
A More General Theory of Static Approximations
for Conjunctive Queries
Pablo Barceló1, Miguel Romero1, and Thomas Zeume2

1 Center for Semantic Web Research & DCC, University of Chile
{pbarcelo,mromero}@dcc.uchile.cl

2 TU Dortmund University & University Warsaw
thomas.zeume@cs.tu-dortmund.de

Abstract
Conjunctive query (CQ) evaluation is NP-complete, but becomes tractable for fragments of
bounded hypertreewidth. If a CQ is hard to evaluate, it is thus useful to evaluate an approxima-
tion of it in such fragments. While underapproximations (i.e., those that return correct answers
only) are well-understood, the dual notion of overapproximations that return complete (but not
necessarily sound) answers, and also a more general notion of approximation based on the sym-
metric difference of query results, are almost unexplored. In fact, the decidability of the basic
problems of evaluation, identification, and existence of those approximations, is open.

We develop a connection with existential pebble game tools that allows the systematic study
of such problems. In particular, we show that the evaluation and identification of overapprox-
imations can be solved in polynomial time. We also make progress in the problem of existence
of overapproximations, showing it to be decidable in 2EXPTIME over the class of acyclic CQs.
Furthermore, we look at when overapproximations do not exist, suggesting that this can be al-
leviated by using a more liberal notion of overapproximation. We also show how to extend our
tools to study symmetric difference approximations. We observe that such approximations prop-
erly extend under- and over-approximations, settle the complexity of its associated identification
problem, and provide several results on existence and evaluation.

1998 ACM Subject Classification H.2.3 Database Management - Query Languages

Keywords and phrases conjunctive queries; evaluation; hypertreewidth; approximations; exist-
ential pebble game

Digital Object Identifier 10.4230/LIPIcs...

1 Introduction

Context. Due to the growing number of scenarios in which exact query evaluation is
infeasible – e.g., when the volume of the data being queried is very large, or when queries are
inherently complex – approximate query answering has become an important area of study
in databases (see, e.g. [12–14,21,25]). Here we focus on approximate query answering for the
fundamental class of conjunctive queries (CQs), for which exact evaluation is NP-complete.
(Recall that CQ evaluation is the problem of given a CQ q, a database D, and a tuple ā of
constants in D, check if ā belongs to q(D), the result of q over D).

It is known that the complexity of evaluation of a CQ depends on its degree of acyclicity,
which can be formalized using different notions. One of the most general and well-studied
such a notion corresponds to generalized hypertreewidth [16]. Notably, the classes of CQs
of bounded generalized hypertreewidth can be evaluated in polynomial time (see [15] for a
survey). Following recent work on approximate query answering for CQs and some related

© Pablo Barceló, Miguel Romero, Thomas Zeume;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs...
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

XX:2 A More General Theory of Static Approximations for Conjunctive Queries

query languages [5, 6], we study the process of approximating a CQ as one of bounded
generalized hypertreewidth. This provides us with a certificate of efficiency for the cost of
evaluating such an approximation. It is worth noticing that our approximations are static, in
the sense that they depend only on the CQ q and not on the underlying database D. This
has clear benefits in terms of the cost of the approximation process, as q is often orders of
magnitude smaller than D. Moreover, it allows us to construct a principled approach to CQ
approximation based on the well-studied notion of CQ containment [8]. Recall that a CQ q

is contained in a CQ q′, written q ⊆ q′, if q(D) ⊆ q′(D) over each database D. This notion
constitutes the theoretical basis for the study of several CQ optimization problems [1].

We denote by GHW(k) the class of CQs of generalized hypertreewidth at most k, for k ≥ 1.
As mentioned above, we look for an approximation of a CQ q in GHW(k). A formalization of
this notion was first introduced in [4], based on the following partial order vq over the set of
CQ in GHW(k): if q′, q′′ ∈ GHW(k), then q′ vq q′′ iff over every database D the symmetric
difference between q(D) and q′′(D) is contained in the symmetric difference between q(D)
and q′(D). Intuitively, this states that q′′ is a better GHW(k)-approximation of q than q′.
The GHW(k)-approximations of q correspond then to maximal elements with respect to
vq among a distinguished class of CQs in GHW(k). Three notions of approximation were
introduced in [4], by imposing different “reasonable” conditions on such a class. These are:

Underapproximations: In this case we look for approximations in the set of CQs q′ in
GHW(k) that are contained in q, i.e., q′ ⊆ q. This ensures that the evaluation of such
approximations always produce correct (but not necessarily complete) answers to q. A
GHW(k)-underapproximation of q is then a CQ q′ amongst these CQs that is maximal
with respect to the partial order defined by vq. Noticeably, the latter coincides with being
maximal with respect to the containment partial order ⊆ among the CQs in GHW(k)
that are contained in q; i.e., no other CQ in such a set strictly contains q′.
Overapproximations: This is the dual notion of underapproximations, in which we look
for minimal elements in the class of CQs q′ in GHW(k) that contain q, i.e., q ⊆ q′. Hence,
GHW(k)-overapproximations produce complete (but not necessarily correct) answers to q.
Symmetric difference approximations: While underappoximations must be contained in
the original query, and overapproximations must contain it, this notion does not impose
any constraint on approximations with respect to the partial order ⊆. Then a symmetric
difference GHW(k)-approximation of q – or simply GHW(k)-∆-approximation from now
on – is a maximal CQ in GHW(k) with respect to the partial order vq.

