′(x1, . . . , xk, y, w, v) ∧ z 6= y ∧
∧

1≤i≤n

Q′
i(x̄i, y, u, wi)

]
.

Before proving that the reduction works properly, we describe the canonical universal solution forI, and give some
intuition about the definitions ofM andQ. For everyi ∈ {1, . . . ,m}, relationR′

i contains tuples of the form
(ā, c, 1, 1), for every tuplēa that belongs to the interpretation ofRi in I, and also the tuples of the form(b̄, c, 2, 2),
for all the possible tuples̄b generated by using the elements inV I (which correspond to all the tuples generated from
the values mentioned inΠ andt̄). The relationT ′ is a copy of the relationT in I. The tuples in the relationA′ result
from the last four dependencies. First, due to the mapping (28), we copy every tuple inA from I into A′, and add
the constantsc, 1, 2 in its last three positions. Second, for every possible tuple b̄ generated by using the elements in
V I , mapping (29) includes inA′ a tuple of the form(b̄,⊥, 1, 2), where⊥ is a fresh null value. We shall generically
describe the null values added by (29) as⊥. Third, mapping (30) copies the relationW and adds the constants2, 1
to each of the tuples inW . Finally, for every possible tuplēb generated by using the elements inV I , mapping (31)
includes inA′ the tuple(b̄, c, 2, c).

Let us now give some intuition about the definitions ofM andQ. To show thatQ does not hold in every possible
solution forI underM, one can compute the canonical universal solutionJ for I underM, and then try to replace
some of the nulls ofJ in order to generate a solution forI whereQ does not hold. Each one of these replacements
represents either an application of the sirup rule to add a tuple to the predicateA or a test of whether̄t ∈ Π(∅). More
precisely, assume that one has found an assignmentρ for the variables ofQ that satisfies the body of this query. By
examining the set of possible tuples ofA′ in J , we know thatρ(u) is either 1 or 2. The former case represents an
application of the sirup rule, while the latter is used to test whether̄t ∈ Π(∅). In particular, ifρ(u) = 1, then given that
ρ(y) = c (sinceT ′(y) is a conjunct ofQ) andρ(y) 6= ρ(z) (sincey 6= z is a conjunct ofQ), we conclude thatρ(z) is a
null value andρ(w) = 2 by examining the set of possible tuples ofA′ in J having 1 as theirk + 2 argument. Thus, in
this case we have to replaceρ(z) by valuec in order to construct a solution forI underM whereQ does not hold. But
in our reduction, the fact that tuple(ρ(x1), . . . , ρ(xk), c, 1, 2) is added toA′ indicates that tuple(ρ(x1), . . . , ρ(xk)) is
included inA when computingΠ(∅). It is important to notice that this represents a correct application of sirup rule
A(x̄)← Q1(x̄1), ..., Qn(x̄n), as from the fact that

∧

1≤i≤n

Q′
i(ρ(x̄i), c, 1, ρ(wi))

holds and the definitions ofI andM, one can conclude that every atomQi(ρ(x̄i)) holds inΠ(∅) (in particular, if
Q′

i = R′
j , then by examining the tuples ofR′

j in J having 1 in its penultimate argument, one concludes thatQi(ρ(x̄i))

29

belongs toΠ). On the other hand, ifρ(u) = 2, then by examining the set of possible tuples ofA′ in J and given that
ρ(y) = c, we conclude thatρ(w) = 1 andρ(z) = d. Thus, it is not possible to replace byρ(z) by ρ(y) in this case,
and one concludes thatcertainM(Q, I) = true (as formally shown below). But this corresponds with our intention
of checking whether̄t ∈ Π(∅). In fact, given that the only tuple inA′ havingd in its k + 1 argument is generated
from tupleW (c1, . . . , ck, d), we have thatρ(xi) = ci, for everyi ∈ {1, . . . , k}. Thus, by considering the conjunct
A′(x1, . . . , xk, y, w, v) ofQ, we conclude thatA′(c1, . . . , ck, c, 1, ρ(v)) holds, which means by the manner value 1 is
used in our reduction (described above) that tuple(c1, . . . , ck) belongs toΠ(∅).

Next, we formally show thatcertainM(Q, I) = true if and only if t̄ ∈ Π(∅).

(⇒) If certainM(Q, I) = true, thenQ holds in all the possible solutions forI underM. We use this con-
dition to define the following sequenceJ0, . . . , Ji, . . . of solutions forI.

• J0 is the canonical universal solution forI underM.

• Assume that there exists a tuplet̄i such that̄ti witnesses the satisfaction of the body ofQ in Ji andz is assigned
a null value⊥ in t̄i. ThenJi+1 is generated fromJi by replacing⊥ by the value assigned toy in t̄i.

We note that for every tuplēti used to generate the sequenceJ0, . . . , Ji, . . ., the value assigned toy in t̄i is constant
c. Thus, we have that the sequenceJ0, . . . , Ji, . . . is finite, and we letJm be its last element. By definition ofM,
and given thatJm is a solution forI andcertainM(Q, I) = true, we have that there exists a tuplet̄m such that
t̄m witnesses the satisfaction of the body ofQ in Jm, z is assigned valued in t̄m andy is assigned valuec in t̄m.
Furthermore, we also have thatA′(t̄, d, 2, 1) andA′(t̄, c, 1, 2) are both tuples inJm.

For everyi ∈ {0, . . . ,m} and tuplēti, let āi be the restriction of̄ti to the variablesx1, . . ., xk. In particular, we
have that̄am = t̄. By induction oni, next we show thatA(āi) ∈ T

i+1
Π (∅).

• Base case: For everyj ∈ {1, . . . , n}, let b̄j be the restriction of̄a0 to the tuple of variables̄xj . By definition of
J0 and t̄0, we have that for everyj ∈ {1, . . . , n}, if Q′

j = R′
p, for somep ∈ {1, . . . ,m}, thenR′

p(b̄j , c, 1, 1)

holds inJ0, and ifQ′
j = A′, thenA′(b̄j , c, 1, 2) holds inJ0. Thus, from the definition ofJ0, we have that for

everyj ∈ {1, . . . , n}, if Q′
j = R′

p, for somep ∈ {1, . . . ,m}, thenRp(b̄j) is a fact inΠ, and ifQ′
j = A′, then

A(b̄j) is a fact inΠ. Therefore, by definition of̄t0, we conclude thatA(ā0) can be deduced from the facts ofΠ
and, thus,A(ā0) ∈ T 1

Π (∅).

• Inductive step: Assume that for everyq < i, it holds thatA(āq) ∈ T
q+1
Π (∅), and letb̄j be the restriction of

āi to the tuple of variables̄xj , for everyj ∈ {1, . . . , n}. By definition ofJi and t̄i, we have that for every
j ∈ {1, . . . , n}, if Q′

j = R′
p, for somep ∈ {1, . . . ,m}, thenR′

p(b̄j , c, 1, 1) holds inJi and, thus,Rp(b̄j) is a
fact in Π by definition of the sequenceJ0, . . ., Jm. On the other hand, ifQ′

j = A′, thenA′(b̄j , c, 1, 2) holds
in Ji. Let q ≤ i be the smallest index such thatA′(b̄j , c, 1, 2) holds inJq. If q = 0, thenA(b̄j) is a fact inΠ

and, therefore,A(b̄j) ∈ T
q+1
Π (∅). If q > 0, thenA′(b̄j , c, 1, 2) was included inJq when replacing thez-value

of t̄q−1 by they-value of this tuple. Thus, by induction hypothesis, we havethatA(b̄j) ∈ T
q+1
Π (∅). Therefore,

for everyj ∈ {1, . . . , n}, we have thatQj(b̄j) ∈ T
i
Π(∅), which implies thatA(āi) ∈ T

i+1
Π (∅) by the definition

of t̄i andāi.

Hence, we have thatA(ām) ∈ T m+1
Π (∅) and, therefore,̄t ∈ Π(∅) sinceām = t̄. This concludes the first part of the

proof.

(⇐) Assume that̄t ∈ Π(∅) and, for the sake of contradiction, assume thatcertainM(Q, I) = false. More-
over, letQ̂(u, v, w,w1, . . . , wn, x1, . . . , xk, y, z, x̄

′) be a query obtained by removing the existential quantifiers from
Q:

A′(x1, ..., xk, z, u, w) ∧ T ′(y) ∧A′(x1, ..., xk, y, w, v) ∧ z 6= y ∧
∧

1≤i≤n

Q′
i(x̄i, y, u, wi).

To obtain a contradiction, we define a sequence of solutionsJ0, . . ., Ji, . . . and a corresponding sequence of sets of
tuplesT0, . . ., Ti, . . . as follows.

30

• Let J0 be the canonical universal solution forI underM, andT0 = Q̂(J0), that is, the evaluation of̂Q overJ0.

• For everyi ≥ 0, let Ji+1 be obtained fromJi by replacing every null value⊥ in a tuple ofTi by the constantc,
if ⊥ witnesses the inequality of̂Q. Moreover, letTi+1 = Q̂(Ji+1).

Given thatJ0 has finite number of null values, we have that the sequenceJ0, . . ., Ji, . . . is finite, and we letJm

be its last element. Next we show that from the assumption that certainM(Q, I) = false, one can deduce that
Q(Jm) = false. Letψ be the following dependency:

∀u∀v∀w∀w1 · · · ∀wn∀x1 · · · ∀xk∀y∀z∀x̄
′

[
(A′(x1, ..., xk, z, u, w) ∧

T ′(y) ∧A′(x1, ..., xk, y, w, v) ∧
∧

1≤i≤n

Q′
i(x̄i, y, u, wi))→ (z = y)

]
.

It is easy to see that solutionJm can be obtained fromJ0 as the result of repeatedly chasingJ0 with ψ [9]. Thus,
it follows from [9] that certainM(Q, I) = false if and only if Q(Jm) = false. Therefore, we conclude that
Q(Jm) = false.

We now show that the fact thatQ(Jm) = false leads to a contradiction. Consider the program evaluation
sequenceT 0

Π (∅), . . ., T m
Π (∅).

Claim 6.4 For everyi ∈ {0, . . . ,m}, if A(ā) holds inT i
Π(∅), then tupleA′(ā, c, 1, 2) holds inJi.

Proof: By induction oni ∈ {0, . . . ,m}.

• Base case: Assume thatA(ā) holds inT 0
Π(∅). ThenA(ā) is a fact inΠ and, thus, given thatJ0 is the canonical

universal solution forI underM, we conclude thatA′(ā, c, 1, 2) holds inJ0.

• Inductive step: Assume that the property holds for everyj < i and thatA(ā) holds inT i
Π(∅). If A′(ā, c, 1, 2)

holds inJi−1, then by definition of the sequenceJ0, . . ., Jm, we have thatA′(ā, c, 1, 2) holds inJi. Thus,
assume thatA′(ā, c, 1, 2) does not hold inJi−1, and notice this implies thatA′(ā,⊥, 1, 2) holds inJi−1, where
⊥ is a null value, and thatA(ā) does not hold inT i−1

Π (∅) (otherwise by induction hypothesis we obtain that
A′(ā, c, 1, 2) holds inJi−1). But then we have thatA(ā) can be deduced fromT i−1

Π (∅) by using the only rule
in Π. Thus, there exists an instantiationA(ā) ← Q1(ā1), . . . , Qn(ān) of the rule ofΠ such thatQ1(ā1), . . .,
Qn(ān) belong toT i−1

Π (∅). Thus, by induction hypothesis and the definition of the sequenceJ0, . . ., Jm, we
conclude that for everyp ∈ {1, . . . , n}, if Q′

p = Rq for someq ∈ {1, . . . ,m}, thenRq(āp, c, 1, 1) holds inJi−1,
and ifQ′

p = A′, thenA′(āp, c, 1, 2) holds inJi−1. Therefore, given that bothA′(ā,⊥, 1, 2) andA′(ā, c, 2, c)

hold inJi−1, we conclude that one of the tuples ofTi−1 has⊥ as a witness for the inequality of̂Q. This implies
thatA′(ā, c, 1, 2) holds inJi since⊥ is replaced byc to obtainJi from Ji−1.

2

By Claim 6.4 and the definitions of sequenceJ0, . . ., Jm and data exchange settingM, we conclude thatT m
Π (∅) =

T m+1
Π (∅). Thus, given that̄t ∈ Π(∅), we have thatA(t̄) holds inT m

Π (∅). Therefore, by Claim 6.4, we have that
A′(t̄, c, 1, 2) holds inJm. But this implies thatQ(Jm) = true since (1)A′(t̄, d, 2, 1) holds inJm, (2)A′(b̄, c, 2, c)
holds inJm for everyk-tuple b̄ of elements fromV I , and (3)Ri(b̄i, c, 2, 2) holds inJm for every li-tuple b̄i of
elements fromV I (i ∈ {1, . . . ,m}). But this contradicts our initial assumption. This concludes the proof of the
theorem. 2

It is natural to ask what happens in the case of unrestricted queries and, more specifically, for queries with two
inequalities. It was noted that the data complexity becomeshigher when dealing with two inequalities, and a similar
behavior should be expected for the combined complexity. Indeed, we have that:

Theorem 6.5 For everyk ≥ 2, CERTAIN-ANSWERS(GLAV , k-CQ6=) is CONEXPTIME-complete.

31

For the sake of readability, we just give here a brief sketch of the proof of Theorem 6.5, and we leave the rather
technical proof of this theorem for Appendix A.3.

Proof sketch:First, we prove the membership inCONEXPTIME. In [9], it was proved that given a UCQ6= queryQ and
a data exchange settingM, the problem CERTAIN-ANSWERS(M, Q) is in CONP. An inspection of this proof reveals
that ifM andQ are not assumed to be fixed, then the same proof shows that CERTAIN-ANSWERS(GLAV ,UCQ6=) is
in CONEXPTIME. Thus, we conclude that CERTAIN-ANSWERS(GLAV , k-CQ6=) is in CONEXPTIME.

The CONEXPTIME-hardness is established by a reduction from the satisfiability problem for the Bernays-
Schönfinkel class of FO sentences to the complement of CERTAIN-ANSWERS(GLAV , 2-CQ6=). Formally, the
Bernays-Schönfinkel class of FO sentences is defined as the class of all FO formulas of the form∃x̄∀ȳ ψ(x̄, ȳ), where
ψ(x̄, ȳ) is quantifier-free and mentions neither any function symbolnor the equality symbol. Then the satisfiability
problem for the Bernays-Schönfinkel class is the problem ofverifying, given a formula∃x̄∀ȳ ψ(x̄, ȳ) in this class,
whether there exists a structure that satisfies∃x̄∀ȳ ψ(x̄, ȳ). This problem is known to be NEXPTIME-complete (see,
e.g., [6]). 2

As we mentioned in the previous section, if data exchange settings are not considered to be fixed, then one has to
deal with canonical universal solutions of exponential size when computing certain answers. A natural way to avoid
this problem is by restricting the class of data exchange settings to be LAV settings. For the case of DATALOGC(6=)

programs, this restriction does not help in reducing the complexity of computing certain answers. However, the
evaluation of CQ6= queries is not inherently exponential and, thus, we are ableto considerably reduce the complexity
by considering LAV settings, as we show in the following proposition.

Proposition 6.6 CERTAIN-ANSWERS(LAV , 1-CQ6=) is NP-complete, andCERTAIN-ANSWERS(LAV , k-CQ6=) is
Πp

2-complete for everyk ≥ 2.

Proof: That the problem CERTAIN-ANSWERS(LAV , 1-CQ6=) is NP-complete can be proved using techniques in [9]
for membership, and in [14] for hardness. Furthermore, the membership of CERTAIN-ANSWERS(LAV , k-CQ6=) in Πp

2

follows from [1]. Thus, we only need show that CERTAIN-ANSWERS(LAV , k-CQ6=) is Πp
2-hard.

TheΠp
2-hardness is established by a reduction from∀∃ 3-SAT, which is the problem of verifying, given a Boolean

formulaψ in 3-CNF with variables partitioned into setsx̄ andz̄, whether it is true that for every truth assignment of
the variables in̄x, there exists a truth assignment of the variables inz̄ so thatψ is satisfied with the overall assignment.
This problem is known to beΠp

2-complete.
Let φ be a formula of the form∀x̄∃z̄

∧
1≤k≤` ψk, where eachψk (1 ≤ k ≤ `) is a clause containing exactly three

literals. Letx̄ = (x1, . . . , xn) and z̄ = (z1, . . . , zm). Based onφ, we show how to construct in polynomial time a
LAV data exchange settingM = (S,T,Σst), a queryQ and an instanceI such thatcertainM(Q, I) = true if and
only if φ is satisfiable. More precisely, the LAV setting (S,T,Σst) and the source instanceI are defined as follows:

• The source schemaS consists of̀ ternary relationsC1, . . . , C`, and a relationA of arity four.

