Query Languages for Data Exchange:
Beyond Unions of Conjunctive Queries

Marcelo Arenas' Pablo Barceb? Juan Reutter®

L Dept. of Computer Science, Pontificia Universidad Cagbtle Chile
2 Dept. of Computer Science, Universidad de Chile
3 School of Informatics, University of Edinburgh

Abstract

The class of unions of conjunctive queries (UCQ) has beewsho be particularly well-behaved for data ex-
change; its certain answers can be computed in polynomial in terms of data complexity). However, this is not
the only class with this property; the certain answers toRAyALOG program can also can be computed in polyno-
mial time. The problem is that both UCQ andmLoG do not allow negated atoms, as adding an unrestricted form
of negation to these languages yields to intractability.

In this paper, we propose a language called& 06 °(*) that extends BTALOG with a restricted form of nega-
tion, and study some of its fundamental properties. In palei, we show that the certain answers toar&.06)
program can be computed in polynomial time (in terms of datampmlexity), and that every union of conjunc-
tive queries with at most one inequality or negated relai@iom per disjunct, can be efficiently rewritten as a
DATALOGC#) program in the context of data exchange. Furthermore, we #het this is also the case for a syntac-
tic restriction of the class of unions of conjunctive quenwith at most two inequalities per disjunct. This syntactic
restriction is given by two conditions that are optimal e sense that computing certain answers becomes intractabl
if one removes any of them. Finally, we provide a thoroughyaisof the combined complexity of computing certain
answers to BTAL0GS#) programs and other related query languages. In partioushow that this problem is
ExpTIME-complete for TALOGC(#), even if one restricts to conjunctive queries with singlegualities, which is
a fragment of BTALOG S by the result mentioned above. Furthermore, we show thatdhibined complexity is
CONEXPTIME-complete for the case of conjunctive queries witimequalities, for every > 2.

1 Introduction

Data exchange is the problem of computing an instancetafget schema, given an instance osaurceschema
and a specification of the relationship between source agdttdata. Although data exchange is considered to be an
old database problem, its theoretical foundations hawe lseén laid out very recently by the seminal work of Fagin,
Kolaitis, Miller and Popa [9]. Both the study of data exchammmpd schema mappings have become an active area of
research during the last years in the database communéte(ge[9, 10, 4, 8, 18, 14, 19, 13]).

In formal terms, a data exchange setting is a tripte= (S, T, X;), whereS is asourceschemaT is atarget
schema, anll; is a mapping defined as a setsolurce-to-targetependencies of the forvx (¢s (z) — gur(Z, 7)),
where¢g andyr are conjunctions of relational atoms ovmlandT, respectively (some studies have also included
target constraints, but here we focus on data exchangegettithout dependencies oVEj. Given a source instance
1, the goal in data exchange is to materialize a target instdrat is asolutionfor I, that is,.J together with/ must
conform to the mappingi,;.

An important issue in data exchange is that the existingipation languages usually do not completely deter-
mine the relationship between source and target data aug] tttere may be many solutions for a given source instance.
This immediately raises the question of which solution $thdwe materialized. Initial work on data exchange [9] has
identified a class of “good” solutions, callesiversalsolutions. In formal terms, a solution is universal if it da@

homomorphically embedded into every other solution. It pawved in [9] that for the class of data exchange settings
studied in this paper, a particular universal solution 4echthecanonicaluniversal solution — can be computed in
polynomial time. It is important to notice that in this reistiie complexity is measured in terms of the size of the
source instance, and the data exchange specificatipis assumed to be fixed. Thus, this result is stated in terms of
datacomplexity [22].

A second important issue in data exchange is query answe@uegries in the data exchange context are posed
over the target schema, and —given that there may be martjos@for a source instance— there is a general agreement
in the literature that their semantics should be definedringeofcertainanswers [15, 1, 16, 9]. More formally, given
a data exchange settingl = (S, T, X,;) and a queny overT, a tuplet is said to be a certain answerover I
underM, if ¢ belongs to the evaluation 6f over every possible solutiof for I underM.

The definition of certain answers is highly non-effectivejtanvolves computing the intersection of (potentially)
infinitely many sets. Thus, it becomes particularly impott@ understand for which classes of relevant queries, the
certain answers can be computed efficiently. In particitiiecomes relevant to understand whether it is possible to
compute the certain answers to any of these classes by usimg materialized solution. Fagin, Kolaitis, Miller, and
Popa [9] have shown that this is the case for the class of wficonjunctive queries (UCQ); the certain answers to
each union of conjunctive queriésover a source instandecan be computed in polynomial time by directly posing
Q over the canonical universal solution for Again, it is important to notice that this result is statadeérms of data
complexity, that is, the complexity is measured in termdhefgize of the source instance, and both the data exchange
specification:;; and the queryy are assumed to be fixed.

The good properties of UCQ for data exchange can be compkstplained by the fact that unions of conjunctive
gueries are preserved under homomorphisms. But this iieairily language that satisfies this condition, as queries
definable in ATALOG, the recursive extension of UCQ, are also preserved undeohmrphisms. Thus, ErALOG
retains several of the good properties of UCQs for data exgg@urposes. In particular, the certain answers to a
DATALOG programiI over a source instande can be computed efficiently by first materializing the caoakuniver-
sal solutionJ for I, and then evaluating overJ (since the data complexity of adDALOG program is polynomial).

Unfortunately, both UCQ and AYALOG keeps us in the realm of the positive, while most database/ dueguages
are equipped with negation. Thus, the first goal of this p&p&y investigate what forms of negation can be added
to DATALOG while keeping all the good properties oRIALOG, and UCQ, for data exchange. It should be noticed
that this is not a trivial problem, as there is a trade-offdmtn expressiveness and complexity in this context. On the
one hand, one would like to have a query language expressitey@ to be able to pose interesting queries in the data
exchange context. But, on the other hand, it has been shawadding an unrestricted form of negation tat@LoG
(or even to conjunctive queries) yields to intractabilifytioe problem of computing certain answers [1, 9]. In this
respect, the following are our main contributions.

« We introduce a query language callegaLoc ©#) that extends BTALOG with a restricted form of negation,
and that has the same good properties for data exchangetas @s. In particular, we prove that the certain
answers to a BTALoG(#) programll over a source instancecan be computed by evaluatififjover the
canonical universal solution fdr. As a corollary, we obtain that computing certain answeesBaTaL0oG ©(#)
program can be done in polynomial time (in terms of data cexipy).

« To show that BTaLoGC(#) can be used to express interesting queries in the data exelcantext, we prove
that every union of conjunctive queries with at most one uradity or negated relational atom per disjunct, can
be efficiently expressed as afrLoG ©(#) program in the context of data exchange.

« |t follows from the previous result that the certain ansswerevery union of conjunctive queries with at most one
inequality or negated relational atom per disjunct, candraputed in polynomial time (in terms of data com-
plexity). Although this corollary is not new (it is a simplgtension of a result in [9]), the use ofADALOG €
in the context of data exchange opens the possibility of figdiew tractable classes of query languages with
negation. In fact, we also useBaLoG ©#) to find a tractable fragment of the class of conjunctive egsawiith
two inequalities.

Itis known that for the class of conjunctive queries withgoaelities, the problem of computing certain answers
is CONP-complete [1, 9] (in terms of data complexity). In facthés been shown that the intractability holds

even for the case of two inequalities [20]. However, verifdits known about tractable fragments of these
classes. In this paper, we provide a syntactic restrictothie class of unions of conjunctive queries with at most
two inequalities per disjunct, and prove that every quenfeoning to it can be expressed as am@LoG©(#)
program in the context of data exchange. It immediatelyfed that the data complexity of computing certain
answers to a query conforming to this restriction is polyredm

The syntactic restriction mentioned above is given by twoditions. We conclude this part of the investiga-
tion by showing that these conditions are optimal for triititst, in the sense that computing certain answers
becomes intractable if one removes any of them. It shouldltiead that this gives a new proof of the fact that
the problem of computing certain answer to a conjunctivayjuéth two inequalities isCONP-complete.

The study of the complexity of computing certain answers tgAoG€#) programs will not be complete if one
does not consider the notion cbmbinedcomplexity. Although the notion of data complexity has shaw be very
useful in understanding the complexity of evaluating a gu@nguage, one should also study the complexity of this
problem when none of its parameters is considered to be fix@d.corresponds to the notion of combined complexity
introduced in [22], and it means the following in the contektata exchange. Given a data exchange seftiica
query Q over the target and a source instardgeone considerd as well as@) and M as part of the input when
computing the certain answers@oover I underM. In this paper, we study this problem and establish theviotig
results.

« We show that the combined complexity of the problem of cotimgucertain answers to &¥aLoG €#) pro-
grams is XKPTIME-complete, even if one restricts to the class of conjunajiveries with single inequalities
(which is a fragment of BTaLoGS(#) by the result mentioned above). This refines a result in [id{ shows
that the combined complexity of the problem of computingaieranswers tainionsof conjunctive queries
with at most one inequality per disjunct iXETIME-complete.

« We also consider the class of conjunctive queries with diitrary number of inequalities per disjunct.
More specifically, we show that the combined complexity af firoblem of computing certain answers is
CONEXPTIME-complete for the case of conjunctive queries witinequalities, for every: > 2.

« One of the reasons for the high combined complexity of thewipus problems is the fact that if data exchange
settings are not considered to be fixed, then one has to déatamonical universal solutions of exponential
size. A natural way to reduce the size of these solutionsfisdas on the class of Av data exchange settings
[16], which are frequently used in practice.

For the case of BraLoc ©#) programs, the combined complexity is inherently exporaéraind thus focusing
on LAv settings does not reduce the complexity of computing aeraiswers. However, we show in the
paper that if one focuses omlz settings, then the combined complexity is considerablyelofer the class of
conjunctive queries with inequalities. More specificallie show that the combined complexity goes down to
NP-complete for the case of conjunctive queries with simgégjualities, and tal5-complete for the case of
conjunctive queries wittk inequalities, for every > 2.

Proviso. As we mentioned above, target dependencies are usuallyjdeoed in the data exchange literature in
addition to source-to-target dependencies. Those tarpntiencies represent the usual database constraints that
exchanged data must satisfy. We decided not to includettdegeendencies in this work for the sake of readability,
but we certainly think that this is a class that deservestitte. In fact, we are currently working on extending the
setting presented in this paper to take into account ustggttaonstraints studied in the data exchange literatuge (e
equality-generatinglependencies andple-generatinglependencies).

Organization of the paper. In Section 2, we introduce the terminology used in the padpe®ection 3, we define
the syntax and semantics olBrLoG©(#) programs. In Section 4, we study some of the fundamentalgpties of
DATALOGC(#) programs concerning complexity and expressiveness. ItidBes, we study a syntactic restriction
that leads to tractability of the problem of computing ciertanswers for unions of conjunctive queries with two
inequalities. In Section 6, we provide a thorough analybth® combined complexity of computing certain answers
to DATALOG ©(#) programs and other related query languages. Concludingrksnare in Section 7.

2 Background

A schemaR is a finite set{ Ry, ..., Ry} of relation symbols, with eacR; having a fixed arity»; > 0. LetD be
a countably infinite domain. Aimstancel of R assigns to each relation symhB} of R a finite n;-ary relation
R!I C D™. Thedomaindom(I) of instancel is the set of all elements that occur in any of the relatiBAsWe often
define instances by simply listing the tuples attached te@tieesponding relation symbols.

We assume familiarity with first-order logid'Q) and DATALOG. In this paper, CQ is the class of conjunctive
gueries and UCQ is the class of unions of conjunctive queliage extend these classes by allowing inequalities or
negation (of relational atoms), then we use superscpimsd—, respectively. Thus, for example, CQs the class of
conjunctive queries with inequalities, and UCG3 the class of unions of conjunctive queries with negatétional
atoms but no inequalities. As usual in the database literatue assume that every quepyin UCQ™ ™ is safe (1)
if Q1 and@- are disjuncts of), thenQ; and(@- have the same free variables, (2§)f is a disjunct ofQ andz # y
is a conjunct of)¢, thenz andy appear in some non-negated relational atom@Qf(3) if @, is a disjunct of@ and
—R(Z) is a conjunct of),, then every variable i appears in a non-negated relational atoryof

2.1 Data exchange settings and solutions

As is customary in the data exchange literature, we consid&ances with two types of values: constants and nulls
[9, 10]. More precisely, le€ andN be infinite and disjoint sets of constants and nulls, resgalgt and assume that
D = CUN. If we refer to a schem8 as asourceschema, then whenever we consider an instdnaieS, we will
assume that dofii) C C. On the other hand, if we refer to a scheffias atargetschema, then for every instance
J of T, it holds that dor/) C C U N. Slightly abusing notation, we also u€eto denote a built-in unary predicate
such thaiC(a) holds if and only ifa is a constant, that is € C. refer to a source schema aficto

A data exchange settinga tupleM = (S, T, 3,), whereS is a source schemd; is a target schem&,andT do
not have predicate symbols in common ahg is a set of FO-dependencies o0 T (in [9] and [10] a more general
class of data exchange settings is presented, that alsal@sthrget dependencies). As usual in the data exchange
literature (e.g., [9, 10]), we restrict the study to datalexmye settings in which; consists of a set (fource-to-target
tuple-generatinglependencies. A source-to-target tuple-generating dkgmey (st-tgd) is an FO-sentence of the form
vz (¢p(z) — Jy¥(z,y)), wherep(z) is a conjunction of relational atoms ovBrand(z,) is a conjunction of
relational atoms oveT'.! A source(resp.targef) instancek for M is an instance o (resp.T). We usually denote
source instances by I’, I1, . . ., and target instances by J', J1,

The class of data exchange settings considered in this sapsually called GAv (global-&-local-as-view) in the
database literature [16]. One of the restricted forms &f thass that has been extensively studied for data integrati
and exchange is the class of\L settings. Formally, a kv setting (local-as-view) [16] is a data exchange setting
M = (S, T, %), in which every st-tgd irE,, is of the formVvz (S(z) — ¥(z)), for someS € S (it is important to
notice that variables of tuple are not assumed to be pairwise distinct).

Aninstance/ of T is said to be &olutionfor an instancd underM = (S, T, X;), if the instancek’ = (I, J) of
S U T satisfiesy,;, whereSK = S’ for everyS € S andTX = T/ for everyT < T. If M is clear from the context,
we shall say thaf is a solution forl.

Example 2.1 Let M = (S, T, 3,;) be a data exchange setting. Assume ghebnsists of one binary relation symbol
P, andT consists of two binary relation symbalg and R. Further, assume thai; consists of st-tgd®(x,y) —
Q(z,y) andP(z,y) — FzR(z, z). ThenM is also a lav setting.

Let I = {P(a,b), P(a,c)} be a source instance. Theh = {Q(a,b), Q(a,c), R(a,b)} andJ; = {Q(a,b),
Q(a,c), R(a,n)}, wheren € N, are solutions fof. In fact, I has infinitely many solutions. O

2.2 Universal solutions and canonical universal solution

It has been argued in [9] that the preferred solutions in dathange are theniversalsolutions. In order to define
this notion, we first have to revise the concephomomorphisnin data exchange. Ldt; and K, be instances of

1We usually omit universal quantification in front of st-tgatsd express them simply a@§z) — 37 1(Z, 7).

the same schemB. A homomorphisnk from K; to K5 is a functionh : dom(K;) — dom(K>) such that: (1)
h(c) = cfor everyc € Cndom K3), and (2) for every? € R and every tuplé = (a1, ..., ax) € R¥1, it holds that
h(a) = (h(a1),...,h(ax)) € RE2. Notice that this definition of homomorphism slightly difésfrom the usual one,
as the additional constraint that homomorphisms are thditgteon the constants is imposed.

Let M be a data exchange settinga source instance anfla solution for/ underM. ThenJ is auniversal
solutionfor I underM, if for every solutionJ’ for I underM, there exists a homomorphism frafto J’.

Example 2.2 (Example 2.1 continued)Solution J; is a universal solution fof, while J; is not since there is no
homomorphism fromy/; to .Js. O

It follows from [9] that for the class of data exchange sefsistudied in this paper, every source instance has universa
solutions. In particular, one of these solutions - callegldanonical universal solutioncan be constructed in poly-
nomial time from the given source instance (assuming thmgeb be fixed), using thehaseprocedure [5]. We shall
define canonical universal solutions directly as in [4, 18].

In what follows, we show how to compute the canonical uniakselution of a source instanéén a data exchange
setting(S, T, X,;). For each st-tgd i&x,; of the form:

gf)(f,lj) — ﬂw(Tl(fl,’J)l)/\--'/\Tk(fk,ﬁ)k)),

wherez = 7; U--- U Z; andw = w; U --- U @y, and for each tupl@ from dom(7) of length|z|, find all tuples
bi,..., by such thatl = ¢(a,b;), i € [1,m]. Then choosen tuplesny, ..., n,, of length|w| of fresh distinct null
values oveiN. RelationT; (¢ € [1, k]) in the canonical universal solution fércontains tuple$nz, (@), 74, (72;)), for

eachj € [1,m], whererz, (a) refers to the components @fthat occur in the positions af;. Furthermore, relatioff;

in the canonical universal solution féronly contains tuples that are obtained by applying this ritigm.

Notice that the algorithm for constructing the canonicalersal solution, as defined above, corresponds to what
is known as th@aivechase applied to the st-tgds in the setting. In the naiveechhdependencies are fired in parallel.
Our definition differs from the one given in [9], where a caiahuniversal solution is obtained by using standard
chase procedure. The standard chase procedure fires strigdy one, but only populates the target instahegth
new factsT'(¢) such thatl'(¢) cannot bededucedrom .J itself. The problem with using the standard chase in data
exchange is that its result is not necessarily unique (ieddp on the order in which the chase steps are applied), and
thus, there may be multiple non-isomorphic canonical us&esolutions. Clearly, under our definition, the canohica
universal solution is unique up to isomorphism and can bepeted in polynomial time froml. For a fixed data
exchange setting1 = (S, T, X,;), we denote by &N the transformation from source instances to target inswnc
such that @N(7) is the canonical universal solution féunderM.

2.3 Certain answers

Queries in a data exchange settivg = (S, T, ¥,;) are posed over the target schefia Given that there may be
(even infinitely) many solutions for a given source instafagith respect taM, the standard approach in the data
exchange literature is to define the semantics of the quesgdban the notion of certain answers [15, 1, 16, 9].

Let I be a source instance. For a quépyof arity n > 0, in any of our logical formalisms, we denote by
certainp(Q, I) the set ofcertain answerof @ over I underM, that is, the set ofi-tuplest such that € Q(J),
for everyJ that is a solution fod underM. If n = 0, then we say thal) is Boolean andcertain (Q, I) = true
iff @ holds for everyJ that is a solution fod underM. We writecertaina(Q, I) = false if it is not the case that
certaina (Q,) = true.

Let M = (S, T, X) be a data exchange setting apé query ovefl'. The main problem studied in this paper is:

PROBLEM : CERTAIN-ANSWERYM, Q).
INPUT . Asource instancé and a tuplég of constants frond.
QUESTION : Ist € certainpg(Q, I)?

Since in the above definition both the setting and the queryfiged, it corresponds (in terms of Vardi’'s taxonomy
[22]) to the data complexity of the problem of computing certain answers. ekain Section 6, we also study the
combinedcomplexity of this problem.

3 Extending Query Languages for Data ExchangebaraLoc©# Programs

The class of unions of conjunctive queries is particularlivkehaved for data exchange; the certain answers of each
union of conjunctive querie® can be computed by directly posidgover an arbitrary universal solution [9]. More
formally, given a data exchange setting, a source instancg, a universal solutio/ for I underM, and a tuple

t of constants} € certaina (@, 1) if and only if £ € Q(J). This implies that for each data exchange settiig

the problem EGRTAIN-ANSWERY.M, @) can be solved in polynomial time @ is a union of conjunctive queries
(because the canonical universal solutionfaran be computed in polynomial time ag@dhas polynomial time data
complexity).

The fact that the certain answers of a union of conjunctiigs(can be computed by posirigover a universal
solution, can be fully explained by the fact th@tis preservedunder homomorphisms, that is, for every pair of
instances/, J’, homomorphisnk from .J to J’, and tuplez of elements inJ, if a € Q(J), thenh(a) € Q(J'). But
UCQ is not the only class of queries that is preserved undmohnoorphisms; also BrALOG, therecursiveextension
of the class UCQ, has this property. SincatBLOG has polynomial time data complexity, we have that the certai
answers of each EYALOG query (@ can be obtained efficiently by first computing a universalisoh J, and then
evaluating) over.J. Thus, DATALOG preserves all the good properties of UCQ for data exchange.

Unfortunately, both UCQ and &¥ALOG keep us in the realm of the positive (i.e. negated atoms araliowed
in queries), while most database query languages are egfliipiph negation. It seems then natural to extend UCQ
(or DATALOG) in the context of data exchange with some form of negatiode¢d, query languages with different
forms of negation have been considered in the data exchamgext [3, 7], as they can be used to express interesting
queries. Next, we show an example of this fact.

Example 3.1 Consider a data exchange setting v8te= {E(-,), A(:), B(-)}, T = {G(-,-), P(-), R(-)} and
Ya = {E(z,y) = G(z,y), A(z) — P(), B(z) — R(x)}.

Notice that ifI is a source instance, then the canonical universal sol@rn(I) for I is such thatE! = GEANUD),
Al = PCAN(I) andB! = RCAN([)_
Let Q(x) be the following UCQ' query overT:

Jzdy (P(z) A R(y) A G(x,y)) V JxTFy3z (G(x, 2) A G(z,y) A -G(x,y)).

It is not hard to prove that for every source instardceertaina (@, I) = true iff there exist elements, b €
dom(CAN(I)) such thatz belongs toP“*N() | b belongs toR“*N) and(a, b) belongs to the transitive closure of the
relationGS"N(1), That is,certainp(Q, I) = true iff there exist elements, b € dom(I) such thai belongs tod’, b
belongs toB! and(a, b) belongs to the transitive closure of the relatibh. O

It is well-known (see e.g. [17]) that there is no union of eorgtive queries (indeed, not even an FO-query) that
defines the transitive closure of a graph. Thug)itnd M are as in the previous example, then there is no union
of conjunctive queries)’ such that)’'(CAN(I)) = certainp (Q’, I) = certaina(Q, I), for every source instance
1. Itimmediately follows that negated relational atoms axjgressive power to the class UCQ in the context of data
exchange (see also [4]). And not only that, it follows frorhf€at inequalities also add expressive power to UCQ in
the context of data exchange.

In this section, we propose a language that can be used togoesies with negation, and that has all the good
properties of UCQ for data exchange.

3.1 DATALOG®#) programs

Unfortunately, adding an unrestricted form of negation &r&.0G (or even to CQ) not only destroys preservation
under homomorphisms, but also easily yields to intradtguif the problem of computing certain answers [1, 9]. More
precisely, there is a settiniyl and a query) in CQ” such that the problem ERTAIN-ANSWERS M, Q) cannot be
solved in polynomial time (unlesstmE = NP). In particular, the set of certain answergptannot be computed
by evaluating? over a polynomial-time computable universal solution. Ne& show that there is a natural way of

adding negation to BraLoG while keeping all of the good properties of this languagedata exchange. In Section
4, we show that such a restricted form of negation can be usedgdress many relevant queries (some including
negation) for data exchange.

Definition 3.2 (DATALOG ©(#) programs) A constant-inequality Datalog ruis a rule of the form:

S(Z) «— S1(Z1),..,S0(Ze), Cly1), - -, CYm), U1 # V1, ..., Up 7 Un,
where
(@) S, S5, ...,Seare (non necessarily distingpredicate symbols,
(b) every variable int is mentioned in some tuple (i € [1, ¢]),
(c) every variablgy; (j € [1,m]) is mentioned in some tuplg (i € [1,¢]), and
(d) every variables; (j € [1,n]), and every variable;, is equal to some variablg (i € [1,m]).

Moreover, aconstant-inequality Datalog progra(rDATALOGC(?é) program) 1II is a finite set of constant-inequality
Datalog rules.

For example, the following is a constant-inequality Daggbiwogram:

R(z,y) — T(x,2),5(2y),C(x),C(2),z # 2
S(x) <« U(z,u,v,w),C(x),C(u),C(v), C(w),u #v,u # w

For a rule of the form (3.2), we say théifz) is its head. The set of predicates of amLoc€#) programil, denoted
by Pred(II), is the set of predicate symbols mentionedlinwhile the set of intensional predicatesIdf denoted by
IPred(I1), is the set of predicates symbdtse Pred(II) such thatR(z) appears as the head of some rulélof

Fix a DATALOG®(#) programlI and let! be a database instance of the relational sch&mad(IT). Then7 (I)
is an instance oPred(IT) such that for evenR € Pred(IT) and every tuple, it holds thatt ¢ R () if and only
if there exists a ruleR(z) — Ri1(Z1),..., Re(T¢),C(y1),- -, Clym),u1 # v1,...,u, # v, in II and a variable
assignment such that (ay(z) = ¢, (b) o(z;) € R, for everyi € [1,/], (c) o(y;) is a constant, for everye [1,m],
and (d)o(u;) # o(v;), for everyi € [1,n]. OperatorT is used to define the semantics of constant-inequality Bgtal
programs. More precisely, defir} (1) to bel and 7! (1) to be T (T3 (I)) U T (I), for everyn > 0. Then the
evaluation ofiI over! is defined ag/;° (1) = U,,~o 717 (1)-

A constant-inequality Datalog prograhhis said to be defined over a relational scheRd@ R = Pred(II) ~
IPred(II) and ANSWER € IPred(II). Given an instancé of R and a tuplel in dom(I)™, wheren is the arity of
ANSWER we say that ¢ II(]) if £ € ANSWER™ (°) where], is an extension of defined as:R’> = R’ for
R € RandR = for R € IPred(II).

As we mentioned before, the homomorphisms in data exchamgaat arbitrary; they are the identity on the
constants. Thus, given that inequalities are witnessechgtants in BTALoGS#) programs, we have that these
programs are preserved under homomorphisms. From this m@ucte that the certain answers to a@LoG©(#)
programll can be computed by directly evaluatifigover a universal solution.

Proposition 3.3 Let M = (S, T, X,;) be a data exchange settinfj,a source instance/ a universal solution for
I under M, andII a DATALOG®(#) program overT. Then for every tuplé of constantsf certain g (T1, 1) iff
t e II(J).

This proposition will be used in Section 4 to show thatt®LoGS(#) programs preserve the good properties of
conjunctive queries for data exchange.

4 On the Complexity and Expressiveness dbataLoc ©#) Programs

We start this section by studying the expressive powermfRoc € #) programs. In particular, we show that these
programs are expressive enough to capture the class ofumficnnjunctive queries with at most one negated atom per
disjunct. This class has proved to be relevant for data exgdaas its restriction with inequalities (that is the class
queries in UC@ with at most one inequality per disjunct) not only can expmesevant queries but also is one of the
few known extensions of the class UCQ for which the problemamfiputing certain answers is tractable [9]. Indeed,
as itis shown in [9], this class remains tractable even irptiesence of restricted classes of target dependencies.

Theorem 4.1 Let Q be aUCQ” ™ query over a schem®, with at most one inequality or negated relational atom
per disjunct. Then there exists RATALOGC(#) program Il over T such that for every data exchange setting
M = (S,T,3,) and instancel of S, certainp(Q,I) = certainng(Ilg,I). Moreover,Il, can be effectively
constructed frond) in polynomial time.