The approximations presented above provide “qualitative” guarantees for evaluation, as
they are as close as possible to q among all CQs in GHW(k) of a certain kind. In particular,
under and overapproximations are dual notions which provide lower and upper bounds for
the exact evaluation of a CQ, while ∆-approximations can give us useful information when
the quality of the result of the under- and overapproximations is poor. Then, in order to
develop a robust theory of bounded hypertreewidth static approximations for CQs, it is
necessary to have a good understanding of all three notions.

The notion of underapproximation is by now well-understood. Indeed, it is known that
for each fixed k ≥ 1 the GHW(k)-underapproximations have good properties that justify its
application: (a) they always exist, and (b) evaluating all GHW(k)-underapproximations of a
CQ q over a database D is a fixed-parameter tractable problem [5]. This is an improvement
over general CQ evaluation for which the latter is believed not to hold [27]. On the other
hand, while GHW(k)-overapproximations and GHW(k)-∆-approximations were introduced
in [4], its theoretical aspects were left almost unexplored since no tools were identified for
studying the decidability of basic problems such as:

P. Barceló, M. Romero and T. Zeume XX:3

Existence: Does CQ q have a GHW(k)-overapproximation (or GHW(k)-∆-approximation)?
Identification: Is q′ a GHW(k)-overapproximation (or GHW(k)-∆-approximation) of q?
Evaluation: Given a CQ q, a database D, and a tuple ā in D, is it the case that ā ∈ q′(D),
for some GHW(k)-overapproximation (resp., GHW(k)-∆-approximation) q′ of q?

Partial results were obtained in [4], but based on ad-hoc tools. Also, some CQs have no
GHW(k)-overapproximations (in contrast to underapproximations, that always exist), which
was seen as a negative result.
Contributions. We develop tools for the systematic study of overapproximations and
∆-approximations. While we mainly focus on the former, we provide a detailed account
of how our techniques can be extended to deal with the latter. In the context of GHW(k)-
overapproximations, we apply our tools to pinpoint the complexity of evaluation and identific-
ation, and make progress in the problem of existence. We also study when overapproximations
do not exist and suggest how this can be alleviated. Our contributions are as follows:

1. Link to existential pebble games. We establish a link between GHW(k)-overapproximations
and existential pebble games [23]. Such games have been used to show that CQs of bounded
width can be evaluated efficiently [9, 11]. Using the fact that the existence of winning
conditions in the existential pebble game can be checked in PTIME [9], we show that
identification and evaluation for GHW(k)-overapproximations are tractable problems.

2. A more liberal notion of overapproximation. We observe that non-existence of overap-
proximations is due to the fact that in some cases overapproximations require expressing
conjunctions of infinitely many atoms. By relaxing our notion, we get that each CQ
q has a (potentially infinite) GHW(k)-overapproximation q′. This q′ is unique (up to
equivalence). Further, it can be evaluated efficiently – in spite of being potentially infinite
– by checking a winning condition for the existential k-pebble game on q and D.

3. Existence of overapproximations. It is still useful to check if a CQ q has a finite GHW(k)-
overapproximation q′, and compute it if possible. This might allow to optimize q′
before evaluating it. There is also a difference in complexity, as existential pebble game
techniques are PTIME-complete in general [22], and thus inherently sequential, while
evaluation of CQs in GHW(k) is highly parallelizable (Gottlob et al. [16]).
By exploiting automata techniques, we show that checking if a CQ q has a (finite) GHW(1)-
overapproximation q′ is in 2Exptime. Also, when such q′ exists it can be computed
in 3Extpime. This is important since GHW(1) coincides with the well-known class of
acyclic CQs [29]. If the arity of the schema is fixed, these bounds become Exptime and
2Exptime, respectively. Also, we look at the case of binary schemas, such as the ones used
in graph databases [3] and description logics [2]. In this case, GHW(1)-overapproximations
can be computed efficiently via a greedy algorithm. This is optimal, as over ternary
schemas we prove an exponential lower bound for the size of GHW(1)-overapproximations.
We do not know if the existence problem is decidable for k > 1. However, we show that
it can be recast as an unexplored boundedness condition for the existential pebble game.
Understanding the decidability boundary for such conditions is often difficult [7, 26].

We then move to study GHW(k)-∆-approximations. We start by showing that they
strictly generalize GHW(k)-under and GHW(k)-overapproximations. As for the case of
GHW(k)-overapproximations, we provide a link between GHW(k)-∆-overapproximations
and the existential pebble game, and use it to characterize when a CQ q has at least one
GHW(k)-∆-approximation that is neither a GHW(k)-underapproximation nor a GHW(k)-
overapproximation (a so-called incomparable GHW(k)-∆-approximation). This allows us to

XX:4 A More General Theory of Static Approximations for Conjunctive Queries

show that the identification problem for such ∆-approximations is coNP-complete. As for
the problem of checking for the existence of incomparable GHW(k)-∆-approximations, we
extend our automata techniques to prove that it is in 2Exptime for k = 1 (and in Exptime
for fixed-arity schemas). In case such a GHW(1)-∆-approximation exists, we can evaluate
it using a fixed-parameter tractable algorithm. We also provide results on existence and
evaluation of infinite incomparable GHW(1)-∆-approximations.
Organization. Section 2 contains preliminaries. Basic properties of overapproximations
are presented in Section 3, while the existence of overapproximations is studied in Section 4.
In Section 5 we deal with ∆-approximations, and conclude in Section 6 with final remarks.
Due to limited space, several proofs are in the appendix.