• The target schemaT consists of two unary relationsU ′, O′, n unary relationsX ′
1, . . . , X

′
n, m unary relations

Z ′
1, . . . , Z

′
m, two binary relationsR′ andT ′ and` ternary relationsC′

1, . . . , C
′
`, that are intended to be copies of

the relationsC1, . . . , C`.

• The elements of the source instanceI are the constants1, 0, a, d. The interpretation of the relationA in I
contains the single tuple(0, 1, a, d). For eachk ∈ {1, . . . , `}, the interpretation of the relationCk in I contains
the tuple(d, d, d), plus seven tuples of the form(u, v, w), whereu, v, w represent the values of the satisfying
assignments forψk. For example, ifψk ≡ (x1 ∨ ¬x2 ∨ z1), thenCI

k consists of the following tuples:(d, d, d),
(0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0) and(1, 1, 1). Notice that tuple(0, 1, 0) is not included in
CI

k as it does not represent a satisfying assignment forψk.

• The setΣst of source-to-target dependencies is defined as follows:

32

– First, we create the tuplesO′(0) andU ′(1) in CAN(I):

A(x, y, z, w) → O′(x), (32)

A(x, y, z, w) → U ′(y). (33)

– Next, for everyi ∈ {1, . . . , n}, we add a rule that is intended to create the following tuplesin CAN(I)
(where⊥i is a fresh null value):X ′

i(⊥i),X ′
i(d), T

′(⊥i),R′(a,⊥i) andR′(⊥i, d):

A(x, y, z, w) → ∃n
(
X ′

i(n) ∧X ′
i(w) ∧ T ′(n) ∧R′(z, n) ∧R′(n,w)

)
. (34)

– For everyj ∈ {1, . . . ,m}, we also add the following st-tgd:

A(x, y, z, w) → Z ′
j(x) ∧ Z

′
j(y) ∧ Z

′
j(w). (35)

The purpose of this set of dependencies is to add the following tuples to CAN(I): Z ′
j(0),Z ′

j(1) andZ ′
j(d),

for everyj ∈ {1, . . . ,m}.

– Next, we add to CAN(I) the tuplesR′(a, 0),R′(a, 1) andT ′(a):

A(x, y, z, w) → T ′(z) ∧R′(z, x) ∧R′(z, y). (36)

– Finally, for everyk ∈ {1, . . . , n}, we add a rule that creates a copy of the relationCk in CAN(I):

Ck(x, y, z) → C′
k(x, y, z). (37)

Furthermore, the queryQ is defined as follows:

Q = ∃b∃e∃g∃v1 · · · ∃vn∃w1 · · · ∃wm[(∧

1≤i≤n

X ′
i(vi) ∧R

′(g, vi)

)
∧

(∧

1≤j≤m

Z ′
j(wj) ∧R

′(g, wj)

)
∧

α(v1, . . . , vn, w1, . . . , wm) ∧ U ′(e) ∧O′(b) ∧ T ′(g) ∧ g 6= b ∧ g 6= e

]
,

whereα(v1, . . . , vn, w1, . . . , wm) is defined as follows. For everyk ∈ [1, `], letuk
1 , u

k
2 , u

k
3 be the propositional

variables ofψk. Further, letχ be a function such thatχ(xi) = vi andχ(zj) = wj , for everyi ∈ [1, n] and
j ∈ [1,m]. Then

α(v1, . . . , vn, w1, . . . , wm) =
∧

1≤k≤`

C′
k(χ(uk

1), χ(uk
2), χ(uk

3)).

For example, ifφ is the formula∀x1∀x2∃z1∃z2∃z3
(
(x1 ∨ x2 ∨ z1) ∧ (¬x1 ∨ z2 ∨ ¬z3)

)
, thenα is defined as

α(v1, v2, w1, w2, w3) = C′
1(v1, v2, w1) ∧ C

′
2(v1, w2, w3).

Before we continue with the proof, we give some intuition about the reduction. For everyi ∈ [1, n], the relationX ′
i

is intended to store the truth value of the variablexi in φ, and for everyj ∈ [1,m], the relationZ ′
j is intended to

store the truth value for the variablezj in φ. As previously shown, for each variable inzj ∈ z̄, the tuplesZ ′
j(0) and

Z ′
j(1) belong to CAN(I), while for each variablexi ∈ x̄, only the tupleX ′

i(⊥i) belongs to the canonical universal
solution forI. We are interested in those solutions in which every null⊥i in CAN(I) (1 ≤ i ≤ n) has been replaced
with an element0 or 1. Each one of these solutions represents a particular valuation for the variables in̄x: For every
i ∈ {1, . . . , n}, the valuation assigns the value1 to the variablexi if and only if the null⊥i in the tupleX ′

i(⊥i) in
CAN(I) is replaced with the element1.

33

Intuitively, the first task of the queryQ is to select only those solutions in which every null has beenreplaced with
the element either0 or 1. Roughly speaking, ifJ is an arbitrary solution in which there is a null that has not been
replaced with either0 or 1, then the evaluation ofQ overJ must be true. This is done with the help of the relationT ′.
Let⊥ be the aforementioned null ofJ . Then one can always construct a satisfying assignmentρ for the variables of
Q as follows:ρ assigns the elementd to every variable except forg, b ande, that are assigned the values⊥, 0 and1,
respectively. The second task ofQ is to verify whether for every valuation of the universally quantified variables of
φ, there exists a valuation of the existentially quantified variables that satisfyφ. Recall that every solutionJ in which
the nulls of CAN(I) have been replaced with the element0 or 1 represents a particular valuationσx̄ for the variables
in x̄. Further, notice that, since for everyj ∈ [1,m], CAN(I) contains the tuplesZ ′

j(1) andZ ′
j(0), every solution

J for I contains essentially every possible valuation for the variables inz̄. Then the queryQ will choose a specific
valuationσz̄ for the existentially quantified variables such thatφ is satisfied by the valuations(σx̄, σz̄). Intuitively,
the satisfying valuation for the existentially quantified variables comes from the tuples inJ that witness the predicates
Z ′

1(w1), . . . , Z
′
m(wm) of the body ofQ. More precisely, it can be shown that the evaluation ofQ over one of the

selected solutionsJ is true if and only if there exists a valuationσz̄ for the variables in̄z such thatφ is satisfied by the
valuation(σx̄, σz̄). Finally, to compute the certain answers ofQ for I one must check ifQ holds in every solution for
I underM. Intuitively, by doing this we are verifying whether for every possible valuation of the variables in̄x, there
exists a valuation for the variables ofz̄ such thatφ holds under those valuations.

We now prove thatcertainM(Q, I) = true if and only if φ is satisfiable. In fact, it is more convenient to show
thatcertainM(Q, I) = false if and only if φ is not satisfiable.

(⇐) Assume thatφ is not satisfiable, that is, there exists a valuationσx̄ of the universally quantified variables such
thatφ does not hold under any possible valuation of the existentially quantified variables. Define a functionh from
CAN(I) to CAN(I) as follows:

• h(y) = 1 if y = ⊥i, there is a tupleX ′
i(⊥i) in CAN(I) andσx̄(xi) = 1;

• h(y) = 0 if y = ⊥i, there is a tupleX ′
i(⊥i) in CAN(I), andσx̄(xi) = 0; and

• h(y) = y otherwise.

Let J? be the solution obtained from the canonical solution CAN(I) by replacing each elementy in CAN(I) with
h(y). We now show thatQ(J?) = false and, thus,certainM(Q, I) = false. Assume, for the sake of contradiction,
thatJ? satisfiesQ. Then there must exist an assignmentρ of the variables ofQ that satisfy the body of the query.
Depending on the value ofρ(g), we have two cases:

• Assume first thatρ(g) = h(⊥i) for somei ∈ [1, n], where⊥i is the null value in the tupleX ′
i(⊥i) in the

canonical solution forI. Notice that the only tuples in the interpretation of the relationsO′ andU ′ in J? are
O′(0) andU ′(1), respectively. Thus,ρ(b) = 0 andρ(e) = 1. From the definition ofQ, it must be the case that
h(⊥i) 6= 0 andh(⊥i) 6= 1, but this contradicts the definition ofh.

• Assume now thatρ(g) = a. Then, for everyvi, it must be the case thatρ(vi) = h(⊥i), or, in other words,
ρ(vi) = σx̄(xi). Choose a valuationσz̄ such that for everyj ∈ {1, ...,m}, σz̄(zj) = 1 if ρ assigns the element1
to the variablewj inQ, andσz̄(zj) = 0 if ρ assigns the element0 towj . Then given that for everyk ∈ [1, `], the
interpretation of the relationC′

k in J? contains all the tuples corresponding to the satisfying assignments ofψk,
it is easy to see that the valuation(σx̄, σz̄) satisfies all the clauses inφ. More precisely, for everyk ∈ {1, . . . , `},
truth assignment(σx̄, σz̄) assigns the valuesρ(χ(uk

1)), ρ(χ(uk
2)) andρ(χ(uk

3)) to the propositional variablesuk
1 ,

uk
2 anduk

3 , respectively. Since(ρ(χ(uk
1)), ρ(χ(uk

2)), ρ(χ(uk
3))) is a satisfying assignment forψk, it must be the

case thatψk holds under(σx̄, σz̄). This also leads to a contradiction, since we assumed thatφ is not satisfiable.

(⇒) Assume thatcertainM(Q, I) = false. Then there is a solutionJ? whereQ does not hold. Leth be an
homomorphism from CAN(I) to J?. We first claim that for every null⊥ in CAN(I), it must be the case thath(⊥) = 0
or h(⊥) = 1. Assume, for the sake of contradiction, that for somei ∈ [1, n], the tupleX ′

i(h(⊥i)) in J? is such that
h(⊥i) 6= 0 andh(⊥i) 6= 1. But then, given that all the tuplesT ′(h(⊥i)), R′(h(⊥i), d), X ′

i(d) (1 ≤ i ≤ n), Z ′
j(d)

(1 ≤ j ≤ m) andC′
k(d, d, d) (1 ≤ k ≤ `) belong toJ?, we obtain thatQ(J?) = true, which contradicts our initial

assumption.

34

Next, to prove thatφ is not satisfiable, we provide a truth assignmentσx̄ for the universally quantified variables
of φ, and then prove that under this assignment, the evaluation of φ is false under every valuation of the existentially
quantified variables ofφ. The valuationσx̄ is defined as follows:

• σx̄(xi) = 1 if ⊥i is a null value such that the tupleX ′
i(⊥i) belongs to CAN(I) andh(⊥i) = 1; and

• σx̄(xi) = 0 if ⊥i is a null value such that the tupleX ′
i(⊥i) belongs to CAN(I) andh(⊥i) = 0.

Notice that this valuation is well defined since, as shown above,h assigns value either0 or 1 to every null in CAN(I).
Assume, for the sake of contradiction, thatφ is satisfiable. In particular, there must exist a valuationσz̄ such that
the valuationσ = (σx̄, σz̄) satisfiesφ. We know that for eachk ∈ [1, `], the interpretation of the relationC′

k in
J? contains the seven tuples that represent a satisfying valuation for thek-th clause ofφ. Then it is clear that for
everyk ∈ [1, `], it holds thatJ? contains the tuplesC′

k(σ(uk
1), σ(uk

2), σ(uk
3)), whereuk

1 , u
k
2 , u

k
3 are the propositional

variables ofψk. We also know thatJ? contains the tuplesZ ′
j(σ(zj)) andR′(a, σ(zj)), for every j ∈ [1,m].

Moreover, by the definition ofσx̄, we have that the tuplesX ′
i(σ(xi)) andR′(a, σ(xi)) also belong toJ?, for every

i ∈ [1, n]. It follows thatQ(J?) = true, which is again a contradiction. This proves thatφ is not satisfiable, and
concludes the proof of the theorem. 2

A natural question at this point is what happens with the complexity of the certain answers problem if one considers
the entire class CQ6=. In the following theorem, we show that the same complexity bounds as in Theorem 6.5 and
Proposition 6.6 hold in this case. Notice that the lower bounds in the following theorem follow from the lower bounds
in these results.

Theorem 6.7 CERTAIN-ANSWERS(GLAV ,CQ6=) is CONEXPTIME-complete andCERTAIN-ANSWERS(LAV ,CQ6=)
is Πp

2-complete.

We conclude this section by pointing out that all the complexity bounds presented in this section remain the same if
one allows unions of conjunctive queries with inequalities; if k-UCQ6= is the class of unions ofk-CQ6= queries, then

Proposition 6.8

(1) CERTAIN-ANSWERS(GLAV , 1-UCQ6=) is EXPTIME-complete,CERTAIN-ANSWERS(LAV , 1-UCQ6=) is NP-
complete.

(2) CERTAIN-ANSWERS(GLAV , k-UCQ6=) is CONEXPTIME-complete, andCERTAIN-ANSWERS(LAV , k-UCQ6=)
is Πp

2-complete for everyk ≥ 2.

(3) CERTAIN-ANSWERS(GLAV ,UCQ6=) is CONEXPTIME-complete, andCERTAIN-ANSWERS(LAV ,UCQ6=) is
Πp

2-complete.

7 Concluding Remarks

In this paper, we proposed the language DATALOGC(6=) that extends DATALOG with a restricted form of negation,
and studied some of its fundamental properties. In particular, we showed that the certain answers to a DATALOGC(6=)

program can be computed in polynomial time (in terms of data complexity), and we used this property to find tractable
fragments of the class of unions of conjunctive queries withinequalities. In the paper, we also studied the combined
complexity of computing certain answers to DATALOGC(6=) programs and other related query languages.

Many problems related to DATALOGC(6=) programs remain open. In particular, it would be interesting to know
if it is decidable whether the certain answers to a queryQ in UCQ6= can be computed as the certain answers to a
DATALOGC(6=) programΠQ, and whether there exist a settingM and a queryQ in UCQ6= such that the problem
CERTAIN-ANSWERS(M, Q) is in PTIME, but the certain answers toQ cannot be computed as the certain answers to
a DATALOGC(6=) programΠQ.

35

Acknowledgments

We are very grateful to Jorge Pérez for many helpful discussions. The authors were supported by: Arenas - FONDE-
CYT grants 1070732 and 1090565; Barceló - FONDECYT grant 11080011; Arenas and Barceló - grant P04-067-F
from the Millennium Nucleus Centre for Web Research; Reutter - EPSRC grant G049165. Most of this work was done
when Reutter was a Master’s student at Pontificia Universidad Católica de Chile.

References

[1] S. Abiteboul, and O. Duschka. Answering queries using materialized views. Gemo report 383.

[2] S. Abiteboul, R. Hull, and V. Vianu.Foundations of databases. Addison-Wesley, 1995.

[3] F. N. Afrati, C, Li, and V. Pavlaki. Data exchange in the presence of arithmetic comparisons. In Proceedings of
the 11th International Conference on Extending Database Technology (EDBT), pages 487-498, 2008.

[4] M. Arenas, P. Barceló, R. Fagin, and L. Libkin. Locally consistent transformations and query answering in data
exchange. In Proceedings of the 23rd ACM Symposium on Principles of Database Systems (PODS), pages 229–
240, 2004.

[5] C. Beeri, and M. Y. Vardi. A proof procedure for data dependencies.Journal of the ACM, 31(4):718–741, 1984.

[6] E. Börger, E. Grädel, Y. Gurevich.The Classical Decision Problem. Springer, 2001.

[7] A. Deutsch, A. Nash, and J. B. Remmel. The chase revisited. In Proceedings of the 27th ACM Symposium on
Principles of Database Systems (PODS), pages 149–158, 2008.

[8] R. Fagin, P. Kolaitis, L. Popa, W. C. Tan. Composing schema mappings: Second-order dependencies to the
rescue. In Proceedings of the 23rd ACM Symposium on Principles of Database Systems (PODS), pages 83–94,
2004.

[9] R. Fagin, P. G. Kolaitis, R. J. Miller, L. Popa. Data exchange: semantics and query answering.Theoretical
Computer Science, 336(1):89–124, 2005.

[10] R. Fagin, P. G. Kolaitis, and L. Popa. Data exchange: getting to the core.ACM Transactions on Database Systems,
30(1):174–210, 2005.

[11] G. Gottlob, C. Papadimitriou. On the complexity of single-rule datalog queries.Information and Computation,
183(1):104–122, 2003.