Before presenting the proof of Theorem 4.1, we sketch theffiipmeans of an example.
Example 4.2 Let M be a data exchange setting such tat {E(-,-), A(-)}, T = {G(,-), P(-)} and
Yo = {E(z,y) = F2(G(z,2) AN G(2,9)), Alz) — P(x)}.
Also, letQ(z) be the following query in uco ™
(P(z) AG(x,x)) V Ty (Glz,y) ANz #y) V Jyz (G(z, 2) AG(z,y) A —G(x,y)).

We construct a BTALOG©(#) programll, such thatcertain (Q, I) = certainp(Ilg, I). The set of intensional
predicates of the BraLoc©?) programily, is {U:(-,-,-), Ua(-, -), dom(-), EQUAL(, -, -), ANSWER(-)}. The pro-
gramll overT is defined as follows.

* First, the program collects in ddm) all the elements that belong to the active domain of the mtstaf T
wherellg, is evaluated:

dom(z) «— G(z,2) (1)
domz) — G(z,x) (2
domz) « P(x) 3)

» Second, the prograiig includes the following rules that formalize the idea thatUaL (z, y, z) holds ifz and
y are the same elements:

EQUAL (2, z, z) «— dom(z),dom(z) 4
EQUAL(z,y, z) «— EQUAL(y,z, 2) (5)
EQUAL(x,y, z) « EQUAL(x,w,), EQUAL (w, y, 2) (6)

Predicate BUAL includes an extra argument that keeps track of the elememhhere the query is being
evaluated. Notice that we cannot simply use the rufp)E (z,z, z) < to say that BUAL is reflexive, as
DATALOGC#) programs arsafe i.e. every variable that appears in the head of a rule alsdchappear in its

body.
* Third, II includes the rules:
Ul(fE,y,Z) — G(xay)adow(z) (7)
UQ(Ia z — P(I)a dOfT(Z) (8)
Ul(:v,y,Z) — Ul(U,U,Z),EQUAL(U,x,Z),EQUAL(’U,y,Z) (9)
Us(z,z) «— Usz(u,z), EQUAL(u,z, z) (20)

Intuitively, the first two rules create ity; and U, a copy of G and P, respectively, but again with an extra
argument for keeping track of the element whkg is being evaluated. The last two rules allow to replace
equal elements in the interpretationldf andUs.

* Fourth,II includes the following rule for the third disjunct of(z):
Ul(xvyax) — Ul(xvzvx)le(ZvyaI) (11)

Intuitively, this rule expresses thatdfis an element that does not belong to the set of certain answéXz),
then for every pair of elemenisandc such tha{a, b) and(b, ¢) belong to the interpretation @f, it must be the
case thata, ¢) also belongs to it.

* Fifth, Iy includes the following rule for the second disjunct@fx):
EQUAL(z,y,z) «— Ui(z,y,) (12)

Intuitively, this rule expresses thatdfis an element that does not belong to the set of certain answéXz),
then for every elemertsuch that the paifa, b) belongs to the interpretation 6f, it must be the case that= b.

* Finally, Il includes two rules for collecting the certain answer§{(@):

ANSWER(x) « Us(z, x),Us (2, z,z), C(z) (13)
ANSWER(x) « EQUAL(y, z,z),C(y), C(z),y # = (14)

Intuitively, rule (13) says that if a constamtbelongs to the interpretation éf and(a, a) belongs to the inter-
pretation ofGG, thena belongs to the set of certain answersxor). Indeed, this means that.ff is an arbitrary
solution where the program is being evaluated, #théerlongs to the evaluation of the first disjunctpfz) over
J.

Rule (14) says that if in the process of evaluatlilg with parameter, two distinct constants andc are
declared to be equal (BIAL (b, ¢, a) holds), ther: belongs to the set of certain answergxor). We show the
application of this rule with an example. LEbe a source instance, and assume (tat) and(n, b) belong to

G in the canonical universal solution fér wheren is a null value. By applying rule (1), we have that dah
holds in CaN(I). Thus, we conclude by applying rule (7) tiat(a, n, a) andU; (n, b, a) hold in Can(I) and,
therefore, we obtain by using rule (12) thab®&aL (a,n, a) holds in GN(I). Notice that this rule is trying to
prove that: is not in the certain answers €(x) and, hence, it forces to be equal t. Now by using rule (5),
we obtain that BUAL (n, a, a) holds in CaN(T). But we also have that@AL (b, b, a) holds in CaN(I) (by
applying rules (2) and (4)). Thus, by applying rule (9), weadb thatl; (a, b, a) holds in CaN(I). Therefore,
by applying rule (12) again, we obtain thaQBAL (a, b, a) holds in CaN(1). This time, rule (12) tries to prove
thata is not in the certain answers @(z) by forcing constants andb to be the same value. But this cannot
be the case sinae andb are distinct constants and, thus, rule (14) is used to cdedloate is in the certain
answers t@)(z). It is important to notice that this conclusion is correft/lis an arbitrary solution fof, then
we have that there exists a homomorphismCAN (/) — J. Given thata andb are distinct constants, we have
thata # h(n) orb # h(n). It follows that there is an elemenin J such that: # ¢ and the paifa, ¢) belongs
to the interpretation ofs. Thus, we conclude that belongs to the evaluation of the second disjuncf)¢f)
overJ.

It is now an easy exercise to show that the set of certain asswé)(x) coincide with the set of certain answers to
Ilg, for every source instande O

We now present the proof of Theorem 4.1.

Proof: Assume thall' = {71, ..., 7%}, where eacll; has arityn;, > 0, and thaQ(z) = Q1(Z) V- -V Q.(Z), where
z = (x1,...,2z,) and eachQ);(z) is a conjunctive query with at most one inequality or negatéational atom. Then
the set of intensional predicates oktALoG €(#) programlly is

{U1,...,U;, DOM, EQUAL, ANSWER},

where eaclU; (i € [1,k]) has arityn; + m, DoM has arity 1, BUAL has arity2 + m and ANSWER has aritym.
Moreover, the set of rules di, is defined as follows.

* For every predicat&; € T, IIg includes the following: rules:

DOM(:C) — E(I,y%y&---,yni—l,yni)
DOM(:C) — n(ylvxvy&"'ayni*layni)

DoM(z) «— Ti(y1,Y2:Y3s-- - Yni—1,2)

* Il includes the following rules for predicateQBAL:

EQUAL(z,2,21,...,2m) < Dom(z),DOM(z1),...,DOM(z,)
EQUAL(z,y,21,...,2m) < EQUAL(Y,x,21,...,2m)
EQUAL(x,y,21,...,2m) <« EQUAL(z,w,z1,...,2m), EQUAL(w,y,21,...,2m)

* For every predicat#’;, I1, includes the following rules:

Ui(yla"'aynmzla"'azm) — E(yla'"7yn¢)aDOM(Zl)a"'aDOM(Zm)
Ui(Yty- s Yngy 215+ -y 2m) — Ui(Wi, ... Wny, 215+ Zm), EQUAL(W1, Y1, 215« -+ 5 Zm)y -
EQUAL(wnmyma Zlynny Zm)

Leti € [1,¢]. First, assume th&@};(z) does not contain any negated atom. Thg() is equal tada (T}, (T1) A
-+ AT, (4y)), wherep; € [1, k] and every variable ii; is mentioned in eithef or z, for everyj € [1,n]. In
this case, prograrti includes the following rule:

ANSWERZ) « Up, (t1,%),...,Up, (Un,T),C(x1),...,C(zm) (15)

Notice that this rule is well defined since thezset the set of free variables &fi (T}, (@1) A - -+ A Ty, (Un)).
Second, assume thék;(Z) contains a negated relational atom. THgj(z) is equal to3a (Tp, (d1) A -+ A
Ty, (un) A =Ty, . (uns1)), Wherep; € [1, k] and every variable in; is mentioned in eithet or z, for every
j € [1,n+ 1]. Inthis case, prografii includes the following rule:

Upn+1 (ﬁn-l-la j) — U;Dl (ﬂla j)a EERE U;Dn (ﬁna j) (16)

This rule is well defined sincéu (T, (1) A -+ - ATy, (n) A =Ty, (Uns1)) is @ safe query. Finally, assume
that Q;(z) contains an inequality. The®;(z) is equal to3a (T}, (@1) A -+ A Ty, (Un) A v1 # v2), Where
p; € [1, k] and every variable im; is mentioned in eithef or z, for every;j € [1,n], andv,, v, are mentioned

in @ or z. In this case, prograriiy includes the following rules:

EQUAL (v1,v2,Z) <« Up (t1,%),...,Up, (tn,T) 17
ANSWER(Z) « EQUAL(u,v,Z),C(u),C(v),u # v,C(x1),...,C(xm)

We note that the first rule above is well defined siBa&T,, (1) A --- ATy, (Tn) A v1 # v2) is @ safe query.

Let a be a tuple of elements from the domain of a source instdnceéach predicaté/; in Ily is used as a copy

of T; but with m extra arguments that store tuple These predicates are used when testing whethera certain
answer forQ) overI. More specifically, the rules dil try to construct from @N(I) a solutionJ for I such that

a ¢ Q(J). Thus, if in a solutionJ for I, it holds thata € Q(J) becausai € Q;(J), whereQ;(z) is equal to

Ja (T, (1) A -+ AN Ty, (un) A =Ty, (int1)), thenlly uses rule (16) to create a new solution where the negative
atom of@Q, does not hold. In the same way, if in a solutidffior I, it holds thatz € Q(J) becausa € Q;(.J), where
Q:(z) is equal todu (T, (w1) A - -+ ATy, (Tn) A v1 # v2), thenIlg uses rule (17) to create a new solution where the
values assigned te andw, are equal (predicatedAL is used to store this fact). #f; or v, is assigned a null value,
then it is possible to create a solution where the valuegiaadito these variables are the same. But this is not possible
if both v; andwv, are assigned constant values. In fact, it follows from [@k this implies that it is not possible to find

10

a solutionJ’ for I wherea ¢ Q(J’), and in this case rule (18) is used to indicate thita certain answer fap over
I.

By using the above observations, it is not difficult to pravattfor every data exchange setting = (S, T, X;)
and for every instancgof S, it is the case thatertaina, (@, I) = certaina (Ilg, I). This concludes the proof of the
theorem. O

At this point, a natural question abouBrLoG C#) programs is whether the different components of this lan-
guage are really needed, that is, whether inequalitiesendsion are essential for this language. Next, we show that
this is indeed the case and, in particular, we conclude thit inequalities and recursion are essential for Theorem
4.1.

It was shown in [9] that there exist a data exchange settih@nd a conjunctive quer§) with one inequality
for which there is no first-order query* such thatertaina (@, I) = Q*(CAN(I)) holds, for every source instance
I. Thus, given that a non-recursivesEnLoG ©(#) program is equivalent to a first-order query, we concludenfro
Proposition 3.3 that recursion is necessary for captufiegctass of unions of conjunctive queries with at most one
negated atom per disjunct.

Proposition 4.3 ([9]) There exist a data exchange setting and a Boolean conjunctive que€y with a single in-
equality such that for every non-recursiataLoc ©#) programil, it holds thatcertain v (Q, 1) # certain (IL, I)
for some source instande

In the following proposition, we show that the use of inedfies is also necessary for capturing the class of unions
of conjunctive queries with at most one negated atom peumi$j We note that this cannot be obtained from the
result in [9] mentioned above, as there areTBLoGS(#) programs without inequalities that are not expressible in
first-order logic. The proof of this proposition follows frothe fact that BTaLoG €(#) programs without inequalities
are preserved under homomorphisms, while conjunctivaegieith inequalities are only preserved under one-to-one
homomorphisms.

Proposition 4.4 There exist a data exchange settivg and a Boolean conjunctive que€y with a single inequality
such that for everyDATALOGC#) programII without inequalitiescertaina (Q,) # certainyg (11, I) for some
source instancé.

Proof: Let M = (S, T, ;) be a data exchange setting defined as follows:

» The source schenfé consists of one binary relation symhbf, and the target schema consists of one binary
relation symbolV; and

« the setx,; of source-to-target dependencies consists only of théesgidM (z,y) — N(x,y).

Moreover, letQ be the queryzJy(N (z,y) A = # y). We show that for every BraLoc) programII without
inequalitiescertain g (Q, I) # certainag (I1, I) for some instancé of S.

For the sake of contradiction, assume that there existsraldc ©(#) programll, without inequalities such that
for every source instandg certaina(Q, I) = certainag (Ilp, I) holds, and lef; = {M(a,b)} andl; = {M(c,c)}.
Itis not hard to see thatrtaina(Q, I1) = true andcertainy (Q, I>) = false.

Let J; = {N(a,b)} andJ; = {N(c,c)} be target instances. It is easy to see thiaiand.J, are universal
solutions forl; and I, respectively. Given thatertaina(Q, 1) = true, we have thafllp(J;) = true. Let
h be a function from dorfy/;) to don(.J,) defined ash(a) = h(b) = c. Sincelly is a DATALOGC#) program
without inequalities, it must be preserved unde(becauseh maps constants to constants, and maps the pair
(a,b) € N7/t into the pair(h(a), h(b)) = (c,c) € N’2). We conclude thally(J2) = true. Hence, given thafs is
a universal solution fof,, we conclude from Proposition 3.3 thatrtaina (ITp, I;) = true. But we assume that
certainag (@, Iz) = certainag (Ip, I2) and, therefore, we obtain a contradiction sinegaina (Q, Iz) = false. O

Notice that as a corollary of Proposition 4.4 and Theoremwelobtain that BTALOG ©(#) programs are strictly
more expressive thanAdaLoc €#) programs without inequalities.

11

We conclude this section by studying the complexity of thebpgm of computing certain answers to
DATALOGC(#) programs. It was shown in Proposition 3.3 that the certaswans of a BTAL0GC#) program
IT can be computed by directly posihifover Can (7). This implies that for each data exchange setiirigthe prob-
lem CERTAIN-ANSWERSM, II) can be solved in polynomial time i is a DataLoG ©#) program (since &N ()
can be computed in polynomial time ahichas polynomial time data complexity).

Proposition 4.5 The problenCERTAIN-ANSWERS M, IT) can be solved in polynomial time, for every data exchange
settingM and DATALOG ©(#) programlI.

From the previous proposition and Theorem 4.1, we conclhdethe certain answers to a union of conjunctive
gueries with at most one negated atom per disjunct can alsmtmguted in polynomial time. We note that this
slightly generalizes one of the polynomial time results9h fvhich is stated for the class of unions of conjunctive
gueries with at most one inequality per disjunct. The prddhe result in [9] uses different techniques, based on the
chase procedure. In Section 5, we show thatf220G6©#) programs can also be used to express (some) unions of
conjunctive queries with two inequalities per disjunct.

A natural question at this point is whether the probleBRCAIN-ANSWERS M, IT) is PTIME-complete for some
data exchange settingt and DataLoG ©(#) programil. It is easy to see that this is the case given that the data com-
plexity of the evaluation problem for ATALOG programs is PIME-complete. But more interestingly, from Theorem
4.1 we have that this result is also a corollary of a strongsult for UCQ" queries, namely that there exist a data ex-
change setting\! and a conjunctive quer§ with one inequality such that the problenE RrAIN-ANSWERS M, @)
is PTIME-complete.

Proposition 4.6 There exist & Av data exchange settingy! and a Boolean conjunctive que€ywith one inequality
such thatCERTAIN-ANSWERS M, Q) is PTIME-complete, undek OGSPACEreductions.

Proof: Let M = (S, T, X,:) be a data exchange setting defined as follows. Source scBaoasists of a unary
relationV’, a binary relationS, and a 4-ary relatio®. Target schemd consists of a binary relatiof and a 4-ary
relationR. SetX,; consists of the following source-to-target dependencies:

Vi) — 3yT(z,y) (18)
Sy) — T(xy) (19)
P(z,y,w,z) — R(x,y,w,z) (20)

Furthermore, Boolean que€y overT is defined as:
JrIyFIwIz3z" (R(z,y, w, z) ANT(z,2") AT (y,y) AT (w,w) ANT(z,2) Nz #).

Next we show that ERTAIN-ANSWERS M, @) is PTIME-complete under @GspPACEreductions.

Membership of ERTAIN-ANSWERS M, Q) in PTIME follows from [9]. PTIME-hardness is establishedrfr
a LoGspacEereduction from Horn-3CNF to the complement o RTAIN-ANSWERS M, @)), where Horn-3CNF is
the satisfiability problem for propositional formulas in EMvith at most 3 literals per clause, and with at most one
positive literal per clause. This problem is known to be PEHgbmplete (see, e.g., [12]). More precisely, for every
Horn-3CNF formulap, we construct in logarithmic space an instadgeof S such thaip is satisfiable if and only if
certainpm (Q, I;) = false.

Without loss of generality, assume that formagla= C; A - - - A Ck, where eacl®; (i € {1,...,k}) is a clause of
the form eithep v —~¢ vV —r or p or =p VV =¢q VV —r, beingp, ¢ andr arbitrary propositional variables. Then instarige
is defined as follows:

» The interpretation of unary relatidr in I is the set of propositional variables mentionedin

* The interpretation of binary relatiofi in I, is the set of tupleg(b,b), (h, f)}, whereb, h andf are fresh
constants (not mentioned as propositional variableg.in

12

* For every claus€’; in I, (i € {1,...,k}), the interpretation of 4-ary relatiaR in I, contains the following
tuple:

- (p,q,r,0)If C; =pV —qV -,
_ (p,b,b,b) if C; =p, and
— (h,p,q,r)if C; =—pV =gV -r.

Clearly, I, can be constructed in logarithmic space frgm
Next, we show thatertain g (Q, I,) = false if and only if ¢ is satisfiable.

(=) Assume first thatertaina (Q, I5) = false.

In the settingM, the canonical universal solutiona® () for I is as follows. Assume that, is the null
generated by applying rule (19) to each atdffy) in I,. Then the interpretation aR in CAN(I) is equal to the
interpretation ofP in I, and the interpretation df in CAN(I) contains tuplegb, b), (b, £) and (g, L,) for every
propositional variablg mentioned inp.

Given thateertaina (Q, I;) = false, there exists a solutiosifor I such that)(J) = false. Leth : CAN(]) —
J be an homomorphism froma®i (1) into J, and lets be the following truth assignment for the propositionalatles
mentioned inp: o(q) = 1iff h(L,) = ¢. Next we show that satisfiesp. More precisely, we prove that(C;) = 1
foreveryi € {1,...,k}. We consider three cases:

» Assume that’; = p. SinceR(p,b,b,b) belongs toJ, and alsdl'(b, b) belongs taJ, it must be the case that
h(L,) = psinceQ(J) = false and(p, L,) belongs to the interpretation @f in CAN(I). We conclude that
o(p) = 1and, hencey (C;) = 1.

» Assume that’; = p VvV —¢ V —r ando(q) = o(r) = 1. Then by definition of:, we have that(_L,) = ¢ and
h(L,) = r and, therefore(q, ¢) and(r, r) belong to the interpretation @f in J. Thus, given thaRk(p, ¢, 7, b)
andT (b, b) belong toJ, it must be the case tha{.L,) = p sinceQ(J) = false and(p, L,) belongs to the
interpretation off" in CAN(I). We conclude that(p) = 1 and, hencez(C;) = 1.

» Assume that; = —p V —¢q V —r. For the sake of contradiction, assume thgi) = o(¢) = o(r) = 1. Then
by definition ofh, we have that(L,) = p, h(L,) = ¢ andh(L,) = r and, therefore(p, p), (¢, q) and(r,r)
belong to the interpretation @f in J. Thus, given thaRR(h, p, ¢,), T'(h, £) belong toJ andh # £ holds, we
conclude tha®)(J) = true, which contradicts our initial assumption. We conclude th@) = 0 oro(¢) = 0
oro(r) = 0, which implies that (C;) = 1.

(<) Assume thad is satisfiable, and let be a truth assignment for the propositional variablessoch that (¢) = 1.
Furthermore, assume than®(I,) is constructed as above. Fram define a functiory from dom(CAN (1)) into

dom(CAN(I4)) as follows:
q v=_l,ando(q) =1
(o) = { o 2ot
v otherwise

Let J* be a solution fod,, underM obtained from @N(I,) by replacing each occurrence of an elemewntth f(v).
Next we show tha€)(J*) = false and, thus, we conclude thairtaina (Q, I,) = false.

Assume, for the sake of contradiction, tlia¢./*) = true. Then, there exists a function: {z,y,w, z,2’'} —
dom(J*) such thatR(h(z), h(y), h(w), h(z)), T (h(x), h(z")), T(h(y), h(y)), T (h(w), h(w)) andT (h(z), h(z)) are
all tuples inJ*, andh(z) # h(z'). To prove that this leads to a contradiction, we considerglvases.

» Assume that(z) = p, wherep is a propositional variable, artdy) = h(w) = h(z) = b. Then by definition
of M andI,, we have thap is a clause irp. But given thath(z) = p, h(z) # h(z') andT'(h(z), h(z")) is a
tuple inJ*, itis the case thdi(z') = L,. Thus, given that., is an element of %, it holds thais(p) = 0 since
f(L,) = L,. We conclude that(¢) = 0 sinceo(p) = 0, which contradicts our initial assumption.

13

» Assume that(z) = p, h(y) = ¢ andh(w) = r, wherep, ¢ andr are propositional variables, aidz) = b.
Then by definition ofM andIy, we have thapv—¢V—r is a clause in. But given that.(x) = p, h(z) # h(z')
andT'(h(zx), h(z')) is a tuple inJ*, it is the case thak(z’) = L,. Thus, given thatlL, is an element of
J*, it holds thato(p) = 0 sincef(L,) = L,. Moreover, given thaf'(h(y), h(y)) andT (h(w), h(w)) are
tuples inJ*, it holds thatZ’(¢, ¢) andT'(r,r) are tuples inJ*. Thus, f(L,) = g and f(L,) = r and, hence
o(q) = o(r) = 1. We conclude that(¢) = 0 sinces(p) = 0 ando(q) = o(r) = 1, which contradicts our
initial assumption.

» Assume thati(z) = h, h(y) = p, h(w) = g andh(z) = r, wherep, ¢ andr are propositional variables.
Then by definition ofM andI,, we have thatp vV —¢ vV —r is a clause inp. But given thatl’(h(y), h(y)),
T(h(w), h(w)) andT (h(z), h(z)) are all tuples inJ*, it holds thatT'(p, p), T'(¢,q) andT(r,r) are all tuples
in J*. Thus,f(L,) =p, f(L,) = gandf(L,) = r and, hencer(p) = o(q) = o(r) = 1. We conclude that
o(¢) = 0sinceo(p) = o(q) = o(r) = 1, which contradicts our initial assumption.

This concludes the proof of the proposition. |

It is worth mentioning that it follows from Proposition 3.5 i[14] that there exists a data exchange
setting M containing sometarget dependencies and a conjunctive quepy with one inequality such that
CERTAIN-ANSWERYM, Q) is PTIME-complete. Proposition 4.6 shows that this result holdsievieen no target
dependencies are provided.

5 Conjunctive Queries with Two Inequalities

As we mentioned before, computing certain answers to catiggrqueries with more than just one inequality is an
intractable problem. Indeed, there is av_setting. M and a Boolean conjunctive quetywith two inequalities such
that the problem ERTAIN-ANSWERS M, Q) is CONP-complete [20]. Therefore, unlessiIME = NP, Theorem 4.1
is no longer valid if we remove the restriction that evenjutist of () must contain at most one inequality.

The intractability for conjunctive queries with two ineditias is tightly related with the use of null values when
joining relations and checking inequalities. In this sactiwe investigate this relationship, and provide a syitact
condition on the type of joins and inequalities allowed irdes. This restriction leads to tractability of the prablef
computing certain answers. Indeed, this tractability islary of a stronger result, namely that for every conjivec
queryQ with two inequalities, ifQ satisfies the syntactic condition, then one can construetraboc) program
I, such thatertaina (@, I) = certainag(Ilg, I) for every source instance It should be noticed that in this case
DATALOG©(#) programs are used as a tool for finding a tractable class ofegifer the problem of computing certain
answers.

To define the syntactic restriction mentioned above, we teegdroduce some terminology. Lt = (S, T, X;)
be a data exchange setting. Then for evenry relation symbaol” in T, we say that thé-th attribute of7’ (1 < ¢ < n)
can be nullifiedunderM, if there is an st-tgdv in X5, such that the-th attribute ofI" is existentially quantified in the
right hand side ofv. Notice that for each settingyf and source instandg if the i-th attribute ofl" cannot be nullified
underM, then for every tuplécy, . .., ¢,) that belongs td@ in the canonical universal solution fér it holds thatc;
is a constant. Moreover,) is a UCQ" query overT andz is a variable inQ, then we say that can be nullified
under@ and M, if x appears i) as thei-th attribute of a target relatiofi, and thei-th attribute ofl” can be nullified
underM.

Let M be a data exchange setting adca conjunctive query with two inequalities, and assume thatippears
as a variable in the inequalities ¢, thenx cannot be nullified unde® and M. In this case, it is straightforward
to prove that ERTAIN-ANSWERS M, Q) is tractable. Indeed, the previous condition implies tloatevery source
instancel, if @ holds in CaN(I), then all the witnesses f@p in CAN(7) make comparisons of the fora£ ¢/, where
c and¢’ are constants. Thus, we have thattainy (@, I) can be computed by simply evaluatigigover CaN(I).
Here we are interested in finding less obvious conditionsl#zal to tractability. In particular, we would like to find
gueries that do not restrict the use of null values in suchict stay.

Let @ be a conjunctive query with two inequalities over a targbeseaT. Assume that the quantifier free part of
Q is of the forme(z1, ..., zm) A ur # v1 A ug # v2, Whereg is a conjunction of relational atoms ov@&randu,,

14

v1, us andwvo are all mentioned in the set of variables . . ., 2, (Q is a safe query [2]). We are now ready to define
the two components of the syntactic restriction that leadsactability of the problem of computing certain answers.
We say that) hasalmost constant inequalitiasnder M, if u; or v; cannot be nullified undep and M, andus or

v cannot be nullified undep and M. Intuitively, this means that to satisty in the canonical universal solution of
a source instance, one can only make comparisons of thedefm. andc # ¢/, wherec, ¢’ are constants and is a
null value. Moreover, we say thét hasconstant joinsinder M, if for every variabler that appears at least twice in
¢, x cannot be nullified undep and M. Intuitively, this means that to satiséy in the canonical universal solution of
a source instance, one can only use constant values whémjog@lations.

Example 5.1 Let M be a data exchange setting specified by st-tgds:

Plz,y) — T(y),
P(z,y) — 3J2U(x,2).

The first and second attribute 6f as well as the first attribute @f, cannot be nullified undek1. On the other hand,
the second attribute @f can be nullified undeM.

LetQ(z) be quenBy3z(T (y, z) AU (z,x) Az # yAx # z). Then we have thad has almost constantinequalities
underM because variablegandz cannot be nullified undep and.M, but@ does not have constant joins because
variablex appears twice iff'(y,z) A U(z,z) and it can be nullified unde® and M. On the other hand, query
U(z,y) NU(z,2) Nx # z Ay # z has constant joins but does not have almost constant inggsiahnd query
U(z,y) NT(x,2) Nx # z Ay # z has both constant joins and almost constant inequalities.)