2 Preliminaries

Relational databases and homomorphisms. A relational schema σ is a finite set of
relation symbols, each one of which has an arity n > 0. A database D over σ is a finite set of
atoms of the form R(ā), where R is a relation symbol in σ of arity n and ā is an n-tuple of
constants. We often abuse notation and write D also for the set of elements in D.

Let D and D′ be databases over σ. A homomorphism from D to D′ is a mapping h
from D to D′ such that for every atom R(ā) in D it is the case that R(h(ā)) ∈ D′. If ā
and b̄ are n-ary tuples (n ≥ 0) in D and D′, respectively, we write (D, ā)→ (D′, b̄) if there
is a homomorphism h from D to D′ such that h(ā) = b̄. Checking if (D, ā) → (D′, b̄) is a
well-known NP-complete problem.
Conjunctive queries. A conjunctive query (CQ) over schema σ is a formula q of the form
∃ȳ
∧

1≤i≤mRi(x̄i), where each Ri(x̄i) is an atom over σ (1 ≤ i ≤ m). We often write this
as q(x̄) to denote that x̄ are the free variables of q, i.e., the ones that are not existentially
quantified in ȳ. If x̄ is empty, then q is boolean. We define the evaluation of CQs in terms
of homomorphisms. Recall that the canonical database Dq of a CQ q = ∃ȳ

∧
1≤i≤mRi(x̄i)

consists precisely of the atoms Ri(x̄i), for 1 ≤ i ≤ m. We then define the result of q over
D, denoted q(D), as the set of all tuples ā such that (Dq, x̄) → (D, ā). We often do not
distinguish between a CQ q and its canonical database Dq (i.e., we write q for Dq).
Evaluation and tractable classes of CQs. The evaluation problem for CQs is as follows:
Given a CQ q, a database D, and a tuple ā in D, is ā ∈ q(D)? Since this problem corresponds
to checking if (q, x̄)→ (D, ā), it is NP-complete [8]. This led to a flurry of activity for finding
classes of CQs for which evaluation is tractable.

Here we deal with one of the most studied such classes: CQs of bounded generalized
hypertreewidth [16], also called coverwidth [9]. We adopt the definition of [9] which is
better suited for working with non-boolean queries. A tree decomposition of a CQ q =
∃ȳ
∧

1≤i≤mRi(x̄i) is a pair (T, χ), where T is a tree and χ is a mapping that assigns a subset
of the existentially quantified variables in ȳ to each node t ∈ T , such that:

1. For each 1 ≤ i ≤ m, the variables in x̄i ∩ ȳ are contained in χ(t), for some t ∈ T .
2. For each variable y in ȳ, the set of nodes t ∈ T for which y occurs in χ(t) is connected.

The width of node t in (T, χ) is the minimal size of an I ⊆ {1, . . . ,m} such that
⋃
i∈I x̄i

covers χ(t). The width of (T, χ) is the maximal width of the nodes of T . The generalized
hypertreewidth of q is the minimum width of its tree decompositions.

For a fixed k ≥ 1, we denote by GHW(k) the class of CQs of generalized hypertreewidth
at most k. The CQs in GHW(k) can be evaluated in polynomial time; see [15].

P. Barceló, M. Romero and T. Zeume XX:5

Containment of CQs. A CQ q is contained in a CQ q′, written as q ⊆ q′, if q(D) ⊆ q′(D)
over every database D. Two CQs q and q′ are equivalent, denoted q ≡ q′, if q ⊆ q′ and q′ ⊆ q.

It is known that CQ containment and CQ evaluation are, essentially, the same problem [8].
In particular, let q(x̄) and q′(x̄) be CQs. Then:

q ⊆ q′ ⇐⇒ x̄ ∈ q′(Dq) ⇐⇒ (Dq′ , x̄)→ (Dq, x̄). (1)

Thus, q ⊆ q′ and (q′, x̄)→ (q, x̄) (i.e., (Dq′ , x̄)→ (Dq, x̄)) are used interchangeably.
Approximations of CQs. Fix k ≥ 1. Let q be a CQ. The approximations of q in GHW(k)
are defined with respect to a partial order vq over the set of CQs in GHW(k). Formally, for
any two CQs q′, q′′ in GHW(k) we have:

q′ vq q′′ ⇐⇒ ∆(q(D), q′′(D)) ⊆ ∆(q(D), q′(D)), for every database D,

where ∆(A,B) denotes the symmetric difference between sets A and B. Thus, q′ vq q′′,
whenever the “error” of q′′ with respect to q – measured in terms of the symmetric difference
between q′′(D) and q(D) – is contained in that of q′ for each database D. As usual, we write
q′ @q q′′ if q′ vq q′′ but q′′ 6vq q′.