[12] R. Greenlaw, H.J. Hoover, W.L. Ruzzo.Limits to parallel computation: P-Completeness theory. Oxford Univer-
sity Press, 1995.

[13] P. Kolaitis. Schema mappings, data exchange, and metadata management. In Proceedings of the 24th ACM
Symposium on Principles of Database Systems (PODS), pages 61–75, 2005.

[14] P. Kolaitis, J. Panttaja, and W.-C. Tan. The complexityof data exchange. In Proceedings of the 25th ACM
Symposium on Principles of Database Systems (PODS), pages 30–39, 2006.

[15] T. Imielinski, W. Lipski. Incomplete information in relational databases.Journal of the ACM31, 761–791, 1984.

[16] M. Lenzerini. Data integration: A theoretical perspective. In Proceedings of the 21st ACM Symposium on Prin-
ciples of Database Systems (PODS), pages 233–246, 2002.

[17] L. Libkin. Elements of Finite Model Theory. Springer, 2004.

36

[18] L. Libkin. Data exchange and incomplete information. In Proceedings of the 25th ACM Symposium on Principles
of Database Systems (PODS), pages 60–69, 2006.

[19] L. Libkin, C. Sirangelo. Data exchange and schema mappings in open and closed worlds. In Proceedings of the
27th ACM Symposium on Principles of Database Systems (PODS), pages 139–148, 2008.

[20] A. Ma̧dry. Data exchange: On the complexity of answering queries with inequalities.Information Processing
Letters, 94(6):253–257, 2005.

[21] C.H. Papadimitriou.Computational complexity. Addison Wesley, 1994.

[22] M. Y. Vardi. The complexity of relational query languages. In Proceedings of the 14th ACM Symposium on
Theory of Computing (STOC), pages 137–146, 1982.

A Proofs and intermediate results

A.1 Proof of Lemma 5.3

We first prove a technical result that relates query answering and open-reachability.

Claim A.1 LetQ andM be as defined above. LetI be an arbitrary source instance with canonical universal solution
J , and lett̄ = (t1, . . . , tm) be a tuple of constants fromI that also belong toJ . Let q = (p1, p2) andq′ = (p′1, p

′
2)

be two semi-open nodes inH(Q, J, t̄) such that the constant components ofq and q′ are different, and thatq′ is
openly-reachable fromq. Then, for every solutionJ∗ of I and homomorphismh fromJ to J∗, if h(p1) = h(p2) and
h(p′1) = h(p′2), thenJ∗ |= Q(t̄).

Proof: Assume thatQ(x̄) = Q1(x̄) ∨ · · · ∨Ql(x̄), wherex̄ = x1, . . . , xm. Let q = (p1, p2) andq′ = (p′1, p
′
2) be two

semi-open nodes inH(Q, J, t̄) such thatq andq′ have different constant components, and thatq′ is openly-reachable
from q. Let us fix a solutionJ∗ for I and assume there is a homomorphismh from J to J∗ such thath(p1) = h(p2)
andh(p′1) = h(p′2). Sinceq andq′ are openly-reachable, there exists a pathqq1 · · · qkq′ in H(Q, J, t̄) such that every
nodeqi, 1 ≤ i ≤ k, is open and has agreen-labeled loop. Notice that in this particular case there must be at least
one extra node in the path, that is,k ≥ 1. Assume otherwise. Thenq andq′ arered-adjacent (share its null value) and
have different constant components. It follows that eitherh(p1) 6= h(p2) or h(p′1) 6= h(p′2), which is a contradiction.

Notice also that there must be at least one nodeqj = (pj
1, p

j
2), 1 ≤ j ≤ k, such thath(pj

1) 6= h(pj
2). This can be

proved using a similar argument to the one in the previous paragraph. From the definition,qj has agreen-labeled
loop, that is, there exists some1 ≤ i ≤ l such thatQi(x̄) is a conjunctive query with one inequality of the form
∃ȳ(φ(x̄, ȳ) ∧ u1 6= u2), and an assignmentσ : {x̄, ȳ} → dom(J), such thatσ(x̄) = t̄, (J, σ) |= φ(x̄, ȳ) ∧ u1 6= u2,
σ(u1) = pj

1, σ(u2) = pj
2. We obtain that(J∗, σ) |= φ(x̄, ȳ) ∧ u1 6= u2 from the fact that conjunctive queries

are preserved under homomorphisms, and thath(pj
1) 6= h(pj

2). Thus, we obtain thatJ |= Qi(t̄), and therefore
J∗ |= Q(t̄). 2

We now continue with the proof of Lemma 5.3. We first prove the ‘if’ direction. Let J∗ be an arbitrary solution
for I, andh a homomorphism fromJ to J∗. In particular,h(t̄) = t̄. Assume first thatµ andν areblue-adjacent
in H(Q, J, t̄). Then for somei ∈ [1, `], Qi(x̄) is of the form∃ȳφ(x̄, ȳ), whereφ(x̄, ȳ) is a conjunction of relational
atoms overT, andJ |= Qi(t̄). It follows thatJ∗ |= Qi(h(t̄)), since conjunctive queries are preserved under homo-
morphisms, and, thus, thatJ∗ |= Qi(t̄), becauseh(t̄) = t̄. Therefore,J∗ |= Q(t̄), andt̄ ∈ certainM(Q, I), because
J∗ was arbitrarily chosen.

Assume now thatµ andν are notblue-adjacent inH(Q, J, t̄), but that there are two nodesq = (p1, p2) and
q′ = (p3, p4) in H(Q, J, t̄) such thatq andq′ areblue-adjacent and bothq andq′ havec-paths inH(Q, J, t̄). Since
q andq′ areblue adjacent, for some1 ≤ i ≤ `, (1) Qi(x̄) is of the form∃ȳ(φ(x̄, ȳ) ∧ u1 6= u2 ∧ v1 6= v2),
whereφ(x̄, ȳ) is a conjunction of relational atoms overT, andu1, u2, v1, v2 ∈ {x̄, ȳ}, and (2) there is an assignment
σ : {x̄, ȳ} → dom(J), such thatσ(x̄) = t̄, (J, σ) |= φ(x̄, ȳ) ∧ u1 6= u2 ∧ v1 6= v2, σ(u1) = p1, σ(u2) = p2,
σ(v1) = p3, andσ(v2) = p4.

37

Notice that ifh(σ(u1)) 6= h(σ(u2)) andh(σ(v1)) 6= h(σ(v2)), thenJ∗ |= Qi(t̄) (because conjunctive queries are
preserved under homomorphisms), and, therefore,J∗ |= Q(t̄) and t̄ ∈ certainM(Q, I) (becauseJ∗ was arbitrarily
chosen). So, assume otherwise thath(σ(u1)) = h(σ(u2)) (the case whenh(σ(v1)) = h(σ(v2)) is completely
symmetrical). Letq = q1q2 · · · q2k+1 be ac-path inH(Q, J, t̄), k ≥ 0. There are two cases to consider:

• For some0 < j ≤ k − 1, q2j+1 = (p2j+1
1 , p2j+1

2) is such thath(p2j+1
1) 6= h(p2j+1

2): Assume without loss of

generality that for every0 ≤ j′ < j, q2j′+1 = (p2j′+1
1 , p2j′+1

2) is such thath(p2j′+1
1) = h(p2j′+1

2). Since for
every0 < s ≤ j it is the case thatq2s = (p2s

1 , p
2s
2) is openly-reachable fromq2s−1 = (p2s−1

1 , p2s−1
2), and the

constant components ofq2s andq2s−1 are different, if for some0 < s ≤ j it holds thath(p2s
1) = h(p2s

2), then
from Claim A.1 we obtain thatJ∗ |= Q(t̄) (and thus̄t ∈ certainM(Q, I) becauseJ∗ was arbitrarily chosen).
Thus, assume thath(p2s

1) 6= h(p2s
2) for every0 < s ≤ j. In particular,h(p2j

1) 6= h(p2j
2).

Assume first thatq2j has agreen-labeled loop (the case whenq2j+1 has agreen-labeled loop is completely
symmetrical). Then, it must be the case that for some1 ≤ i′ ≤ `, (1)Qi(x̄) is of the form∃z̄(ψ(x̄, z̄) ∧ w1 6=
w2), whereψ(x̄, z̄) is a conjunction of relational atoms overT, andw1, w2 ∈ {x̄, z̄}, and (2) there is an
assignmentσ′ : {x̄, z̄} → dom(J), such thatσ′(x̄) = t̄, (J, σ) |= φ(x̄, z̄) ∧ w1 6= w2, σ(w1) = p2j

1 ,
σ(w2) = p2j

2 . Because (1) conjunctive queries are preserved under homomorphisms, (2)h(σ′(w1)) = h(p2j
1) 6=

h(p2j
2) = h(σ′(w2)), it is the caseJ∗ |= ψ(h(t̄), h(σ′(z̄))) ∧ h(σ′(w1)) 6= h(σ′(w2)). It follows thatJ∗ |=

∃z̄(ψ(t̄, z̄) ∧ w1 6= w2), becauseh(t̄) = t̄. We conclude thatJ∗ |= Q(t̄), and thus that̄t ∈ certainM(Q, I),
sinceJ∗ was arbitrarily chosen.

Assume now thatq2j does not have agreen-labeled loop. Thus,q2j andq2j+1 areblue-adjacent. Therefore,
it must be the case that for somei′ ∈ [1, `], (1) Qi′(x̄) is of the form∃z̄(ψ(x̄, z̄) ∧ w1 6= w2 ∧ w3 6= w4),
whereψ(x̄, z̄) is a conjunction of relational atoms overT, andw1, w2, w3, w4 ∈ {x̄, z̄}, and (2) there is an
assignmentσ′ : {x̄, z̄} → dom(J), such thatσ′(x̄) = t̄, (J, σ′) |= ψ(x̄, z̄) ∧ w1 6= w2 ∧ w3 6= w4, σ′(w1) =
p2j
1 , σ′(w2) = p2j

2 , σ′(w3) = p2j+1
1 , andσ′(w4) = p2j+1

2 . Because (1) conjunctive queries are preserved
under homomorphisms, (2)h(σ′(w1)) = h(p2j

1) 6= h(p2j
2) = h(σ′(w2)), and (3)h(σ′(w3)) = h(p2j+1

1) 6=

h(p2j+1
2) = h(σ′(w4)), it is the caseJ∗ |= ψ(h(t̄), h(σ′(z̄))) ∧ h(σ′(w1)) 6= h(σ′(w2)) ∧ h(σ′(w3)) 6=

h(σ′(w4)). It follows thatJ∗ |= ∃z̄(ψ(t̄, z̄) ∧ w1 6= w2 ∧ w3 6= w4), becauseh(t̄) = t̄. We conclude that
J |= Q(t̄), and, thus, that̄t ∈ certainM(Q, I), sinceJ∗ was arbitrarily chosen.

• For every0 ≤ j ≤ k − 1, q2j+1 = (p2j+1
1 , p2j+1

2) is such thath(p2j+1
1) = h(p2j+1

2): Since for every
0 < s ≤ k, it is the case thatq2s = (p2s

1 , p
2s
2) is openly-reachable fromq2s−1 = (p2s−1

1 , p2s−1
2), and the

constant components ofq2s and q2s−1 are different, from Claim A.1 if for some0 < s ≤ k it holds that
h(p2s

1) = h(p2s
2), thenJ∗ |= Q(t̄), and, sinceJ∗ was arbitrarily chosen, we prove thatt̄ ∈ certainM(Q, I).

Thus, assume thath(p2k
1) 6= h(p2k

2).

Suppose first thatq2k+1 has two constant components. Then by definition ofc-path it contains two different
constants, and thus, it must be the case thath(p2k+1

1) 6= h(p2k+1
2). Since eitherq2k = q2k+1 andq2k has

a green-labeled loop orq2k+1 andq2k areblue-adjacent inH(Q, J, t̄), h(p2k+1
1) 6= h(p2k+1

2). One can
then follow the same reasoning than in the previous item, andshow thatJ∗ |= Q(t̄), and, thus, that̄t ∈
certainM(Q, I).

Suppose, on the other hand, thatq2k+1 = (p2k+1
1 , p2k+2

1) is semi-open. By definition ofc-path,q2k+1 is openly-
reachable fromq2j−1 = (p2j−1

1 , p2j−1
2), for some1 ≤ j ≤ k. Sinceh(p2j−1

1) = h(p2j−1
2) and the constant

components ofq2k+1 andq2j−1 are different, we assume again thath(p2k+1
1) 6= h(p2k+1

2). If not, by Claim
A.1, we obtain thatJ∗ |= Q(t̄), and thus̄t ∈ certainM(Q, I), becauseJ∗ was arbitrarily chosen. The rest of
the proof follows using the same kind of reasoning than in theprevious item.

Finally, assume that there is a nodeq = (p1, p2) inH(Q, J, t̄) such thatq has agreen-labeled loop and ac-path in
H(Q, J, t̄). Thus, for some1 ≤ i ≤ `, (1)Qi(x̄) is of the form∃ȳ(φ(x̄, ȳ)∧ u1 6= u2), whereφ(x̄, ȳ) is a conjunction
of relational atoms overT, andu1, u2 ∈ {x̄, ȳ}, and (2) there is an assignmentσ : {x̄, ȳ} → dom(J), such that
σ(x̄) = t̄, (J, σ) |= φ(x̄, ȳ) ∧ u1 6= u2, σ(u1) = p1, σ(u2) = p2.

Notice that ifh(σ(u1)) 6= h(σ(u2)), thenJ∗ |= Qi(t̄) (because conjunctive queries are preserved under ho-
momorphisms), and, sinceJ∗ was arbitrarily chosen, it follows that̄t ∈ certainM(Q, I). So we assume that

38

h(σ(u1)) 6= h(σ(u2)). Sinceq is marked and has ac-path, using the same argument that in the previous paragraphs it
is possible to show thatJ∗ |= Q(t̄), and, thus, that̄t ∈ certainM(Q, I).

Now we prove the ‘only if’ direction. LetI be an arbitrary source instance andJ its canonical universal solution.
We prove that if there is noblue edge betweenµ andν in H(Q, J, t̄), there is no nodeq with agreen-labeled loop
that has ac-path, and there are noblue-adjacent nodesq andq′ such that bothq andq′ havec-paths inH(Q, J, t̄),
thent̄ 6∈ certainM(Q, I). We prove this by building a solutionJ ′ of I such thatJ ′ 6|= Q(t̄).

Let us say that a node has ared-blue-path inH(Q, J, t̄), if it has ac-path but without the restriction on the last
element of the path. That is, we say that the nodeq has ared-bluepath (rb-path) inH(Q, J, t̄) if there is a path
q = q1q2 · · · q2k+1 in H(Q, J, t̄), k ≥ 0, that satisfies the following:

• Every nodeqi, 1 ≤ i ≤ 2k, is semi-open;

• every node of the formq2i+1, 0 ≤ i ≤ k − 1, is openly-reachable fromq2i+2, but the constant components in
q2i+1 andq2i+2 are different; and

• every node of the formq2i, 0 < i ≤ k, either isblue-adjacent toq2i+1 or q2i = q2i+1 andq2i has agreen-
labeled loop.

Further, we say that a nodeq has anopen-nullpath (on-path), if q is openly-reachable from an open nodeq′ in
H(Q, J, t̄).

We define a procedure that does the following. Let

T = {(p1
0, p

2
0, p

3
0, p

4
0), (p1

1, p
2
1, p

3
1, p

4
1), . . . , (p

1
n, p

2
n, p

3
n, p

4
n)}

be the maximal set of tuples (of length 4) of elements inJ that satisfies the following: For each tuple(p1
j , p

2
j , p

3
j , p

4
j) ∈

T , 0 ≤ j ≤ n,

• there existsi ∈ [1, `] such that (1)Qi(x̄) is of the form∃ȳ(φ(x̄, ȳ) ∧ u1 6= u2 ∧ v1 6= v2), whereφ(x̄, ȳ) is a
conjunction of relational atoms overT, andu1, u2, v1, v2 ∈ {x̄, ȳ}, and (2) there is an assignmentσ : {x̄, ȳ} →
dom(J), such thatσ(x̄) = t̄, σ(u1) = p1

j , σ(u2) = p2
j , σ(v1) = p3

j , σ(v2) = p4
j , and

(J, σ) |= φ(x̄, ȳ) ∧ u1 6= u2 ∧ v1 6= v2,

or

• it is the case thatt1j = t3j ,andt2j = t4j , and there existsi ∈ [1, `] such that (1)Qi(x̄) is of the form∃ȳ(φ(x̄, ȳ) ∧
u1 6= u2), whereφ(x̄, ȳ) is a conjunction of relational atoms overT, andu1, u2 ∈ {x̄, ȳ}, and (2) there is an
assignmentσ : {x̄, ȳ} → dom(J), such thatσ(x̄) = t̄, σ(u1) = p1

j , σ(u2) = p2
j , and

(J, σ) |= φ(x̄, ȳ) ∧ u1 6= u2,

and (3)t1j or t2j is a constant.