Although the notions of constant joins and almost constaeqalities were defined for CQqueries with two in-
equalities, they can be easily extended to the case of catjerqueries with an arbitrary number of inequalities. In
fact, the notion of constant joins does not change in the abae arbitrary number of inequalities, while to define the
notion of almost constant inequalities in the general caise has to say that each inequality” y in a query satisfies
the condition that: or y cannot be nullified. With this extension, we have all the geaey ingredients for the main
result of this section.

Theorem 5.2 Let M = (S, T, £,;) be a data exchange setting aGda UCQ” query overT such that each disjunct
of either (1) has at most one inequality and constant joins utlde or (2) has two inequalities, constant joins and
almost constant inequalities unddr. Then there exists BATALOG€(#) programIly over T such that for every
instancel of S, certaina (@, I) = certaina(Ilg, I). MoreoverIlg can be effectively constructed fraghand M

in polynomial time.

Proof: Let M and@ be as in the statement of the theorem. Assumed@{aj is of the formQ.(z) vV - - - V Q(Z),
wherez = (z1,...,z,), m > 0. In order to prove the theorem we need to introduce some &xmranology and an
intermediate result (Lemma 5.3).
Let I be an arbitrary source instance. In what follows, we dsestead of @QN(I) to denote the canonical
universal solution fof underM. Let thent = (¢4, ..., t,) be a tuple of constants frofthat also belong tg'.
Although the proof of this theorem is rather long and techhithe intuitive idea that underlies it is simple to
explain. Our goal is to construct amplicationgraphH (Q, J,t) — as in the standard algorithms for 2SAT — such that
t € certainy(Q, I) iff H(Q, J,t) contains aconflict We now show how to construct the graph{(@, J, ¢) from Q,
J andi. The set of nodes o (Q, J, t) consists of all pairs of distinct elements.fplus two fresh elements andv
that do not appear id. The edges off (@, J,) are labeled over the alphab@flue, red, green} as follows:

 There is an edge labele@d between two nodes if (Q, J, t) iff these two nodes share a null value;

« there is an edge labeledue between nodeg andv in H(Q, J, t) iff for somel < ¢ < ¢, Q;(z) is of the form
Jy¢p(z,y), whereg(z,) is a conjunction of relational atoms ov€r and.J = Q;(1);

« there is an edge labelédue between nodeép;, p2) and(ps,ps) in H(Q, J, t) iff for somel < i < ¢, (1)
Q:(z) is of the form3y(4(Z, y) A ur # uz A vy # v2), whereg(z, §) is a conjunction of relational atoms
overT anduy, uz, v1,v2 € {Z,7}, and (2) there is an assignment {z,y} — dom(J), such that(z) = ¢,
(J, O') ': (b(f,g) AUy # ug A vy # vs, a(ul) = P1, U(’U,g) = pa, 0’(1)1) = ps3, anda(vz) = py; and

15

* thereis a loop labeleglreen on the nodép, , p2) iff for somel < i < ¢, (1) Q;(z) is of the form3y(4(z, y) A
uy # ug), whereg(Zz, g) is a conjunction of relational atoms ov&anduy,us € {Z, 7}, and (2) there is an
assignment : {z,y} — dom(J), such that(z) = ¢, (J,0) E ¢(Z,7) A w1 # ug, o(u1) = p1, o(uz) = pe.

A nodeq in H(Q, J,t) is openif both of its components are nulls, and itsemi-operif one of its components is
a constant and the other one is a null. The ngdeopenly-reachablérom a node;’ if there is a pathyq; - - - qrq in
H(Q,J,t), k > 0, such that:

« Every nodey; isr ed-adjacenttay; 1,1 <i < k, ¢’ isr ed-adjacent taj; andgy is r ed-adjacent tay;

« every nodey, 1 < i < k, is open; and

» every nodey, 1 < i < k, has agr een-labeled loop.
Finally, we say thag has acontradictionpath ¢-path) inH (Q, J, ?) if either the components gfare distinct constants
orthereis apath = qi1q2 - - - qar 1IN H(Q, J, 1), k > 0, that satisfies the following:

e Every nodey;, 1 < i < 2k, is semi-open;

« every node of the forms; 2, 0 < i < k — 1, is openly-reachable fromp; 1, but the constant components in
G2i+1 andgq; o are different;

« every node of the forme;, 0 < i < k, is eitherbl ue-adjacent tajs; 11 Or g2; = ¢2;+1 @andgo; has agr een-
labeled loop; and

« eithergq, has agr een-labeled loop, orp, 1 has two different constant components, or for sdmei < k it
is the case that the node,; is openly-reachable fromy;_; and the constant componentsgef_; andgay+1
are different.

The following lemma is a key component in the proof of the tleew. It confirms our intuitive idea thaf (Q, J, ?) is
animplicationgraph, over which one can check whethet certaina(Q, I') by simply looking forconflicts Those
conflicts can be identified by detecting the presence of fpgrths in the graph. The proof of this lemma is rather
technical and left to Appendix A.1.

Lemma 5.3 Let@ and M be as defined above. For every source instahedth canonical universal solutiod, and
tuplet of constants fronv, it is the case that € certainn(Q, I) iff © andv are bl ue-adjacent inH(Q, J, t), or
there are two nodeg and¢’ in H(Q, J,t) such thaty andq’ are bl ue-adjacent and botly and ¢’ havec-paths in
H(Q, J,t), orthere isanode in H(Q, J,t) that has agr een-labeled loop and a-path in H(Q, J, ?).

Before we continue with the proof of theorem 5.2, we sketelpttoof by means of an example. In what follows, given
a data exchange settiog = (S, T, X,;) and a conjunctive querg with two inequalities that satisfies the restrictions
of Theorem 5.2, we construct aabaLoG €(#) programllg such that, when evaluated over the canonical universal
solutionJ for some instancd, it computes all the tuplesfor which the graphH (Q, J,t) satisfies the conditions
stated in Lemma 5.3.

Example 5.4 Let M be a data exchange setting such ®at {D(-,-,), E(-,-,)}, T ={P(,-,-), R(-,-,-)} and
Ys = {D(x,y,2) = In(P(z,y,n) A P(z,2,n)), E(z,y,2) — In(R(z,y,n) A R(z, 2,n))}.

Also, letQ(z) be the following conjunctive query with two inequalitiegnstant joins and almost constant inequali-
ties:
FyFzFw (P(z,y,2) A R(z,y, w) ANy # 2z ANy # w).

We construct a BraLoGC#) programllg such thatcertaina (@, I) = certainag (Ilg, I), for every source

is defined as follows.

16

* First, the program collects in dqm) all the elements that belong to the active domain of the itstaf T
wherellg, is evaluated:

DoM(z) «— P(z,y,z2) (1)
DoM(z) « P(z,z,y) (2)
DoM(z) « P(z,z,y) 3)
DoM(z) <« R(z,y,z2) (4)
DoM(z) <« R(z,z,y) (5)
DoM(z) <« R(z,z,y) (6)

* We also add a rule that createslin andU, a copy of P and R respectively, but with an extra argument for
keeping track of the element whelig, is being evaluated:

Ui(z,y,2,t) «— P(x,y,z),Dom(t) @)
Us(z,y,2,t) — R(x,y,z), DOM(t) (8)

« If an element: does not belong to the set of certain answei@to), then for every tuple of the forrtu, b, ¢, d)
such thaf(a, b, ¢) belongs to the interpretation éf and(a, b, d) belongs to the interpretation &, it is the case
thatb = c orb = d. This is expressed by means of the following rules:

EQUALleft(yaZayvszvx) — Ul(xvyazax)aUQ(Iavavx) (9)
EQUALright(yaway727w7x) — Ul(xayazax)aUQ(xayawax) (10)

Intuitively, predicate BUAL'®® (resp., BHUAL'8BY) keeps track that it is the first (resp., second) inequafity o
Q that is falsified. For reasons that will become clear lateedjzates BUAL'®®* and EQuAL* 8Pt not only
need to keep track of the element where the query is beingiaeal, but also of the elements that witness
the existential quantifiers of the query. This is handled Bans of the last four arguments of the predicates
EquaL'®® and EuaLrisht,

* Since BUAL® (2, y, - -,-,-) (resp. BUAL™® (2,5, -, -,-)) holds if 2 andy are the same elements, the pro-
gramlly must include the following rules,

EQuAL'®™(v v, z,y,2,t) «— DoMm(v),Dom(z), DoM(y), DOM(z), DOM(t) (11)
EQUAL'® (u, v, 2, y,2,t) «— EQUAL'™™(v,u,x,vy,z2 1) (12)
EQUALleft(v,u,x,y,z,t) — EQUALleft(v,w,x,y,z,t), EQUALleft(w,u,:C,y,z,t) (13)
EQUAL™BRt (y 4 x4y, 2,t) — Dom(v), DoM(z), DoM(y), DOM(z), Dom(t) (14)
EQUALright(u,v,x,y,z,t) — EQUALright(v,u,x,y,z,t) (15)
EQUAL™8Rt (y o, .y, 2,t) «— EQUAL8M (v w, x,y, 2,), EQUAL™ S8R (w u, x, 9, 2, t) (16)

» Lemma 5.3 shows that in order to check whethdrelongs to the certain answers@z), it suffices to show
that there exists a pali, ¢’) of blue-adjacent nodes il (Q, J, a) that havec-paths. In order to guide the
search for a-path from a node that witnesses the first (left) inequality of@), we use the following set of
rules:

EQuaL'™(y,w, t,u,v,2) — Ui(z,y,z), Us(z,y, w,z),C(y), EQUAL'™ (2, s, t,u,v,z),C(s),y # s a7
EQuaL'™(y,w, t,u,v,2) — Ui(z,y,z z),Us(z,y, w,z),C(z), EQUAL"™ (y, 5, t, u, v,), C(s), 2 # s (18)
EQuaL'™(y, z,t,u,v,2) — Ui(z,y,z), Us(z,y, w,z), C(y), EQUAL"™ (w, s, t, u,v,), C(s),y #s (19)
EQUAL™(y, z,t,u,v,2) — Ui(z,y, 2 z),Uz(z,y, w,z), C(w), EQUAL'™ (y, 5,1, u,v,z), C(s),w # s (20)

17

Intuitively, the first of these rules expresses the follayiif an element: does not belong to the set of certain
answers td@)(x), then for every tuple of the forrtu, b, ¢, d) such tha{a, b, ¢) belongs to the interpretation &f
and(a, b, d) belongs to the interpretation @, if b is a constant and is set to be equal to the constarguch
thatb # e, then it must be the case thHat d. The intuition behind the rest of the rules is analogous.

Equivalently, in order to guide the search forgath from a node that witnesses the second (iigght)
inequality of@, we use the following set of rules:

EQUAL™ M (y w, t,u,v,x) «— Ui(x,y,z), Us(z,y,w,z),C(y), EQUAL™ ™ (2,5, t,u,v,2),C(s),y #s (21)
EQUAL™E™ (y w, t,u,v,2) — Ui(z,y,z), Us(z,y,w,z), C(2), EQUAL™E (y, 5, t,u,v,2),C(s), z # s (22)
EQUAL™E™ (y 2 t u,v,2) — Ui(z,y,z), Us(z,y,w,), C(y), EQUAL™E (w, s, t,u, v, z)),C(s),y # s (23)
EQUAL™E™ (y 2 t u,v,2) — Ui(z,y,2), Us(z,y,w,), C(w), EQUAL™E (y, 5, t,u, v, z), C(s),w # s (24)

» The progranily also includes the following rules:

ANSWER®™ (y, 2z, w,) «— EQUAL®(u,v,y, 2, w,x), C(u),C(v),u # v (25)
ANSWERﬁght(y,z,w,x) — EQUAL™EM (y, v, y, 2, w,), C(u), C(v),u # v (26)

Intuitively, these rules collect in Aswer®® (resp. Avswer88t) all those nodes that witness the first (resp.
second) inequality of) and that have a-path.

« Finally, the program includes the following rule that emls certain answers:
ANSWER(z) « ANSWER‘eft(y,z,w,:C),ANSWER‘"ight(y7z7w,x),C(:v) (27)

Intuitively, this says that if there at@l ue-adjacent nodeg andq’ in H(Q, J, a) such that botly and¢’ have
c-paths, theru belongs to the certain answers@x). Notice that it has been necessary to keep track until
this last stage not only of the argument where the query isgoevaluated, but also of the whole tuple that
determines thél ue-adjacency ofy andq’. This is done by using the last four arguments in the preéscat
EquaL'®f and EpuaLTisht,

We now show the application of the program with an example. t Lé =
{D(a,a,b),D(a,c,d), E(a,b,c), E(a,b,d), E(a,a,c)} be a source instance. Then the canonical universal
solutionJ for I is as follows:

 The interpretation of the relatioR in J is {(a, a, L1), (a,b, L1), (a,¢, L3), (a,d, L3)}.
 The interpretation of the relatioR in J is {(a, b, L2), (a,¢, L2), (a,b, L4),(a,d, L4),(a,a, Ls),(a,c, Ls)}.

By applying rules (1) to (6) we first collect all the elementsjoin Dom. From rules (7) and (8) we obtain that
Ui(a,a, L1,a) andUs(a,a, Ls,a) hold. Then we use rule (9) to show thaQ&AL'*®(a, 11, a, 1, Ls,a) holds.
Now we use rule (12) to obtain thaBAL'*™ (1, a,a, L1, L5, a) holds.

Next, we apply rules (7) and (8) to obtain tHat(a, b, L1,a) andUs(a, b, Lo, a) hold. Further, sinc€(a) and
C(b) hold (@ andb are constants) arid=# a, we obtain from rule (17) that @AL' (b, L5, a, L1, L5, a) holds, and
by using rule (12) we show that@@AL'*®(1,,b,a, L1, L5,a) holds.

We use again rules (7) and (8) to obtain thafa, ¢, L3,a) andUz(a, ¢, L2, a) hold. Sincec andb are different
constants, we can apply rule (19) and obtain thauEL'*® (¢, 15,4, L1, Ls,a) holds. We then use rule (12) to
show that BUAL'®® (L3, ¢, a, L1, Ls,a) also holds inJ. Rules (7) and (8) are applied one more time to obtain
that Uy (a, d, L3,a) andUs(a,d, L4,a) hold. Then, since: andd are different constant values, we can use rule
(17) for a second time to show thaQBAL'(d, 14,a, L1, 15,a) holds, and next rule (12) is used to show that
EQuAL'®®(1,,d,a, L, L5,a) holds.

Rule (8) is used for the last time to obtain tHat(a, b, L4,a) holds. Further, we use rule (19) to show that
EQuAL'®f(b, 11,a, L1, Ls,a) holds. Finally, by applying rule (13) we conclude tha@L'*® ! (a,b,a, L1, L5, a)
holds in.J, and then we use rule (25) to show that$werR®® ! (a, L, 15, a) belongs toJ.

Using a procedure very similar to the preceding paragrapkan be shown that AsWerR &1 (q, 11, 15, a)
also holds inJ, and then, since is a constant, from rule (27) we obtain thabelongs to the certain answers@for
I underM. O

18

We now continue with the proof of Theorem 5.2. Assume fat {71, ..., T}, where eaclT; has arityn; > 0,
and thatQ(z) = Q1(Z) V --- V Qe(Z), wherez = (z1,...,z,,) and each);(z) is either (1) a conjunctive query,
with at most one inequality and with constant joins, or (2pajanctive query with two inequalities but with constant
joins and almost constant inequalities. Further, assuatéithC {1,. .., ¢} is the set of all indexegsuch tha);(z)
contains two inequalities, and that is the number of existentially quantified variablesjp. The set of intensional
predicates of the prograity, is

{Uy,, ..., Uy, DOM, EQUAL, (EQUAL'®™J) v, (EQUALTIER®TY)
ANSWER, (ANSWER®™J) iy, (ANSWER'EREI), 11
and the arity of each predicate is defined as follows:
» eachU;, fori € [1, k], has arityn; + m;
e DowMm has arity 1;
* EQUAL has arity2 + m;
« each predicate of the form@@AL'f7 or EQuUAL™&M®J for j € W, has arity2 + p; + m;
« ANSWERhas aritym; and
« each predicate of the formMsweR®™7 or ANSWER'E™7 for j € W, has arityp; + m.

The set of rules ofllp is defined as follows (iff = (y1,...,yn)., We use DM(y) as a shortening for
DoM(y1), ..., DoOM(yy,)).

* For every predicat&; € T, Il includes the following:, rules:

DOM(:C) — E(I,y%y&---,yni—l,yni)
DOM(‘T) — /Ti(ylvxvy&--'ayni—layni)

DOM(:C) — T%(ylvy%y&'--ayni*lax)
Intuitively, predicate @M collects the elements that belong to the domain of the eteakinstance.
* Il includes the following rules for predicateQBAL:

EQUAL(z,z,zZ) « DoM(z),DoMm(z)
EQUAL (z,y,Z) « EQUAL(y,x,Z2)
EQUAL(z,y,z2) « EQUAL(z,w,Z), EQUAL(w,v, 2)

* Il includes the following rules for predicateQEAL'*®7 | for eachj € W, wherea is a tuple ofp; fresh

variables:
EQUAL!®®™J (2 2 4,2) «— DoM(z), Dom(a), DOM(Z)
EQUAL'®™ (2 4y, u,2) «— EQUAL®®I(y z u,2)
EQuAL!®®™I (2 y 4,2) — EQUAL'™™I (2, w, a,z), EQUAL®™I (w,y, 4, Z)

* Il includes the following rules for predicateQEAL™ 8P| for eachj € W, wherea is a tuple ofp; fresh
variables:

EQUAL™8MJ (4 o 7,7) «— Dom(x), Dom(a), Dom(z)
EQUAL™ERYI (1 @, 2) «— EQUALMEMYI(y 1 4, z)
EQUAL™8MI (1 4 7. Z) «— EQUAL™ENI (1 w, @, Z), EQUALTENYI (1, y 4, 7)

19

* For every predicat&;, i € [1, k], the progranily includes the following rules, whe= (y1, ..., yn,), and
z = (z1,...,2m) are tuples of fresh variables:

Uz(ljv 5) — Tl(@)v DOM(E)

* Leti € [1,¢]. First, assume thap,(z) does not contain any inequality. Thén(z) is equal to3u (T, (u1) A
-~ AT, (uy)), wheres; € [1, k] and every variable i, is mentioned in eithet or z, for everyj € [1,n]. In
this case, prograrti includes the following rule:

ANSWER(Z) «— U, (41,%),...,Us, (tin,T), C(x1),...,C(zm)

Notice that this rule is well defined since the 3é¢ the set of free variables afi (75, (1) A« -+ ATy, (4n)).

Second, assume thé};(z) contains an inequality. The®;(z) is equal to the formulda (T, (@) A -+ A
T, (un) Av1 # v2), Wheres; € [1, k] and every variable in; is mentioned in eitheg or z, for every: € [1,n],
andv, vo are mentioned im or z. In this case, prograti includes the following rules:

EQUAL(v1,v2,Z) «— Us (41,Z),...,Us, (tn,T)

n

ANSWER(Z) « EQUAL(u,v,Z),C(u),C(v),u # v,C(x1),...,C(xm)

We note that the first rule above is well defined since the qderfs, (1) A--- A Ts, (an) Av1 # v2) is a
safe query. Further, in this caBk, also contains the following rules for eaghe W, assumingj is a tuple of
p; fresh variables:

EQUALleftJ(vlanvgvj) — USl (ﬂlvj)v'- '7U5n (ﬂnaf)a DOM(@)
EQUALTENI () o, 5,2) — U, (11,Z),...,Us, (iin, Z), DOM(7)

We note that the rules above are also well defined sidd’, (1) A--- A Ts, (4n) Av1 # v2) is a safe query.

Finally, assume thap; (z) contains two inequalities, ar@; has constant joins and almost constant inequalities.
Further, assume th&;(z) is equal to the formulda (Ts, (a1) A -+ A T, (Tn) A v1 # v2 A vg # vg), Where
eachs; € [1, k] and every variable ii; is mentioned in eithet or z, for every;j € [1,n], andvi, vs, vs, and

v4 are mentioned im or . In this case, prograii includes the following rules:

EQUAL'®™i(vy vy, @, 2) — Us, (41,%),...,Us, (tin, T)
EQUALTBR (4 vy @, 7) «— U, (41,7),...,Us

Further, in this casél, also contains the following rules for eaghe W, assumingy is a tuple ofp; fresh
variables:

left,j

EQUAL'™ (v3,v4,7,2) — Up,(11,2),...,Up, (in,), C(v1), EQUAL'™ (v, w, 5, Z), C(w), v1 # w
EQuAL"®™7 (v3, v g) — U (41,2),...,Up, (@n,Z),C(v2), EQUAL"™ (01, w, 7, Z), C(w), va # w
EQUAL'™ (v1, 00,5, %) — Up, (ti1,Z),...,Up, (iin, Z), C(v3), EQUAL'*™ (vs, w, 7,), C(w),v3 # w
EQUAL'™ (v1, w0, 5, %) — Up, (ti1,Z),...,Up, (iin, T), C(va), EQUAL'*™ (v3, w, 7,), C(w),va # w
EQUAL™EMI (v vy, 5, %) — Up, (ti1,%),...,Up, (iin,), C(v1), EQUALTE"®I (vy w, 7, &), C(w), v1 # w
EQUAL™E™ (y3, 04,4, 2) — Upy (@1,%), ..., Up, (iin, &), C(v2), EQUAL™E™ (v1 w, §, Z), C(w), v2 # w
EQUAL™E™ (vy 09,4, 2) — Up, (@1,%), ..., Up, (iin, &), C(v3), EQUAL™E™ (v, w, §, Z), C(w), v3 # w
EQUAL™E™ (vy vy, 4, 8) — Up, (i1,), Up,, (tin,), C(v4), EQUAL™E™ (v3 w, 7, Z), C(w), va # w

Finally, the progranily also includes the following rules for eaghe W, assumingy is a tuple ofp; fresh
variables:

ANSWER®™ (. 7) — EQUAL'™™I(u,v,7,%), Clu), Cv),u # v
ANSWER8P®I (7 7)) — EQUAL™ENMI(y v, 7, Z), C(u), C(v),u # v
ANSWER(Z) «— ANSWER®™J (7 z), ANSWER'8P" (3, 7), C(z1), ..., C(xy,)

20

Using Lemma 5.3, itis a tedious but not difficult task to prthet for every data exchange settifvg = (S, T, X4;)
and instancéd of S, certaina (@, I) = certaina(Ilg, I). This can be done with the help of the intuition provided in
Example 5.4.]

It immediately follows from Proposition 4.5 that if a datackange setting\{ and a UCQ query Q satisfy
the conditions mentioned in Theorem 5.2, theBREAIN-ANSWERS M, Q) is in PTIME. Furthermore, it can also
be shown that the properties of having constant joins an@stimonstant inequalities are helpful in reducing the
complexity of computing certain answers to unions of confiwe queries with at most one inequality per disjunct.

Proposition 5.5 LetQ be aUCQ” query with at most one inequality per disjunct. Then (1) ég\disjunct ofQ has
constant joins under a setting!, thenCERTAIN-ANSWERS M, @) is in NLOGSPACE and (2) if in addition every
disjunct of@ has almost constant inequalities undet, thenCERTAIN-ANSWERY M, Q) is in LOGSPACE

Proof: Before proving the proposition, we mention a couple of rekadhnat will be useful in the proof. First, it is
immediate from the definition of canonical universal salntthat &N (7) can be computed not only in polynomial
time, but also in logspAacEefor each source instande Second, if tuplel'(py, . .., p,) belongs to @N(I) for an
arbitrary source instandeunderM, and thei-th attribute of 7" (1 < i < n) is not existentially quantified i, then
p; has to be a constant.

We now prove the proposition, and start with part (1). Adt= (S, T, X,;) be a data exchange setting afica
guery that is the union of conjunctive queries, with at mast mequality per disjunct and without negated relational
atoms, and such that each disjuncthas constant joins. We prove next that there exists a g@é&rguch that the
data complexity of)’ is in NLOGSPACE andcertaina (Q, I) = Q'(CAN(I)), for every source instande From this
it immediately follows that ERTAIN-ANSWERY M, Q) is in NLOGSPACE Indeed an NoGsPACEprocedure can be
constructed by composing twoLlGsPACEprocedures; the first one that construcNCI) from I and the second
one that evaluate@’ over Can (7). The result then follows from the fact that the classodé sPACEis closed under
compositions (c.f. [21]).

The queryQ’ will be defined intransitive closure logi¢for a precise definition of this logic, see e.g. Chapter 10.6
in [17]). In order to do so, need to introduce some terminglaigd an intermediate result (Lemma 5.6).

Assume that) is Q1(z) V --- V Qe(Z), wherez = (z1,...,z,,), m > 0. Let I be an arbitrary source instance
andt = (¢1,...,t,) a tuple of constants frorh. We construct an undirected gragtiQ, I, t) as follows:

» The nodes of#(Q, I, 1) are the elements inA\ (1) plus two fresh elemenjsandv, i.e. neithe: norv belongs
to CaN(]);

« there exists an edge between elemengmdyp’ in G(Q, I,t) iff for somei € [1,4], (1) Q;(z) is of the form
Jy(o(z,) ANu # v), whereg(, i) is a conjunction of relational atoms oVEr andu, v € {Z, 5}, and (2) there
is an assignment : {z,y} — dom(CAN(I)), such that(z) = ¢, (CAN(I),0) = ¢(Z,y) Au # v,0(u) =p
ando(v) = p’; and

« there exists an edge betweerandv in G(Q, I, t) iff for somei € [1, /], Q:(Z) is of the form3y¢(z, y), where
¢(z, %) is a conjunction of relational atoms ovEr and G\N(1) | Q; (7).

We say thatG(Q, I,t) has acontradictionpath (orc-path), if there is a path i6:(Q, I,) from a constant €
dom(CAN(I)) to a different constant € dom(CAN(I)), or an edge betwegnandy. Notice that this construction is
a simplified version of the graph used in the proof of Theore®n As for the case of Lemma 5.3 in Theorem 5.2, we
present a key lemma that characterizes certain answensns tf c-paths in the grapf(Q, I, ¢). This can be proved
using techniques along the lines of those used in the praoémima 5.3.

Lemma 5.6 LetQ be as defined above. For every source instahaad tuplet of constants frond, it is the case that

t € certaing (Q, 1) & G(Q,I,1) has ac-path

21

We define the querg)’ in three steps. Assume, without loss of generality, thagfmhl < i < s < ¢, Q;(Z) is of
the form3g;(¢: (T, ;) A u; # v;), whereg;(Z, g;) is a conjunction of relational atoms ovéy; andu;, v; € {Z, 7},
and for eachs < j < ¢, Q;(z) is of the form3y;¢;(z, y;), wherep; (z, ;) is a conjunction of relational atoms over
T. Then:

1. Define a formul&(z1, 22,) as follows, where;; andz, are fresh variables, i.e;; andz, are not mentioned

in Q(z):
A(Zl, 22, 1_7) = \/ Eﬂl(gf)l(d_?, 171) A Z1 }é zZ9 A Z1 = U; A zZ9 = Ui).
1<i<s
Intuitively, the formulaA(zy, 22,) defines the adjacency in the gra@i@, I, z), with respect to elements in
CaN(I);

2. define a formula(z) as follows,
a@) = \/ Fue(E, 7).

s<j<t

Intuitively a(z) checks whether there is an edge betwgemdr in G(Q, I, z); and

3. finally, the query)’(z) is defined as:

(a(Z) V JwiFwe(C(wq) A Clwa) A wy # we
A (w1, we) € TrCLA(u,v,Z))) A Clx1) A...C(zm)

where (wy,w2) € TrCLA(u,v,Z) expresses that the pgiw,, w2) belongs to the transitive closure of the
adjacency relation defined by the paits v) that satisfyA parameterized by.