The approximations of q in GHW(k) always correspond to maximal elements, with respect
to the partial order vq, over a class of CQs in GHW(k) that satisfies certain conditions. The
following three basic notions of approximation were identified in [4]:

Underapproximations: Let q, q′ be CQs such that q′ ∈ GHW(k). Then q′ is a GHW(k)-
underapproximation of q if it is maximal, with respect to vq, among all CQs in GHW(k)
that are contained in q. That is:

q′ ⊆ q, and there is no CQ q′′ ∈ GHW(k) such that q′′ ⊆ q and q′ @q q′′.

In particular, the GHW(k)-underapproximations of q produce correct (but not necessarily
complete) answers with respect to q over every database D.
Overapproximations: Analogously, q′ is a GHW(k)-overapproximation of q if it is maximal,
with respect to vq, among all CQs in GHW(k) that contain q. That is, the GHW(k)-
overapproximations of q produce complete (but not necessarily correct) answers with
respect to q over every database D.
∆-approximations: In this case we impose no restriction on q′. That is, q′ is a GHW(k)-
∆-approximation of q if it is maximal with respect to the partial order vq, i.e., there is
no q′′ ∈ GHW(k) such that q′ @q q′′.

Underapproximations and overapproximations admit an equivalent, but arguably simpler
characterization as maximal (resp., minimal) elements, with respect to the containment
partial order ⊆, among all CQs in GHW(k) that are contained in q (resp., contain q):
I Proposition 1. [4] Fix k ≥ 1. Let q, q′ be CQs such that q′ ∈ GHW(k). Then:

q′ is a GHW(k)-underapproximation of q iff q′ ⊆ q and there is no CQ q′′ ∈ GHW(k) such
that q′ ⊂ q′′ ⊆ q.
q′ is a GHW(k)-overapproximation of q iff q ⊆ q′ and there is no CQ q′′ ∈ GHW(k) such
that q ⊆ q′′ ⊂ q′.

As mentioned before, GHW(k)-underapproximations are by now well-understood. We
concentrate on GHW(k)-overapproximations and GHW(k)-∆-approximations in this paper.
We start by studying the former.

XX:6 A More General Theory of Static Approximations for Conjunctive Queries

q:

Pa

PbPb

q′:

Pa

Pb Pb

Figure 1 The CQ q and its GHW(1)-overapproximation q′ from Example 1.

3 Overapproximations

Recall that GHW(k)-overapproximations are minimal elements (in terms of ⊆) in the set of
CQs in GHW(k) that contain q. We show an example of a GHW(1)-approximation below:

I Example 1. Figure 1 shows a CQ q and its GHW(1)-overapproximation q′. The schema
consists of binary symbols Pa and Pb. Dots represent variables, and an edge labeled Pa
between x and y represents the presence of atoms Pa(x, y) and Pa(y, x). (Same for Pb). All
variables are existentially quantified. Clearly, q ⊆ q′ (as q′ → q). In addition, there is no CQ
q′′ ∈ GHW(1) such that q ⊆ q′′ ⊂ q′. We provide an explanation for this later. J

We start in Section 3.1 by stating some basic properties on existence and uniqueness
of GHW(k)-overapproximations. Later in Section 3.2 we establish a connection between
GHW(k)-overapproximations and the existential pebble game, which allows us to show that
both the identification and evaluation problems for GHW(k)-overapproximations are tractable.
Finally, in Section 3.4 we look at the case when GHW(k)-overapproximations do not exist,
and suggest how this can be alleviated by allowing infinite overapproximations.

3.1 Existence and uniqueness of overapproximations
Existence of overapproximations is not a general phenomenon as shown in [4]. In fact, for
every k > 1 there is a boolean CQ q in GHW(k) that has no GHW(1)-overapproximation.
Using the characterization given later in Theorem 13, we can strengthen this further:

I Proposition 2. For each k > 1, there is a Boolean CQ q ∈ GHW(k) without GHW(`)-
overapproximations for any 1 ≤ ` < k.

Figure 2 depicts examples of CQs in GHW(k), for k = 2 and k = 3, respectively, without
GHW(`)-overapproximations for any 1 ≤ ` < k.

Interestingly, when GHW(k)-overapproximations do exist, they are unique (up to equival-
ence). This follows since, in this case, GHW(k)-overapproximations are not only the minimal
elements, but also the lower bounds of the set of CQs in GHW(k) that contain q:

I Proposition 3. Let q, q′ be CQs such that q′ ∈ GHW(k). The following are equivalent:

1. q′ is a GHW(k)-overapproximation of q.
2. (i) q ⊆ q′, and (ii) for every CQ q′′ ∈ GHW(k), it is the case that q ⊆ q′′ implies q′ ⊆ q′′.

Proof. We only prove the nontrivial direction (1)⇒ (2). By contradiction, suppose there is
a CQ q′′ ∈ GHW(k) such that q ⊆ q′′ but q′ 6⊆ q′′. Let (q′ ∧ q′′) be the conjunction of q′ and
q′′, i.e., the CQ which is obtained by first renaming each existentially quantified variable in q′
and q′′ with a different fresh variable, and then taking the conjunction of the atoms in q′ and
q′′. It is easy to see that (q′ ∧ q′′) is in GHW(k). Also, by the definition of (q′ ∧ q′′) we have
that q ⊆ (q′ ∧ q′′) ⊆ q′. But q′ is a GHW(k)-overapproximation of q, and thus q′ ⊆ (q′ ∧ q′′).
Clearly, on the other hand, (q′ ∧ q′′) ⊆ q′′, and hence q′ ⊆ q′′. This is a contradiction. J

P. Barceló, M. Romero and T. Zeume XX:7

q: q′:

Figure 2 The CQ q is in GHW(2) but has no GHW(1)-overapproximations, while q′ is in GHW(3)
but has no GHW(`)-overapproximations for ` ∈ {1, 2}.