In any of these cases, we say that the tuple(p1
j , p

2
j , p

3
j , p

4
j), 0 ≤ j ≤ n, witnessesthe adjacency of the nodes(p1

j , p
2
j)

and(p3
j , p

4
j) in H(Q, J, t̄). Notice that it is possible that two different tuples inT witness the adjacency of the same

pair of nodes.
The procedure first defines an arbitrary linear order overT , and then repeat the following step until all tuples in

T have been marked: It first takes the least tuple in the order that has not yet been marked, let us say(p1
j , p

2
j , p

3
j , p

4
j),

0 ≤ j ≤ n. Then chooses (nondeterministically) a nodeq ∈ H(Q, J, t̄) that does not have ac-path, and whose
adjacency to some nodeq′ ∈ H(Q, J, t̄) is witnessed by(p1

j , p
2
j , p

3
j , p

4
j). This node exists because, by hypothesis, it

cannot be the case that both(p1
j , p

2
j) and(p3

j , p
4
j) havec-paths inH(Q, J, t̄), since either(p1

j , p
2
j) has agreen-labeled

loop or(p1
j , p

2
j) and(p3

j , p
4
j) areblue-adjacent inH(Q, J, t̄). Further, notice that by definition,q has to be semi-open.

The procedure then marks(p1
j , p

2
j , p

3
j , p

4
j) and does the following for eachrb-pathq = q1q2 · · · q2k+1 in H(Q, J, t̄):

39

i. For everyi ∈ [0, k], if the nodeq2i+1 contains the null⊥2i+1 and the constantc2i+1, it assigns to⊥2i+1 the
valuec2i+1. It also assigns the valuec2i+1 to every component of every node that belongs to anon-path starting
from q2i+1; and

ii. for everyi ∈ [1, k], the procedure marks each tuple(p1
r, p

2
r, p

3
r, p

4
r), 1 ≤ r ≤ n, that witnesses the adjacency of

the nodesq2i andq2i+1 in H(Q, J, t̄).

In this case we say that the tuple(p1
j , p

2
j , p

3
j , p

4
j) and the nodeq initialize this step of the procedure.

Claim A.2 The procedure described above assigns at most one constant to each null⊥ in J .

Proof: First, it cannot be the case that a null⊥ is assigned different constants in stepsi and j of the algorithm
with i < j. Assume otherwise, and letq be the node that initializes stepi of the procedure, and let(p1

r, p
2
r, p

3
r, p

4
r),

0 ≤ r ≤ n, andq′ be the tuple and node, respectively, that initialize stepj of the procedure. Then either:

a. There arerb-pathsq · · · qt andq′ · · · q′t such that bothqt andq′t have null⊥ as a component, butqt andq′t have
different constant components. Notice thatq′ cannot have agreen-labeled loop; otherwise,q · · · qtq′t · · · q

′q′

would be ac-path, and thereforeq could not have initialized stepi of the algorithm. Assume, thus, that
there is a nodeq′′ in H(Q, J, t̄), that isblue-adjacent toq′, and that theblue-adjacency ofq′ to q′′ is wit-
nessed by(p1

r, p
2
r, p

3
r, p

4
r). But thenq · · · qtq′t · · · q

′q′′ is also anrb-path inH(Q, J, t̄), and, therefore, the tuple
(p1

r, p
2
r, p

3
r, p

4
r) would have been marked in stepi of the procedure, which is a contradiction; or

b. there arerb-pathsq · · · q2k+1 andq′ · · · q′2k′+1, andon-pathsq2j+1 · · · qs andq′2j′+1 · · · qt, 0 ≤ j ≤ k and
0 ≤ j′ ≤ k′, such that bothqs andqt have null⊥ as a component and the constant components ofq2j+1 and
q′2j′+1 are different. But thenq2j+1 is openly-reachable fromq′2j′+1, and, thus, eitherq′ has agreen-labeled
loop andq · · · q2j+1q

′
2j′+1 · · · q

′q′ is a c-path, or there is a nodeq′′ that isblue adjacent toq′ and such that
q · · · q2j+1q

′
2j′+1 · · · q

′q′′ is anrb-path. Following the same reasoning that in the last item onecan see that this
is a contradiction.

We now prove that each stepi of the algorithm makes at most one assignment to each null⊥ in J . Assume
otherwise, and letq be the node ofH(Q, J, t̄) that initializes stepi. Then either:

a. There arerb-pathsq · · · qt andqq1 · · · q′′t q
′
t, where bothqt andq′t have null⊥ as a component, butqt andq′t have

different constant components. But thenq · · · qtq′tq
′′
t · · · q1 is also anrb-path inH(Q, J, t̄), and bothq andq1

have the same null component but a different constant component. This shows thatq · · · qtq′tq
′′
t · · · q1 is ac-path

in H(Q, J, t̄), which is a contradiction; or

b. there arerb-pathsq · · · q2k+1 andqq′1 · · · q
′
2k′+1, andon-pathsq2j+1 · · · qs andq′2j′+1 · · · qt, 0 ≤ j ≤ k and

0 ≤ j′ ≤ k′, such that bothqs andqt have null⊥ as a component and the constant components ofq2j+1 and
q′2j′+1 are different. But thenq2j+1 is openly-reachable fromq′2j′+1, and, thus,q · · · q2j+1q

′
2j′+1 · · · q

′
1 is also

anrb-path inH(q, J, t̄), and bothq andq′1 have the same null component but a different constant component.
We conclude thatq · · · q2j+1q

′
2j′+1 · · · q

′
1 is ac-path inH(Q, J, t̄), which is a contradiction.

This finishes the proof of the claim. 2

Clearly, the procedure finishes after a finite number of stepsand marks every tuple inT . Further, for every tuple
(p1

r, p
2
r, p

3
r, p

4
r) in T , 0 ≤ r ≤ n, it is the case that at least one of the nodes(p1

r, p
2
r) and(p3

r , p
4
r) is semi-open and the

procedure assigns the constant component of such node to thenull component.
We construct a solutionJ ′ fromJ as follows: Take the canonical solutionJ . For each null⊥ of J , if the procedure

assigns the constantc to ⊥, then replace all appearances of⊥ in J by c. Next, choose a fresh constant valuec′ that
has not been used inJ , and replace every null value⊥′ that is not assigned a constant by the procedure by the fresh
constantc′. In the following we show thatJ ′ 6|= Q(t̄), and, thus, that̄t 6∈ certainM(Q, I).

Assume otherwise. Then there existsi ∈ [1, `] such thatJ ′ |= Qi(t̄). We analyze three cases.

40

1) Assume first thatQi is of the form∃ȳ1, . . . , ȳs(T1(x̄1, ȳ1) ∧ · · · ∧ Ts(x̄s, ȳs) ∧ u1 6= u2 ∧ v1 6= v2), where
{T1, . . . , Ts} ⊆ T, x̄ = {x̄1}∪ · · · ∪ {x̄s}, andu1, u2, v1, v2 ∈ {x̄, ȳ1, . . . , ȳs}. Thus, there exist tuples̄p1, . . . , p̄s of
elements inJ ′ and an assignmentσ : {x̄} ∪ {ȳ1} ∪ · · · ∪ {ȳs} → dom(J ′) defined byσ(x̄) = t̄ andσ(ȳj) = p̄j, for
every1 ≤ j ≤ s, such that

(J ′, σ) |= T1(x̄1, ȳ1) ∧ · · · ∧ Ts(x̄s, ȳs) ∧ u1 6= u2 ∧ v1 6= v2.

In particular,σ(u1) 6= σ(u2) andσ(v1) 6= σ(v2).
For everyj ∈ [1, s], let us denote bȳtj the value ofσ(x̄j). By definition of J ′, every tuple(t̄j , p̄j) ∈ T J′

j

(1 ≤ j ≤ s) is obtained from a tuple(t̄j , r̄j) ∈ T J
j by replacing each null value⊥ ∈ r̄j with the constantc, if

the procedure assignedc to ⊥, and every other null value⊥′ with the fresh constantc′. Let us define an assignment
σ′ : {x̄} ∪ {ȳ1} ∪ · · · ∪ {ȳs} → dom(J) as follows:σ′(x̄) = t̄ andσ′(ȳj) = r̄j , for each1 ≤ j ≤ s. We show that
σ′ is well-defined. Assume thatz is a variable that appears in at least two different positions in (ȳ1, . . . , ȳs). We show
thatσ′ assigns the same value to each appearance ofz. Indeed, thatz appears in two different positions in(ȳ1, . . . , ȳs)
implies thatz is a join variable inT1(x̄1, ȳ1)∧· · · ∧Ts(x̄s, ȳs). By hypothesis,z cannot be nullified underQi andM.
Thus,σ(z) is a constant andσ(z) = σ′(z) (because all the witnesses forz in J must be constants). It immediately
follows that every appearance ofz in (ȳ1, . . . , ȳs) is assigned the same value byσ′.

Therefore,(J, σ′) |= T1(x̄1, ȳ1) ∧ · · · ∧ Ts(x̄s, ȳs). If σ′(u1) = σ′(u2) or σ′(v1) = σ′(v2), thenσ(u1) = σ(u2)
or σ(v1) = σ(v2), which is a contradiction. Assume then thatσ′(u1) 6= σ′(u2) andσ′(v1) 6= σ′(v2). Therefore,

(J, σ′) |= T1(x̄1, ȳ1) ∧ · · · ∧ Ts(x̄s, ȳs) ∧ u1 6= u2 ∧ v1 6= v2.

Then the tuple(σ′(u1), σ
′(u2), σ

′(v1), σ
′(v2)) belongs toT , and since at least one of the nodes(σ′(u1), σ

′(u2)) and
(σ′(v1), σ

′(v2)) is semi-open and the procedure assigns the constant component of such node to the null component,
it must be the case thatσ′(u1) = σ′(u2) or σ′(v1) = σ′(v2). This is a contradiction.

2) Assume second thatQi is of the form∃ȳ1, . . . , ȳs(T1(x̄1, ȳ1)∧· · ·∧Ts(x̄s, ȳs)∧u1 6= u2), where{T1, . . . , Ts} ⊆ T,
x̄ = {x̄1} ∪ · · · ∪ {x̄s}, andu1, u2 ∈ {x̄, ȳ1, . . . , ȳs}. Thus, there exist tuples̄p1, . . . , p̄s of elements inJ ′ and an
assignmentσ : {x̄} ∪ {ȳ1} ∪ · · · ∪ {ȳs} → dom(J ′) defined byσ(x̄) = t̄ andσ(ȳj) = p̄j , for every1 ≤ j ≤ s, such
that

(J ′, σ) |= T1(x̄1, ȳ1) ∧ · · · ∧ Ts(x̄s, ȳs) ∧ u1 6= u2.

In particular,σ(u1) 6= σ(u2).
Following the same reasoning it is possible to prove that(J, σ′) |= T1(x̄1, ȳ1)∧· · ·∧Ts(x̄s, ȳs). If σ′(u1) = σ′(u2),

thenσ(u1) = σ(u2), which is a contradiction. Assume then thatσ′(u1) 6= σ′(u2). As for the previous case, we obtain
that

(J, σ′) |= T1(x̄1, ȳ1) ∧ · · · ∧ Ts(x̄s, ȳs) ∧ u1 6= u2.

From the construction ofH(Q, J, t̄), it must then be the case that the node(σ′(u1), σ
′(u2)) has agreen-labeled

loop. Further, the node(σ′(u1), σ
′(u2)) must be semi-open. Assume otherwise. Clearly(σ′(u1), σ

′(u2)) cannot
consists of two distinct constants, as otherwise there would exist ac-path starting on this node. Thus, it must consist
of two null values. If the procedure assigns a constant neither toσ′(u1) nor toσ′(u2), thenσ(u1) = σ(u2), which is a
contradiction. Then, it must be the case that the procedure assigns the constantc to at least one ofσ′(u1) orσ′(u2). But
then the node(σ′(u1), σ

′(u2)) is part of anon-path, and therefore bothσ′(u1) andσ′(u2) must have been assigned the
same constant, and thusσ(u1) = σ(u2), which is a contradiction. We conclude that(σ′(u1), σ

′(u2), σ
′(u1), σ

′(u2))
belongs toT , and, thus, the procedure assigns the constant component ofsuch node to the null component. Therefore,
it must be the case thatσ′(u1) = σ′(u2), which is a contradiction.

3) Assume finally thatQi is of the form∃ȳ1, . . . , ȳn(T1(x̄1, ȳ1) ∧ · · · ∧ Tn(x̄n, ȳn)), where{T1, . . . , Tn} ⊆ T and
x̄ = {x̄1}∪· · ·∪{x̄n}. Following the same reasoning it is possible to show that(J, σ′) |= T1(x̄1, ȳ1)∧· · ·∧Tn(x̄n, ȳn).
Thus,J |= Qi(t̄), which implies that there is an edge betweenµ andν in G(Q, J, t̄). This is again a contradiction.2

41

A.2 Proof of Theorem 5.7

We now present the proof for the second and third assertions of Theorem 5.7.

We first prove part (2). That is, we prove that there is a LAV data exchange settingM and a conjunctive query
Q with two inequalities, such thatQ has constant joins but does not have almost constant inequalities underM, and
CERTAIN-ANSWERS(M, Q) is CONP-complete.

The LAV settingM = (S,T,Σst) is as follows. The source schemaS consists of one ternary relation symbol
M , one binary relation symbolN , and one unary relation symbolU . The target schemaT consists of three relation
symbols: One ternary relationP , and two binary relationsR andS. Further,Σst is the following set of source-to-target
dependencies:

M(x, y, z) → P (x, y, z)

N(x, y) → ∃z∃u(R(x, z) ∧R(y, u) ∧ S(x, u))

U(x) → S(x, x)

The Boolean queryQ is as follows:

∃x1∃y1∃x2∃y2∃x3∃y3(P (x1, x2, x3) ∧R(x1, y1) ∧ S(x2, y2) ∧R(x3, y3) ∧ y1 6= y2 ∧ y2 6= y3).

Clearly, Q has constant joins, but does not have constant inequalitiesin M. We prove next that the problem
CERTAIN-ANSWERS(M, Q) is CONP-complete.

Membership inCONP follows from [9]. TheCONP-hardness is established from a reduction from POSITIVE-
NOT-ALL-EQUAL-3SAT, which is the following decision problem: Given a propositional formulaφ in 3CNF con-
sisting entirely of positive clauses(p ∨ q ∨ r), is there a valuation to the propositional variables ofφ such that for
every clause ofφ at least one variable is assigned value 1 and at least one variable is assigned value 0? This problem
is known to be NP-hard (see e.g. the proof of Theorem 5.11 in [9]). More precisely, for every 3CNF propositional
formulaφ consisting entirely of positive clauses, we construct in polynomial time an instanceIφ of S such thatφ is
NOT-ALL-EQUAL-satisfiable iffcertainM(Q, Iφ) = false.

Given a propositional formulaφ ≡
∧

1≤j≤m Cj in 3CNF, where eachCj is a clause consisting entirely of positive
literals, letIφ be the following source instance, where 1 and 0 are constantsnot mentioned inφ:

• The interpretation ofM in Iφ contains the tuples(q, 1, q̂) and(q, 0, q̂), for each propositional variableq men-
tioned inφ, and contains the tuple(p, q, r) if for somej ∈ [1,m], Cj = (p ∨ q ∨ r);

• the interpretation ofN in Iφ contains the tuple(q, q̂), for each propositional variable mentioned inφ; and

• the interpretation ofU in Iφ contains the elements 0 and 1.

Clearly,Iφ can be constructed in polynomial fromφ.
The canonical universal solutionJ of Iφ is as follows, where we denote by⊥q and#q the nulls that are generated

in order to witness variablesz andu, respectively, when applying the stdN(x, y)→ ∃z∃u(R(x, z)∧R(y, u)∧S(x, u))
toN(q, q̂):

• The interpretation of the relationP in J is just a copy of the interpretation of the relationM in Iφ;

• the interpretation of the relationR in J contains the pairs(q,⊥q) and(q̂,#q), for each propositional variableq
mentioned inφ; and

• the interpretation of the relationS in J contains the pair(q,#q), for each propositional variableq mentioned in
φ, and also contains the pairs(1, 1) and(0, 0).