It immediately follows from Lemma 5.6 that for every sournstancel, certaina(Q, I) = Q'(CAN(I)). Further, it
is well-known that the data complexity of any formula in tséive closure logic is in NOGSPACE(see e.g. Chapter
10.6 in [17]). This concludes the first part of the propositio

Now we prove part (2). Lef be as in the first part of the proof, but with the addition thathe disjunct ofQ
has almost constant inequalities. Lemma 5.6 continueglibia case in this setting, but notice that now if there is
ac-path inG(Q, I,1) then there is a-path of length at most 2. Thus, in this ca@4z) can be expressed as the
FO formula that checks whether there is an edge betweand v in G(Q, I,t), or ac-path of length at most 2 in
G(Q, I,t). Since the data complexity of any FO formula is in&sPACE(see e.g. Chapter 6 in [17]), we conclude
that the problem of computing certain answers for this abdiggieries and settings is iInAGSPACE)

An obvious question at this point is how natural the cond#iased in Theorem 5.2 are. Although we cannot settle
this subjective question, we are at least able to show tleaetihonditions are optimal in the sense that removing any
of them leads to intractability for the class of UZ@ueries with two inequalities.

Theorem 5.7

(1) There exist & Av data exchange setting1 and a queryQ such that@ is the union of a Boolean conjunctive
guery and a Boolean conjunctive query with two inequalitiest has both constant joins and almost constant
inequalities undemM, and such thaCERTAIN-ANSWERY M, @) is CONP-complete.

(2) There exist aLAv data exchange setting1 and a Boolean conjunctive quel® with two inequalities,
such that@ has constant joins undeM, @ does not have almost constant inequalities unddrand
CERTAIN-ANSWERSM, Q) is CONP-complete.

(3) There exist aLAv data exchange setting1 and a Boolean conjunctive quei® with two inequalities,
such that@ has almost constant inequalities und&, 9 does not have constant joins undan and
CERTAIN-ANSWERS M, @) is CONP-complete.

22

Proof: We only present here the proof of the first part of the theoirféon the details of the second and third part see
Appendix A.2. The proof for (1) is as follows: The LAV settingl = (S, T, X,;) is defined as follows. The source
schemas consists of two relations: A binary relatidghand a ternary relatioR. The target schemiR consists of three
relations: Two binary relationf and.S, and a ternary relatioti. Further,X; is the following set of source-to-target
dependencies:

P(z,y) — Fz(T(x,2) ANT(y,z)ANS(z,y))
R(z,y,2) — U(z,y,2)

Furthermore, Boolean quety is defined as:

Iy (U(x,y,2) AT (x,2) AT (y,y) ANT(2,2)) V
FrIyFwIz(T(z,y) AT (w,z) ANS(x,w) ANz #y Aw # z).

We denote the first disjunct @@ by Q; and the second bg-. Clearly,Q, has constant joins and almost constant in-
equalities inM. On the other handy; does not have constant joins. Next we show theRQ\IN-ANSWERS M, Q)
is CONP-complete.

Membership of ERTAIN-ANSWERY M, Q) in CONP follows from [9]. ThecONP-hardness is established from
a reduction from 3SAT to the complement oERTAIN-ANSWERS M, Q). More precisely, for every 3CNF proposi-
tional formulag, we construct in polynomial time an instankgeof S such that is satisfiable iffcertainag(Q, Iy) =
false.

Given a propositional formula = A, _,,, C; in 3CNF, where eacty; is a clause, lef, be the following source
instance:

 The interpretation oP in I, contains the paifg, —¢), for each propositional variablementioned inp; and

* the interpretation oR in I, contains all tuple$c, 3, v) such that for someé < j <m, C; = (aV BV 7).

Clearly, I, can be constructed in polynomial time fragn
The canonical universal solutiohfor I, is as follows, where we denote hy, (or L-,) the null generated by
applying the stdP(z, y) — 32(T'(z, 2) AT(y, 2) A S(z,y)) to P(q, ~q):

 The interpretation of the relatidfiin J contains the tuplegy, L) and(—q, L,), for each propositional variable
g mentioned iny;

+ the interpretation of the relatio$iin .J is just a copy of the interpretation of the relatifrin I,; and
* the interpretation of the relatidii in J is just a copy of the interpretation of the relatifirin 1.
We prove now thab is satisfiable iffcertain g (Q, Iy) = false.

(=) Assume thai is satisfiable, and let be a truth assignment for the propositional variableg afuch that
k(¢) = 1. Fromg, define a functiory from .J into .J as follows:

~q wv=_lgandk(q) =1
flv) = §a¢ v=lLgandk(g) =0
v otherwise

Let J* be the solution fol,, obtained fromJ by replacing each occurrence of an elemeirt J by f(v). We
show next thaf)(J*) = false, and, thus, thatertain(Q, Iy) = false.

Assume, for the sake of contradiction, th@fJ*) = true. Then@i(J*) = true or Qz(J*) = true.
Assume first that the latter holds. Then there is a fundtiof z, y, z, w} — dom(J*) such that’(h(z), h(y)),
T(h(2), h(w)), andS(h(z), h(z)) are all tuples in7*, andh(z) # h(y) andh(z) # h(w). SinceS(h(z), h(z))

23

belongs toJ*, it follows that for some propositional variablementioned ing, h(z) = ¢ andh(z) = —q.
Further, sincel’(h(z), h(y)) and T (h(z), h(w)) belong toJ*, we have that(y) = f(L,) = h(w). But
then f(L,) # g and f(L,) # —¢, which contradicts the definition of*. Assume, on the other hand, that
Q1(J*) = true. Then there is a functioh : {z,y, 2} — dom(J*) such that the tuple§ (h(z), h(y), h(z)),

T (h(z), h(z)), T(h(y), h(y)), andT'(h(z), h(z)) are all tuples inj*. Then by definition ofM and Iy, there
exists a clausex vV 5V) in ¢ such thati(x) = «, h(y) = 3, andh(z) = ~. SinceL(h(z), h(x)) = L(a, «)
belongs toJ*, it follows that f (L) = «, and thus, that(«) = 0. Similarly, x(3) = 0 andx(y) = 0. But this

is a contradiction, since(¢) = 1, and thuss(a) = 1 orx(8) = 1 ork(y) = 1.

(<) Assume thatertainy(Q, I,) = false. Then there exists a solutioff such that)(J’) = false. Leth :
J — J’ be an homomorphism froni into J’, and letx be the following truth assignment for the propositional
variables mentioned ip: x(q) = 1 iff h(L,) = —¢. We show next that(C;) = 1, for eachl < j < m, and,
thus, thaty is satisfiable.

Consider an arbitrary € [1,m], and assume tha; = (a VvV 3V 7). Then, sincd/(a, 5,7), T(a, h(Ly)),
T(8,h(Lg)), andT (v, h(L,)) belong toJ’, it must be the case that# h(L,) or 3 # h(Lﬁ) orvy # h(L,).
Further, since eithe$ (o, —a) or S(—a,) belongs taJ’, and bothl'(a, h(L,)) andT'(—a, h(L,)) belong to
J’, we conclude from the fact th&(J') = false thath(L,) = e or h(L,) = —a. Similarly, h(Lg) = 5
orh(Llg) = =4, andh(L,) = yorh(L,) = —y. Thus,h(Ly) = ~a 0or h(Lg) = =f or h(L,) = —y, and,
therefore, thak(a) = 1 or k(3) = 1 or k(7y) = 1. We conclude that(C;) = 1.

This concludes the proof of the first part of the theorem. O

It is important to notice that although the problem of conmpmitcertain answers to UCQqueries has been
considered in the literature, none of the results of Thedéhdirectly follows from any of the known results for this
problem. In particular, Fagin et al. showed in [9] a simikesult to (1), namely that the problem of computing certain
answers iSONP-complete even for the union of two queries, the first ofolihis a conjunctive query and the second
of which is a conjunctive query with two inequalities. Théfidulty in our case is that the second query is restricted to
have constant joins and almost constant inequalities eWaljin et al. considered a query that does not satisfy any of
these conditions. Moreover, Madry proved in [20] a simiksult to (2) and (3), namely that the problem of computing
certain answers isONP-complete for conjunctive queries with two inequaliti€se difficulty in our case is that we
consider a query that has constant joins in (2) and a quetyhtsalmost constant inequalities in (3), while Madry
considered a query that does not satisfy any of these conditin fact, we provide in (2) and (3) two new proofs of
the fact that the problem of computing certain answer to guranive query with two inequalities isONP-complete.

We conclude this section with a remark about the possihifitysing the conditions defined in this section to obtain
tractability for UCQ”. As we mentioned above, the notions of constant joins andstlconstant inequalities can be
extended to UC@ queries with an arbitrary number of inequalities. Thus, o wonder whether these conditions
lead to tractability in this general scenario. Unfortuhgtthe following proposition shows that this is not the gase
even for the class of UCQqueries with three inequalities.

Proposition 5.8 There exist aLAv data exchange setting? and a Boolean conjunctive query with three in-
equalities, such that) has both constant joins and almost constant inequalitiedeunM, but the problem
CERTAIN-ANSWERSM, Q)) is CONP-complete.

Proof: The LAV settingM = (S, T, X,;) is as follows. The source scherSaconsists of two relations: A binary
relation P and a ternary relatio®. The target schem@® also consists of two relations: A binary relatiGhand a
ternary relatiorS. Further,X; is the following set of source-to-target dependencies:

P(z,y) — 32(T(z,2) NT(y,2))
R(‘/I;7y’z) - S(‘/I’.7y’z)

Furthermore, Boolean quety is defined as:

3z Fy1 o Tyo w3 Iys(S(z1, 2, 23) AT (21, y1) AT (22,92) AT (23,y3) A1 # y1 A T2 # Yo A 3 # y3).

24

Clearly, @ has almost constant inequalities and constant joinsMin Next we show that the problem
CERTAIN-ANSWERSY M, Q) is CONP-complete.

Membership of ERTAIN-ANSWERS M, Q) in CONP follows from [9]. ThecONP-hardness is established from
a reduction from 3SAT to the complement oERTAIN-ANSWERS M, Q). More precisely, for every 3CNF proposi-
tional formulag, we construct in polynomial time an instankgeof S such that is satisfiable iffcertainag(Q, Iy) =
false.

Given a propositional formula = A, _,,, C; in 3CNF, where eacty; is a clause, lef, be the following source
instance:

 The interpretation oP in I, contains the paifg, —¢), for each propositional variablementioned inp; and

« the interpretation oR in I, contains all tuple$c, 3,) such that for somé < j <m, C; = (aV 3V 7).

Clearly, I, can be constructed in polynomial time frafn
The canonical universal solutiohfor I is as follows, where we denote hy, (or L) the null generated by
applying the stdP(x,y) — 32(T'(z, z) AT (y, z)) to P(q, —q):

 The interpretation of the relatidfiin J contains the tuplegy, L) and(—q, L,), for each propositional variable
¢ mentioned inp; and

+ the interpretation of the relatio$iin .J is just a copy of the interpretation of the relatiffrin 7.
We prove now thab is satisfiable iffcertain g (Q, Iy) = false.

(=) Assume thatp is satisfiable, and let be a truth assignment for the propositional variable® a&fuch that
k(¢) = 1. Fromg, define a functiory from J into .J as follows:

q v=_lgandk(q) =1
f(v) = $~q wv=_Llzandk(q) =0
v otherwise

Let J* be the solution fol,, obtained fromJ by replacing each occurrence of an elemeirt .J by f(v). We
show next that)(J*) = false, and, thus, thatertain(Q, Iy) = false.

Assume, for the sake of contradiction, th@fJ*) = true. Then there is a functioh : {1, z2, 23,1,
y2.y3} — dom(J*) such thatS(h(z1), hxs), h(xs)), T(h(z1), h(y1)), T(h(x2), h(y2)), T(h(xs), h(ys))
are all tuples inJ*, andh(z1) # h(y1), h(z2) # h(y2), andh(zs) # h(ys). Then by definition ofM
and I,, there exists a clausgy vV 3 V v) in ¢ such thath(z1) = «, h(z2) = 3, andh(z3) = 7. Since
L(h(z1),h(y1)) = L(a, f(Ly)) belongs tal*, anda = h(x1) # h(y1) = f(La). it follows thatx(a) = 0.
Similarly, x(8) = 0 andx(y) = 0. But this is a contradiction, sineg¢) = 1, and thusig(a) = 1, k(8) = 1,
ork(y) = 1.

(<) Assume thatertainy(Q, I,) = false. Then there exists a solutioff such that)(J’) = false. Leth :
J — J' be an homomorphism fromi into J’, and letx be the following truth assignment for the propositional
variables mentioned in: x(q) = 1iff h(L,) = ¢. We show next that(C;) = 1, for eachl < j < m, and,
thus, thaty is satisfiable.
Consider an arbitrary € [1,m], and assume that; = (a VvV 8V 7). Then, sinceS(a, 5,7), T(a, h(L,)),
T(B,h(Lg)), andT (v, h(L,)) belong toJ’, it must be the case that= h(L,) or 8 = h(Lg) ory = h(L).
It follows thatx(«) = 1 or k(3) = 1 or k() = 1, and, thusx(C;) = 1.

This concludes the proof of the proposition.]

25

6 The Combined Complexity of Query Answering

Beyond the usual data complexity analysis, it is naturabtofar the combined complexity of the problem of comput-
ing certain answers: What is the complexity if data exchasajngs and queries are not considered to be fixed? To
state this problem, we shall extend the notation defined atiGe2. LetDE be a class of data exchange settings and
C a class of queries. In this section, we study the followingpem:

PROBLEM CERTAIN-ANSWERYDE, C).

INPUT: A data exchange setting! = (S, T, X;) € D&, a source instanck
aqueryQ € C and a tuple of constants frond.

QUESTION Ist € certaina(Q, I)?

It is worth mentioning that a related study appeared in [Elen though the focus of that paper was the combined
complexity of the existence of solutions problem, some efrisults in [14] can be extended to the certain answers
problem. In particular, some complexity bounds for uniohsanjunctive queries with inequalities can be proved
by using these results. Nevertheless, in this section weepstvonger lower bounds that consider single conjunctive
gueries with inequalities, and which cannot be directlywprbby using the results of [14].

We start by stating the complexity for the case ofBLoGC(#) queries. The study continues by considering
some restrictions of BraLoc©(#) that lead to lower combined complexity, and which are exseésn the form of
conjunctive queries with single inequalities. We concltidg study by examining unrestricted C@ueries, which are
not rewritable in TALOG ©#) (under the assumption that e # NP). The results of this section are summarized
in Table 1, where we l6t-CQ” be the class of CQ queries with at most inequalities.

6.1 Combined complexity ofDATALOG €#) queries

We showed in Proposition 3.3 that the certain answers ohaaDoG©(#) program can be computed by directly
posing the query over the canonical universal solutionaiitlse shown that such an approach can compute the certain
answers to a BraLo ©#) program in exponential time, although canonical univessaltions can be of exponential
size if data exchange settings are not considered to be fiked.not only that, it can be proved that this is a tight
bound.

Theorem 6.1 CERTAIN-ANSWERS GLAV , DATALOG ©(7)) is ExPTIME-complete.

Proof: The ExpTIME-hardness follows directly from Theorems 4.1 and 6.3. Maeeigely, the problem of comput-
ing certain answers is shown in Theorem 6.3 to beeEME-hard for the class of conjunctive queries with single
inequalities, and it follows from Theorem 4.1 that for eaclexy @ in this class, one can construct in polynomial time
a DATALOGC(#) programlly such thatertaina(Q, I) = certaina (Ilg, I), for every source instande

To show that @RTAIN-ANSWERS GLAV, DATALOGC#)) is in EXPTIME, assume thall is a DATALOGC(#)
program,/ is a source instance ar¥,; is a set of st-tgds. In Section 3, it is proved that to comphéedertain
answers ofll over I underXy,, it suffices to evaluatél over Can(I). Thus, given that &\ (7) can be computed
in exponential time and is of siz@(||||II>=:Il), where| || and||Z,;| represent the size dfandX,,, respectively,
we conclude that the certain answerdtver I underX,; can be computed in tim@(||I||ZsI-I1) where||TI]|
represents the size dF, sincell can be evaluated over an instarieén time O(|| D|| 1"l [2, 22].

Note that the above problem has to deal with canonical us@alaolutions of exponential size. Then restricting these
solutions to be of polynomial size would be a natural appndaceduce the complexity of the problem. There are
at least two ways to do this. The obvious one would be to fix tha @xchange settings, and leave only queries
and source instances as inpuThe less obvious but more interesting case is to restrictléms of data exchange
settings to be kv settings. However, for the case oAtALOG ©(#) programs, the combined complexity is inherently
exponential, and thus reducing the size of canonical usalaolutions does not help in improving the upper bound.

2Indeed, for obtaining a canonical solution of polynomiaesit would be enough to fix the maximum arity of a relation sypivib the target
schema.

26

| Query | GLAV setting | LAV setting

DATALOGC) EXPTIME-complete EXPTIME-complete
1-CQ” EXPTIME-complete NP-complete
k-CQ7™, k> 2 CONEXPTIME-complete I15-complete
CQ CONEXPTIME-complete I15-complete

Table 1: Combined complexity of computing certain answers.

Proposition 6.2 CERTAIN-ANSWERS LAV, DATALOGC#)) is EXPTIME-complete.

Proof: The membership in €, TIME follows from Theorem 6.1. For theXeTIME-hardness, we show a reduction
from the problem of checking whether a tuplbelongs to the evaluation of aADALOG programil over an instance
1. This problem is well known to be P TIME-hard (see e.g. [2, 22]). Lét be a DATALOG program defined over a
schemds, I an instance o$ andt a tuple of elements fromi. Next we show how to construct aalz data exchange
settingM = (S, T, ¥,;) and a D\TALoG€#) programIl’ such thatt e TI(I) if and only if £ € certaina (I, 1),
which shows that there exists a polynomial time reductimmfrthe problem mentioned above to our problem.
Define T as a schema that contains a relation symBalf the same arity ofz, for every relation symbokR in S.
Moreover, defindl’ as a copy ofll where every predicat& from S is replaced by predicat&, and defineX;

to include a dependendy(z) — R(z), for every predicate symbak in S. Then we have have thate II(I) if
andonly ift € II'(CAN(Z)), which implies that € II(I) if and only if¢ € certaina(Il’, I) by the results in Section 3.

It was shown in Theorem 4.1 that every conjunctive query witle inequality can be efficiently translated into a
DATALOGC(#) program. Hence, the class of 1-C@ueries form a subclass of the class aff®Loc €(*) programs.
Thus, it is natural to ask whether thexETIME lower bounds proved in this section carry over this clasd,valnether
the Lav restriction could be useful in this case. These are the miiig questions for the next section.

6.2 Combined complexity ofCQ”

We leave the BTALOGC#) queries to concentrate on the analysis of Cqueries in data exchange. We first study
the classl-CQ7, that is, the class of conjunctive queries with only one irsity. It is worth mentioning that an
ExPTIME lower bound can be obtained from [14] for the case of unioris 6" queries. We refine this result to the
case of 1-C@ queries, and therefore present a stronger lower bound.

Theorem 6.3 CERTAIN-ANSWERS GLAV, 1-CQ7) is ExPTIME-complete.

Proof: Membership in KPTIME is a corollary of Theorems 4.1 and 6.1. The proof ofPEIME-hardness is a
refinement of a proof given in [14], where it was essentialigvgn that the problem of computing certain answers
is ExPTIME-hard for a union of two C@ queries. The EPTIME-hardness is established from a reduction from the
Single Rule Datalog Problem [11], which is the following plem: given a BTALOG programll consisting of only
one rule and some of facts with only constants, is it the deeeettuplet belongs to the evaluation &F over the empty
instance? That is, we ask whettteg TI(()). We shall call these programs Single Rule Datalog Prograimsp). It
is important to notice that each of these programs contasiisghe intensional predicaté, and it may include some
facts with only constants about this predicate, that is,estants of the formA(c). These facts are needed when the
only rule of the program is recursive, as otherwise the etan of the program would be empty. The combined
complexity of the aforementioned problem was shown to ke EME-complete by Gottlob and Papadimitriou [11].
As in [14], letII be a program containing some facts with only constants amagéesule of the formA(z) «
Q1(z1),-..,Qn(Z,), where each symbd); (1 < ¢ < n) either represents an extensional database predicate or th
only intensional predicatd. Furthermore, we assume that (c1, . . ., ¢;) and we say thatbelongs to the evaluation
of IT over the empty instance if and onlytite A7 (@),

27

The idea of the reduction in [14] is to precompute all the fmeguples that can be returned from the sirup rule
into the canonical universal solution of the source instamnd then simulate the sirup rule with a €Query. A
second query is used to check whetherTI((}). The difficulty in our case is to show that the bound remaiesséime
even for a single C® query with one inequality.

We now define a data exchange settiny= (S, T, X;), a queryQ and an instancé of S such that < II(0) if
and only ifcertaina (Q, I) = true.

» The source schenficonsists of four unary relatioris, V, F', S plus all the extensional predicate symbals
..., R,, of II, and two additional relation symbals and¥V. The arity of the relation®; (1 < ¢ < m) is the
same as the corresponding aritylin denoted by;, the arity of the relatiom is k and the arity of the relation
Wisk + 1.

» The target schem® consists of relation®?, ..., R,,, 7’ andA’. The arity of relation®} isl; + 3 (1 < i < m),
T’ is unary, and4’ has arityk + 3.

* Source instancé is defined as follows:

— The interpretation of predicat®; (1 < 1 < m)in I is the same as ifil. Furthermore, the interpretation
of predicated in I consists of all the tuplessuch thatA () is a fact inII.

— The relationi?” only contains one tuple, based @ari¥ (cy, . . ., ¢, d), whered is a fresh value not occur-
ring elsewhere irf.

— We create a single tuple for each relatiBnF’ and.S using constants, 1, 2, also not used elsewherein
T(c), F(1) andS(2).

— Finally, we populate the unary relatidawith all distinct values frondI andt.

Intuitively, the constantg and2 will allow us to use the same query for both simulating theirule and
checking whethet € TI1((); the relations containing valuewill be used for the simulation of the sirup rule,
while the relations containing val@ewill be used when checking whethee T1(0).

» The sett,; of dependencies is defined as follows. We create a copy oethganT in T":
T(x) — T'(z)

For everyi € {1,...,m}, we create a copy of the facts abd®t in the progranil, so that they can be used
when simulating the sirup rule:

FR)ANTW) A Ri(z1,y.ym,) — Ri(w1, ., 21,9, 2, 2).

Notice that we use the valuein F' to indicate that these tuples will be used for the simulatibtie sirup rule.
Next, for everyi € {1,...,m}, we populateR; in the target with a series of tuples built using every pdssib
constant value in the source:

S(Z)/\T(y)/\V(.I’l)/\/\V((ElT) - Ré(xlﬁ‘“?xlmy7zaz)‘

It is important to notice that in this case, we use the valireS to indicate that these tuples will be used when
checking whethet € TI(). We then copy the relatiod into A’, to indicate that every fact ifl also holds in
every solution for underM:

FR)ANSw)ANT(@y)ANA(xe,ozr) — A(z1,. 7k, Y, 2, 0). (28)

In this rule, the value in the positionk + 1 of A indicate that tupléz, . . ., zx) belongs to the interpretation
of Ain II. Moreover, we also add td’ every possible tuple that could be generated with the vatuHsandt:

FR)ANSW)AV ()N AV(zg) — InA(z1,..., 26,1, 2, w). (29)

28

Notice that in this rule, a null value is placed in the positio+ 1 of A’ to indicate that tupléz, ..., zx) has
not yet been shown to belong to the interpretatiomlah II. As in the previous cases, relatioAsand S are
used in the preceding two rules to ensure that the procedueasin in the correct order, that is, the query must
first compute the tuples, and then check whethedI((}). Finally, we need some extra tuples for the simulation
of the sirup rule. We copy the relatidi’ into A’ and add again every possible tuple to the relatidnbut
considering a different order of predicatgésF andT":

SRYANFy) AW (zy,..,xp,u) — A(z1, .., 28,1, 2,y), (30)
SNTWY)AV(z1) A AV(xg) — Az, Tk, Y, 2,). (31)

When showing that the reduction is correct, it will beconeaciwhy we need to use different orders of predicate
F, S andT in the preceding rules.

« To define queny), recall that we are considering a sirup rule of the fot®) — Q1(z1), ..., Qn(Z,), Wwhere
each@); can be either one of the extensional databases prediBatesthe predicated. Assume that’ is a
tuple containing all the variables in the body of the siruferihhat are not mentioned in. Then quenq is
defined as follows:

Q = FuIvIwIw, - - Jwy 3wy - FzpIyI2 T | A (21, TR, 2, U, W) A

T/(y) /\A/(x:l?"'?xk?y?w?,u)/\z#y/\ A Q;(j:l?y7u7wl) °

1<i<n

Before proving that the reduction works properly, we désethe canonical universal solution fbrand give some
intuition about the definitions oM and@. For everyi € {1,...,m}, relation R, contains tuples of the form
(a,c,1,1), for every tuplea that belongs to the interpretation & in I, and also the tuples of the for(h, c, 2, 2),
for all the possible tuples generated by using the elements/ih (which correspond to all the tuples generated from
the values mentioned il andt?). The relationI” is a copy of the relatiof” in I. The tuples in the relatiod’ result
from the last four dependencies. First, due to the mappiBy (e copy every tuple il from I into A’, and add
the constants, 1,2 in its last three positions. Second, for every possiblegégenerated by using the elements in
V1, mapping (29) includes i’ a tuple of the form(b, L, 1,2), where L is a fresh null value. We shall generically
describe the null values added by (29).asThird, mapping (30) copies the relatié#i and adds the constaritsl

to each of the tuples iii/. Finally, for every possible tuple generated by using the elementsiifi, mapping (31)
includes inA’ the tuple(b, c, 2, ¢).

Let us now give some intuition about the definitionslefand@. To show thaty does not hold in every possible
solution forI underM, one can compute the canonical universal solutidor I underM, and then try to replace
some of the nulls off in order to generate a solution férwhere@ does not hold. Each one of these replacements
represents either an application of the sirup rule to adgke tio the predicatel or a test of whether € T1(()). More
precisely, assume that one has found an assignmfartthe variables of) that satisfies the body of this query. By
examining the set of possible tuples 4f in J, we know thatp(u) is either 1 or 2. The former case represents an
application of the sirup rule, while the latter is used td vesethert € T1(0). In particular, ifp(u) = 1, then given that
ply) = c(sinceT” (y) is a conjunct of)) andp(y) # p(z) (sincey # z is a conjunct oY), we conclude that(z) is a
null value andv(w) = 2 by examining the set of possible tuples4fin .J having 1 as theik + 2 argument. Thus, in
this case we have to replagé:) by valuec in order to construct a solution fédrunderM where@ does not hold. But
in our reduction, the fact that tup(g(z1), - . ., p(x), ¢, 1,2) is added tod’ indicates that tuplép(x1), ..., p(xk)) is
included inA when computindI(@). It is important to notice that this represents a correctiegtion of sirup rule
A(Z) — Q1(Z1), ..., Qn(Ty), as from the fact that

/\ Q/i(p(ji)7 C, 17p(wi))

1<i<n

holds and the definitions df and M, one can conclude that every at@M(p(z;)) holds inII(@) (in particular, if
Q; = R, then by examining the tuples &f; in J having 1 in its penultimate argument, one concludesthgp(z;))

29

belongs tdT). On the other hand, i§(u) = 2, then by examining the set of possible tuplesi6in J and given that
p(y) = ¢, we conclude thap(w) = 1 andp(z) = d. Thus, it is not possible to replace pyz) by p(y) in this case,
and one concludes thatrtain g (Q, I) = true (as formally shown below). But this corresponds with ouemtion
of checking whethet € T1((). In fact, given that the only tuple id’ havingd in its k + 1 argument is generated
from tupleW (cy, ..., ¢, d), we have thap(z;) = ¢;, for everyi € {1,...,k}. Thus, by considering the conjunct
A(xy,..., 2k, y,w,v) Of Q, we conclude thatl’ (¢, . .., ¢k, ¢, 1, p(v)) holds, which means by the manner value 1 is
used in our reduction (described above) that tdple. . ., c) belongs td1(().