As a corollary, we immediately obtain the following:

I Corollary 2. If a CQ q has GHW(k)-overapproximations q1 and q2, then q1 ≡ q2.

The previous results show the stark difference between GHW(k)-overapproximations and
GHW(k)-underapproximations: While GHW(k)-overapproximations do not necessarily exist,
but when they do they are unique, GHW(k)-underapproximations always exist but there can
be exponentially many incomparable ones [5].

3.2 A link with the existential pebble game
We characterize GHW(k)-overaproximations in terms of the existential pebble game. We
use a version of such a game, known as existential cover game, that is tailored for CQs of
bounded generalized hypertreewidth [9]. Let k ≥ 1. The existential k-cover game is played
by Spoiler and Duplicator on pairs (D, ā) and (D′, b̄), where D and D′ are databases and ā
and b̄ are n-ary (n ≥ 0) tuples over D and D′, respectively. The game proceeds in rounds.
In each round, Spoiler places (resp., removes) a pebble on (resp., from) an element of D, and
Duplicator responds by placing (resp., removing) its corresponding pebble on an element
of (resp., from) D′. The number of pebbles is not bounded, but Spoiler is constrained as
follows: At any round p of the game, if c1, . . . , cl (l ≤ p) are the elements marked by Spoiler
pebbles in D, there must be at most k atoms in D that contain all such elements (this is
why the game is called k-cover, as pebbled elements are covered by such k atoms).

Duplicator wins if she has a winning strategy, i.e., she can indefinitely continue playing
the game in such way that after each round, if c1, . . . , c` are the elements that are marked by
Spoiler’s pebbles in D and d1, . . . , d` are the elements marked by the corresponding pebbles
of Duplicator in D′, then

(
(c1, . . . , ck, ā), (d1, . . . , dk, b̄)

)
is a partial homomorphism from D

to D′. That is, for every atom R(c̄) ∈ D, where each element c of c̄ appears in (c1, . . . , ck, ā),
it is the case that R(d̄) ∈ D′, where d̄ is the tuple obtained from c̄ by replacing each element c
of c̄ by its corresponding element d in (d1, . . . , dk, b̄). In such case, we write (D, ā)→k (D′, b̄).

Notice that →k “approximates” → as follows: → ⊂ . . . ⊂ →k+1 ⊂ →k ⊂ . . . ⊂→1.
These approximations are convenient complexity-wise: Checking if (D, ā)→ (D′, b̄) is NP-
complete, but (D, ā)→k (D′, b̄) can be solved efficiently.

I Proposition 4. [9] Fix k ≥ 1. Checking (D, ā)→k (D′, b̄) is solvable in polynomial time.

Moreover, there is a connection between →k and the evaluation of CQs in GHW(k) that
we heavily exploit in our work:

I Proposition 5. [9] Fix k ≥ 1. Then (D, ā) →k (D′, b̄) iff for each CQ q(x̄) in GHW(k)
we have that if (q, x̄)→ (D, ā) then (q, x̄)→ (D′, b̄).

In particular, if q(x̄) ∈ GHW(k) then for every D and ā:

ā ∈ q(D) ⇐⇒ (q, x̄)→ (D, ā) ⇐⇒ (q, x̄)→k (D, ā). (2)

XX:8 A More General Theory of Static Approximations for Conjunctive Queries

That is, the “approximation” of→ provided by→k is sufficient for evaluating CQs in GHW(k).
Together with Proposition 4, this proves that CQs in GHW(k) can be evaluated efficiently.
The characterization. Existential cover games can be applied to obtain a semantic char-
acterization of GHW(k)-overapproximations:

I Theorem 3. Fix k ≥ 1. Let q, q′ be CQs with q′ ∈ GHW(k). Then q′(x̄) is the GHW(k)-
overapproximation of q(x̄) iff (q′, x̄)→k (q, x̄) and (q, x̄)→k (q′, x̄).

Proof. Assume that q′(x̄) is the GHW(k)-overapproximation of q(x̄). Then (q′, x̄)→ (q, x̄),
and thus (q′, x̄) →k (q, x̄) from Equation (2). We prove now that (q, x̄) →k (q′, x̄). From
Proposition 5, we need to prove that if q′′(x̄) is a CQ in GHW(k) such that (q′′, x̄)→ (q, x̄),
then also (q′′, x̄)→ (q′, x̄). This follows directly from Proposition 3.