We prove next thatφ is NOT-ALL-EQUAL satisfiable iffcertainM(Q, Iφ) = false.

42

(⇒) Assume first thatφ is NOT-ALL-EQUAL-satisfiable, and letκ be a truth assignment for the propositional
variables mentioned inφ, such that for every clause(p ∨ q ∨ r) in φ, it is the case thatκ(p) = 1 or κ(q) = 1 or
κ(r) = 1, andκ(p) = 0 or κ(q) = 0 or κ(r) = 0. Fromκ we construct a functionf from dom(J) into dom(J)
as follows:

f(v) =






1 v = ⊥q andκ(q) = 1

0 v = ⊥q andκ(q) = 0

1 v = #q andκ(q) = 0

0 v = #q andκ(q) = 1

v otherwise

Let J∗ be the solution forIφ obtained fromJ by replacing each occurrence of an elementv in J by f(v). We
show next thatQ(J∗) = false, and, thus, thatcertainM(Q, Iφ) = false.

Assume, for the sake of contradiction, thatQ(J∗) = true. Then there is a functionh : {x1, x2, x3, y1,
y2, y3} → dom(J∗) such thatP (h(x1), h(x2), h(x3)), R(h(x1), h(y1)), S(h(x2), h(y2)), as well as
R(h(x3), h(y3)) belong toJ∗, andh(y1) 6= h(y2) andh(y2) 6= h(y3). SinceP (h(x1), h(x2), h(x3) belongs to
J∗, we only have to consider three cases for the value ofh(x2):

1. First,h(x2) = 1. Then it must be the case thath(x1) = q andh(x3) = q̂, for some propositional variable
q mentioned inφ. Further,h(y1) = f(⊥q), h(y2) = 1, andh(y3) = f(#q). It follows thatf(⊥q) 6= 1
andf(#q) 6= 1, which contradicts the definition of the functionf .

2. Second,h(x2) = 0. This case is similar to the previous one.

3. Finally,h(x2) = q, for some propositional variableq mentioned inφ. Then there is a clause(p∨ q ∨ r) in
φ such thath(x1) = p andh(x3) = r. Further,h(y1) = f(⊥p), h(y2) = f(#q), andh(y3) = f(⊥r), and
f(⊥p) 6= f(#q) andf(#q) 6= f(⊥r). It follows from the definition off thatf(⊥p) = f(⊥q) = f(⊥r),
and, thus, thatκ(p) = κ(q) = κ(r). This is a contradiction becauseκ is NOT-ALL-EQUAL.

(⇐) Assume, on the other hand, thatcertainM(Q, Iφ) = false. That is, there exists a solutionJ ′ such that
Q(J ′) = false. Let h : J → J ′ be a homomorphism fromJ to J ′. Let us define a valuationκ for the
propositional variables inφ as follows:κ(q) = 1 iff h(⊥q) = 1.

We show next that for each1 ≤ j ≤ m, if Cj = (p ∨ q ∨ r) thenκ(Cj) = 1, but it is not the case that
κ(p) = κ(q) = κ(r) = 1. This will show thatφ is NOT-ALL-EQUAL satisfiable. In order to do so, we first
show thath(⊥q) = 1 or h(#q) = 1, and thath(⊥q) = 0 or h(#q) = 0, for every propositional variableq
mentioned inφ.

Assume first, for the sake of contradiction, thath(⊥q) = 0 andh(#q) = 0, for some propositional variableq
mentioned inφ. Consider the functionf : {x1, y1, x2, y2, x3, y3} → dom(J ′), such thatf(x1) = q, f(y1) =
h(⊥q), f(x2) = f(y2) = 1, f(x3) = q̂, andf(y3) = h(#q). ThenP (f(x1), f(x2), f(x3)),
R(f(x1), f(y1)), S(f(x2), f(y2)), as well asQ(f(x3), f(y3)) belong toJ ′, andf(y1) 6= f(y2) andf(y2) 6=
f(y3). ThenQ(J ′) = true, which is a contradiction.

In the same way we can prove thath(⊥q) = 0 or h(#q) = 0, for every propositional variableq mentioned inφ.

Consider now an arbitraryj ∈ [1,m], and assume thatCj = (p ∨ q ∨ r). Consider the functionf :
{x1, y1, x2, y2, x3, y3} → dom(J ′), such thatf(x1) = p, f(y1) = h(⊥p), f(x2) = q, f(y2) = h(#q),
f(x3) = r, andf(y3) = h(⊥r). ThenP (f(x1), f(x2), f(x3)), R(f(x1), f(y1)), S(f(x2), f(y2)), as well as
R(f(x3), f(y3)) belong toJ ′. Therefore, sinceQ(J ′) = false, it must be the case thath(⊥p) = h(#q) or
h(#q) = h(⊥r). From the previous remark, eitherκ(p) = 1−κ(q) orκ(q) = 1−κ(r). In any case,κ(Cj) = 1,
and it is not the case thatκ(p) = κ(q) = κ(r) = 1.

This concludes the proof of the second part of the theorem.

We now prove part (3). That is, that there is a LAV data exchange settingM and a conjunctive queryQ with
two inequalities, such thatQ has almost constant inequalities but does not have constantjoins underM, and
CERTAIN-ANSWERS(M, Q) is CONP-complete.

43

The LAV settingM = (S,T,Σst) is as follows. The source schemaS consists of two binary relationsM andN ,
one ternary relationP , and one 4-ary relationR. The target schemaT consists of two binary relationsS andT , one
ternary relationU , and one 4-ary relationV . The setΣst of source-to-target dependencies is:

M(x, y) → ∃z(S(x, y) ∧ S(y, x) ∧ V (x, y, z, z) ∧ U(z, z, z) ∧ S(z, z))

R(x, y, v, w) → ∃z(T (x, z) ∧ T (y, z)∧ V (v, w, x, z) ∧ V (v, w, y, z))

P (x, y, z) → U(x, y, z)

N(x, y) → T (x, y)

The Boolean queryQ overT is as follows:

∃x∃x′∃y∃y′∃z∃z′∃x1∃y1∃x2∃y2(T (x1, y1) ∧ T (x2, y2)

∧ U(x, y, z) ∧ S(x, x′) ∧ S(y, y′) ∧ S(z, z′)∧

V (x1, x2, x
′, x′) ∧ V (x1, x2, y

′, y′) ∧ V (x1, x2, z
′, z′) ∧ x1 6= y1 ∧ x2 6= y2).

Clearly, Q has almost constant inequalities inM, but does not have constant joins inM. We prove next that
CERTAIN-ANSWERS(M, Q) is CONP-complete.

Membership inCONPfollows from [9]. TheCONP-hardness is established from a reduction from 3SAT to thecom-
plement of the problem studied, namely CERTAIN-ANSWERS(M, Q). More precisely, for every 3CNF propositional
formulaφ, we construct in polynomial time an instanceIφ of S such thatφ is satisfiable iffcertainM(Q, Iφ) = false.

Given a propositional formulaφ ≡
∧

1≤j≤m Cj in 3CNF, where eachCj is a clause, letIφ be the following source
instance:

• The interpretation of the binary relationM in Iφ contains the pair(q,¬q), for each propositional variableq
mentioned inφ;

• the interpretation of the binary relationN in Iφ contains the pairs(a, b) and(c, d), wherea, b, c andd are fresh
constants (not mentioned as propositional variables inφ);

• the interpretation of the ternary relationP in Iφ contains all triples(α, β, γ) such that for some1 ≤ j ≤ m,
(α ∨ β ∨ γ) = Cj ; and

• the interpretation of the 4-ary relationR in Iφ contains the tuple(q,¬q, a, c), for each propositional variableq
mentioned inφ.

Clearly,Iφ can be constructed in polynomial time fromφ.
Let #q be the null obtained from the application of the stdM(x, y) → ∃z(S(x, y) ∧ S(y, x) ∧ V (x, y, z, z) ∧

U(z, z, z) ∧ S(z, z)) to the tupleM(q,¬q), and let⊥q (or⊥¬q) be the null obtained from the application of the std
R(x, y, v, w)→ ∃z(T (x, z)∧T (y, z)∧R(v, w, x, z)∧R(v, w, y, z)) to the tuple(q,¬q, a, c). The canonical universal
solutionJ for Iφ is as follows:

• The interpretation ofS in J contains the pairs(q,¬q), (¬q, q), and(#q,#q), for each propositional variableq
mentioned inφ;

• the interpretation ofT in J contains a copy of the interpretation ofN in Iφ and the pairs(q,⊥q), (¬q,⊥q), for
each propositional variableq mentioned inφ;

• the interpretation ofU in J contains a copy of the interpretation ofP in Iφ and the tuple(#q ,#q,#q), for each
propositional variableq mentioned inφ; and

• the interpretation ofV in J contains the tuples(q,¬q,#q,#q), (a, c, q,⊥q), and(a, c,¬q,⊥q), for each propo-
sitional variableq mentioned inφ.

We prove next thatcertainM(Q, Iφ) = false iff φ is satisfiable.

44

(⇐) Assume thatφ is satisfiable, and letκ be a truth assignment for the propositional variables mentioned inφ such
thatκ(φ) = 1. Define a functionf from dom(J) into dom(J) as follows:

f(v) =






q v = ⊥q andκ(q) = 1

¬q v = ⊥q andκ(q) = 0

v otherwise

Let J∗ be the solution forIφ obtained fromJ by replacing each occurrence of an elementv in J by f(v). We
show next thatQ(J∗) = false, and, thus, thatcertainM(Q, Iφ) = false.

Assume, for the sake of contradiction, thatQ(J∗) = true. Then there is a functionh : {x, x′, y, y′, z,
z′, x1, y1, x2, y2} → dom(J∗), such that T (h(x1), h(y1)), T (h(x2), h(y2)), U(h(x), h(y), h(z)),
S(h(x), h(x′)), S(h(y), h(y′)), S(h(z), h(z′)), V (h(x1), h(x2), h(x

′), h(x′)), V (h(x1), h(x2), h(y
′), h(y′)),

andV (h(x1), h(x2), h(z
′), h(z′)) belong toJ∗, and, furthermore,h(x1) 6= h(y1) andh(x2) 6= h(y2). Since

V (h(x1), h(x2), h(x
′), h(x′)) belongs toJ∗, there are only two cases to consider with respect to the values

h(x1) andh(x2):

1. The first case is thath(x1) = q andh(x2) = ¬q, for some propositional variableq mentioned inφ. But
thenh(y1) = h(y2) = f(⊥q), becauseT (h(x1), h(y1) andT (h(x2), h(y2)) belong toJ∗ . It follows that
f(⊥q) 6= q andf(⊥q) 6= ¬q, which is in contradiction with the definition of the function f .

2. The second case is thath(x1) = a andh(x2) = c. But thenh(x′) = q or h(x′) = ¬q, for some
propositional variableq mentioned inφ. SinceS(h(x), h(x′)) belongs toJ∗, it must be the case that for
some clause(α ∨ β ∨ γ) in φ, h(x) = α, h(y) = β andh(z) = γ. Furthermore,h(x′) = ¬α. Since
κ(φ) = 1, it must be the case thatκ(α) = 1 or κ(β) = 1 or κ(γ) = 1. Assume thatκ(α) = 1. Since
V (h(x1), h(x2), h(x

′), h(x′)) = V (a, c,¬α,¬α) belongs toJ∗, it follows thatf(⊥α) = ¬α. But then
κ(α) = 0, which contradicts our previous assumption. The casesκ(β) = 1 or κ(γ) = 1 are identical.

(⇒) Assume, on the other hand, thatcertainM(Q, I) = false. Then there exists a solutionJ ′ for Iφ such that
Q(J ′) = false. Leth be a homomorphism fromJ toJ ′. Let us define a truth assignmentκ for the propositional
variables mentioned inφ as follows: κ(q) = 1 iff h(⊥q) = q. We prove next that for each1 ≤ j ≤ m,
κ(Cj) = 1, and, therefore, thatφ is satisfiable.

Let clauseCj be (α ∨ β ∨ γ) (j ∈ [1,m]). We prove first thath(⊥α) 6= ¬α or h(⊥β) 6= ¬β or
h(⊥γ) 6= ¬γ. Assume otherwise. Then the functionf : {x, x′, y, y′, z, z′, x1, y1, x2, y2} → dom(J ′) de-
fined asf(x1) = a, f(y1) = b, f(x2) = c, f(y2) = d, f(x) = α, f(x′) = ¬α, f(y) = β, f(y′) = ¬β,
f(z) = γ, f(z′) = ¬γ satisfies thatT (f(x1), f(y1)), T (f(x2), f(y2)), U(f(x), f(y), f(z)), S(f(x), f(x′)),
S(f(y), f(y′)), S(f(z), f(z′)), V (f(x1), f(x2), f(x′), f(x′)),
V (f(x1), f(x2), f(y′), f(y′)), V (f(x1), f(x2), f(z′), f(z′)) belong toJ ′. Further, f(x1) 6= f(y1) and
f(x2) 6= f(y2). ThenQ(J ′) = true, which is a contradiction.

We prove second that for each propositional variableq mentioned inφ, h(⊥q) = q or h(⊥q) = ¬q. Assume
otherwise. Then the functionf : {x, x′, y, y′, z, z′, x1, y1, x2, y2} → dom(J ′) defined asf(x1) = q, f(y1) =
h(⊥q), f(x2) = ¬q, f(y2) = h(⊥q), f(x) = f(x′) = f(y) = f(y′) = f(z) = f(z′) = #q, satisfies
thatT (f(x1), f(y1)), T (f(x2), f(y2)), U(f(x), f(y), f(z)), S(f(x), f(x′)), S(f(y), f(y′)), S(f(z), f(z′)),
V (f(x1), f(x2), f(x′), f(x′)), and also satisfies
V (f(x1), f(x2), f(y′), f(y′)) andV (f(x1), f(x2), f(z′), f(z′)) belong toJ ′. Further,f(x1) 6= f(y1) and
f(x2) 6= f(y2). ThenQ(J ′) = true, which is a contradiction.

We finally prove thatκ(Cj) = 1. Assume first thath(⊥α) 6= ¬α. Thenh(⊥α) = α, and, thus,κ(α) = κ(Cj) =
1. The cases whenh(⊥β) 6= ¬β andh(⊥γ) 6= ¬γ are identical.

This concludes the proof of the theorem. 2

45

A.3 Proof of Theorem 6.5

Fix an FO sentenceφ ≡ ∃x1 · · · ∃xp∀y1 · · · ∀ymψ in the Bernays-Schönfinkel class. Thus, we have that the vocabulary
of φ is constant-free, and thatψ mentions neither any function symbol nor the equality symbol. Also, let{R1, . . . , Rn}
be the set of all relation symbols mentioned inψ. For each relationRi, 1 ≤ i ≤ n, we letri denote the arity ofRi.
Along the proof we heavily use the following property ofφ: Eitherφ is unsatisfiable, or it has a model with at most
p elements (see, e.g., [6]). Finally, letS1, . . . , S` be an enumeration of all the subformulas ofψ, and assume, without
loss of generality thatS1 = ψ.

To give the intuition behind our reduction, we start by showing a weaker result, namely that
CERTAIN-ANSWERS(GLAV , 2-UCQ6=) is CONEXPTIME-hard, where 2-UCQ6= is the class of unions of conjunc-
tive queries with at most two inequalities per disjunct. This result is proved by a polynomial-time reduction from the
satisfiability problem for the Bernays-Schönfinkel class,that is, we start by showing how to construct in polynomial
time fromφ a GLAV data exchange settingM = (S,T,Σst), a 2-UCQ6= queryQ, and an instanceI of S, such that
φ is satisfiable iffcertainM(Q, I) = false. Although this is still not sufficient to prove the theorem, becauseQ
belongs to 2-UCQ6=, the construction helps obtaining intuition for the secondpart of the proof, which is technically
more involved. Second, using a refinement of the techniques in the first part of the proof, we show how to construct
in polynomial time fromφ another GLAV data exchange settingM′ = (S′,T′,Σ′

st), a conjunctive queryQ′ with two
inequalities, and an instanceI ′ of S′, such thatφ is satisfiable iffcertainM′(Q′, I ′) = false, and, thus, we conclude
that CERTAIN-ANSWERS(GLAV , 2-CQ6=) is CONEXPTIME-hard.