Next, we formally show thatertain, (Q, I') = true if and only if € TI()).

(=) If certainpg(Q,I) = true, then@ holds in all the possible solutions fdr under M. We use this con-
dition to define the following sequendg, . .., J;, ... of solutions forl.

* Jy is the canonical universal solution férunderM.

» Assume that there exists a tuplesuch that; witnesses the satisfaction of the body@®fn .J; andz is assigned
anull valuel in ¢;. ThenJ; 1 is generated frond; by replacingl by the value assigned tpin ¢;.

We note that for every tuplg used to generate the sequenige. .., J;, .. ., the value assigned tpin ¢; is constant
c. Thus, we have that the sequenkg. .., J;, ... is finite, and we let/,, be its last element. By definition o%1,
and given that/,, is a solution forl andcertaina(Q, I) = true, we have that there exists a tuglg such that
t» witnesses the satisfaction of the body®@fin .J,,,, z is assigned valu€ in ¢,,, andy is assigned value in t,,.
Furthermore, we also have that(z, d, 2, 1) and A’'(¢, c, 1, 2) are both tuples it/,,,.

For everyi € {0,...,m} and tuplet;, leta; be the restriction of; to the variables:, ..., zx. In particular, we
have thati,,, = ¢. By induction oni, next we show thati(a;) € T;:™ ().

* Base case: For evepye {1,...,n}, leth; be the restriction ofiy to the tuple of variables;. By definition of
Jo andiy, we have that for every € {1,...,n}, if Q' = Ry, forsomep € {1,...,m}, thenR, (b;,c,1,1)
holds in.Jy, and if @, = A’, thenA’(b;, ¢, 1,2) holds in.Jy. Thus, from the definition ofly, we have that for
everyj € {1,...,n},if Q) = R}, forsomep € {1,...,m}, thenR,(b;) is a factinIl, and ifQ; = A’, then
A(bj) is afactinIL. Therefore, by definition of, we conclude thati(a,) can be deduced from the factslaf
and, thus A(ao) € 7 (0).

« Inductive step: Assume that for evegy< i, it holds thatA(a,) € 7,77 (0), and letb; be the restriction of
a; to the tuple of variableg;, for everyj € {1,...,n}. By definition of J; and¢;, we have that for every
je{l,...,n} if Q) = R, forsomep € {1,...,m}, thenR,(b;,c,1,1) holds in.J; and, thusk,(b;) is a
fact inII by definition of the sequenc#,, ..., J.,. On the other hand, if); = A’, thenA’(b;, ¢, 1,2) holds
in J;. Letg < i be the smallest index such that(b;, ¢, 1, 2) holds inJ,. If ¢ = 0, thenA(b;) is a fact inII
and, thereforeA(b;) € T2 (0). If ¢ > 0, thenA’(b;, ¢, 1,2) was included inJ, when replacing the-value
of #,_1 by they-value of this tuple. Thus, by induction hypothesis, we hinee A(b;) € 7,97 (0). Therefore,
for everyj € {1,...,n}, we have thaQ,(b;) € 7:(0), which implies thatd(a;) € 7;;"" (0) by the definition
of t; anda;.

Hence, we have that(a,,) € 77" (0) and, thereforef € I1(() sincea,, = . This concludes the first part of the
proof.

(<) Assume that € TI()) and, for the sake of contradiction, assume thatainn(Q,I) = false. More-
over, letQ(u, v, w, w1, ..., w,, 1, ..., Tk, Y, 2, ') be a query obtained by removing the existential quantifiens f

Q:

A2y, ey r, 2,0, w) AT (y) N A (21, ooy Ty Y, W, 0) A2 £ Yy A /\ Qi(Zi,y, u, w;).
1<i<n

To obtain a contradiction, we define a sequence of solutigps. ., J;, ... and a corresponding sequence of sets of
tuplesTy, ..., T;, . .. as follows.

30

* Let J, be the canonical universal solution fbunderM, andTy = Q(JO), that is, the evaluation c@ overJp.

* Forevery: > 0, let J;11 be obtained frony; by replacing every null value. in a tuple ofT; by the constant,
if L witnesses the inequality @j. Moreover, letl;; 1 = Q(J;+1)-

Given thatJy has finite number of null values, we have that the sequdgce. ., J;, ... is finite, and we letJ,,
be its last element. Next we show that from the assumptiondhaaina(Q,) = false, one can deduce that
Q(Jm) = false. Lety be the following dependency:

VuVoVwvwy - - - Yw,Vay - - - Vo VyVeve' | (A (z1, ..., Tk, 2, u, w) A

Tl(y) /\AI(Ila"'axkavavv)/\ /\ Q;(flayvuawl)) - (Z:y) .

1<i<n

It is easy to see that solutiofy, can be obtained frord, as the result of repeatedly chasidgwith ¢ [9]. Thus,
it follows from [9] that certaina (Q,I) = false if and only if Q(J,,) = false. Therefore, we conclude that
Q(Jm) = false.

We now show that the fact th&®(J,,) = false leads to a contradiction. Consider the program evaluation
sequencd?(0), ..., 75 (0).

Claim 6.4 For everyi € {0,...,m}, if A(a) holds inZ7:(0), then tupled’(a, c, 1,2) holds in J;.

Proof: By induction oni € {0,...,m}.

« Base case: Assume thdta) holds in72(0). ThenA(a) is a fact inII and, thus, given thal, is the canonical
universal solution fod underM, we conclude thatl’(a, ¢, 1, 2) holds in Jj.

« Inductive step: Assume that the property holds for every i and that4(a) holds inZ;(0). If A'(a,c,1,2)
holds inJ;_1, then by definition of the sequendg, ..., J,,, we have thatd’(a, ¢, 1,2) holds inJ;. Thus,
assume tha#l’(a, c, 1, 2) does not hold inJ;_1, and notice this implies that’(a, L, 1,2) holds inJ;_1, where
L is a null value, and thati(a) does not hold infﬁ"l(@) (otherwise by induction hypothesis we obtain that
A'(a,c,1,2) holds inJ;_;). But then we have that(a) can be deduced frofy: ! () by using the only rule
in II. Thus, there exists an instantiatidifa) «— Q1(a1),. .., @n(a,) of the rule ofIl such thai),(a,), .. .,
Qn(ay) belong toZ; ' (). Thus, by induction hypothesis and the definition of the sega.y, .. ., J,,, we
conclude thatforevery € {1,...,n},if Q, = R, forsomeg € {1,...,m}, thenR,(a,,c,1,1) holdsinJ; i,
and if @, = A’, thenA’(ay, ¢, 1,2) holds inJ;_;. Therefore, given that botH’(a, L, 1,2) and A'(a, ¢, 2, c)
hold in J;_1, we conclude that one of the tuplesBf ; hasl as a witness for the inequality 6)‘ This implies
thatA’(a, ¢, 1,2) holds inJ; since L is replaced by: to obtain.J; from J;_;.

a

By Claim 6.4 and the definitions of sequen£g . . ., J,,, and data exchange settitlg, we conclude thaf;}* () =
T (0). Thus, given that € TI(}), we have thatd(#) holds in 777 (). Therefore, by Claim 6.4, we have that
A'(t,¢,1,2) holds in.J,,. But this implies that)(J,,) = true since (1)A’(Z,d, 2, 1) holds in.J,,, (2) A’(b,¢c,2,¢)
holds in J,, for every k-tuple b of elements fromi’!, and (3) R;(b;, ¢, 2, 2) holds in.J,,, for everyl;-tuple b; of
elements from’! (i € {1,...,m}). But this contradicts our initial assumption. This comt#s the proof of the
theorem. O

It is natural to ask what happens in the case of unrestrictedlies and, more specifically, for queries with two
inequalities. It was noted that the data complexity beconigiser when dealing with two inequalities, and a similar
behavior should be expected for the combined complexiieda, we have that:

Theorem 6.5 For everyk > 2, CERTAIN-ANSWERSGLAV, k-CQ”) is CONEXPTIME-complete.

31

For the sake of readability, we just give here a brief sketicthe proof of Theorem 6.5, and we leave the rather
technical proof of this theorem for Appendix A.3.

Proof sketchFirst, we prove the membershipdoNEXPTIME. In [9], it was proved that given a UCQqueryQ and

a data exchange settiolgl, the problem ERTAIN-ANSWERSM, Q) is in CONP. An inspection of this proof reveals
that if M andQ are not assumed to be fixed, then the same proof shows HrataN-ANSWERY GLAV , UCQ7) is

in CONEXPTIME. Thus, we conclude thatERTAIN-ANSWERS GLAV , k-CQ7) is in CONEXPTIME.

The coNExpPTIME-hardness is established by a reduction from the satigfialtoblem for the Bernays-
Schonfinkel class of FO sentences to the complement ERTEIN-ANSWERY GLAV, 2-CQ7). Formally, the
Bernays-Schonfinkel class of FO sentences is defined asatbeeaf all FO formulas of the for@zVvy ¢ (z, y), where
¥(z,7) is quantifier-free and mentions neither any function synttwolthe equality symbol. Then the satisfiability
problem for the Bernays-Schonfinkel class is the problemenifying, given a formuladzvy ¢ (z, y) in this class,
whether there exists a structure that satisfiegj «/(z, §). This problem is known to be BkpTIME-complete (see,

e.g., [6])-]

As we mentioned in the previous section, if data exchangegstare not considered to be fixed, then one has to
deal with canonical universal solutions of exponentia¢ sihen computing certain answers. A natural way to avoid
this problem is by restricting the class of data exchanginsstto be lav settings. For the case ofabaLocC#)
programs, this restriction does not help in reducing the glerity of computing certain answers. However, the
evaluation of C@ queries is not inherently exponential and, thus, we aretaltensiderably reduce the complexity
by considering lav settings, as we show in the following proposition.

Proposition 6.6 CERTAIN-ANSWERS LAV, 1-CQ”) is NP-complete, andCERTAIN-ANSWERSLAV, k-CQ7) is
I15-complete for every > 2.

Proof: That the problem ERTAIN-ANSWERS LAV, 1—CQ7’5) is NP-complete can be proved using techniques in [9]
for membership, and in [14] for hardness. Furthermore, tambership of ERTAIN-ANSWERS LAV, k—CQ’é) in 115
follows from [1]. Thus, we only need show thaETAIN-ANSWERS LAV, k-CQi) is IT5-hard.

Thell5-hardness is established by a reduction fiéfr8-SAT, which is the problem of verifying, given a Boolean
formulay in 3-CNF with variables partitioned into setsandz, whether it is true that for every truth assignment of
the variables irx, there exists a truth assignment of the variablesso thaty) is satisfied with the overall assignment.
This problem is known to bES-complete.

Let ¢ be a formula of the fornvz3z A, ., ., Y&, where each);, (1 < k < ¢) is a clause containing exactly three
literals. Letz = (x1,...,x,) andz = (z1,...,2,). Based onp, we show how to construct in polynomial time a
LAav data exchange settint = (S, T, X,;), a query@ and an instancé such thatertain(Q, I) = true if and
only if ¢ is satisfiable. More precisely, thealz setting 8, T,%;) and the source instandeare defined as follows:

» The source schenthconsists of ternary relationg’;, . . ., Cy, and a relatiom of arity four.

 The target schem® consists of two unary relatiori$’, O’, n unary relationsX7, ..., X/, m unary relations
Zi,...,Z;,, two binary relationg?’ andT” and/ ternary relationg’}, . . ., C, that are intended to be copies of
the relationg’, ..., C,.

« The elements of the source instantare the constants, 0, a,d. The interpretation of the relatiod in I
contains the single tupl@, 1, a, d). For eachk € {1,..., ¢}, the interpretation of the relatiafi, in I contains
the tuple(d, d, d), plus seven tuples of the forfw, v, w), whereu, v, w represent the values of the satisfying
assignments fop,. For example, ify, = (x1 V 22 V 21), thenC’,ﬁ consists of the following tuplegd, d, d),
(0,0,0), (0,0,1), (0,1,1), (1,0,0), (1,0,1), (1,1,0) and(1, 1, 1). Notice that tupl€0, 1, 0) is not included in
C! as it does not represent a satisfying assignment;for

* The set:,; of source-to-target dependencies is defined as follows:

32

— First, we create the tuple3’(0) andU’(1) in CAN(I):

A(@,y,z,w) — O'(2), (32
A(z,y,z,w) — U'(y). (33)
— Next, for everyi € {1,...,n}, we add a rule that is intended to create the following tupleGAN(I)
(where_L; is a fresh null value)X! (L), X!(d), T'(L;), R'(a, L;) andR'(L;, d):
Az, y,z,w) — In(X[(n) AX[(w) AT (n) A R'(z,n) AR (n,w)). (34)
— Foreveryj € {1,...,m}, we also add the following st-tgd:
Alwy,zw) — Zj(@) AZi(y) A Z)(w). (35)

The purpose of this set of dependencies is to add the folptiples to @N(7): Z7(0), Z;(1) andZ}(d),
foreveryj € {1,...,m}.

— Next, we add to &N ([) the tuplesR’(a, 0), R'(a,1) andT’(a):

A(z,y,2,w) = T'(2) AR (z,2) AR (2,y). (36)
— Finally, for everyk € {1,...,n}, we add a rule that creates a copy of the rela€igrin CAN(I):
Ck(:v,y,z) - Cl/c(xvyaz) (37)

Furthermore, the quer® is defined as follows:

Q = IbJedgIvy - - - Jv, Jwy - - - Jwyy,

(A xteonRGw)a (A Zw) AR Gw) A

1<i<n 1<j<m

a(vy ..oy Uy Wi, W) AU () NO' (D) AT () Ng#bNg #el,

wherea(v, ..., v, wr, ..., wy,) is defined as follows. For evekyc [1, /], letu¥, u, u% be the propositional
variables ofyy,. Further, lety be a function such that(z;) = v; andx(z;) = w,, for everyi € [1,n] and
j €[1,m]. Then

OZ(Ul,...,'Un,’LUl,...,U)m) = /\ C]/C(X(u]f)7x(u§)?x(u§))
1<k</¢

For example, ifp is the formulava Vas 321329323 (21 V @2 V 21) A (-1 V 22 V —23)), thena is defined as
a(vr,v2, wi, wa, wy) = C1(v1,v2, w1) A Ch(v1, wa, w3).

Before we continue with the proof, we give some intuition atihe reduction. For every< [1,n], the relationX/

is intended to store the truth value of the variablen ¢, and for every; € [1,m], the reIationZJ’- is intended to
store the truth value for the variabie in ¢. As previously shown, for each variablein € z, the tuplesZ;(0) and
Z'(1) belong to Q\N(T), while for each variable:; € z, only the tupleX;(L;) belongs to the canonical universal
solution forI. We are interested in those solutions in which every nylin CAN(I) (1 < ¢ < n) has been replaced
with an elemenb or 1. Each one of these solutions represents a particular Vatufatr the variables irx: For every

i € {1,...,n}, the valuation assigns the valligo the variablez; if and only if the null L; in the tupleX/(L;) in
CAN(I) is replaced with the elemeit

33

Intuitively, the first task of the queng is to select only those solutions in which every null has beptaced with
the element eitheb or 1. Roughly speaking, if/ is an arbitrary solution in which there is a null that has netio
replaced with eithed or 1, then the evaluation @) overJ must be true. This is done with the help of the relafidn
Let L be the aforementioned null of. Then one can always construct a satisfying assignméot the variables of
Q as follows: p assigns the elemedtto every variable except far, b ande, that are assigned the valués0 and1,
respectively. The second task @fis to verify whether for every valuation of the universallyantified variables of
¢, there exists a valuation of the existentially quantifiedalgles that satisfy. Recall that every solutiod in which
the nulls of &N(TI) have been replaced with the elemérdr 1 represents a particular valuatien for the variables
in z. Further, notice that, since for evejye [1,m], CAN(I) contains the tuple€’ (1) and Z}(0), every solution
J for I contains essentially every possible valuation for thealdes inz. Then the query) will choose a specific
valuationo for the existentially quantified variables such thais satisfied by the valuation®z,oz). Intuitively,
the satisfying valuation for the existentially quantifietiables comes from the tuples.irthat witness the predicates
Zi(wy),. .., Z! (wy,) of the body ofQ). More precisely, it can be shown that the evaluatioobver one of the
selected solutiong is true if and only if there exists a valuatien for the variables ire such thaw is satisfied by the
valuation(oz, o). Finally, to compute the certain answers@for I one must check if) holds in every solution for
I underM. Intuitively, by doing this we are verifying whether for eygossible valuation of the variablesinthere
exists a valuation for the variables o6uch thaty holds under those valuations.

We now prove thatertaina(Q, I) = true if and only if ¢ is satisfiable. In fact, it is more convenient to show
thatcertainp (Q, I) = false if and only if ¢ is not satisfiable.

(<) Assume thap is not satisfiable, that is, there exists a valuatigrof the universally quantified variables such
that ¢ does not hold under any possible valuation of the existintimantified variables. Define a functignfrom
CAN(T) to CaN([) as follows:

* h(y)=1if y=_1,, thereis a tupleX/(L;) in CAN(I) andoz(z;) = 1;
* h(y)=0if y=L1;, thereis atupleX/(L;) in CAN(I), andoz(x;) = 0; and
* h(y) =y otherwise.

Let J* be the solution obtained from the canonical solutioaNCI) by replacing each elemeptin CAN(I) with
h(y). We now show thaf)(J*) = false and, thuscertaina(Q, I) = false. Assume, for the sake of contradiction,
that J* satisfies). Then there must exist an assignmerdf the variables of) that satisfy the body of the query.
Depending on the value @fg), we have two cases:

» Assume first thap(g) = h(L;) for somei € [1,n], where L, is the null value in the tuplé/(L;) in the
canonical solution fod. Notice that the only tuples in the interpretation of theatieihsO’ andU’ in J* are
0O’'(0) andU’(1), respectively. Thug(b) = 0 andp(e) = 1. From the definition ofY, it must be the case that
h(L;) # 0andh(L;) # 1, but this contradicts the definition af

» Assume now thap(g) = a. Then, for everyy;, it must be the case thatv,) = h(L;), or, in other words,
p(v;) = oz(x;). Choose a valuatiom; such that for every € {1,...,m}, 05(z;) = 1if p assigns the elemeit
to the variablev; in @, andoz(z;) = 0if p assigns the elemefto w;. Then given that for every € [1, /], the
interpretation of the relatio@’, in J* contains all the tuples corresponding to the satisfyinigassents ofy,
itis easy to see that the valuation;, o;) satisfies all the clauses in More precisely, foreverk € {1,..., ¢},
truth assignmert(i;, o) assigns the valueg x (u¥)), p(x(u4)) andp(x (u4)) to the propositional variables’,
uk anduf, respectively. Sincéo(x (u})), p(x(u)), p(x(uk))) is a satisfying assignment far,, it must be the
case that), holds undefoz, o). This also leads to a contradiction, since we assumedstisamot satisfiable.

(=) Assume thatertainn(Q,I) = false. Then there is a solutiod* where@ does not hold. Leh be an
homomorphism from &N (1) to J*. We first claim that for every null in CAN(T), it must be the case thaf L) =0
or h(L) = 1. Assume, for the sake of contradiction, that for same[1, n], the tupleX/(h(L;)) in J* is such that
h(L;) # 0 andh(L;) # 1. But then, given that all the tuplés'(h(L;)), R'(h(L:),d), X](d) (1 < i < n), Zj(d)
(1 <j <m)andC(d,d,d) (1 < k < ¢) belong toJ*, we obtain that)(J*) = true, which contradicts our initial
assumption.

34

Next, to prove that) is not satisfiable, we provide a truth assignmepfor the universally quantified variables
of ¢, and then prove that under this assignment, the evaluatigriofalse under every valuation of the existentially
guantified variables of. The valuatiorv; is defined as follows:

* oz(x;) =1if L; is anull value such that the tupl/(_L;) belongs to @n(I) andh(L;) =1; and
* oz(x;) =01if L; is anull value such that the tupl/(_L;) belongs to @n(I) andh(L;) = 0.

Notice that this valuation is well defined since, as showrnvabioassigns value eithéror 1 to every null in G&N(T).
Assume, for the sake of contradiction, thats satisfiable. In particular, there must exist a valuatigrsuch that
the valuations = (o3, 05) satisfiesp. We know that for eactk € [1, /], the interpretation of the relatiofi}, in
J* contains the seven tuples that represent a satisfying tiauor the k-th clause ofp. Then it is clear that for
everyk € [1,/], it holds that/* contains the tuple€’, (o(u}), o(u5), o(u%)), whereu¥, u5, uk are the propositional
variables ofy. We also know that/* contains the tuples’i(o(z;)) and R'(a,o(2;)), for everyj € [1,m].
Moreover, by the definition ofz, we have that the tupleX/(o(x;)) andR’'(a,o(z;)) also belong to/*, for every
€ [1,n]. It follows thatQ(J*) = true, which is again a contradiction. This proves thais not satisfiable, and
concludes the proof of the theorem. O

A natural question at this point is what happens with the derity of the certain answers problem if one considers
the entire class CQ. In the following theorem, we show that the same complexityrizls as in Theorem 6.5 and
Proposition 6.6 hold in this case. Notice that the lower latsuin the following theorem follow from the lower bounds
in these results.

Theorem 6.7 CERTAIN-ANSWERS GLAV, CQ7) is CONEXPTIME-complete andCERTAIN-ANSWERS LAV, CQ7)
is IT-complete.

We conclude this section by pointing out that all the comiyelxounds presented in this section remain the same if
one allows unions of conjunctive queries with inequaljtieg-UCQ” is the class of unions df-CQ” queries, then

Proposition 6.8

(1) CERTAIN—ANSWERS(GLAV,1-UCQ7£) is EXPTllle—compIete,CERTAlN—ANSWERS(LAV,1-UCQ75) is NP-
complete.

(2) CERTAlN—ANSWERs(GLAv,k—UCQ’ﬁ) is CONEXPTIME-complete, an@CERTAIN-ANSWERS LAV, k-UCQi)
is IT5-complete for every > 2.

(3) CERTAIN-ANSWERYGLAV, UCQ”) is CONEXPTIME-complete, andCERTAIN-ANSWERS LAV, UCQ7) is
I15-complete.

7 Concluding Remarks

In this paper, we proposed the languagerBLoGC(#) that extends BTALOG with a restricted form of negation,
and studied some of its fundamental properties. In pagticule showed that the certain answers toaadd oG ©(#)
program can be computed in polynomial time (in terms of dataglexity), and we used this property to find tractable
fragments of the class of unions of conjunctive queries mdgualities. In the paper, we also studied the combined
complexity of computing certain answers taALoG#) programs and other related query languages.

Many problems related to &¥aALoG€(#) programs remain open. In particular, it would be interestm know
if it is decidable whether the certain answers to a qu@grin UCQ” can be computed as the certain answers to a
DATALOGC(#) programlly, and whether there exist a settilg and a query in UCQ” such that the problem
CERTAIN-ANSWERS M, Q) is in PTIME, but the certain answers & cannot be computed as the certain answers to
a DATALOG®7) programily.

35

Acknowledgments

We are very grateful to Jorge Pérez for many helpful disonss The authors were supported by: Arenas - FONDE-
CYT grants 1070732 and 1090565; Barcel6 - FONDECYT graf80D11; Arenas and Barcel6 - grant P04-067-F
from the Millennium Nucleus Centre for Web Research; ReutfPSRC grant G049165. Most of this work was done
when Reutter was a Master’s student at Pontificia Univedsicitolica de Chile.

References

[1] S. Abiteboul, and O. Duschka. Answering queries usingemalized views. Gemo report 383.
[2] S. Abiteboul, R. Hull, and V. Vianuroundations of databaseaddison-Wesley, 1995.

[3] F. N. Afrati, C, Li, and V. Pavlaki. Data exchange in theepence of arithmetic comparisons. In Proceedings of
the 11th International Conference on Extending Databasknidogy (EDBT), pages 487-498, 2008.

[4] M. Arenas, P. Barceld, R. Fagin, and L. Libkin. Locallgresistent transformations and query answering in data
exchange. In Proceedings of the 23rd ACM Symposium on Riliesiof Database Systems (PODS), pages 229—
240, 2004.

[5] C. Beeri, and M. Y. Vardi. A proof procedure for data dedenciesJournal of the ACM31(4):718-741,1984.
[6] E. Borger, E. Gradel, Y. GurevicfThe Classical Decision ProblerSpringer, 2001.

[7] A. Deutsch, A. Nash, and J. B. Remmel. The chase revisitedroceedings of the 27th ACM Symposium on
Principles of Database Systems (PODS), pages 149-158, 2008

[8] R. Fagin, P. Kolaitis, L. Popa, W. C. Tan. Composing schamappings: Second-order dependencies to the
rescue. In Proceedings of the 23rd ACM Symposium on Priasipf Database Systems (PODS), pages 83-94,
2004.

[9] R. Fagin, P. G. Kolaitis, R. J. Miller, L. Popa. Data exohga: semantics and query answerifipeoretical
Computer Scien¢836(1):89-124, 2005.

[10] R.Fagin, P. G. Kolaitis, and L. Popa. Data exchangeinggto the coreACM Transactions on Database Systems
30(1):174-210, 2005.

[11] G. Gaottlob, C. Papadimitriou. On the complexity of diexgule datalog queriesnformation and Computatign
183(1):104-122, 2003.

[12] R. Greenlaw, H.J. Hoover, W.L. RuzZamits to parallel computation: P-Completeness the@yford Univer-
sity Press, 1995.

[13] P. Kolaitis. Schema mappings, data exchange, and mtetadanagement. In Proceedings of the 24th ACM
Symposium on Principles of Database Systems (PODS), pdg&$62005.

[14] P. Kolaitis, J. Panttaja, and W.-C. Tan. The complexitydata exchange. In Proceedings of the 25th ACM
Symposium on Principles of Database Systems (PODS), p&g&932006.

[15] T. Imielinski, W. Lipski. Incomplete information in lational databasedournal of the ACMB1, 761791, 1984.

[16] M. Lenzerini. Data integration: A theoretical perspee. In Proceedings of the 21st ACM Symposium on Prin-
ciples of Database Systems (PODS), pages 233-246, 2002.

[17] L. Libkin. Elements of Finite Model Theargpringer, 2004.

36

[18] L. Libkin. Data exchange and incomplete informatianProceedings of the 25th ACM Symposium on Principles
of Database Systems (PODS), pages 60-69, 2006.