Assume now that (q′, x̄)→k (q, x̄) and (q, x̄)→k (q′, x̄). Since q′ is in GHW(k), we have
that q ⊆ q′ from Equation (2). From Proposition 5, if q ⊆ q′′ and q′′ ∈ GHW(k) then q′ ⊆ q′′,
i.e., there is no q′′ in GHW(k) such that q ⊆ q′′ ⊂ q′. J

I Example 4. (Example 1 cont.) It is now easy to see that the CQ q′ in Figure 1 is a
GHW(1)-overapproximation of q. In fact, since q′ → q, we only need to show that q →1 q

′.
The latter is simple and left to the reader. J

Next we show that this characterization allows us to show that the identification and
evaluation problems for GHW(k)-overapproximations can be solved in polynomial time.

3.3 Identification and evaluation of GHW(k)-overapproximations
A direct corollary of Proposition 4 and Theorem 3 is that the identification problem for
GHW(k)-overapproximations is in polynomial time:

I Corollary 5. Fix k ≥ 1. Given CQs q, q′ such that q′ ∈ GHW(k), checking if q′ is the
GHW(k)-overapproximation of q can be solved in polynomial time.

This corresponds to a promise version of the problem, as it is given to us that q′ is in
fact in GHW(k). Checking the latter is NP-complete [17].

Assume now that we are given the promise that q has a GHW(k)-overapproximation q′
(but q′ itself is not given). How hard is it to evaluate q′ over a database D? We could try to
compute q′, but so far we have no techniques to do that. Notably, we can use existential
cover games to show that GHW(k)-overapproximations can be evaluated efficiently, without
even computing them. This is based on the next result, which states that evaluating q′ over
D boils down to checking (q, x̄)→k (D, ā) for the tuples ā over D.

I Theorem 6. Fix k ≥ 1. Let q(x̄) be a CQ with a GHW(k)-overapproximation q′(x̄). Then
for every D and ā:

ā ∈ q′(D) ⇐⇒ (q′, x̄)→ (D, ā) ⇐⇒ (q, x̄)→k (D, ā).

Proof. Assume first that (q, x̄)→k (D, ā). Since q′ is a GHW(k)-overapproximation of q, we
have that (q′, x̄) → (q, x̄). By composition then, (q′, x̄) →k (D, ā). But q′ ∈ GHW(k), and
thus (q′, x̄)→ (D, ā) from Equation (2). Assume now that (q′, x̄)→ (D, ā). From Theorem
3, we have that (q, x̄)→k (q′, x̄), and by composition, (q, x̄)→k (D, ā) holds. J

As a corollary to Theorem 6 and Proposition 4 we obtain:

I Corollary 7. Fix k ≥ 1. Checking if ā ∈ q′(D), given a CQ q that has a GHW(k)-
overapproximation q′, a database D, and a tuple ā in D, can be solved in polynomial time by
checking if (q, x̄)→k (D, ā). Moreover, this can be done without even computing q′.

P. Barceló, M. Romero and T. Zeume XX:9

3.4 More liberal GHW(k)-overapproximations
CQs may not have GHW(k)-overapproximations, for some k ≥ 1. We observe in this
section that this anomaly can be solved by extending the language of queries over which
overapproximations are to be found.

An infinite CQ is as a finite one, save that now the number of atoms can be countable.
We assume that there are finitely many free variables in an infinite CQ. The evaluation of
an infinite CQ q(x̄) over a database D is defined analogously to the evaluation of a finite
one. We write GHW(k)∞ for the class of all CQs, finite and countably infinite ones, of
generalized hypertreewidth at most k. The next result states a crucial relationship between
the existential k-cover game and the class GHW(k)∞:

I Lemma 8. Fix k ≥ 1. For every CQ q there is a q′ in GHW(k)∞ such that for every
database D and tuple ā of constants in D:

ā ∈ q′(D) ⇐⇒ (q′, x̄)→ (D, ā) ⇐⇒ (q, x̄)→k (D, ā).

This holds even for countably infinite databases D.

We omit the proof of this result, as it follows from techniques in [23]. The basic idea is
that q′ has an (infinite) generalized hypertree decomposition of width k that represents all
possible strategies of Spoiler in the existential k-cover game played from q.

Since we now deal with infinite CQs and databases, we cannot apply Proposition 5 directly
in our analysis of GHW(k)∞-overapproximations. Instead, we use the following suitable
reformulation of it, which we obtain by a straightforward inspection of its proof:
I Proposition 6. Fix k ≥ 1. Consider countably infinite databases D and D′. Then
(D, ā)→k (D′, b̄) iff for each CQ q(x̄) in GHW(k)∞, if (q, x̄)→ (D, ā) then (q, x̄)→ (D′, b̄).

GHW(k)∞-overapproximations. We expand the notion of overapproximation by allowing
infinite CQs. Let q′ ∈ GHW(k)∞. Then q′ is a GHW(k)∞-overapproximation of CQ q, if q ⊆ q′
and there is no q′′ ∈ GHW(k)∞ such that q ⊆ q′′ ⊂ q′. (Here, ⊆ is still defined with respect
to finite databases only). In GHW(k)∞, we can provide each CQ q an overapproximation:

I Theorem 9. Fix k ≥ 1. For every CQ q there is a CQ in GHW(k)∞ that is a GHW(k)∞-
overapproximation of q.