The intuition of the first part of the reduction is the following. We construct a source instanceI such that dom(I)
includesp elementsa1, . . . , ap. This is justified by the fact, mentioned above, that ifφ is satisfiable then it has a
model of size at mostp. We then construct a setΣst of st-tgds such that for each tupleā of ri elements of dom(I)
(i ∈ [1, n]), R′

i(ā,⊥) belongs to CAN(I), where⊥ is a fresh null value. The target schemaT will also contain one
relationFj of arity m + 1 for each subformulaSj of ψ (j ∈ [1, `]), such that for each tuplēb = (b1, . . . , bm) of m
elements of dom(I), Fj(b̄,⊥) belongs to CAN(I). We are interested in those solutions forI in which each of these
null values is replaced by the element either 0 or 1. With eachsuch solutionJ , we naturally identify a structureAJ

over the vocabulary{R1, . . . , Rk} as follows: ā belongs to the interpretation of the symbolRi in AJ if and only if
R′

i(ā, 1) ∈ J . Moreover, from those solutionsJ that define a structure, we are interested in the ones that assign truth
values to each subformula ofψ in a consistent way. That is, we are interested in those solutionsJ such that for every
j ∈ [1, `], it holds thatFj(b̄, 1) ∈ J , whereb̄ = (b1, . . . , bm), if and only ifAJ satisfies subformulaSj with each
variableyi replaced bybi and each variablexi replaced byai. Then the 2-UCQ6= queryQ constructed in this first
reduction is used to verify whether there exists an assignment for the variablesy1, . . ., ym such thatF1 does not hold.
Thus, given that subformulaS1 = ψ, if Q is evaluated over a solutionJ that represents a structureAJ , thenQ holds
in J if AJ does not satisfy the formula∀y1 · · · ∀ymψ with each variablexi replaced by valueai (1 ≤ i ≤ p). Hence,
given that for every structureA with at mostp elements, there exists a solutionJ for I underM such thatAJ is
isomorphic toA (notice that we are no assuming thatai andaj represent distinct elements ifi 6= j, although they are
distinct constant symbols in our reduction), we have thatφ is satisfiable if and only if there exists a solutionJ for I
underM whereQ does not hold, that is, if and only ifcertainM(Q, I) = false.

We now present the first reduction.

• The source schemaS consists of three unary relationsB,O andU , a set of unary relations{V1, . . . , Vp} (recall
thatp is the number of existentially quantified variables inφ), two ternary relationsC andD, and one binary
relationE.

• The target schemaT consists of a relationR′
i of arity ri + 1, for eachi ∈ [1, n], a set{V ′

1 , . . . , V
′
p} of unary

relations, two other unary relationsO′ andU ′, two ternary relationsC′ andD′, a binary relationE′, and an
extra set of relations{F1, . . . , F`} each with aritym + 1 (recall that̀ is the number of subformulas ofψ, and
thatm is the number of universally quantified variables ofφ).

• The instanceI is as follows. The domain ofI contains the elementsa1, ..., ap, plus two different constants not

46

used elsewhere in the instance,1 and0. The interpretation inI of each symbol ofS is as follows:

BI = {a1, . . . , ap},

OI = {0},

U I = {1},

CI = {(1, 1, 1), (1, 0, 0), (0, 1, 0), (0, 0, 0)},

DI = {(1, 1, 1), (1, 0, 1), (0, 1, 1), (0, 0, 0)},

EI = {(0, 1), (1, 0)},

V I
i = {ai}, for eachi ∈ [1, p].

• The setΣst of source-to-target dependencies is as follows:

– For eachi ∈ {1, . . . , n} we create a copy of every relationVi into V ′
i :

Vi(x) → V ′
i (x)

We also create a copy ofO, U , C,D andE intoO′, U ′, C′,D′ andE′, respectively:

O(x) → O′(x)

U(x) → U ′(x)

C(x, y, z) → C′(x, y, z)

D(x, y, z) → D′(x, y, z)

E(x, y) → E′(x, y)

– For eachi ∈ {1, . . . , n}, we populate eachR′
i (of arity ri + 1) with every tuple of arityri that can be

constructed from the constants inB, and create a new null value associated with each such tuple:

B(x1) ∧ · · · ∧B(xri
) → ∃z R′

i(x1, ..., xri
, z)

As we mentioned before, we are interested in those solutionsfor I that replace each such null value with
either 0 or 1, as with each such solutionJ , we associate a structureAJ over vocabulary{R1, . . . , Rn} as
follows: ā belongs to the interpretation ofRi in AJ iff R′

i(ā, 1) ∈ J .

– We do the same for each symbolFj . That is, for everyj ∈ {1, . . . , `}, we populate eachFj (of arity
m+ 1) with every tuple of aritym that can be constructed from the constants inB, and create a new null
value associated with each such tuple:

B(x1) ∧ · · · ∧B(xm) → ∃z Fj(x1, ..., xm, z)

We are interested in those solutions that replace each such null value with 0 or 1. Informally,
Fj(ai1 , . . . , aim

, 1) belongs to one of these solutionsJ iff the subformulaSj of ψ holds inAJ , whenever
we assign to the universally quantified variablesy1, ..., ym the elementsai1 , ..., aim

and to the existentially
quantified variablesx1, . . . , xp the elementsa1, . . . , ap.

It is clear at this point what the canonical universal solution CAN(I) for I is. Before presenting the query
Q, we give an intuition of whatQ does: In order to verify that the formulaφ is satisfiable, one must show a
structureA such thatA |= φ. Intuitively, the queryQ will first nondeterministically choose a structureA from
the set of all possible structures that can be built usingp elements. Once the structure is chosen,Q will verify
that such structure indeed satisfies the formulaφ. To that extent, first,Q has to nondeterministically guess an
interpretation of each relation in{R′

1, . . . , R
′
k}. It does so by assigning either a value1 or a value0 to every

null ⊥ that belongs to a tuple of the formR′
i(ā,⊥) in CAN(I). Intuitively, if the value1 is assigned to the

47

null ⊥ in the tupleR′
i(ā,⊥), then the interpretation of the relationRi in A will contain the tuplēa. Second,Q

will proceed in the same way for each relation in{F1, . . . , F`}, where the assignment of the value1 to a null
⊥ that belongs to the tupleFj(b̄,⊥) in CAN(I), whereb̄ = (b1, . . . , bm), represents that thej-th subformula
of ψ (denoted bySj) holds inA when we assign the elementsb1, . . . , bm to the variablesy1, . . . , ym and the
elementsa1, . . . , ap to the variablesx1, . . . , xp, respectively. Afterwards,Q must verify that the assigned null
values represent a consistent valuation of the subformulasin A. Finally, the query will ask if for somēc there
is a tupleF1(c̄,⊥) in CAN(I) such that the null⊥ has been assigned the value 0, which intuitively means that
A does not satisfy∀y1 · · · ∀ymψ with each variablexi replaced by valueai (1 ≤ i ≤ p).

Formally, the queryQ is defined asQα ∨Qβ ∨Qγ ∨Qδ, where

– Qα is

(∨

i∈[1,n]

Qi
α1

)
∨

(∨

j∈[1,`]

Qj
α2

)
, where eachQi

α1
is defined as follows:

∃z1 · · · ∃zri
∃n∃v∃w (R′

i(z1, . . . , zri
, n) ∧O′(v) ∧ U ′(w) ∧ n 6= v ∧ n 6= w).

and eachQj
α2

is defined as:

∃z1 · · · ∃zm∃n∃v∃w (Fi(z1, . . . , zm, n) ∧O′(v) ∧ U ′(w) ∧ n 6= v ∧ n 6= w).

Consider an arbitrary solutionJ for I. Notice that if for some1 ≤ i ≤ n the evaluation ofQi
α1

over
J is false, then all tuples in the interpretation of the relation R′

i over J must be of formR′
i(ā, 0) or

R′
i(ā, 1). Likewise, if for some1 ≤ j ≤ ` the evaluation ofQj

α2
overJ is false, then all tuples in the

interpretation of the relationFj overJ must be of formFj(ā, 0) orFj(ā, 1). Hence, if a solutionJ is such
thatqα(J) = false, then all the tuples in the relationsR′

1, . . . , R
′
n andF1, . . . , F` in J must contain a0

or a1 in its last argument.

– Let Θ ⊆ {1, . . . , `} be the set of all indexesj such thatSj is an atomic formula. The queryQβ is defined
as

∨
j∈ΘQ

j
β, where for eachj such thatSj = Ri(x̄, ȳ), x̄ is a tuple of variables in{x1, . . . , xp} andȳ is

a tuple of variables in{y1, . . . , ym}, the queryQj
β is as follows:

∃y1 · · · ∃ym∃n∃v∃x̄ (Fj(y1, . . . , ym, n) ∧R′
i(x̄, ȳ, w) ∧

∧

xk∈x̄

V ′
k(xk) ∧ n 6= w). (38)

Consider now a solutionJ that does not satisfyQα, and consider the associated structureAJ . Assume
thatSj holds (resp., does not hold) inAJ when we assign elementsai1 , ..., aim

to variablesy1, ..., ym and
elementsa1, . . . , ap to variablesx1, . . . , xp. Since the tupleFj(ai1 , . . . , aim

,⊥) belongs to CAN(I), then
J does not satisfyQj

β only if J contains the tupleFj(ai1 , . . . , aim
, 1) (resp. Fj(ai1 , . . . , aim

, 0)), and
J contains no other tuple of the formFj(ai1 , . . . , aim

, v), with v 6= 1 (resp. v 6= 0). Intuitively, every
solutionJ that satisfies neitherQα norQj

β is such that a tuplēa is in the interpretation of the relationRi

in AJ iff the subformulaSj holds under an assignmentg of the variables inφ, such thatg assigns the
elementsa1, . . . , ap to the existentially quantified variablesx1, . . . , xp, andg(x̄, ȳ) = ā.

It is important to notice that predicateV ′
k is included in (38) to ensure that variablexk in x̄ is assigned

valueak, asV ′
k in CAN(I) is a copy of the interpretation ofVk in I, andV I

k = {ak}.

– Let Θ be as above. ThenQγ is defined as
∨

k∈({1,...,`}rΘ)

Qk
γ , where each queryQk

γ is defined as follows:

- If Sk = (Sg ∨ Sh), then

Qk
γ = ∃y1 · · · ∃ym∃n∃v∃w∃z (Fk(y1, . . . , ym, n) ∧ Fg(y1, . . . , ym, v) ∧

Fh(y1, . . . , ym, w) ∧D′(v, w, z) ∧ n 6= z).

48

- If Sk = (Sg ∧ Sh), then

Qk
γ = ∃y1 · · · ∃ym∃n∃v∃w∃z (Fk(y1, . . . , ym, n) ∧ Fg(y1, . . . , ym, v)∧

Fh(y1, . . . , ym, w) ∧ C′(v, w, z) ∧ n 6= z).

- If Sk = (¬Sg), then

Qk
γ = ∃y1 · · · ∃ym∃n∃v∃z (Fk(y1, . . . , ym, n) ∧ Fg(y1, . . . , ym, v) ∧ E

′(v, z) ∧ n 6= z).

The purpose of this query is similar toQβ , but here we ensure the correct interpretation of the subformulas
of ψ that are Boolean combinations of other subformulas. For this reason, the tuples in relationsC′, D′

andE′ encode the truth tables of∧, ∨ and¬, respectively. For example, ifSk = (Sg ∧Sh), and a solution
J that satisfies neitherQα norQβ is such that it contains tuplesFg(ā, 1) andFh(ā, 1), thenJ does not
satisfyQk

γ only if Fk(ā, 1) is the only tuple of the formFk(ā, v) in J .

– Finally,Qδ is defined to be∃y1 · · · ∃ym∃v(F1(y1, . . . , ym, v) ∧O′(v)). This query asks for a tuple of the
form F1(b̄, 0). That is, this query will not hold in a solutionJ if and only if none of the the tuples in the
interpretation ofF1 in J contains a 0 in its last argument.

At this point, it is instructive to show an example of the reduction, to get the idea of the construction.

Example A.3 Letφ be the formula∃x1∃x2∀y1(R1(x1, y1)∨(¬R1(x2, y1))). Recall that the source schemaS consists
of relationsB, O, U , C, D, E as described above, plus extra relationsV1 andV2. The target schemaT consists of
relationsO′, U ′, C′,D′, E′, R′

1, F1, F2, F3 andF4 (because(R1(x1, y1) ∨ (¬R1(x2, y1))) has 4 subformulas). The
enumeration of the subformulas of(R1(x1, y1) ∨ (¬R1(x2, y1))) is as follows:S1 = (R1(x1, y1) ∨ (¬R1(x2, y1))),
S2 = (¬R1(x2, y2)), S3 = R1(x1, y1) andS4 = R1(x2, y1). Then the source-to-target dependencies are:

V1(x) → V ′
1(x)

V2(x) → V ′
2(x)

O(x) → O′(x)

U(x) → U ′(x)

C(x, y, z) → C′(x, y, z)

D(x, y, z) → D′(x, y, z)

E(x, y) → E′(x, y)

B(x1) ∧B(x2) → ∃zR′
1(x1, x2, z)

B(x1) → ∃zF1(x1, z)

B(x1) → ∃zF2(x1, z)

B(x1) → ∃zF3(x1, z)

B(x1) → ∃zF4(x1, z)

The instanceI of S is constructed as follows:BI = {a1, a2}, 0I = {0} and U I = {1}. Furthermore,
CI = {(1, 1, 1), (1, 0, 0), (0, 1, 0), (0, 0, 0)},DI = {(1, 1, 1), (1, 0, 1), (0, 1, 1), (0, 0, 0)}, andEI = {(0, 1), (1, 0)}.
Finally, V I

1 = {a1} andV I
2 = {a2}. In this case, CAN(I) contains the following interpretations of the symbolsR′

1,
F1, F2, F3 andF4 (all the other relations are simple copies of the respectiverelations inI). The interpretation of
R′

1 in CAN(I) contains the tuples(a1, a1,⊥1), (a2, a2,⊥2), (a1, a2,⊥3), and(a2, a1,⊥4). The interpretation of the
relationsF1 in CAN(I) contains the tuples(a1,⊥5) and(a2,⊥6); the interpretation of the relationsF2 in CAN(I)
contains the tuples(a1,⊥7) and(a2,⊥8); the interpretation of the relationsF3 in CAN(I) contains the tuples(a1,⊥9)
and(a2,⊥10); and interpretation of the relationsF4 in CAN(I) contains the tuples(a1,⊥11) and(a2,⊥12). Finally,
the queriesQα,Qβ ,Qγ andQδ are as follows in this case:

49

• Qα is the union of the following queries:

Q1
α1

= ∃x1∃x2∃n∃v∃w(R′
1(x1, x2, n) ∧O′(v) ∧ U ′(w) ∧ n 6= v ∧ n 6= w)

Q1
α2

= ∃x1∃n∃v∃w(F1(x1, n) ∧O′(v) ∧ U ′(w) ∧ n 6= v ∧ n 6= w)

Q2
α2

= ∃x1∃n∃v∃w(F2(x1, n) ∧O′(v) ∧ U ′(w) ∧ n 6= v ∧ n 6= w)

Q3
α2

= ∃x1∃n∃v∃w(F3(x1, n) ∧O′(v) ∧ U ′(w) ∧ n 6= v ∧ n 6= w)

Q4
α2

= ∃x1∃n∃v∃w(F4(x1, n) ∧O′(v) ∧ U ′(w) ∧ n 6= v ∧ n 6= w)

• Qβ is the union ofQ3
β andQ4

β, where:

Q3
β = ∃y1∃n∃v∃x1(F3(y1, n) ∧R′

1(x1, y1, w) ∧ V ′
1(x1) ∧ n 6= w)

Q4
β = ∃y1∃n∃v∃x2(F4(y1, n) ∧R′

1(x2, y1, w) ∧ V ′
2(x2) ∧ n 6= w)

• Qγ is the union ofQ1
γ andQ2

γ , where:

Q1
γ = ∃y1∃n∃v∃w∃z(F1(y1, n) ∧ F3(y1, v) ∧ F2(y1, w) ∧D′(v, w, z) ∧ n 6= z)

Q2
γ = ∃y1∃n∃v∃z(F2(y1, n) ∧ F4(y1, v) ∧E

′(v, z) ∧ n 6= z)

• Qδ = ∃y1∃v(F1(y1, v) ∧O′(v)).

This concludes the example. 2

From the definitions of data exchange settingM, source instanceI and queryQ, it is straightforward but lengthy
to prove thatφ is satisfiable if and only ifcertainM(Q, I) = false, which concludes the proof of the fact that
CERTAIN-ANSWERS(GLAV , 2-UCQ6=) is CONEXPTIME-hard.