[19] L. Libkin, C. Sirangelo. Data exchange and schema nragpin open and closed worlds. In Proceedings of the
27th ACM Symposium on Principles of Database Systems (PORges 139-148, 2008.

[20] A. Madry. Data exchange: On the complexity of answgrijjueries with inequalitiednformation Processing
Letters 94(6):253-257, 2005.

[21] C.H. PapadimitriouComputational complexityAddison Wesley, 1994.

[22] M. Y. Vardi. The complexity of relational query languegy In Proceedings of the 14th ACM Symposium on
Theory of Computing (STOC), pages 137-146, 1982.

A Proofs and intermediate results
A.1 Proof of Lemma5.3

We first prove a technical result that relates query answgemd open-reachability.

Claim A.1 Let@ and M be as defined above. LEbe an arbitrary source instance with canonical universdlson
J, and lett = (t1,...,tn) be a tuple of constants froththat also belong toJ. Letq = (p1,p2) andq’ = (p}, ph)
be two semi-open nodes i (Q, J,t) such that the constant componentsgadind ¢’ are different, and that/ is
openly-reachable from. Then, for every solutiod* of I and homomorphisrh from J to J*, if h(p1) = h(p2) and

h(p}) = h(ps), thenJ* |= Q(7).

Proof: Assume tha®(z) = Q1(Z) V---V Qi(Z), wherez = x1,...,z,,. Letq = (p1,p2) andq’ = (p}, p}) be two
semi-open nodes if (Q, J, t) such thay andq’ have different constant components, and tias openly-reachable
from ¢. Let us fix a solution/* for I and assume there is a homomorphisiinom .J to J* such thati(p;) = h(p2)
andh(p}) = h(ph). Sinceq andq’ are openly-reachable, there exists a path - - gr¢’ in H(Q, J,) such that every
nodeq;, 1 < i < k, is open and has gr een-labeled loop. Notice that in this particular case theretrbesat least
one extra node in the path, thatis> 1. Assume otherwise. Thenandq’ arer ed-adjacent (share its null value) and
have different constant components. It follows that eithr) # h(pz2) or h(p) # h(p5), which is a contradiction.

Notice also that there must be at least one npde (p],p}), 1 < j < k, such thati(p]) # h(p}). This can be
proved using a similar argument to the one in the previouagraph. From the definitiom,; has agr een-labeled
loop, that is, there exists some< i < [such thatQ;(z) is a conjunctive query with one inequality of the form
Jy(¢(Z,) A ur # uz), and an assignment: {z,y} — dom(J), such thav(z) = ¢, (J,0) = ¢(Z,7) A ur # us,
o(ui1) = pj, o(uz) = pd. We obtain thatJ*,0) = &(Z,7) A u1 # ug from the fact that conjunctive queries
are preserved under homomorphisms, and tiat) # & (p}). Thus, we obtain thaf = Q,(Z), and therefore
J Q). O

We now continue with the proof of Lemma 5.3. We first prove tifiedirection. Let J* be an arbitrary solution
for I, andh a homomorphism frony to J*. In particular,h(¢) = t. Assume first that, andv arebl ue-adjacent
in H(Q, J,t). Then for some € [1,4], Q;(z) is of the form3yé(z, i), wherep(z,) is a conjunction of relational
atoms ovefT, and.J = Q;(?). It follows thatJ* = Q;(h(?)), since conjunctive queries are preserved under homo-
morphisms, and, thus, thdt = Q;(t), becausé(t) = t. Therefore,J* = Q(t), andt € certainp (Q, I), because
J* was arbitrarily chosen.

Assume now that, andv are notbl ue-adjacent inH (Q, J,), but that there are two nodes= (p;,p2) and
q = (p3,ps4) In H(Q, J,) such thaty andq’ arebl ue-adjacent and botl andq’ havec-paths inH (Q, J,t). Since
g andq’ arebl ue adjacent, for somé < i < ¢, (1) Q;(Z) is of the form3gy(d(Z,5) A ur # us A v1 # v2),
whereg(z, §) is a conjunction of relational atoms ov&r anduy, us,v1,v2 € {Z, ¥}, and (2) there is an assignment
o {f,g} — dOfT(J), such thatﬂ(fi‘) =1, (J,O') ': (b(f,g) Aup # us Avy # vg, 0'(U1) = p1, O'(UQ) = pa2,
0’(1)1) = p3, andO'(Ug) = P4.

37

Notice that ifi(o(u1)) # h(o(uz2)) andh(o(v1)) # h(o(ve)), thenJ* | Q;(t) (because conjunctive queries are
preserved under homomorphisms), and, therefdtel= Q(f) andt € certaina (Q, I) (because/* was arbitrarily
chosen). So, assume otherwise th&t(u,)) = h(o(uz)) (the case whe(o(v1)) = h(o(va)) is completely
symmetrical). Lety = q1q2 - - - qor+1 be ac-path inH(Q, J,t), k > 0. There are two cases to consider:

« Forsome) < j < k—1, goji1 = (pP ", ps? ") is such that(p 2T £ hip 2”1) Assume without loss of
generality that for everg < j' < j, gaj1 = (p7 1, p2 *1) is such thatu(p?/ 1) = h(pgj,“) Since for
every) < s < j itis the case thaje, = (p?*,p3°®) is openly-reachable frorajbs 1= (P pa*), and the
constant components gf, andqg,,_; are different, if for somé < s < j it holds thath(p3®) = h(p3®), then
from Claim A.1 we obtain thaf™* = Q(¢) (and thust € certain(Q, I) because/* was arbitrarily chosen).
Thus, assume that(p?*) # h(p3*) for every0 < s < j. In particularu(p3’) # h(py).

Assume first thaf,; has agr een-labeled loop (the case when; 1 has agr een-labeled loop is completely
symmetrical). Then, it must be the case that for same’ < ¢, (1) Q;(z) is of the form3z (¥ (z, z) A wy #
we), wherey(z, z) is a conjunction of relational atoms oval, andw;,wy € {Z,z}, and (2) there |s an

asagnmentr’ {z,z} — dom(J), such thato’(z) = t, (J,0) E &(Z,2) A wy # wa, o(wy) = p1 ,
(’LUQ) p%‘j. Because (1) conjunctive queries are preserved under honpiisms, (2)(o’ (w1)) = h(p1) #
h(py) = h(o'(wy)), it is the casel* = ¢(h(f), h(c h(co'(w1)) # h(o'(ws)). It follows thatJ* =

z((t, 2) AN wy # we), becausé(t) = t. We conclude thari* E Q(%), and thus that € certaina (Q, 1),
sinceJ* was arbitrarily chosen.

Assume now thag,; does not have gr een-labeled loop. Thusy,; andg.;+1 arebl ue-adjacent. Therefore,

it must be the case that for sonilec [1,/], (1) Qi (Z) is of the form3z(Y(Z, 2) A w1 # wa A w3 # wa),
wherey(z, z) is a conjunction of relational atoms om‘r, andws, we, w3, ws € {Z,z}, and (2) there is an
assugnmenb’ {x z} — dom(Jg such that'(z) =, (o) EY(z,2) ANwy # wy Aws # wy, o' (wy) =

p1 , o' (we) = p2 , o' (ws) = p}’ ando—(1) = p23+ . Because (1) conjunctive queries are preserved
under homomorphisms, (2)(¢’ (w)) = h(p?) # h(P5?) = h(o'(wy)), and (B)h(c’ (w3)) = h(p>Th) #
h(py ™) = h(o’(wa)), it is the case/” = 1/)(h(l?),h(ff’(i))) A h(o'(w1)) # h(o’(w2)) A h(o'(ws)) #
h(c'(wy4)). It follows thatJ* = 3z(¢(f,2) A wi # we A ws # wy), becauseéi(t) = ¢. We conclude that

J E Q(t), and, thus, that € certain(Q, I), sinceJ* was arbitrarily chosen.

s Forevery0 < j < k — 1, qgji1 = (pf”l,p”“) is such thath(p?’ ™) = h(pgj“). Since for every

0 < s < Fk, itis the case thai, = (p?*,p3°) is openly-reachable fromp, ;1 = (p7*~',p3°~ '), and the
constant components @b, and s, are different, from Claim A.1 if for som@ < s < k it holds that
h(p3®) = h(p3®), thenJ* E Q(t), and, since/* was arbitrarily chosen, we prove that certaina(Q, I).

Thus, assume that(p?*) # h(p3¥).

Suppose first thago, 1 has two constant components. Then by definitiorm-phth it contains two different
constants, and thus, it must be the case tat*™') # h(p2*™'). Since eitherr = gory1 and gy, has
a gr een-labeled loop ofga, 1 andgoy arebl ue-adjacent inH (Q, J, 1), h(p?*™) # h(p2**). One can
then follow the same reasoning than in the previous item, srav thatJ* E Q(t), and, thus, that €
certaina (Q,).

Suppose, on the other hand, that, 1 = (p?* ™, p2**2) is semi-open. By definition af-path,gay 1 1 is openly-
reachable fromy,; , = (p2 ', p3’ "), for somel < j < k. Sinceh(p? ') = h(p2~") and the constant
components ofjs;, 11 andgz;_; are different, we assume again thap%“) # h(p 2’““) If not, by Claim
A.1, we obtain that/* = Q(t), and thug € certaina(Q, I), because/* was arbitrarily chosen. The rest of
the proof follows using the same kind of reasoning than impttexious item.

Finally, assume that there is a nagle: (p1, p2) in H(Q, J, t) such thaty has agr een-labeled loop and a-path in
H(Q, J,t). Thus, forsomé < i < ¢, (1) Q;(z) is of the form3y(4(z, §) A v # ua), wherep(z, §) is a conjunction
of relational atoms oveT, anduy,us € {Z,§}, and (2) there is an assignment: {z,3} — dom(J), such that
o(z) =1, (J,0) F ¢(2,9) Nur # uz, 0(u1) = p1, o(u2) = pa.

Notice that if h(c(u1)) # h(o(uz)), thenJ* | Q;() (because conjunctive queries are preserved under ho-
momorphisms), and, sincé* was arbitrarily chosen, it follows that € certainy(Q, 7). So we assume that

38

h(o(u1)) # h(o(uz)). Sinceg is marked and has@path, using the same argument that in the previous paragiap
is possible to show that* = Q(t), and, thus, that € certain(Q, I).

Now we prove the ‘only if’ direction. Lef be an arbitrary source instance ahits canonical universal solution.
We prove that if there is nblue edge betweep andv in H(Q, J,t), there is no node with agr een-labeled loop
that has a-path, and there are ridl ue-adjacent nodeg andq’ such that botty andq’ havec-paths inH(Q, J, t),
thent & certaina (Q, I'). We prove this by building a solutia#f of I such that/’ j= Q(¥).

Let us say that a node haged-bluepath in H(Q, J,), if it has ac-path but without the restriction on the last
element of the path. That is, we say that the ngdes ared-bluepath ¢b-path) in H(Q, J,?) if there is a path
4= q1q2 - qar+1 IN H(Q, J,T), k > 0, that satisfies the following:

« Every nodey;, 1 < i < 2k, is semi-open;

« every node of the forms; 1,0 < i < k — 1, is openly-reachable fromp; 2, but the constant components in
G2i+1 andgq; 1 o are different; and

« every node of the forme;, 0 < i < k, either isbl ue-adjacent tays; 11 Or g2; = ¢2;+1 @andge; has agr een-
labeled loop.

Further, we say that a nodghas anopen-nullpath pn-path), if ¢ is openly-reachable from an open nagein

H(Q,J.1).

We define a procedure that does the following. Let

T = {(p}, 15 P 03) (01,07, 05, 01)s -+ (Pho D2 Do D)}

be the maximal set of tuples (of length 4) of elements that satisfies the following: For each tugle , p3, p?, p}) €
T,0<5<mn,

« there exists € [1, /] such that (1)9;(z) is of the form3g(¢(Z, §) A u1 # ua A vy # v2), Wwhered(z, y) is a
conjunction of relational atoms ovat, andus, uq, v1,v2 € {Z,7}, and (2) there is an assignment {z, 5} —
dom(J), such that(z) = ¢, o(u1) = pj, o(u2) = p3, o(v1) = p}, o(va) = pj, and

(J,O') ': (b(jag) /\ul 7é U2 /\Ul 7é V2,
or

« itis the case that; = ¢ ,andt? = ¢}, and there exists [1, /] such that (1)2;(z) is of the form3y(¢(z, 7) A
uy # uz), whereg(z,) is a conjunction of relational atoms ovéy;, anduy,us € {Z,7}, and (2) there is an
assignment : {z,y} — dom(J), such that(z) = ¢, o(u1) = p;, o(u2) = p3, and

(J’ U)): ¢(‘fag) Auq 7& Uz,
and (3)t} ort? is a constant.

In any of these cases, we say that the tuple p?, p?, pj), 0 < j < n, witnesseshe adjacency of the nodés;, p?)
and(p?,p?) in H(Q, J,t). Notice that it is possible that two different tuplesihwitness the adjacency of the same
pair of nodes.

The procedure first defines an arbitrary linear order @veand then repeat the following step until all tuples in
T have been marked: It first takes the least tuple in the ordettas not yet been marked, let us $ay, p3, p2, p),
0 < j < n. Then chooses (nondeterministically) a nade H(Q, J,t) that does not have epath, and whose
adjacency to some nod¢ € H(Q, J,?) is witnessed b)(p},p?,p?,p?). This node exists because, by hypothesis, it
cannot be the case that b}, p?) and(p3, pj) havec-paths inH (Q, J, t), since eithetp;, p?) has agr een-labeled
loop or(p}, p3) and(p?, p;) arebl ue-adjacentinH (Q, J,). Further, notice that by definitiop,has to be semi-open.
The procedure then marks;, p?, p3, p}) and does the following for eaath-pathg = q1gz - - - gar11 in H(Q, J,1):

39

i. For everyi € [0, k], if the nodegq;41 contains the nullLy;; and the constant; 1, it assigns tals;, the
valuecq; 1. It also assigns the valug; ; to every component of every node that belongs teraipath starting
from ¢o;41; and

ii. foreveryi € [1, k], the procedure marks each tugle, p?, p3, p?), 1 < r < n, that witnesses the adjacency of
the nodesgy; andgy; 11 in H(Q, J,).

In this case we say that the tugle}, p?, p?, p}) and the noda initialize this step of the procedure.

Claim A.2 The procedure described above assigns at most one congteath nullL in J.

Proof: First, it cannot be the case that a nullis assigned different constants in stepsnd j of the algorithm
with i < j. Assume otherwise, and lgtbe the node that initializes stémf the procedure, and l€p}, p2, p?, p?),
0 <r < n, andq’ be the tuple and node, respectively, that initialize gtepthe procedure. Then either:

a. There areb-pathsg - - - ¢: andq’ - - - ¢; such that botly; andg; have null L as a component, byt andg; have
different constant components. Notice thatannot have gr een-labeled loop; otherwise; - - - ¢:q; - - - ¢'¢’
would be ac-path, and thereforeg could not have initialized step of the algorithm. Assume, thus, that
there is a node” in H(Q, J,1), that isbl ue-adjacent tay’, and that theébl ue-adjacency ofy’ to ¢” is wit-
nessed bypl, p2, p3, pt). Buttheng-- - q:q} - - - ¢'q" is also anvb-path inH(Q, J,t), and, therefore, the tuple
(pL, p2, p3, p*) would have been marked in stépf the procedure, which is a contradiction; or

b. there arerb-pathsq - - - gor+1 andq’ - - - gy, andon-pathsgj1---gs andgy;y---q, 0 < j < k and
0 < j' < kK, such that botly, andg, have null_L as a component and the constant componengs;@f and
5,1, are different. But thens;1 is openly-reachable frong,;, , ,, and, thus, eitheq’ has agr een-labeled
loop andq - - - g2;+195, 4 -+ - 4'q" is ac-path, or there is a nodg’ that isbl ue adjacent tay’ and such that
q - q2j+195; 41 - ¢ ¢" is anrb-path. Following the same reasoning that in the last itemoamesee that this
is a contradiction.

We now prove that each stepof the algorithm makes at most one assignment to eachnifl J. Assume
otherwise, and lej be the node of7(Q, J, t) that initializes step. Then either:

a. There areb-pathsg - - - ¢ andgqs - - - ¢} g}, where bothy, andg; have null L as a component, byt andg; have
different constant components. But then - ¢:q,q; - - - ¢1 is also anrb-path in H(Q, J,), and bothg andg;
have the same null component but a different constant coemgomhis shows that- - - ¢;q;q; - - - g1 is ac-path
in H(Q, J,t), which is a contradiction; or

b. there arerb-pathsg - - - gax+1 andqq; - - gy, 1, andon-pathsgz;+1---gs andgy 4 -+ q;, 0 < j < k and
0 < j' < k&, such that botly, andg, have null L as a component and the constant componengs;@f and
;.11 are different. But themz;11 is openly-reachable fromg,;, . ;, and, thusg - - - gaj 1195, -+ - ¢ is also
anrb-path inH(q, J, t), and bothg andq] have the same null component but a different constant coergon
We conclude thag - - - gaj 1105, -+ - q1 IS @c-path inH (Q, J, t), which is a contradiction.

This finishes the proof of the claim.]

Clearly, the procedure finishes after a finite number of ssesmarks every tuple ifi. Further, for every tuple
(pL,p2,p3,p})inT,0 < r < n, itis the case that at least one of the no@ies p?) and(p?, p) is semi-open and the
procedure assigns the constant component of such nodenaltt@mponent.

We construct a solutiod’ from J as follows: Take the canonical solution For each nullL of J, if the procedure
assigns the constantto L, then replace all appearancesloin J by c¢. Next, choose a fresh constant valtiehat
has not been used ih, and replace every null valug’ that is not assigned a constant by the procedure by the fresh
constant’. In the following we show thaf’ |~ Q(t), and, thus, that & certainp (Q, I).

Assume otherwise. Then there exists [1, ¢] such that/’ = Q;(t). We analyze three cases.

40

1) Assume first tha); is of the form3gy, ..., 7s(T1(Z1, 1) A -+ A Ts(Ts,Fs) A ur # uz A vy # v2), Where
{T,...,Ts} CT,2={Z1}U---U{Zs}, anduy, ug, v1,v2 € {Z,71,...,Js}. Thus, there exist tuples, . .., ps of
elements inJ’ and an assignmeant: {z} U{y:1} U--- U {ys} — dom(J’) defined byo(z) = t ando(y;) = p;, for
everyl < j < s, such that

(J' o) ETi(Z1, 1) A+ ATs(Zs, Js) A ur 7 uz Aoy # va.

In particularo(uy) # o(uz) ando(vy) # o(ve).

For everyj € [1,s], let us denote by, the value ofo(z;). By definition of J’, every tuple(t;,p;) € TJJ/
(1 < j < s) is obtained from a tuplét;,7;) € TJJ by replacing each null valug € 7; with the constant, if
the procedure assignedo L, and every other null valug’ with the fresh constant. Let us define an assignment
o Az} U{g:}U---U{ys} — dom(J) as follows:o’(z) = t ando’(y;) = 7}, for eachl < j < s. We show that
o’ is well-defined. Assume thatis a variable that appears in at least two different positionizy, . . ., Js). We show
thato’ assigns the same value to each appearaneelnfleed, that appears in two different positions {1, . . ., s)
implies thatz is a join variable iflly (Z1,51) A - - - ATs(Zs, ¥s). By hypothesisz cannot be nullified undep; and M.
Thus,o(z) is a constant and(z) = ¢’(z) (because all the witnesses foin .J must be constants). It immediately
follows that every appearance ofn (71, . . ., Js) iS assigned the same value &y

Therefore(J,0') E Th(Z1,91) A -+ - AN Ts(Zs,Ts). If o' (u1) = o’ (u2) oro’(v1) = o’ (v2), theno(uy) = o(uz)
oro(v1) = o(v2), which is a contradiction. Assume then théfu,) # o’(u2) ando’(v1) # o’ (v2). Therefore,

(J,0")y ET1(Z1,91) A ATs(Zs, §s) A ur 7 us A vy # va.

Then the tupldo’(u1), o’ (u2), 0’ (v1), o' (v2)) belongs tdl’, and since at least one of the node§u1), o’ (us2)) and
(o' (v1),0'(v2)) is semi-open and the procedure assigns the constant comtpafreeich node to the null component,
it must be the case that(u;) = ¢’ (u2) or o’ (vy) = o’ (v2). This is a contradiction.

2) Assume second th&; is of the form3gy, . . ., s (T1(Z1, 1) A~ - - ATs(Ts, Js) Aur # ug), where{Ty, ..., Ts} C T,
z={z1} U---U{Zs}, anduy,us € {Z,71,...,7s}- Thus, there exist tuples, . .., ps of elements inJ’ and an
assignment : {z} U{y:1} U--- U {ys} — dom(J’) defined byr(z) = ¢ ando(y,) = p;, for everyl < j < s, such
that

(J's0) E T1(Z1, 1) A ATs(Ts, Ts) Aty # g,

In particularo(u1) # o(us).

Following the same reasoningitis possible to provettiat’) = T4 (Z1, §1)A- - -ATs(Zs, §s). If o' (u1) = o' (u2),
theno(u1) = o(uz), which is a contradiction. Assume then thétu,) # o’ (us). As for the previous case, we obtain
that

(J,0") | Ta(ZT1, 1) A+ - ATs(Zs, Us) A ua # ua.

From the construction off (@, J,), it must then be the case that the nddé&(u;), ¢’ (u2)) has agr een-labeled
loop. Further, the nod&’(u1), 0’ (u2)) must be semi-open. Assume otherwise. Cleésly(u,), 0’ (us)) cannot
consists of two distinct constants, as otherwise there dvexist ac-path starting on this node. Thus, it must consist
of two null values. If the procedure assigns a constant eetthv’ (u;) nor too’ (us), theno (u1) = o(uz), which is a
contradiction. Then, it must be the case that the procedisigras the constanto at least one of’ (u1) or o’ (uz). But
then the nodéc’(u1), o’ (u2)) is part of aron-path, and therefore botH (u1) ando’ (u2) must have been assigned the
same constant, and thu$u;) = o(uz), which is a contradiction. We conclude that (u1), o’ (u2), o' (u1), o’ (uz))
belongs tdl', and, thus, the procedure assigns the constant componanttohode to the null component. Therefore,
it must be the case that(u;) = ¢'(u2), which is a contradiction.

3) Assume finally tha; is of the form3gy, ..., 7. (T1(Z1,51) A -+ - A Tn(Zn, §n)), Where{Ty,...,T,} C T and
z = {z1}U- - -U{Z, }. Following the same reasoning it is possible to showiat’) = T1(Z1, 51) A - ATw (T, Yn,)-
Thus,J = Q; (%), which implies that there is an edge betweeandr in G(Q, J,t). This is again a contradictiort]

41

A.2 Proof of Theorem 5.7
We now present the proof for the second and third assertiohseorem 5.7.

We first prove part (2). That is, we prove that there is a LAVadatchange settingt and a conjunctive query
@ with two inequalities, such th& has constant joins but does not have almost constant irigégsiainderM, and
CERTAIN-ANSWERY M, Q) is CONP-complete.

The LAV settingM = (S, T, X;) is as follows. The source scherSaconsists of one ternary relation symbol
M, one binary relation symbaV, and one unary relation symbbl. The target schem@® consists of three relation
symbols: One ternary relatiadh, and two binary relation® andS. FurtherX; is the following set of source-to-target
dependencies:

M(z,y,z) — P(x,y,z)
N(z,y) — 3Jz3u(R(z,z) A R(y,u) A S(z,u))
Ul) — S(z,z)

The Boolean query) is as follows:

Jx1 Iy FroTyo w3 Iys (P(w1, w2, 23) A R(21,y1) A S(22,92) A R(23,Y3) AY1 # Y2 Ay2 7# Y3)-

Clearly, @ has constant joins, but does not have constant inequallities!. We prove next that the problem
CERTAIN-ANSWERY M, Q) is CONP-complete.

Membership incoNP follows from [9]. ThecoNP-hardness is established from a reduction from POSITIVE-
NOT-ALL-EQUAL-3SAT, which is the following decision probim: Given a propositional formulain 3CNF con-
sisting entirely of positive clausdp V ¢ V r), is there a valuation to the propositional variables)cfuch that for
every clause o at least one variable is assigned value 1 and at least oreblais assigned value 0? This problem
is known to be NP-hard (see e.g. the proof of Theorem 5.11])n [@ore precisely, for every 3CNF propositional
formula¢ consisting entirely of positive clauses, we construct itypomial time an instancé, of S such that is
NOT-ALL-EQUAL-satisfiable iffcertaina (Q, I,) = false.

Given a propositional formula = /\1§j§m C; in 3CNF, where eacly; is a clause consisting entirely of positive
literals, let/, be the following source instance, where 1 and 0 are congtahtaentioned inp:

 The interpretation of\/ in I, contains the tuple§g, 1, §) and(g, 0, §), for each propositional variablemen-
tioned ing, and contains the tuplg, ¢, r) if for somej € [1,m], C; = (pV ¢V r);

* the interpretation ofV in I, contains the tuplég, §), for each propositional variable mentionedsinand

« the interpretation o/ in I, contains the elements 0 and 1.

Clearly, I, can be constructed in polynomial frapn

The canonical universal solutiahof I is as follows, where we denote hy, and#, the nulls that are generated
in order to witness variablesandu, respectively, when applying the Mz, y) — 3z3u(R(z, 2) AR(y, u)AS(x, u))
to N (g, q):

» The interpretation of the relatioR in J is just a copy of the interpretation of the relatidbhin I;

* the interpretation of the relatiaR in J contains the pair§g, L,) and(g, #,), for each propositional variabte
mentioned inp; and

« the interpretation of the relatio$iin J contains the paifg, #), for each propositional variablementioned in
¢, and also contains the paifs, 1) and(0, 0).

We prove next thap is NOT-ALL-EQUAL satisfiable iffcertain o (Q, Iy) = false.

42

(=) Assume first thatp is NOT-ALL-EQUAL-satisfiable, and lek be a truth assignment for the propositional
variables mentioned i, such that for every clause Vv ¢ Vv r) in ¢, it is the case that(p) = 1 or k(q) = 1 or
k(r) =1,andk(p) = 0 ork(q) = 0 or k(r) = 0. Fromx we construct a functiori from dom(.J) into don(.J)
as follows:
v=_1,andk(q
v=_1,andk(q
(
(

flv) = v = #4 andk(q
v = #4 andk(g

otherwise

)=1
)=0
)=20
)=1

S O = O

Let J* be the solution fol,, obtained fromJ by replacing each occurrence of an elemeirt J by f(v). We
show next tha)(J*) = false, and, thus, thatertain(Q, I,) = false.

Assume, for the sake of contradiction, th@tJ*) = true. Then there is a functioh : {1, z2, 23,1,
yg,yg} — dOI’T(J*) such thatp(h(l'l),h(l'g),h(l‘3)), R(h(l‘l),h(yl)), S(h(,@g),h(gg)), as well as
R(h(xs), h(ys)) belong toJ*, andh(y:) # h(y2) andh(yz) # h(ys). SinceP(h(x1), h(z2), h(xs) belongs to
J*, we only have to consider three cases for the valug of):

1. First,h(x2) = 1. Then it must be the case thiatx;) = ¢ andh(z3) = §, for some propositional variable
g mentioned inp. Furtherh(y1) = f(Ly), h(y2) = 1, andh(ys) = f(#,). It follows that f(L,) # 1
andf(#,) # 1, which contradicts the definition of the functigh

2. Secondh(zz) = 0. This case is similar to the previous one.

3. Finally,h(z2) = ¢, for some propositional variablementioned inp. Then thereis a clauge vV ¢ vV r) in
¢ such that(z1) = p andh(zs) = r. Furtherh(y:) = f(Lp), h(y2) = f(#4), andh(ys) = f(L,), and

f(Lp) # f(#F#4) andf(#4) # f(L.). It follows from the definition off that f(L,) = f(L,) = f(L,),
and, thus, that(p) = x(q) = «(r). This is a contradiction becausds NOT-ALL-EQUAL.