Proof. We prove that q′, as given in Lemma 8, is a GHW(k)∞-overapproximation of q. Notice
that (q′, x̄)→ (q, x̄) (by choosing (D, ā) as (q, x̄) in Lemma 8). Therefore, q ⊆ q′ since this
direction of Equation (1) continues to hold for countably infinite CQs. Observe now that
(q, x̄)→k (q′, x̄) (by choosing (D, ā) as (q′, x̄) in Lemma 8). Proposition 6 tells us that for
every q′′(x̄) in GHW(k)∞, if (q′′, x̄)→ (q, x̄) then (q′′, x̄)→ (q′, x̄). But then q ⊆ q′′ implies
that q′ ⊆ q′′, since Equation (1) continues to hold if q (but not necessarily q′) is finite. Thus,
q′ is a GHW(k)∞-overapproximation of q. J

Despite the non-computable nature of GHW(k)∞-overapproximations, we get from Pro-
position 4 and the proof of Theorem 9 that they can be evaluated efficiently:

I Corollary 10. Fix k ≥ 1. Checking whether ā ∈ q′(D), given a CQ q with GHW(k)∞-
overapproximation q′, a database D, and a tuple ā in D, boils down to checking if (q, x̄)→k

(D, ā), and thus it can be solved in polynomial time.

On the power of the existential cover game. Some works “overestimate” the evalu-
ation of CQs, weakening the quality of the answer in favor of efficiency. A paradigmatic

XX:10 A More General Theory of Static Approximations for Conjunctive Queries

example is [12], which redefines the semantics of CQs in terms of simulations (a well-known
overestimation of the notion of homomorphism [28]). For schemas of node-labeled graphs,
as the ones considered in [12], the notion of q being simulated in D coincides with q →1 D.
Together with Corollary 10, this provides a theoretical justification for such a simulation-
based semantics: It corresponds to evaluating a CQ in GHW(1)∞, but not an arbitrary one.
Indeed, it corresponds to its GHW(1)∞-overapproximation.

Our results also highlight an important property of the existential cover game in terms of
its power for evaluating CQs. As expressed in Equation (2), for each CQ q in GHW(k) we
have that computing q(D) boils down to finding the tuples ā ∈ D such that (q, x̄)→k (D, ā).
For other CQs, on the other hand, determining such ā’s provides an “overestimation” of
q(D). Interestingly, Corollary 10 states that such an overstimation is not an arbitrary one;
in fact, it corresponds to the evaluation of the GHW(k)∞-approximation q′ of q over D.

4 Deciding existence of GHW(k)-overapproximations

CQs always have GHW(k)∞-overapproximations, but not necessarily finite ones. Here we
study when a CQ q has one such a finite overapproximation. We start with the case k = 1,
which we show to be decidable in 2Exptime. For k > 1 we leave the decidability open, but
provide some explanation to where the difficulty lies.

4.1 The acyclic case
We start with the case of GHW(1)-overapproximations. Recall that GHW(1) is an important
class, as it consists precisely of the well-known acyclic CQs. Our main result is the following:

I Theorem 11. There is a 2Exptime algorithm that checks if a CQ q has a GHW(1)-
overapproximation and, if one exists, it computes one in triple-exponential time.

If the arity of the schema is fixed, there is an Exptime algorithm that does this and
computes a GHW(1)-overapproximation of q in double-exponential time.

We sketch the proof for nonfixed arities. From a CQ q we build a two-way alternating
tree automaton [10], or 2ATA, Aq, such that the language L(Aq) of trees accepted by Aq is
nonempty iff q has a GHW(1)-overapproximation. Intuitively, Aq accepts those trees that
encode a GHW(1)-overapproximation q′ of q. Formally:
I Proposition 7. There exists a double-exponential time algorithm that takes as input a
CQ q and returns a 2ATA Aq with exponentially many states, such that q has a GHW(1)-
overapproximation iff L(Aq) 6= ∅. Furthermore, from every tree T in L(Aq) one can construct
in polynomial time a GHW(1)-overapproximation of q.

Proof sketch. For simplicity we assume that q is Boolean. Before describing the construction
of Aq, we explain how input trees for Aq encode CQs in GHW(1). To this end let q′ be a CQ
in GHW(1) and (Tq′ , χ) a tree decomposition of q′. The CQ q′ can have unbounded many
variables. Yet, in each node of Tq′ at most r variables appear, where r is the maximum arity
of an atom in q. Thus, by reusing variables, (Tq′ , χ) can be encoded by using 2r variables in
such a way that it can then be decoded, i.e. a variable name ui is used in two neighboring
nodes v and v′ of the encoding iff the corresponding variables of the tree decomposition also
occur in neighboring nodes. The encoding Enc(Tq′ , χ) of (Tq′ , χ) is thus a tree labeled by (a)
the variables {u1, . . . , u2r} as described, and (b) the atoms of q′ covered by those variables.

The 2ATA Aq checks that the CQ q′ encoded by T ′ = Enc(Tq′ , χ) is a GHW(1)-
overapproximation of q. From Theorem 3, we need to check: (1) q′ →1 q, and (2) q →1 q

′.

P. Barceló, M. Romero and T. Zeume XX:11

The 2ATA Aq will be defined as the intersection of 2ATAs A1 and A2, that check conditions
(1) and (2), respectively. Condition (1) is equivalent to q′ → q (since q′ ∈ GHW(1)). A
simple standard construction yields a 2ATA A1 that checks that such a condition holds. In
particular, A1 requires no alternation and has at most exponentially many states.