We now continue with the second part of the reduction. As we mentioned before, the problem with the previous
queryQ is that it is aunionof conjunctive queries with at most two inequalities per disjunct. Fix a FO formulaφ that
belongs to the Bernays-Schönfinkel class. Next, based on the previous reduction, we construct forφ a second data
exchange settingM′ = (S′,T′,Σ′

st), an instanceI ′ of S′ and a conjunctive queryQ′ with two inequalities, and then
provide a complete proof thatφ is satisfiable iffcertainM′(Q′, I ′) = false.

First, let us explain some of the techniques used in the second reduction. Recall that in the previous reduction
the target schema contained the relation symbolsR1, . . . , Rn andF1, . . . , F`. The idea of the second reduction is to
use a single relation symbolR′ to code the same information stored in the relation symbolsR1, . . . , Rn of the first
reduction. In order to do this, we use the first position inR′ to store the particular relationRi, 1 ≤ i ≤ n of φ that is
being represented. Notice that we do not assume that the relations are of the same arity; instead we choose the arity of
R′ depending on the maximum arity of all relations in the vocabulary ofφ. We will also code the information that was
previously stored in the relation symbolsF1, . . . , F` by using again a single relation symbolF ′ and an extra element
to store which subformulaSj , 1 ≤ j ≤ ` is being represented.

We need some additional notation. Let again` be the number of subformulas ofφ, andΘ ⊆ {1, . . . , `} be the set
of all indexesj such thatSj is an atomic formula. Let|Θ| be the size ofΘ, that is, the number of atomic subformulas
of φ. We assume thatΘ is ordered, and we use a functionτ : Θ → {1, . . . , |Θ|} such thatτ(j) = m if j is them-th
element ofΘ.

Now we show the data exchange settingM′:

• The source schemaS′ consists of eight unary relationsEa, Eb, Ef , D, B, C, O andU , a set{Q1, ..., Qn} of
unary relations (one for each relationRi), another set of unary relations{V1, ..., Vp} (recall thatp is the number
of existentially quantified variables inφ), a relationZ of arity 4, and a relationA of arity equal to|Θ|+ 5.

• The target schemaT′ consists of a relationR′ with arity maxi∈[1,n] ri + 2, a relationZ ′ of arity 4, a relation
A′ with the same arity thanA, a relationF ′ of arity m + 2 (recallm is the number of universally quantified
variables inφ), and a set of binary relations{V ′

1 , ..., V
′
p}.

50

• The instanceI ′ is as follows. The domain ofI ′ contains the elementsa1, . . . , ap, s1, . . . , s`, c1, . . . , cn, plus
the elementssf , sa, sb, 1, 0, andd. The interpretation of each symbol inS in I ′ is as follows:

– BI′

= {a1, . . . , ap}.

– OI′

= {0},U I′

= {1} andDI′

= {d}.

– EI′

a = {sa},EI′

b = {sb} andEI′

f = {sf}

– CI′

= {s1, . . . , s`}.

– QI′

k = {ck} for everyk ∈ [1, n].

– V I′

i = {ai} for everyi ∈ [1, p].

– AI′

is as follows:

- It contains a tuple with onlyds, except for asf in its first position and elementss1, 0 in the
last two positions. For example, if the arity ofA is 8, we would create the following tuple:
A(sf , d, d, d, d, d, s1, 0).

- For eachi ∈ [1, n],AI′

will contain a tuple in which every position contains the elementd, except for
the first position that contains the elements0, the second position that contains the elementci, and the
last position that contains the element1. For example, if the arity ofA is 8, we would create a tuple
A(sa, ci, d, d, d, d, d, 1) for each1 ≤ i ≤ n.

- For eachj ∈ [1, `],AI′

will contain a tuple in which every position contains the elementd, except for
the first position that contains the elementsb, the second position that contains the elementsj , and the
last position that contains the element1. For example, if the arity ofA is 8, we would create a tuple
A(sb, sj , d, d, d, d, d, 1) for each1 ≤ j ≤ `.

- For each subformulaSj of ψ such thatj ∈ Θ, assume thatSj = Ri(z̄), AI′

contains two tuples with
only d’s, except for an elementsj in the first position, aci in the(τ(j) + 2)th position and either the
element0 or the element1 in the last position. For example, if if the arity ofA is 8, for S2 ≡ R2 and
such thatτ(2) = 1, we would create the tuples:A(s2, d, c2, d, d, d, d, 0) andA(s2, d, c2, d, d, d, d, 1).

- Then for each subformulaSj , j 6∈ Θ, such thatSj ≡ (Sg ∧ Sh) or Sj ≡ (Sg ∨ Sh), AI′

contains
two tuples, both with onlyd’s except for an elementsj in the first position, and elementssg, sh,
and either the element0 or the element1 in the last three positions. Continuing with the example,
if if the arity of A is 8 and if S1 ≡ (S2 ∧ S3) then we create tuplesA(s1, d, d, d, d, s2, s3, 0) and
A(s1, d, d, d, d, s2, s3, 1).

- For each subformulaSj , j 6∈ Θ, such thatSj ≡ (¬Sg), AI′

contains two tuples, both with onlyd’s
except for the elementsj in the first position, and elementssg and either the element0 or the element
1 in the last two positions. Continuing with the example, if ifthe arity ofA is 8 and ifS1 ≡ (¬S2)
then we create tuplesA(s1, d, d, d, d, d, s2, 0) andA(s1, d, d, d, d, d, s2, 1).

– Finally, we constructZI′

as follows:

- The tuple(sf , 0, 0, 1) belongs toZI′

.

- For each subformulaSj , j ∈ Θ, the following tuples belong toZI′

: (sj , 0, 0, 1) and(sj , 0, 0, 0).

- For each subformulaSj , j 6∈ Θ, such thatSj ≡ Sg ∨ Sh, the following tuples belong toZI′

:
(sj , 1, 1, 1), (sj , 0, 1, 1),(sj, 1, 0, 1) and(sj , 0, 0, 0).

- For each subformulaSj , j 6∈ Θ, such thatSj ≡ Sg ∧ Sh, the following tuples belong toZI′

:
(sj , 1, 1, 1), (sj , 0, 1, 0), (sj , 1, 0, 0) and(sj , 0, 0, 0).

- For each subformulaSj , j 6∈ Θ, such thatSj ≡ ¬Sg, the following tuples belong toZI′

:
(sj , 0, 1, 0)and(sj , 0, 0, 1).

This finishes the definition ofI ′.

• The setΣ′
st of source-to-target dependencies is as follows:

51

– We create a copy ofA andZ intoA′ andZ ′, respectively:

A(x̄) → A′(x̄) (39)

Z(x, y, z, w) → Z ′(x, y, z, w) (40)

– For eachi ∈ [1, p], we copy every pair of the form(sk, ai), k ∈ [1, `], intoV ′
i :

Vi(x) ∧ C(y) → V ′
i (y, x) (41)

– For eachi ∈ [1, p], we copy every pair of the form(aj , sa), (aj , sb) and(aj , sf), j ∈ [1, p], intoV ′
i :

B(x) ∧ Ea(z) → V ′
i (z, x) (42)

B(x) ∧ Eb(z) → V ′
i (z, x) (43)

B(x) ∧ Ef (z) → V ′
i (z, x) (44)

– Let rmax bemaxi∈[1,n] ri. For eachi ∈ [1, n] we add the following st-tgds toΣ′
st:

Qi(y) ∧Ea(z) ∧D(w) ∧O(v)∧

B(xi) ∧ · · · ∧B(xri
)∧

D(xri+1) ∧ · · · ∧D(xrmax
) → ∃n

(
R′(y, x1, . . . , xrmax

, n) ∧R′(w, x1, . . . , x1, n) ∧

F ′(y, x1, . . . , x1, n) ∧ Z ′(z, v, v, n)
)

(45)

The main idea of this dependency is to populate the relationR with each possible tuple that can be con-
structed using an element fromc1, . . . , cn in the first position and elements froma1, . . . , ap in the next
rmax positions. As mentioned before, this tuple will encode all of the tuples in the relationsR1, . . . , Rn

of the previous reduction. The problem is that the arity of these relations may not be the same. For that
reason, for eachi ∈ [1, n], the tuples starting withci are only populated with combinations of lengthri.
The remaining positions of the tuples are filled with the elementd. More precisely, for eachi ∈ [1, n]
and tupleaj1 , . . . , ajri

of elements in{a1, . . . , ap}, we add the following tuples to the interpretation ofR′

in CAN(I ′): (ci, aj1 , . . . , ajri
, d, . . . , d,⊥) and(d, aj1 , . . . , aj1 , aj1 , . . . , aj1 ,⊥), where⊥ is a fresh null

value. In such case, we also add the tuple(sa, 0, 0,⊥) to the interpretation ofZ ′ in CAN(I ′), and the tuple
(ci, aj1 , . . . , aj1 ,⊥) to the interpretation ofF ′ in CAN(I ′).

– We also add the following st-tgd toΣ′
st:

C(y) ∧ Eb(z) ∧D(w) ∧O(v) ∧

B(x1) ∧ · · · ∧B(xm) → ∃n
(
F ′(y, x1, . . . , xm, n) ∧ Z ′(z, v, v, n) ∧

R′(y, x1, . . . , x1, n) ∧R′(w, x1, . . . , x1, n)
)

(46)

The idea is that the interpretation ofF ′ in CAN(I ′) contains for everyj ∈ [1, `] and every tuple
ai1 , . . . , aim

of elements in{a1, . . . , ap}, the tuple(sj , ai1 , . . . , aim
,⊥), where⊥ is a fresh null value. In

such case, we also add the tuples(sj , ai1 , . . . , ai1 ,⊥) and(d, ai1 , . . . , ai1 ,⊥) to the interpretation ofR′,
and the tuple(sb, 0, 0,⊥) to the interpretation ofZ ′ in CAN(I ′).

– The following are also inΣ′
st:

D(y) ∧O(z) ∧B(x1) ∧ · · · ∧B(xrmax
) → R′(y, x1, . . . , xrmax

, z) (47)

D(y) ∧ U(z) ∧B(x1) ∧ · · · ∧B(xrmax
) → R′(y, x1, . . . , xrmax

, z) (48)

That is, every tuple of the form(d, ai1 , . . . , airmax
, 0) and(d, ai1 , . . . , airmax

, 1), whereai1 , . . . , airmax
is

a tuple of elements in{a1, . . . , ap}, belongs to the interpretation ofR′ in CAN(I ′).

52

– Finally, we also add the following st-tgds toΣ′
st:

D(y) ∧O(z) ∧B(x1) ∧ · · · ∧B(xm) → F ′(y, x1, . . . , xm, z) (49)

D(y) ∧ U(z) ∧B(x1) ∧ · · · ∧B(xm) → F ′(y, x1, . . . , xm, z) (50)

Ea(y) ∧O(z) ∧B(x1) ∧ · · · ∧B(xm) → F ′(y, x1, . . . , xm, z) (51)

Eb(y) ∧O(z) ∧B(x1) ∧ · · · ∧B(xm) → F ′(y, x1, . . . , xm, z) (52)

Ef (y) ∧O(z) ∧B(x1) ∧ · · · ∧B(xm) → F ′(y, x1, . . . , xm, z) (53)

That is, every tuple of the form(d, ai1 , . . . , aim
, 0) and(d, ai1 , . . . , aim

, 1), whereai1 , . . . , aim
is a tu-

ple of elements in{a1, . . . , ap}, belongs to the interpretation ofF ′ in CAN(I ′). Also, every tuple of
form (sa, ai1 , . . . , aim

, 0), (sb, ai1 , . . . , aim
, 0) or (sf , ai1 , . . . , aim

, 0), whereai1 , . . . , aim
are elements

in {a1, . . . , ap}, belongs to the interpretation ofF ′ in CAN(I ′).

This finishes the definition ofΣ′
st.

We now show the Boolean CQ queryQ′ with two inequalities. We first define a functionκ : Θ → {1, . . . , n} such
thatκ(j) = i iff the atomic formulaSj mentions the relationRi. Moreover, for everyj ∈ Θ, we assume that everySj

is of the formSj = Rτ(j)(x̄j , ȳj). The queryQ′ is as follows:

Q′ ≡ ∃x1 · · · ∃xp∃y1 · · · ∃ym∃t0∃t1 · · · ∃t|Θ|∃z
a
1 · · · ∃z

a
rmax
∃zb

1 · · · ∃z
b
m∃q∃r∃k∃k

′∃u∃v∃w∃w′∃h1 · · · ∃h|Θ|[
A′(q, t0, t1, . . . , t|Θ|, k, k

′, u) ∧R′(t0, z
a
1 , . . . , z

a
rmax

, v) ∧ F (t0, z
b
1, . . . , z

b
m, v) ∧

∧

j∈Θ

(
R′(tτ(j), x̄j , ȳj , h̄τ(j), v)

)
∧

∧

i∈[1,p]

V ′
i (q, xi) ∧

F ′(q, y1, . . . , ym, n) ∧ F ′(k, y1, . . . , ym, w) ∧ F ′(k′, y1, . . . , ym, w
′) ∧

Z ′(q, w,w′, v) ∧ n 6= v ∧ u 6= v

]

where each tuplēhτ(j), for j ∈ Θ, is a tuple of variableshτ(j) such that, ifSj = Ri thenrmax = ri + |h̄τ(j)|.
Before we continue with the proof, we explain the intuition behind the queryQ′. As opposed to the query of the

first part of this proof, the queryQ′ is a single conjunctive query with two inequalities. Thus, the second reduction
must correctly simulate the queriesQα, Qβ, Qγ andQδ that where used in the first part of the reduction using a single
query. To this extent, we use the relationZ ′ to code the values previously stored in the relationsC′, D′ andE′. We
also use the relationA′ as a controller for the query. The intuition behind the relationA can be explained as follows:
as for the first part of the reduction, we are interested in those solutions forI in which each of the null values in the
relationsR′ andF ′ in CAN(I) are replaced by the element0 or 1. Assume thatQ′ holds in one of these solutionsJ ,
and letρ be an assignment for the variables ofQ′ that satisfy the body of the query. By taking a closer look at the
possible tuples ofA′ in CAN(I) we find several possible assignments forρ(q). Each of these possible assignments
represent which part ofQα, Qβ, Qγ orQδ isQ′ simulating. More precisely, whenρ(q) = sa or ρ(q) = sb, the query
Q′ will representQα1

andQα2
, respectively. Further, ifρ(q) = sj for somej ∈ Θ, thenQ′ will work asQβ. On the

other hand, ifρ(q) = sj for somej 6∈ Θ, the queryQ′ will simulate the queryQγ . Finally, the queryQδ is simulated
byQ′ whenρ(q) = sf .

We also make considerable use of tuples that contain the elementd. Intuitively, this element is used as a special
wildcard element byQ′. For example, let againJ be a solution build by replacing the nulls in CAN(I) by the element
0 or 1, assume thatQ′ holds inJ , and letρ again be a satisfying assignment for the variables ofQ′. Assume also that
ρ(q) = sa. In this case, since the queryQ′ is intuitively simulating the queryQα1

, one would expect no use for any
predicate inQ′ using the relationF . Nevertheless, queryQ′ contains, for example, the predicateF ′(k, y1, . . . , ym, w).
By looking at the relationA′ in CAN(I), one obtains that ifρ(q) = sa, thenρ must assign the elementd to k. Further,
we know from the applications of st-tgds (49) and (50) that the solutionJ must contain tuples of the formF ′(d, c̄, 0)
andF ′(d, c̄, 1) for every combination̄c of elements in{a1, . . . , ap}. This ensures in particular that there will always

53

be a witness for the predicateF ′(k, y1, . . . , ym, w) of Q′ in J when the assignmentρ assigns the elementsa to the
variableq in Q′.

We now show thatφ is satisfiable is and only ifcertainM′(Q′, I ′) = false.
(⇐) Assume first thatφ is satisfiable. Then, it is satisfiable by a structure of cardinality at mostp. Let A be

such structure, and assume without loss of generality that the elements ofA are{a1, . . . , ap} and thatA satisfies
∀y1 . . . ∀ym ψ when we assign to each free variablexi in ψ the corresponding elementai in A, i ∈ [1, p]. Define a
functionh from CAN(I ′) to CAN(I ′) as follows:

• If v is a constant, thenh(v) = v;

• h(v) = 1, if v is the null value⊥ such that the tupleR′(ci, ai1 , . . . , airi
, d, . . . , d,⊥) belongs to CAN(I ′) and

the interpretation of the relationRi in A contains the tuple(ai1 , . . . , airi
), ail

∈ {a1, . . . , ap}, l ∈ [1, ri];

• h(v) = 1, if v is a null value⊥ such that the tupleF (sj , aj1 , . . . , ajm
,⊥) belongs to CAN(I ′) and the subfor-

mulaSj holds inAwhen we assign to the universally quantifies variablesy1, . . . , ym the elementsaj1 , . . . , ajm
,

bjl
∈ {a1, . . . , ap}, l ∈ [1,m], and to the existentially quantifies variablesx1, . . . , xb the elementsa1, . . . , ap;

and

• otherwise,h(v) = 0.