(<) Assume, on the other hand, thatrtaina(Q, Is) = false. That is, there exists a solutiofl such that
¢
Q(J') = false. Leth : J — J' be a homomorphism frond to J’. Let us define a valuation for the
propositional variables i as follows:x(q) = 1 iff h(L,) = 1.

We show next that for each < j < m, if C; = (p vV ¢ V r) thenx(C;) = 1, but it is not the case that
k(p) = k(q) = k(r) = 1. This will show thaty is NOT-ALL-EQUAL satisfiable. In order to do so, we first
show thath(L,) = 1 or h(#,) = 1, and thath(L,) = 0 or h(#,) = 0, for every propositional variable
mentioned inp.

Assume first, for the sake of contradiction, tthétL,) = 0 andh(#,) = 0, for some propositional variable
mentioned inp. Consider the functiorf : {x1,y1, z2,y2, x3,y3} — dom(J’), such thatf(z1) = ¢, f(y1) =
h(Ly), f(z2) = f(y2) = 1, f(x3) = g, andf(ys) = h(#,). ThenP(f (1), f(z2), f(23)),

R(f(z1), f(y1)), S(f(x2), f(y2)), as well asQ(f (x3), f(y3)) belong toJ’, and f(y1) # f(y2) and f(y2) #

f(y3). Then@Q(J') = true, which is a contradiction.
In the same way we can prove thigtL,) = 0 or h(#,) = 0, for every propositional variablgmentioned in.

Consider now an arbitrary € [1,m], and assume that; = (p V ¢ V r). Consider the functiory :
{1, 91,2, Y2, 73,y3} — dom(J’), such thatf(z1) = p, f(y1) = h(Ly), f(z2) = ¢, fy2) = h(#q),

f(x3) = r, andf(yz) = k(L) ThenP(f(z1), f(22), f(x3)), B(f(x1), f(y1)), S(f(x2), f(y2)), as well as
R(f(zs3), f(ys)) belong toJ’. Therefore, sinc€)(J') = false, it must be the case tha{_L,) = h(#,) or

h(#4) = h(L,). Fromthe previous remark, eithefp) = 1 —k(q) ork(q) = 1—k(r). Inany casex(C;) =1,
and itis not the case thatp) = k(q) = x(r) = 1.

This concludes the proof of the second part of the theorem.

We now prove part (3). That is, that there is a LAV data excleasetting M and a conjunctive querg) with
two inequalities, such tha® has almost constant inequalities but does not have congtaast under M, and
CERTAIN-ANSWERYM, ()) is CONP-complete.

43

The LAV settingM = (S, T, X;) is as follows. The source scherfaonsists of two binary relation® and N,
one ternary relatio, and one 4-ary relatioR. The target schenT® consists of two binary relation$ andT’, one
ternary relatiorl/, and one 4-ary relatiolr. The set,; of source-to-target dependencies is:

M(z,y) — Fz(S(x,y) ANS(y,z) ANV (z,y,2,2) NU(z,2,2) A S(z, 2))
R(z,y,v,w) — Fz(T(z,2) ANT(y,2) AN\V(v,w,2,2) ANV (v,w,y,2))
Px,y,z) — Ulz,y,2)
N(z,y) — T(x,9)

The Boolean query) overT is as follows:

Az 32’ IyFy' 323" 21 Fy1 Iz Ty (T (21, y1) A T(22,y2)
ANU(x,y,2) A S(z,2") AS(y,y') A S(z,2")A
V(e o, 2, 2") NV (1, 22,y 3) ANV (21,22, 2',2") Ny # g1 A wa # y2).

Clearly, @ has almost constant inequalities m(, but does not have constant joins .M. We prove next that
CERTAIN-ANSWERY M, Q) is CONP-complete.

Membership ircoNPfollows from [9]. ThecONP-hardness is established from a reduction from 3SAT todhe
plement of the problem studied, namelgraIN-ANSWERI M, Q). More precisely, for every 3CNF propositional
formulag, we construct in polynomial time an instangeof S such that is satisfiable ificertain o (@, 1) = false.

Given a propositional formula = A, _,,, C; in 3CNF, where eacty; is a clause, lef, be the following source
instance:

 The interpretation of the binary relatiaf in I, contains the paifg, —¢), for each propositional variablge
mentioned inp;

« the interpretation of the binary relatiovi in I, contains the pair&, b) and(c, d), wherea, b, c andd are fresh
constants (not mentioned as propositional variableg;n

* the interpretation of the ternary relatidhin I, contains all tripleg«, 3,v) such that for some < j < m,
(aVpBVy)=Cj; and

« the interpretation of the 4-ary relatiddin I, contains the tuplég, —q, a, c), for each propositional variablge
mentioned inp.

Clearly, I, can be constructed in polynomial time frafn

Let #, be the null obtained from the application of the 8tf{x, y) — 3z(S(z,y) A S(y,z) A V(z,y,2,2) A
U(z,z,2) N S(z,z2)) to the tupleM (¢, ~q), and let L, (or L_,) be the null obtained from the application of the std
R(z,y,v,w) — 3z(T(x, 2) AT (y, 2) A\R(v, w, z, 2) A\R(v,w, y, z)) to the tuplg(q, —q, a, c). The canonical universal
solutionJ for I, is as follows:

 The interpretation of in J contains the pairsg, ~q), (—g, ¢), and(#,, #4), for each propositional variable
mentioned inp;

* the interpretation of" in J contains a copy of the interpretation &fin I, and the pairgq, L,), (—g, L), for
each propositional variablementioned inp;

« the interpretation of/ in J contains a copy of the interpretationBfin I, and the tuplé#,, #,, #,). for each
propositional variablg mentioned inp; and

* the interpretation o¥ in J contains the tuple§y, —q, #4, #4). (a, ¢, g, L4), and(a, ¢, g, Lq), for each propo-
sitional variable; mentioned inp.

We prove next thatertainag(Q, I,) = falselff ¢ is satisfiable.

44

(<) Assume thap is satisfiable, and let be a truth assignment for the propositional variables meet in¢ such
thatx(¢) = 1. Define a functionf from dom(.J) into dom(J) as follows:

q v=_lgandk(q) =1
flv) = §-a v=1Lgandk(q) =0
v otherwise

Let J* be the solution fol,, obtained fromJ by replacing each occurrence of an elemeirt J by f(v). We
show next that)(J*) = false, and, thus, thatertain(Q, Iy) = false.

Assume, for the sake of contradiction, th@fJ*) = true. Then there is a function : {z,2',y,v/, z,
2w,y aa,ye) — dom(J), such that T(h(x1) h(yr)), T(h(x2),h(y2)), U(h(x).h(y), h(z)),
S(h(z), h(x')), S(h(y), h(y")), S(h(2), h(=')), V(h(z1), h(z2), ha'), h(2")), V(h(z1), hlzs), h(y) h(y'),
andV (h(z1), h(z2), h(2"), h(z")) belong toJ*, and, furthermore(z1) # h(y1) andh(z2) # h(y2). Since
V(h(z1), h(z2), h(z"), h(z")) belongs toJ*, there are only two cases to consider with respect to theesalu
h(zq1) andh(z2):

1. The first case is thdi(xz1) = ¢ andh(z) = —¢, for some propositional variablementioned ing. But
thenh(y1) = h(y2) = f(Ly), becaus@ (h(x1), h(y1) andT'(h(z2), h(y2)) belong toJ* . It follows that
f(Ly) #gandf(L,) # ¢, which is in contradiction with the definition of the funatigf.

2. The second case is thatz,) = a andh(ze) = c. Butthenh(z’) = ¢ or h(z') = —g¢, for some
propositional variable mentioned inp. SinceS(h(z), h(z’)) belongs toJ*, it must be the case that for
some clauséa V 3V) in ¢, h(z) = «, h(y) = 3 andh(z) = ~. Furthermoref(z’) = —«. Since
k(¢) = 1, it must be the case tha{a) = 1 or x(8) = 1 or k() = 1. Assume thak(a) = 1. Since
V(h(z1), h(z2), h(z"), h(z")) = V(a,c, ~a, —a) belongs toJ*, it follows that f(L,) = —«a. But then
k(a) = 0, which contradicts our previous assumption. The cag = 1 or x(y) = 1 are identical.

(=) Assume, on the other hand, thattaina(Q,) = false. Then there exists a solutioff for I, such that
Q(J') = false. Leth be ahomomorphismfronito J'. Let us define a truth assignmeutior the propositional
variables mentioned ig as follows: x(q) = 1 iff h(L,) = ¢. We prove next that for each < j < m,
k(C;) = 1, and, therefore, that is satisfiable.

Let clauseC; be (a« vV 8V v) (j € [1,m]). We prove first thath(L,) # —« or h(Llg) # -3 or

h(Ly) # —y. Assume otherwise. Then the functign: {z,2",y,v’, 2, 2/, x1,91,22,y2} — dom(J’) de-
fined asf(w1) = a, f(3n) = b, f(z2) = <, (1) = 4, f(x) = o, f(z') = =0, f(y) = B, () = B,

f(z) =7, f(z') = — satisfies thall'(f (z1), f(y1)), T(f(z2), f(y2)), U(f (), f(y), f(2)), S(f(2), f(z")),

S W), f(W)), S(f(2), f(2), V(f(21), f(2), f(2), f(2),

V(f(@1), f(@2), F(y), f), V(f(21), f(x2), f(z'), f(=')) belong toJ'. Further, f(x1) # f(y1) and
f(z2) # f(y2). ThenQ(J') = true, which is a contradiction.

We prove second that for each propositional variapheentioned ing, h(L,) = g or h(L,) = —¢. Assume
otherwise. Then the functiof: {z,2',y,v, 2, 2/, 21, y1, 22, y2} — dom(J’) defined asf(z1) = ¢, f(y1) =

hLq), f(x2) = —q, f(y2) = h(Ly), f(z) = f(a') = f(y) = f(y') = f(2) = f(2') = #, satisfies
thatT'(f(z1), f(y1)), T(f (x2), f(yz)) U(f (@), f(y), f(2), S(f (), £(=), S(f (), F(), S(f(2), f(Z)),

V(f(x1), f(z2), f(z'), f(2")), and also satisfies

V(f(1), f(x2), f), f(y') andV (f(x1), f(22), f(2'), f(<)) belong to.J". Further,f(z1) # f(y1) and
f(z2) # f(y2). ThenQ(J') = true, which is a contradiction.

We finally prove thak(C;) = 1. Assume firstthak(L,) # —a. Thenh(L,) = «, and, thusg(a) = k(C;) =

1. The cases wheh(Lg) # -5 andh(L.) # — are identical.

This concludes the proof of the theorem.]

45

A.3 Proof of Theorem 6.5

Fix an FO sentencg = Jx; - - - 3z, Yy - - - Yyt in the Bernays-Schonfinkel class. Thus, we have that thabdary

of ¢ is constant-free, and thatmentions neither any function symbol nor the equality symAtso, let{R;,..., R, }

be the set of all relation symbols mentioned/inFor each relatio?;, 1 < i < n, we letr; denote the arity oRR;.
Along the proof we heavily use the following property @f Either ¢ is unsatisfiable, or it has a model with at most
p elements (see, e.g., [6]). Finally, |61, ..., S, be an enumeration of all the subformulas/gfand assume, without
loss of generality that; = 1.

To give the intuition behind our reduction, we start by shayia weaker result, namely that
CERTAlN-ANSWERS{GLAv,2-UCQ¢) is CONEXPTIME-hard, where 2-UC® is the class of unions of conjunc-
tive queries with at most two inequalities per disjunct. sTtasult is proved by a polynomial-time reduction from the
satisfiability problem for the Bernays-Schdnfinkel clabst is, we start by showing how to construct in polynomial
time from¢ a GLAv data exchange settingt = (S, T, >,;), a 2-UCQ" queryQ, and an instancé of S, such that
¢ is satisfiable iffcertaina(Q,I) = false. Although this is still not sufficient to prove the theorenechuse)
belongs to 2-UC@, the construction helps obtaining intuition for the secpadt of the proof, which is technically
more involved. Second, using a refinement of the techniquéssi first part of the proof, we show how to construct
in polynomial time fromp another GAv data exchange settinggt’ = (S’, T/, £,), a conjunctive querg)’ with two
inequalities, and an instanééof S’, such that is satisfiable iffcertainag (Q’, I') = false, and, thus, we conclude
that OERTA|N—ANSWERS(GLAV,2—CQ75) is CONEXPTIME-hard.

The intuition of the first part of the reduction is the followj. We construct a source instaniceuch that dortV)
includesp elementsuy, ..., a,. This is justified by the fact, mentioned above, thapifs satisfiable then it has a
model of size at mosi. We then construct a sét,; of st-tgds such that for each tupieof r; elements of doif¥)

(@ € [1,n]), Ri(a, L) belongs to @N(I), where L is a fresh null value. The target scheffawill also contain one
relation F; of arity m + 1 for each subformul®; of 1 (j € [1,¢]), such that for each tuple= (b1,...,b,,) of m
elements of dorY), F;(b, L) belongs to @N(I). We are interested in those solutions foin which each of these
null values is replaced by the element either 0 or 1. With e solution/, we naturally identify a structurd ;
over the vocabularyR;, ..., Ry} as follows:a belongs to the interpretation of the symtglin A4 if and only if
R}(a,1) € J. Moreover, from those solutionsthat define a structure, we are interested in the ones thighassth
values to each subformula gfin a consistent way. That is, we are interested in thoseisakif such that for every

€ [1,4], it holds thatF;(b,1) € J, whereb = (b1,...,b,,), if and only if A; satisfies subformula; with each
variabley; replaced by; and each variable; replaced byu;. Then the 2-UC@ queryQ constructed in this first
reduction is used to verify whether there exists an assigmfoethe variablegq, .. ., y,, such thatF; does not hold.
Thus, given that subformulgy = v, if @ is evaluated over a solutiohthat represents a structurey, then@ holds
in J if Ay does not satisfy the formulay; - - - Vy,,,4 with each variable:; replaced by value; (1 < i < p). Hence,
given that for every structurgl with at mostp elements, there exists a solutidnfor I underM such thatA4; is
isomorphic taA4 (notice that we are no assuming thatnda; represent distinct elementsiit£ j, although they are
distinct constant symbols in our reduction), we have tha satisfiable if and only if there exists a solutidrfor I
underM where@ does not hold, that is, if and only ébrtaina (@, I) = false.

We now present the first reduction.

» The source schenfiiconsists of three unary relatiofis O andU, a set of unary relation§s, ..., V,} (recall
thatp is the number of existentially quantified variablessn two ternary relationg’ and D, and one binary
relationE.

* The target schem@ consists of a relatioi; of arity r; + 1, for eachi € [1,n], aset{V/,...,V,} of unary
relations, two other unary relatiod® andU’, two ternary relationg’ and D’, a binary relationE’, and an
extra set of relation§ 7, ..., F;} each with aritym + 1 (recall that/ is the number of subformulas @f, and
thatm is the number of universally quantified variables/f

» The instancd is as follows. The domain af contains the elements, ..., a,, plus two different constants not

46

used elsewhere in the instant¢egnd0. The interpretation id of each symbol 0§ is as follows:

BI
OI
UI
CI
DI
EI
VI

3

{a1,...,ap},

{0},

{1},
{(1,1,1),(1,0,0),(0,1,0),(0,0,0)},
{(1,1,1),(1,0,1),(0,1,1),(0,0,0)},
{(0,1),(1,0)},

{a;}, foreachi € [1,p].

* The set:,; of source-to-target dependencies is as follows:

— Foreach € {1,...,n} we create a copy of every relatidf into V;":

Vilz) — Vi(2)

We also create a copy 61, U, C, D andE into O’, U’, C', D' andE’, respectively:

O(x) — O'(z)
U) — U'(z)
Clz,y,2) — C'(2,9,2)
D(z,y,z) — D'(z,y,2)
E(z,y) — FE'(z,y)

— For eachi € {1,...,n}, we populate eact®; (of arity r; + 1) with every tuple of arityr; that can be
constructed from the constantsii)y and create a new null value associated with each such tuple:

B(x1) A+ AB(zy,) — 3zRi(x1,..., %0, 2)

As we mentioned before, we are interested in those solut@nksthat replace each such null value with
either 0 or 1, as with each such solutidnwe associate a structus; over vocabular{ Ry, ..., R,} as
follows: @ belongs to the interpretation &f; in A iff R(a,1) € J.

— We do the same for each symhBJ. That is, for everyj € {1,...,¢}, we populate eacl; (of arity
m + 1) with every tuple of arityn that can be constructed from the constant8jrand create a new null
value associated with each such tuple:

B(zi) A---ANB(zp) — 3J2Fj(x1,....Tm, 2)

We are interested in those solutions that replace each sulthvadue with 0 or 1. Informally,

Fj(ai,,...,a;,,1) belongs to one of these solutiofsff the subformulaS; of ¢ holds in.A;, whenever
we assign to the universally quantified variabjes.., y.,, the elements,, , ..., a;,, and to the existentially
quantified variables, ..., z, the elements,, ..., a,.

It is clear at this point what the canonical universal solutCan(I) for I is. Before presenting the query
Q, we give an intuition of what) does: In order to verify that the formulais satisfiable, one must show a
structureA such thatd = ¢. Intuitively, the queryQ will first nondeterministically choose a structusefrom
the set of all possible structures that can be built ugietements. Once the structure is chos@rwill verify
that such structure indeed satisfies the formuldo that extent, first¢) has to nondeterministically guess an

interpretation of each relation iR}, .. .,

.1+ It does so by assigning either a valler a value) to every

null L that belongs to a tuple of the forf.(a, L) in CAN(I). Intuitively, if the valuel is assigned to the

47

null L in the tupleR;(a, L), then the interpretation of the relatidt} in .A will contain the tuplez. Second()

will proceed in the same way for each relation{ifi;, . . ., F;}, where the assignment of the valu¢o a null

1 that belongs to the tuplé} (b, L) in CAN(I), whereb = (b, ...,b,,), represents that theth subformula

of) (denoted byS;) holds in.A when we assign the elemerits . . ., b, to the variables, ...,y and the
elementsy,, . .., a, to the variables,, . . ., x,, respectively. Afterwardsy must verify that the assigned null
values represent a consistent valuation of the subfornmulds Finally, the query will ask if for some there

is a tupleF; (¢, L) in CAN(I) such that the nullL has been assigned the value 0, which intuitively means that
A does not satisfy'y, - - - Yy, v with each variable:; replaced by value; (1 < i < p).

Formally, the queryy is defined ag), vV Q3 V Q~ V Qs, Where

- Q. is (\/ le) vV (\/ Q{yz) , where eacl)’,, is defined as follows:
]

i€[1,n JE[1,£]
321+ Fzp, IFvIw (R} (21, . . ., 20, n) AO (V) AU (w) A # v An # w).
and eact)/, is defined as:
21 - Iz InToIw (Fi(21, - - oy 2myn) AO' (V) AU (w) An # v An # w).

Consider an arbitrary solutioi for I. Notice that if for somel < ¢ < n the evaluation ole over
J is false, then all tuples in the interpretation of the relatR; over J must be of formR}(a,0) or
Ri(a,1). Likewise, if for somel < j < ¢ the evaluation of)/,, over.J is false, then all tuples in the
interpretation of the relatio; over.J must be of formF} (a, 0) or F;(a, 1). Hence, if a solutiory is such
thatq,(J) = false, then all the tuples in the relatiod® , ..., R/, andF},. .., F, in J must contain &
or al inits last argument.

— Let® C {1,...,¢} be the set of all indexessuch thatS; is an atomic formula. The query; is defined

asV;co Qé, where for eachy such thatS; = R;(z, %), Z is a tuple of variables iz, ..., z,} andy is
atuple of variables idy, . .., ym }, the quer)Qg is as follows:
Jy1 -+ Iy InF0IZT (Fj(y1, -+ - Ym, n) A RL(T, g, w) A /\ Vi(zr) An #w). (38)
TRET

Consider now a solutiod that does not satisfg),, and consider the associated structdre Assume
that.S; holds (resp., does not hold) i#; when we assign elements , ..., a;,, to variableg, ..., y,, and

elementsi,, . .., ap to variablese,, . . ., z,. Since the tuplé’; (a;,, ..., a;, , L) belongs to @N(I), then
J does not satisfy)}; only if J contains the tuple’;(a;,, ..., a;,,, 1) (resp. Fj(aj,,...,a;,,0)), and
J contains no other tuple of the fordi(a;,, ..., a;,,v), with v # 1 (resp.v # 0). Intuitively, every

solutionJ that satisfies neithep,, nor Qjﬁ is such that a tuple is in the interpretation of the relatiaR;
in A iff the subformulaS; holds under an assignmegtof the variables inp, such thaty assigns the
elementsi,, . . ., a, to the existentially quantified variables, . . ., z,, andg(z, §) = a.

It is important to notice that predicaig is included in (38) to ensure that variabtg in z is assigned
valueay, asV} in CAN(I) is a copy of the interpretation df, in I, andV,/ = {ay}.

— Let© be as above. Thef), is defined as \/ ,’j where each quel@,’j is defined as follows:

- If S, = (Sq V Sp), then

ny = Jy1 -+ JymInFoIw3z (Fr(y1,- -, Yms1) A Fg(y1, .oy Ym,v) A
Frn(y1, -y Ym,w) AD'(v,w,2) An # z).

48

- If S, = (Sq A Sp), then

Q']i = Jy1- FymInIvIw3z (Fk(ylv s 7ym’n) /\Fq(yla s 7ymav)/\
Fh(y17" '7ym7w) /\CI(U,UJ,Z) An 7é Z)

- If Sp = (=9,), then
Qﬁ = Jy1- JymInFoIz (Fe(yi, -y Ymsn) A Fy(Yay - oy Ym, v) A E'(v,2) A # 2).

The purpose of this query is similar €@, but here we ensure the correct interpretation of the sohitas
of ¢ that are Boolean combinations of other subformulas. Farrésson, the tuples in relatiofs, D’
andE’ encode the truth tables of v and—, respectively. For example, ff;, = (S, A Sy), and a solution
J that satisfies neithap, nor Qs is such that it contains tuples,; (a, 1) and F(a, 1), thenJ does not
satisfyQ” only if Fy(a, 1) is the only tuple of the forn# (@, v) in J.

— Finally, Qs is defined to bély; - - - 3y, Jv(Fi(y1, - - -, Ym,v) A O'(v)). This query asks for a tuple of the

form F,(b,0). That is, this query will not hold in a solutia# if and only if none of the the tuples in the
interpretation off} in J contains a 0 in its last argument.

At this point, it is instructive to show an example of the retion, to get the idea of the construction.

Example A.3 Let ¢ be the formul&z;3xz2Vy1 (R1(z1,y1)V(—R1(x2,1))). Recall that the source sche®aonsists
of relationsB, O, U, C, D, FE as described above, plus extra relatidasandV,. The target schem@® consists of
relationsO’, U’, C', D', E’, R}, F1, F», F5 andF, (becaus€R;(x1,y1) V (—R1(z2,y1))) has 4 subformulas). The
enumeration of the subformulas @8 (z1,y1) V (—R1(x2,91))) is as follows:S, = (R1(z1,y1) V (=R (z2,11))),
Sy = (—Ri1(x2,y2)), S3 = Ri(x1,y1) andSy = Ry (z2,y1). Then the source-to-target dependencies are:

Vifz) — Vi(z)

Va(z) — Vi(x)

Ox) — O'(x)

Ule) — U'x)
Cla,y,2) — C'(x,9,2)
D(z,y,z) — D'(x,y,2

E(z,y) — FE'(zy)
B(xz1) A B(za) — 3zRi(z1,22,2)
B(x1) — 3zFi(x1,2)
B(xz1) — JzF(x1,2)
B(xz1) — 3JzFs3(x1,2)
B(x1) — JzFy(x1,2)
The instancel of S is constructed as follows:B! = {aj,a2}, 01 = {0} andU! = {1}. Furthermore,

cl =1{(1,1,1),(1,0,0),(0,1,0),(0,0,0)}, DT = {(1,1,1), (1,0,1), (0,1,1),(0,0,0)}, andET = {(0,1), (1,0)}.
Finally, Vi = {a;} andVy = {az}. In this case, @N(I) contains the following interpretations of the symb#ts,
Fy, Iy, F3 and F; (all the other relations are simple copies of the respectlations inI). The interpretation of
R} in CAN(J) contains the tuple&uy, a1, L1), (a2, a9, La), (a1,a2, L3), and(aq, a1, L4). The interpretation of the
relationsF; in CAN(I) contains the tupleéa;, L5) and (a2, Lg); the interpretation of the relations, in CAN(I)
contains the tupleg:;, L7) and(az, Lg); the interpretation of the relatiods; in CAN(I) contains the tuplegi, Lg)
and(az, L10); and interpretation of the relatiorfg, in CAN(I) contains the tuple&u;, 111) and(aq, L12). Finally,
the querie€)., @3, Q@ andQ); are as follows in this case:

49

* Q. is the union of the following queries:

o =z FeeInTvIw(Ri(z1,22,n) AO' (v) AU (W) An # v An# w)
vy = FrInFIw(Fi(z1,n) AO' (0) AU (w) An#vAn#w)
2, = 3zyInIvIw(Fa(zr,n) AO' (v) AU (w) An#vAn#w)
2, = Az InTvIw(Fi(z1,n) AO' (0) AU (w) An#vAn#w)
e, = 3z InFvIw(Fy(z1,n) AO'(0) AU (w) An #vAn#w)
* Qp is the union oY% andQ}, where:
Q% = FyInIvIxi(Fs(yr,n) AR (z1,y1,w) AV (1) An # w)
Q% = FJyyInFvIre(Fy(y1,n) A Ry (22,91, w) AV (z2) An # w)
* Q, is the union ofY! andQ?, where:
Q}y = JyyInFvIwIz(Fy (y1,n) A Fa(y1,v) A Fa(y1,w) A D' (v,w,2) An # z)
Q> = FyInFvIz(Fa(y1,n) A Fa(y1,v) AE'(v,2) An # 2)
* Qs = 1 Iv(F1(y1,v) A O'(v)).
This concludes the example. |

From the definitions of data exchange settiiy source instancé and queryQ, it is straightforward but lengthy
to prove thate is satisfiable if and only itertaina(Q,I) = false, which concludes the proof of the fact that
CERTAIN-ANSWERYGLAV , 2-UCQ”) is CONEXPTIME-hard.

We now continue with the second part of the reduction. As watioeed before, the problem with the previous
queryQ is that it is aunionof conjunctive queries with at most two inequalities pejudist. Fix a FO formulap that
belongs to the Bernays-Schonfinkel class. Next, basedepréwvious reduction, we construct fora second data
exchange settingt’ = (S, T, X.,), an instancd’ of S’ and a conjunctive quer®’ with two inequalities, and then
provide a complete proof thatis satisfiable iffcertainyg (Q’, I') = false.