Let J∗ be the solution obtained by replacing each elementv in CAN(I ′) for h(v). Notice also that the functionh
assigns to each null in CAN(I ′) an element in{0, 1}. We now show that the evaluation ofQ′ overJ∗ is false, and thus
certainM′(Q′, I ′) = false.

Assume for the sake of contradiction thatQ′(J∗) = true. Then, there is a functionf :
{x1, . . . , xp, y1, . . . , ym, t0, t1, . . . , t|Θ|, z

a
1 , . . . z

a
rmax

, zb
1, . . . , z

b
m, q, r, k, k

′, u, v, w,w′, h1, . . . , hΘ} → dom(J∗),
such that for every conjunctP (x̄) of Q′ it is the case thatf(P (x̄)) belongs toJ∗, and thatf(v) 6= f(u) and
f(v) 6= f(n).

From the construction ofJ∗, it is easy to see thatf must map the variableq in the queryQ′ to an element in
{sa, sb, sf , s1, . . . , s`}. Thus, depending of the value off(q), we have several cases:

• Assume first thatf(q) = sa. Notice that the only tuples in the interpretation ofA′ in J∗ that contain the element
sa in their first position are of the formA′(sa, ci, d, . . . , d, 1), for some1 ≤ i ≤ n. Further, the only tuple in
the interpretation of the relationF in J∗ with the elementsa in it’s first position isF (sa, d, . . . , d, 0). Thus,
we obtain thatf(u) = 1 andf(n) = 0. However, we know thatf is a function such thatf(v) 6= f(u) and
f(v) 6= f(n). It then must be the case thatf(v) 6= 1 andf(v) 6= 0. This is a contradiction: we know that
f(t0) = ci for some1 ≤ i ≤ n. Further, every tuple in the interpretation ofR′ in CAN(I ′) that contains an
elementci, 1 ≤ i ≤ n, in it’s first position has a null value in it’s last position.Thus, from the construction ofh,
it must be the case thatf(v) = 1 or f(v) = 0.

• Assume thatf(q) = sb. Then, using the same argument that in the previous paragraph we obtain thatf(u) = 1.
Further, since the only tuple in the interpretation of the relationF ′ in J∗ with the elementsb in it’s first position
is F ′(sb, d, . . . , d, 0), it must be the case thatf(n) = 0. Again,f is such thatf(v) 6= f(u) andf(v) 6= f(n),
and thus we obtain thatf(v) 6= 1 andf(v) 6= 0. Using the arguments shown in the previous paragraph it can
be shown that this is a contradiction: all tuples in the interpretation ofA′ overJ∗ that start with the element
sb contain an element ins1, . . . , s` in their second position. Thus,f(t0) ∈ {s1, . . . , sj}, and thus, since the
only tuples in the interpretation ofF ′ in J∗ that start with an elementsj contain a null in their last position, we
conclude thatf(n) = 1 or f(n) = 1.

• Assume now thatf(q) = sj for somej ∈ Θ such thatSj = Ri(x̄j , ȳj) for some1 ≤ i ≤ n, and wherēxj is a
tuple of variables in{x1, . . . , xp} andȳj is a tuple of variables in{y1, . . . , ym}. Notice that, sincef(q) = sj ,
from the construction of the interpretation of the relationA in I ′ it must be the case thatf(tτ(j)) = ci, and that
f(tτ(k)) = d for every otherk ∈ [1, |Θ|], k 6= j. Assume now thatf(u) = 1 (the case whenf(u) = 0 is
completely symmetrical). Then, since we know thatf(v) 6= f(u) andf(v) 6= f(n), it must be thatf(v) = 0,
and thusf(n) 6= 0.

54

Let ⊥ be the null value such that the tupleF ′(sj , f(y1), . . . , f(ym),⊥) belongs to CAN(I ′). Then,
F ′(sj , f(y1), . . . , f(ym), h(⊥)) belongs toJ∗, and so it must be the case thatf(n) = h(⊥). Sinceh as-
signs the value0 or 1 to every null in CAN(I ′), and sincef(n) 6= 0 It must be the case thatf(n) = 1, and
thush(⊥) = 1. Then, from the construction ofh, the structureA satisfiesSj when we assign the elements
a1, . . . , ap to the variablesx1, . . . , xp and the elementsf(y1), . . . , f(ym) to the universally quantified variables
y1, . . . , ym in φ. However, sincef(v) = 0, J∗ must contain the tupleR′(ci, f(x̄j), f(ȳj), f(h̄j), 0). Let now⊥
be the null value such that the tupleR′(ci, f(x̄j), f(ȳj), f(h̄j),⊥) belongs to CAN(I ′). It then must be the case
thath(⊥) = 0. Further, from the construction of the relationV ′ we obtain thatf assigns the elementak to each
variablexk in Q′, that is,f(xk) = ak, for every1 ≤ k ≤ p. We then conclude from the construction ofh that
Ri(x̄j , ȳj) does not hold inA when we assign the elementsa1, . . . , ap to the existentially quantifies variables
x1, . . . , xp and the elementsf(y1), . . . , f(ym) to the universally quantified variablesy1, . . . , ym in φ. This is a
contradiction.

• Next, assume thatf(q) = sj for someJ /∈ Θ, such that thatSj = Sj1 ∨Sj2 (the other two cases are completely
symmetrical). Further, assume thatf(u) = 1 (the case whenf(u) = 0 is also symmetrical). Then, sincef is
such thatf(v) 6= f(u) andf(v) 6= f(n), we obtain thatf(v) must be different from1. A close inspection to
the interpretationZ ′ in J∗ reveals thatf(v) must be the element0, and then, correspondingly,f(n) 6= 0. Let
⊥ be the null value such that the tupleF ′(sj , f(y1), . . . , f(ym),⊥) belongs to CAN(I ′). Notice thath(⊥) = 1
(otherwisef(n) = 0), and then from the construction ofh, we obtain thatA satisfiesSj when we assign the
elementsa1, . . . , ap to the existentially quantifies variablesx1, . . . , xp and the elementsf(y1), . . . , f(ym) to
the universally quantified variablesy1, . . . , ym in φ. Let also⊥j1 and⊥j2 be null values such that the tuples
F (sj1 , f(y1), . . . , f(ym),⊥j1) andF (sj2 , f(y1), . . . , f(ym),⊥j2) belong to CAN(I ′). From the construction
of the relationZ in I, the only tuple in the interpretation of the relationZ ′ in CAN(I ′) (and thus inJ∗) with the
elementsj in it’s first position and the element0 in it’s last position is the tuple(sj , 0, 0, 0). Then, it must be the
case thatf(w) = f(w′) = 0. We conclude then thath(⊥j1) = h(⊥j2) = 0, which means thatA does not satisfy
neitherSj1 norSj2 when we assign the elementsa1, . . . , ap to the existentially quantifies variablesx1, . . . , xp

and the elementsf(y1), . . . , f(ym) to the universally quantified variablesy1, . . . , ym. This is a contradiction.

• Finally, assume thatf(q) = sf . Since the only tuple in the interpretation ofA′ in CAN(I ′) with the elementsf

in it’s first position is(sf , d, . . . , d, s1, 0), it must be thatf(k′) = s1 andf(u) = 0. Let⊥ be the null value such
that the tupleF ′(s1, f(y1), . . . , f(ym),⊥) belongs to CAN(I ′). From the construction ofZ in I, it must also
be the case thatf(v) = 1 andf(w′) = 0, in other words, it must also be thath(⊥) = 0, and thenA does not
satisfyS1 when we assign the elementsa1, . . . , ap to the existentially quantifies variablesx1, . . . , xp and the
elementsf(y1), . . . , f(ym) to the universally quantified variablesy1, . . . , ym. This is a contradiction, because
we assumed thatφ is satisfiable under this valuation.

(⇒) Assume thatcertainM′(Q′, I ′) = false. Then there exists a solutionJ∗ such thatQ′(J∗) = false.
Construct fromJ∗ a structureA as follows: The domain ofA is {a1, . . . , ap}. The interpretation of the rela-
tion Ri, i ∈ [1, n] is the following: The tupleai1 , . . . , airi

belongs to the interpretation ofRi in A iff the tuple
R′(ci, ai1 , . . . , airi

, d, . . . , d, 1) belongs toJ . To prove thatA satisfiesφ, we will prove the following: for every
j ∈ [1, `], if the tupleF ′(sj , aj1 , . . . , ajm

, 1) belongs toJ∗, thenA satisfies the subformulaSj whenever we as-
sign aj1 , . . . , ajm

to y1, . . . , ym, anda1, . . . , ap to x1, . . . , xp. We prove this by induction on the structure of the
subformulas ofψ.

Let h be an homomorphism from CAN(I ′) to J∗. We first prove that for every null value⊥ in CAN(I ′), since
Q(J∗) = false, it must be the case thath(⊥) = 1 or h(⊥) = 0. Assume that there is a null value⊥ in CAN(I ′) such
thath(⊥) 6= 1 andh(⊥) 6= 0.

• Assume first that⊥ belongs to a tuple of the formR′(ci, ai1 , . . . , airmax
,⊥) in CAN(I ′). From the construction

of I ′ andM′, the following tuples are in CAN(I ′)

– A′(sa, ci, d, . . . , d, 1).

– F ′(ci, a1, . . . , a1,⊥), obtained with (45).

– R′(d, a1, . . . , a1,⊥), obtained with (45).

55

– V ′
k(sa, a1), for every1 ≤ k ≤ p, obtained with (41).

– F ′(sa, a1, . . . , a1, 0), obtained with (51).

– Z ′(sa, 0, 0,⊥), obtained with (45).

It is easy to see that ifh(⊥) 6= 1 andh(⊥) 6= 0, thenQ(J∗) = true.

• Assume now that⊥ belongs to a tuple of the formF ′(sj , aj1 , . . . , ajm
,⊥) in CAN(I ′). From the construction

of I ′ andM′, the following tuples are in CAN(I ′)

– A′(sb, sj , d, . . . , d, 1).

– R′(sj , a1, . . . , a1,⊥), obtained with (46).

– R′(d, a1, . . . , a1,⊥), obtained with (46).

– V ′
k(sb, a1), for every1 ≤ k ≤ p, obtained with (41).

– F ′(sb, a1, . . . , a1, 0), obtained with (52).

– Z ′(sb, 0, 0,⊥), obtained with (46).

It is easy to see that ifh(⊥) 6= 1 andh(⊥) 6= 0, thenQ(J∗) = true.

We now continue with the proof of the induction.

• For the base case, assume thatSj = Ri(x̄j , ȳj), wherex̄j is a tuple of variables in{x1, . . . , xp}, andȳj is a
tuple of variables in{y1, . . . , ym}. Further, assume that the tupleF ′(sj , aj1 , . . . , ajm

, 1) belongs toJ∗. Let
g : {x1, . . . , xp, y1, . . . , ym} → dom(J ′) be a function such thatg(xi) = ai for eachi ∈ [1, p], andg(yi) = aji

for eachi ∈ [1,m]. From the construction ofI ′ andM′, CAN(I ′) contains the following tuples (where⊥ is a
null value):

– A′(sj , d, . . . , d, ci, d, . . . , d, 1).

– Z ′(sj , 0, 0, 0).

– F ′(d, aj1 , . . . , ajm
, 1), obtained with (50).

– F ′(d, aj1 , . . . , ajm
, 0), obtained with (49).

– V ′
k(sj , ak) for every1 ≤ k ≤ p), obtained with (41).

– F ′(d, a1, . . . , a1, 0), obtained with (49).

– R′(d, a1, . . . , a1, 0), obtained with (47).

– R′(ci, g(x̄i), g(ȳi), d, . . . , d⊥), obtained with (45).

– R′(d, c1, . . . , cr
i′
, d, . . . , d, 0), for every combination of elements in{a1, . . . , ap} and for everyi′ 6= i,

obtained with (47).

We know thath(⊥) = 0 orh(⊥) = 1. It is easy to see that ifh(⊥) = 0 then the evaluation ofQ′ overJ∗ is true.
Then, sinceQ(J∗) = false, it must be the case thath(⊥) = 1. It follows thatR′(ci, g(x̄j), g(ȳj), 1) belongs
to J∗, and, by the definition ofA, A satisfiesSj when we assigna1, . . . , ap to x1, . . . , xp andaj1 , . . . , ajm

to
y1, . . . , ym.

• For the inductive case, assume thatSj ≡ Sj1 ∧ Sj2 (The cases whereSj ≡ Sj1 ∧ Sj2 or Sj ≡ ¬Sj1 are
completely symmetrical). Further, assume thatF ′(sj , ai1 , . . . , aim

, 1) belongs toJ∗. We also know there are
tuplesF ′(sj1 , ai1 , . . . , aim

,⊥j1) andF ′(sj2 , ai1 , . . . , aim
,⊥j2) in CAN(I ′). Therefore,J∗ contains the tuples

F ′(sj1 , ai1 , . . . , aim
, h(⊥j1)) andF ′(sj2 , ai1 , . . . , aim

, h(⊥j2)). We claim thath(⊥j1) = h(⊥j2) = 1. Assume
for the sake of contradiction thath(⊥j1) = 0 (the case whenh(⊥j2) = 0 is completely symmetrical). From the
construction ofI ′ andM′, we also know that the following tuples belong to CAN(I ′), an thus belong toJ∗:

– A′(sj , d, . . . , d, sj1 , sj2 , 1).

56

– Z ′(sj , 0, 1, 0) andZ ′(sj , 0, 0, 0).

– V ′
k(sj , ak) for every1 ≤ k ≤ p) , obtained with (41).

– F ′(d, a1, . . . , a1, 0) , obtained with (49).

– R′(d, a1, . . . , a1, 0) , obtained with (47).

– R′(d, c1, . . . , cr
i′
, d, . . . , d, 0), for every combination of elements in{a1, . . . , ap} and for everyi′ ∈ [1, n],

obtained with (47).

It is now easy to see thatQ′(J∗) = true. Then, it must be thath(⊥j1) = h(⊥j2) = 1. Then, by the inductive
hypothesis,A satisfiesSj1 andSj2 when we assigna1, . . . , ap to x1, . . . , xp andaj1 , . . . , ajm

to y1, . . . , ym.
It follows thatA satisfiesSj when we assigna1, . . . , ap to x1, . . . , xp andaj1 , . . . , ajm

to y1, . . . , ym. This
finishes the induction.

All that is left to prove is that for every tuplec1, . . . , cm of elements in{a1, . . . , ap}, the tupleF ′(s1, c1, . . . , cm, 1)
belongs toJ ′. Notice that, from the previous induction, this implies that A satisfiesS1 for every assignment of the
variablesy1, . . . , ym when we assigna1, . . . , ap to x1, . . . , xp, and thus thatA is a satisfiesφ.

We now prove that for every tuplec1, . . . , cm of elements in{a1, . . . , ap}, the tupleF ′(s1, c1, . . . , cm, 1) belongs
to J ′. Assume for the sake of contradiction that there exists elementsai1 , . . . , aim

, aik
∈ {a1, . . . , ap} for every

1 ≤ k ≤ m, such thatF ′(s1, ai1 , . . . , aim
, 1) does not belong toJ∗. We know that there exists a null⊥ such that

the tupleF ′(s1, ai1 , . . . , aim
,⊥) belongs to CAN(I ′). Then, it must be the case thath(⊥) = 0, and thus he tuple

F ′(s1, ai1 , . . . , aim
, 0) must belong toJ∗. We also know that the following tuples belong toJ∗:

• A′(sf , d, . . . , d, s1, 0)

• Z ′(sf , 0, 0, 1)

• V ′
i (sf , ak) for every1 ≤ k ≤ p and every1 ≤ i ≤ p , obtained with (41).

• F ′(d, a1, . . . , a1, 1) , obtained with (50).

• R′(d, a1, . . . , a1, 1) , obtained with (48).

• R′(d, c1, . . . , cr
i′
, d, . . . , d, 0), for every combination of elements in{a1, . . . , ap} and for everyi′ ∈ [1, n],

obtained with (47).

• F ′(d, ai1 , . . . , aim
, 0) , obtained with (49).

It is easy to see thatQ(J∗) = true, which is a contradiction. This concludes the proof of the theorem. 2

57