First, let us explain some of the techniques used in the skomuction. Recall that in the previous reduction
the target schema contained the relation symibqls .., R, andFi, ..., F;. The idea of the second reduction is to
use a single relation symb@’ to code the same information stored in the relation symbyls . ., R,, of the first
reduction. In order to do this, we use the first positiorkinto store the particular relatioR;, 1 < i < n of ¢ that is
being represented. Notice that we do not assume that th®reare of the same arity; instead we choose the arity of
R’ depending on the maximum arity of all relations in the vodalyuof ¢. We will also code the information that was
previously stored in the relation symbdis, . . ., F; by using again a single relation symhkidl and an extra element
to store which subformulé;, 1 < j < /¢ is being represented.

We need some additional notation. Let agabre the number of subformulas ¢f and® C {1,...,¢} be the set
of all indexes;j such thatS; is an atomic formula. Le©| be the size 0B, that is, the number of atomic subformulas
of ¢. We assume tha is ordered, and we use a function © — {1,...,|0|} such that-(j) = m if j is them-th
element of©.

Now we show the data exchange settib):

» The source schenfél consists of eight unary relatiods,, Ey, E;, D, B, C, O andU, a set{Q1, ..., Q. } of
unary relations (one for each relati®), another set of unary relatiog%’, ..., V,,} (recall thatp is the number
of existentially quantified variables i), a relationZ of arity 4, and a relatiorA of arity equal to©| + 5.

* The target schem@’ consists of a relatio®’ with arity max;c[; 7; + 2, a relationZ’ of arity 4, a relation
A’ with the same arity thad, a relationF” of arity m + 2 (recallm is the number of universally quantified
variables inp), and a set of binary relatioqd/7, ..., V' }.

50

» The instancd’ is as follows. The domain of contains the elements, ..., ap, s1,...,S¢ €1, .., Cn, PlUS
the elementsy, s,, sy, 1, 0, andd. The interpretation of each symbol#in I’ is as follows:

= {al,...,ap}.

= {0}, U = {1} andD!" = {d}.

"= {sa}, Bl' = {5} andE;’ = {57}

= {Sla"'asf}'

" = {c;} foreveryk € [1,n).
" = {a;} foreveryi € [1,).

is as follows:

It contains a tuple with onlyis, except for as; in its first position and elements;, 0 in the
last two positions. For example, if the arity of is 8, we would create the following tuple:
A(sy,d,d,d,d,d, s1,0).

For each € [1,n], A”" will contain a tuple in which every position contains theretntd, except for
the first position that contains the elemegtthe second position that contains the elemgrand the
last position that contains the elemdntFor example, if the arity ol is 8, we would create a tuple
A(Sq,¢i,d,d,d,d,d,1) foreachl <i <n.

For eachy € [1, 4], A" will contain a tuple in which every position contains theretd, except for
the first position that contains the elemepitthe second position that contains the elensgnand the
last position that contains the eleméntFor example, if the arity ofl is 8, we would create a tuple
A(sp, s4,d,d,d,d,d, 1) foreachl < j </.

For each subformul; of ¢ such thay € ©, assume tha$; = R;(z), A" contains two tuples with
only d's, except for an element; in the first position, &; in the (7(j) + 2)th position and either the
elemen? or the element in the last position. For example, if if the arity dfis 8, for S = R, and
such that(2) = 1, we would create the tuplest(sz, d, ¢2,d, d, d,d,0) andA(ss, d, c2,d,d, d,d, 1).
Then for each subformuld;, j ¢ ©, such thatS; = (S, A S,) or S; = (S, V Sy), A’ contains
two tuples, both with onlyl’s except for an elemery; in the first position, and elementg, s,
and either the elemefiitor the element in the last three positions. Continuing with the example,
if if the arity of A is 8 and if S; = (S2 A S3) then we create tupled(si,d, d, d, d, s2, s3,0) and
A(Sl, d, d, d, d, S92, 83, 1)

For each subformuls;, j ¢ ©, such thatS; = (=S,), A’ contains two tuples, both with only's
except for the element; in the first position, and elementg and either the elemeftor the element
1 in the last two positions. Continuing with the example, ithie arity of A is 8 and if 51 = (—.52)
then we create tupled(si,d, d,d,d,d, s2,0) andA(s1,d,d,d,d,d, s2,1).

— Finally, we construcg! as follows:

The tuple(sy,0,0,1) belongs taz”'.

For each subformuld;, j € ©, the following tuples belong !’ (s4,0,0,1)and(s;,0,0,0).

For each subformul®;, j ¢ ©, such thatS; = S, v S5}, the following tuples belong ta!:
(sj,1,1,1),(s4,0,1,1),(s5,1,0,1) and(s;, 0,0,0).

For each subformul®;, j ¢ ©, such thatS; = S, A S}, the following tuples belong ta!’:
(s4,1,1,1), (s4,0,1,0), (s;,1,0,0) and(s;, 0, 0,0).

For each subformul&;, j ¢ ©, such thatS; = —S,, the following tuples belong taz’":
(s4,0,1,0)and(s;,0,0,1).

This finishes the definition af .

» The set®’, of source-to-target dependencies is as follows:

51

— We create a copy ofl andZ into A’ andZ’, respectively:

Alm) — Alz) (39)
Z(x,y, z,w) — Z'(x,y, z,w) (40)

— For eachi € [1, p], we copy every pair of the forrtsy, a;), k € [1,], into V/:
Vil@) AN Cy) — Vi(y, @) (41)

— For eachi € [1, p|, we copy every pair of the forrfu;, s.), (a;, s5) and(a;, s¢), j € [1,p], into V;':

B(z)ANE.(z) — Vi(z,2) (42)
B(z) NEy(z) — Vi(z,2) (43)
B(@)NEf(z) — V/(z,2) (44)

— Letryax bemax;ep) 5. For each € [1,n] we add the following st-tgds ta,:

Q:(y) AN Ey(2) A D(w) A O(v)A
B(zi) A+ A B(zp,)N
D(xp,41) N+ AND(xy,.) — EIn(R/(y,:cl, cos e) AR (w1, ., 21,m) A
F'(y,z1,...,21,n) A Z'(2,v,0,n)) (45)

The main idea of this dependency is to populate the relafiavith each possible tuple that can be con-
structed using an element froe, . . ., ¢,, in the first position and elements from, ..., a, in the next
max POSItions. As mentioned before, this tuple will encode &llhe tuples in the relation®,, ..., R,

of the previous reduction. The problem is that the arity esthrelations may not be the same. For that
reason, for each € [1, n], the tuples starting with; are only populated with combinations of length
The remaining positions of the tuples are filled with the edetal. More precisely, for each € [1,n]

and tuplea;, , ..., a;, ofelementsinay,...,a,}, we add the following tuples to the interpretation/ssf

in CAN(I'): (ci,ajys-- -5 a4, ,d,...,d, L) and(d, ajy, ..., aj,a;,...,a;, L), whereL is a fresh null
value. In such case, we also add the tuplg 0, 0, L) to the interpretation of’ in CAN(I’), and the tuple
(¢i,aj4,,...,aj,L) to the interpretation of" in CAN(I").

— We also add the following st-tgd 8, :

C(y) N Ey(2) A D(w) AO(v) A
B(x1) A ABlxy,) — EIn(F’(y,:z:l, ey T,) A Z' (2, 0,0,m) A
R(y,x1,...,21,n) AR (w,21,...,21,n)) (46)

The idea is that the interpretation @ in CAN(I’) contains for every; € [1,¢] and every tuple
Ay, - .., a4, Of elementsinfai,...,a,}, the tuple(s;, ai, , . .., ai,,, L), whereL is a fresh null value. In
such case, we also add the tuples, a;,, . . .,a;,, L) and(d, a;,, . ..,a;,, L) to the interpretation of’,
and the tuplés;, 0,0, L) to the interpretation o’ in CAN(I").

— The following are also irt’,:

Dy)ANO(z)AB(z1)) A+ AB(zy,..) — Ry, z1,...,Trp.s?) 47)

Dy)ANU(Z)AB(zi) A AB(zp,..) — Ry, z1,. ., Trp.s?) (48)
That is, every tuple of the forri, a;, , ..., a;,___,0) and(d,a;,,...,a;, ___,1), wherea; ,...,a; __is
atuple of elementsifiay, . .., a,}, belongs to the interpretation &f in CAN(1").

52

— Finally, we also add the following st-tgds X, :

Dy)ANO()AB(x1) A AB(xpm) — F(y,21,...,2Zm,2) (49)

DY) ANU@E)AB(@) A AB(xm) — F'(y,x1,...,%m,2) (50)

Ea(y)/\O(Z)/\B(xl)/\"'/\B(xm) - F/(yaxla-- ,(Em,Z) (51)

Ey(y) NO() AB(@i) A+ AB(am) — F'(y, a1, Tm, 2) (52)

Ef(y) NO(z) AB(z1) A+ AB(zm) — F'(y,z1,...,Tm,2) (53)
That is, every tuple of the fornd, a;,, ..., a;,,0) and(d, a;,,...,a;,,1), wherea,,,...,a;, is atu-
ple of elements iffa,...,a,}, belongs to the interpretation @’ in CAN(I’). Also, every tuple of
form (sq, aiy, ..., a:,,,0), (sp,a:,,...,0a,,0)0r (s¢,ai,...,ai,,0), wherea;,, ..., a;, are elements
in {a1,...,a,}, belongs to the interpretation &F in CAN(I").

This finishes the definition ot’,.

We now show the Boolean CQ quefy with two inequalities. We first define a functien: © — {1,...,n} such
thatx(j) = 7 iff the atomic formulaS; mentions the relatiofk;. Moreover, for every € ©, we assume that evesy
is of the formS; = R, (;y(Z;, ;). The queryQ’ is as follows:

Q' =3wy - 3x,3yr - JymItoIts - Ftye Tet - 32t Feb 32 3gIr k3K FuIvIwIw' 3k -+ Ihye

{A’(qﬁo,tl, o teps kK u) AR (to, 2%, .. 28 v) A F(to, 220,28) A
/\ (R/(tT(j)aa_jjv gja BT(])? ’U)) A /\ ‘/i/(qv SCZ) A
j€o i€[1,p]

F/(Q7yla'"ayman)/\F/(kayla"'aymaw)/\F/(k/ayla"'aymaw/)/\

Z'(qw,w' ,v) Amn#£vAu#v

where each tuplé..;), for j € ©, is a tuple of variables, ;) such that, ifS; = R; thenrpax = r; + b, ;)|

Before we continue with the proof, we explain the intuiticshind the query)’. As opposed to the query of the
first part of this proof, the quer§)’ is a single conjunctive query with two inequalities. Thie second reduction
must correctly simulate the queri€s,, Q 3, @, and@; that where used in the first part of the reduction using a singl
query. To this extent, we use the relatighto code the values previously stored in the relatiGhsD’ andE’. We
also use the relatiod’ as a controller for the query. The intuition behind the ielatd can be explained as follows:
as for the first part of the reduction, we are interested isetsnlutions fod in which each of the null values in the
relationsk’ and F’ in CAN(I) are replaced by the elemehbr 1. Assume tha®’ holds in one of these solutions
and letp be an assignment for the variables@f that satisfy the body of the query. By taking a closer lookhat t
possible tuples ofi’ in CAN(I) we find several possible assignments #04). Each of these possible assignments
represent which part @, @3, Q- or Qs is Q' simulating. More precisely, whes(q) = s, or p(g) = s», the query
Q' will represent)),,, andQ.,,, respectively. Further, i(¢) = s; for somej € ©, then@’ will work as Q3. On the
other hand, ifo(¢) = s, for somej ¢ ©, the quenyQ’ will simulate the query).,. Finally, the query); is simulated
by Q" whenp(q) = s;.

We also make considerable use of tuples that contain theegliein Intuitively, this element is used as a special
wildcard element byy)’. For example, let agaii be a solution build by replacing the nulls im&(7) by the element
0 or 1, assume thaf)’ holds in.J, and letp again be a satisfying assignment for the variable@'ofAssume also that
p(q) = sq. Inthis case, since the quefy is intuitively simulating the quer®,,, one would expect no use for any
predicate iR’ using the relatiorF’. Nevertheless, que’ contains, for example, the predica&&k, y1, . - . , Ym, w).
By looking at the relatiom’ in CAN(I), one obtains that if(¢) = s, thenp must assign the elemedto k. Further,
we know from the applications of st-tgds (49) and (50) thatgblutionJ must contain tuples of the forth’(d, ¢, 0)
andF’(d,c, 1) for every combinatio of elements in{a1, ..., a,}. This ensures in particular that there will always

53

be a witness for the predicaté (k, y1, . .., ym,w) of Q" in J when the assignmentassigns the elemeat, to the
variableg in Q’.

We now show thad is satisfiable is and only fertainag (Q', I') = false.

(<) Assume first that is satisfiable. Then, it is satisfiable by a structure of caliy at mostp. Let A be
such structure, and assume without loss of generality tleaetements of4 are {a1, ..., a,} and thatA satisfies
Yy1 ...Vym ¥ when we assign to each free variablein ¢ the corresponding elemeatin A, i € [1,p]. Define a
functionh from CaN(I’) to CaN(!’) as follows:

* If v is a constant, theh(v) = v;

* h(v) = 1, if vis the null valuel such that the tupl&’(c;, ai,, ..., ai, ,d,...,d, 1) belongs to @N(I") and
the interpretation of the relatioR; in A contains the tupléa;, , ..., a;,), a;, € {a1,...,ap}, 1 € [1,74];

* h(v) = 1,if vis anull valueLl such that the tuplé'(s;, a;,, ..., a;,, L) belongs to @n(I") and the subfor-
mulas; holds in.A when we assign to the universally quantifies variables. . , y,,, the elements;, , ..., a;,.,
bj, € {a1,...,a,},1 € [1,m], and to the existentially quantifies variables . . ., z; the elements, ..., a;;
and

* otherwiseh(v) = 0.

Let J* be the solution obtained by replacing each elemeimt CAN(I’) for h(v). Notice also that the functioh
assigns to each null inA\ (1) an element i 0, 1}. We now show that the evaluation @f over.J* is false, and thus
certainpyg (@', I') = false.

Assume for the sake of contradiction th&'(J*) = true. Then, there is a functionf
{xl,...,;vp,yl,...,ym,to,tl,...,t|@‘,z‘f,...zﬁmx,zlf,...,zfn,q,r,k,k’,u,v,w,w’,hl,...,h@} — dom(J*),
such that for every conjund®(z) of Q' it is the case thaf(P(z)) belongs toJ*, and thatf(v) # f(u) and
fw) # fn).

From the construction of *, it is easy to see that must map the variable in the queryQ’ to an element in
{Sa, s, 85,51, ..,5¢}. Thus, depending of the value ¢fq), we have several cases:

» Assume first thaf (¢) = s,. Notice that the only tuples in the interpretationdsfin J* that contain the element
s In their first position are of the formd’(s,, ¢;, d,...,d, 1), for somel < i < n. Further, the only tuple in
the interpretation of the relatioR in J* with the elemeng,, in it's first position isF'(s,, d,...,d,0). Thus,
we obtain thatf(u) = 1 and f(n) = 0. However, we know thaf is a function such thaf(v) # f(u) and
f(v) # f(n). It then must be the case thAfv) # 1 and f(v) # 0. This is a contradiction: we know that
f(to) = ¢; forsomel < ¢ < n. Further, every tuple in the interpretation Bf in CAN(I”) that contains an
element;, 1 <i < n,init’s first position has a null value in it’s last positiofihus, from the construction @f,
it must be the case thg{v) = 1 or f(v) = 0.

» Assume thaff(q) = sp. Then, using the same argument that in the previous paragrapbtain thayf (v) = 1.
Further, since the only tuple in the interpretation of tHatien F’ in J* with the element, in it’s first position
is F'(sp,d,...,d,0), it must be the case thgi{n) = 0. Again, f is such thatf (v) # f(u) andf(v) # f(n),

and thus we obtain that(v) # 1 and f(v) # 0. Using the arguments shown in the previous paragraph it can

be shown that this is a contradiction: all tuples in the iptetation ofA’ over J* that start with the element
sp contain an element iy, ..., s¢ in their second position. Thug(ty) € {s1,...,s;}, and thus, since the
only tuples in the interpretation @’ in J* that start with an element contain a null in their last position, we
conclude thajf (n) = 1 or f(n) = 1.

» Assume now thaf(q) = s; for somej € © such thatS; = R;(Z;, y;) for somel < i < n, and wherez; is a
tuple of variables iz, ..., z,} andyg; is a tuple of variables ify, . .., ¥, }. Notice that, sincef(q) = s;,
from the construction of the interpretation of the relatibim I’ it must be the case th#tt, ;) = c;, and that
f(tray) = d for every otherk € [1,|0]], k # j. Assume now thaf(u) = 1 (the case wherf(u) = 0 is
completely symmetrical). Then, since we know tlfiét) # f(u) andf(v) # f(n), it must be thatf (v) = 0,
and thusf(n) # 0.

54

Let L be the null value such that the tupl'(s;, f(y1),...,f(ym),L) belongs to @N(I’). Then,
F'(sj, f(y1),---, f(ym), h(L)) belongs toJ*, and so it must be the case thétn) = h(L). Sinceh as-
signs the valu@® or 1 to every null in &N(I’), and sincef(n) # 0 It must be the case thgt(n) = 1, and
thush(L) = 1. Then, from the construction d@f, the structure4 satisfiesS; when we assign the elements
ai,...,aptothe variables:, ..., z, and the elementg(y:), . .., f(ym) to the universally quantified variables
Y1, - -+, Ym IN ¢. However, sincef (v) = 0, J* must contain the tupl&’ (c;, f(Z;), f(7;), f(h;),0). Let now L
be the null value such that the tupgké(c;, f(z;), f(7;), f(h;), L) belongs to @N(I’). It then must be the case
thath (L) = 0. Further, from the construction of the relatibi we obtain thaif assigns the elemen;, to each
variablez in @', that is, f(x) = a, for everyl < k < p. We then conclude from the constructionfothat
R;(z;,y,) does not hold in4 when we assign the elements, . . ., a, to the existentially quantifies variables
Z1,...,%, and the elements(yy), . . ., f(ym) to the universally quantified variablegs, . . ., y,, in ¢. Thisis a
contradiction.

* Next, assume that(q) = s; for someJ ¢ ©, such thatthaf; = S}, v .S}, (the other two cases are completely
symmetrical). Further, assume thdt:) = 1 (the case wherf(u) = 0 is also symmetrical). Then, singeis
such thatf (v) # f(u) and f(v) # f(n), we obtain thatf (v) must be different from. A close inspection to
the interpretatior’ in J* reveals thaff (v) must be the elemefi and then, correspondinglf(n) # 0. Let
1 be the null value such that the tupié(s;, f(y1),. .., f(ym), L) belongs to @n(I"). Notice thath(L) =1
(otherwisef(n) = 0), and then from the construction Af we obtain thatd satisfiesS; when we assign the
elementsuy, .. ., a, to the existentially quantifies variables, . .., z, and the elementg(y.), ..., f(ym) to
the universally quantified variables, . .., y,, in ¢. LetalsoL; and_;, be null values such that the tuples
F(sjy, f(y1)s---s f(ym), L) andF(sj,, f(v1), - -+, f(ym), L;,) belong to @N(I"). From the construction
of the relationZ in I, the only tuple in the interpretation of the relatighin CAN (1) (and thus inJ*) with the
elements; in it's first position and the elementin it’s last position is the tuplés;, 0,0, 0). Then, it must be the
case thaf (w) = f(w’) = 0. We conclude thenthat(L ;,) = h(L;,) = 0, which means thatl does not satisfy
neitherS;, norS;, when we assign the elements . . ., a, to the existentially quantifies variables, . . ., z,
and the elementg(y1), . . ., f(ym) to the universally quantified variablegs, . . ., y,,. This is a contradiction.

« Finally, assume thaf(q) = sy. Since the only tuple in the interpretation.4f in CAN(I") with the elemens
init's first positionis(ss, d, . .., d, s1,0), itmust be thaf (¢") = s; andf(u) = 0. Let_L be the null value such
that the tupleF”(s1, f(y1), ..., f(ym), L) belongs to @N(I’). From the construction of in I, it must also
be the case that(v) = 1 and f(w’) = 0, in other words, it must also be that 1) = 0, and then4 does not
satisfy S, when we assign the elements, . . ., a, to the existentially quantifies variables, . .., z, and the
elementsf(y1), ..., f(ym) to the universally quantified variablgs, . . ., y,,. This is a contradiction, because
we assumed that is satisfiable under this valuation.

(=) Assume thatcertainyg (Q’,I') = false. Then there exists a solutiofi* such thatQ’(J*) = false.
Construct fromJ* a structure4 as follows: The domain ofd is {ai,...,a,}. The interpretation of the rela-
tion R;, i € [1,n] is the following: The tuples;,,...,a; belongs to the interpretation dt; in A iff the tuple
R'(ci, a4y, ..., a;,,d,...,d,1) belongs toJ. To prove thatd satisfiesy, we will prove the following: for every
j € [1,4), if the tuple F'(s;,a;,, - - .,a;, 1) belongs toJ*, then A satisfies the subformuls; whenever we as-
signa;,,...,a;, 0O y1,...,ym, andas,...,ap t0 z1,...,z,. We prove this by induction on the structure of the
subformulas ofp.

Let h be an homomorphism fromA™ (I’) to J*. We first prove that for every null valué in CAN(I’), since
Q(J*) = false, it must be the case that L) = 1 or h(L) = 0. Assume that there is a null valuein CAN(I") such
thath(L) # 1 andh(L) # 0.

» Assume first thatl belongs to a tuple of the forR'(¢;, a;, , - -
of I’ andM/’, the following tuples are in €N (1)

,L)in CAN(I"). From the construction

0 aﬂLTmax

- Al(sq,¢i,d,...,d,1).
- F'(¢;,aq,...,a1, 1), obtained with (45).
- R'(d,a1,...,a1,1), obtained with (45).

55

— V/(sq,a1), foreveryl < k < p, obtained with (41).
— F'(sq,a1,...,a1,0), obtained with (51).
— 7'(84,0,0, 1), obtained with (45).

Itis easy to see thatif(L) # 1 andh(L) # 0, thenQ(J*) = true.

» Assume now that. belongs to a tuple of the fori’(s;, a;,, ..., a;,,, L) in CAN(I"). From the construction
of I’ and M’, the following tuples are in 8N (17)

A(sp,84,d,...,d,1).
R'(sj,a1,...,a1,L), obtained with (46).
- R'(d,a1,...,a1,1), obtained with (46).
- Vi(sp,a) for everyl < k < p, obtained with (41).
- F'(sp,a1,...,a1,0), obtained with (52).
- Z'(%,0,0, J_) obtained with (46).

Itis easy to see thatif(L) # 1 andh(L) # 0, thenQ(J*) = true.
We now continue with the proof of the induction.

* For the base case, assume that= R;(Z;,y;), wherez; is a tuple of variables ifz1,...,z,}, andy; is a
tuple of variables in{y1, ...,y }. Further, assume that the tupté(s;, a;,,...,a,, ,1) belongs toJ*. Let
g:{x1,...,xp,y1,...,ym} — dom(J’) be a function such that(z;) = a; for eachi € [1,p], andg(y;) = a;,
for eachi € [1,m]. From the construction af and M’, CAN(I”) contains the following tuples (whete is a

null value):
- Al(sj,d,...,d,c,d,... .d]1).
- Z'(s;,0,0,0).
- F'(d,aj,,...,aj,,1), obtained with (50).
- F'(d,a;,,...,a;,,0), obtained with (49).
— V/(s;,ay) for everyl < k < p), obtained with (41)
- F'(d,a1,...,a1,0), obtained with (49).
— R'(d,as,...,a1,0), obtained with (47).
— R'(¢i,9(%:),9(9),d,...,dL), obtained with (45).

- R'(d,c1,...,¢,,d,...,d,0), for every combination of elements f, ...,a,} and for everyi’ # i,
obtained with (47).

We know thath(L) = 0orh(L) = 1. Itis easy to see thatif(_L) = 0 then the evaluation @)’ over.J* is true.
Then, sinc&)(J*) = false, it must be the case tha{ L) = 1. It follows thatR'(¢;, g(Z;), g(y;), 1) belongs
to J*, and, by the definition o4, A satisfiesS; when we assigmn, ...,a, t0z1,...,zp anda,,, ..., a;, to
Y,y Ym:

« For the inductive case, assume tifgt = S;, A S;, (The cases wher§; = S;, A S, or S; = —S5;, are
completely symmetrical). Further, assume théts;, a;,, ..., a;,,,1) belongs taj*. We also know there are
tuplesF’(s;,, @i, ... a;,, L) andF’(s;,, aiy, ..., a;,,L;,)in CAN(I'). Therefore,J* contains the tuples
F'(sjy,aiyy---yai,,h(L;))andF (s, aiy,- .., ai,,h(L;,)). Weclaimthat(L,,) = h(L,,) = 1. Assume
for the sake of contradiction tha{_L ;,) = 0 (the case wheh(L;,) = 0 is completely symmetrical). From the
construction off’ and M’, we also know that the following tuples belong taiQ’), an thus belong to'™*:

- AI(Sjada- .- ad’ Sj1’8j271)'

56

- Z'(s4,0,1,0)andZ’(s;,0,0,0).
— V/(s;,ar) for everyl < k < p), obtained with (41).
F'(d,aq,...,a1,0), obtained with (49).
- R'(d,as,...,a1,0), obtained with (47).
- R'(d,c1,...,¢cr,,d,...,d,0),forevery combination of elements{ay, . .., a,} and for every’ € [1,n],
obtained with (47).

Itis now easy to see th&'(J*) = true. Then, it must be thdi(L,,) = h(L;,) = 1. Then, by the inductive
hypothesis,A satisfiesS;, andS;, when we assig, ...,a, t0 z1,...,z, andaj,,...,a;,. 0 y1,..., Ym.
It follows that A satisfiesS; when we assigm,,...,a, t0 z1,...,2, anda;,,...,a;, 10y1,...,ym. This
finishes the induction.

All that is left to prove is that for every tupla, . . ., ¢, of elements ifa1, ..., a,}, the tupleF’(s1,c1,. .., cm, 1)
belongs taJ’. Notice that, from the previous induction, this impliestttasatisfiesS; for every assignment of the
variablesyy, . .., y,», when we assign, ...,a, 1021, ..., z,, and thus tha! is a satisfies.

We now prove that for every tuplg, . .., ¢, of elementsif{a,,. .., a,}, the tupleF’ (s, c1,. .., cm, 1) belongs
to J'. Assume for the sake of contradiction that there exists efgésu;, ,. .., a;,, a;, € {a1,...,a,} for every
1 < k < m, such thatf’(s1, ay,, - .., a;,,,1) does not belong td*. We know that there exists a null such that
the tupleF’(s1,a;,,...,a;,,L) belongs to @N(I). Then, it must be the case thiat) = 0, and thus he tuple
F'(s1,a4,,...,a;,,0) must belong to/*. We also know that the following tuples belong.o:

o Al(sy,d,...,d, s1,0)
o« 7

e F'(d,a1,...,a1,1), obtained with (50).
* R'(d,a1,...,a1,1), obtained with (48).

* R'(d,c1,...,¢r,,d,...,d,0), for every combination of elements iu,,...,a,} and for everyi’ € [1,n],
obtained with (47).

* F'(d,a;,...,a,,0), obtained with (49).

Itis easy to see th&(.J*) = true, which is a contradiction. This concludes the proof of thesotfem. O

57