We now sketch how the automaton A2 works. First, q →1 q
′ can be restated as Duplicator

having a compact winning strategy [9] as follows. A 1-union of q is a set of variables that
appears exactly in an atom of q. Then q →1 q

′ iff there is a family F of partial homomorphisms
from q to q′ such that: (a) The domain of each f ∈ F is a 1-union of q, and (b) If U and
U ′ are 1-unions of q, then each f ∈ F with domain U can be extended to U ′, i.e., there is
f ′ ∈ F with domain U ′ such that f(x) = f ′(x) for every x ∈ U ∩ U ′.

The 2ATA A2 assumes an annotation of T ′ = Enc(Tq′ , χ) that encodes the intended
strategy F . This annotation labels each node t′ of T ′ by the set of partial mappings from q

to q′ whose domain is a 1-union of q, and whose range is contained in the variables from
{u1, . . . , u2r} labeling t′. It can be easily checked from the labelings of T ′ if each mapping in
this annotation is a partial homomorphism. To check condition (2), the 2ATA A2 makes a
universal transition for each pair (U,U ′) of 1-unions and partial mapping g with domain U
annotating a node t′ of T ′. Then it checks the existence of a node t′ in T ′ that is annotated
with a mapping g′ that extends g to U ′. The latter means that, for each x ∈ U ∩ U ′, both
g(x) and g′(x) are the same variable of q′, that is, g(x) and g(x′) are connected occurrences of
the same variable in {u1, . . . , u2r}. Thus to check the consistency of g and g′, the automaton
can store the variables in {g(x) | x ∈ U ∩ U ′}, and check that these are present in the label
of each node guessed before reaching t′. As this is a polynomial amount of information, A2
can be implemented using exponentially many states. J

It is easy to see how Theorem 11 follows from Proposition 7. Checking if a CQ q has a
GHW(1)-overapproximation amounts to checking if L(Aq) 6= ∅. The latter can be done in
exponential time in the number of states of Aq [10], and thus in double-exponential time in
the size of q. If L(Aq) 6= ∅, one can construct a tree T ∈ L(Aq) in double-exponential time
in the size of Aq, and thus in triple-exponential time in the size of q. From T one then gets
in polynomial time (i.e., in 3EXPTIME in the size of q) a GHW(1)-overapproximation of q.
The case of binary schemas. For schemas of arity two the existence and computation
of GHW(1)-overapproximations can be solved in polynomial time. This is of practical
importance since data models such as graph databases [3] and description logic ABoxes [2]
can be represented using schemas of this kind. Note that in this context GHW(1) coincides
with the class of CQs of treewidth one [11]. Then:
I Theorem 12. There is a Ptime algorithm that checks if a CQ q over a schema of maximum
arity two has a GHW(1)-overapproximation q′, and computes such q′ if it exists.

We relegate the proof of this result to the appendix, as it is quite involved. It requires, in
particular, the application of tools different from the ones based on tree automata used in
the proof of Theorem 11.
Size of overapproximations. Over binary schemas GHW(1)-overapproximations are of
polynomial size. This is optimal as over schemas of arity three there is an exponential lower
bound for the size of GHW(1)-overapproximations:
I Proposition 8. There is a schema σ with a single ternary relation symbol and a family
(qn)n≥1 of Boolean CQs over σ, such that (1) qn is of size O(n), and (2) the size of every
GHW(1)-overapproximation of qn is Ω(2n).

Proof. The CQ qn contains the atoms R(x0, x
1
1, x

2
1), R(x0, x

2
1, x

1
1), as well as R(xji , x1

i+1, x
2
i+1)

and R(xji , x2
i+1, x

1
i+1), for each 1 ≤ i ≤ n−1 and j ∈ {1, 2}. Consider now the CQ q′n with the

XX:12 A More General Theory of Static Approximations for Conjunctive Queries

q3:

x0

x1
1 x2

1

x1
2 x2

2

x1
3 x2

3

q′3:

y0

y1
1

y11
2 y12

2

y111
3 y112

3 y121
3 y122

3

y2
1

y21
2 y22

2

y211
3 y212

3 y221
3 y222

3

Figure 3 Illustration of the CQs q3 and q′3 from Proposition 8. Each triple of variables represents
two atoms in the query; e.g., {y0, y1

1 , y2
1} represents atoms R(y0, y1

1 , y2
1) and R(y0, y2

1 , y1
1) in q′3.

atoms R(y0, y
1
1 , y

2
1), R(y0, y

2
1 , y

1
1), as well as R(yw|w|, yw1

|w|+1, y
w2
|w|+1) and R(yw|w|, yw2

|w|+1, y
w1
|w|+1),

for each word w over {1, 2} of length 1 ≤ |w| ≤ n− 1. Figure 3 depicts q3 and q′3.
Clearly, the mapping h : q′n → qn defined as h(y0) = x0 and h(ywj|w|+1) = xj|w|+1, for each

word w over {1, 2} of length 0 ≤ |w| ≤ n− 1 and j ∈ {1, 2}, is a homomorphism. We now
show that qn →1 q

′
n by building a compact winning strategy for Duplicator (see the proof

of Proposition 7) which basically “inverts” the homomorphism h. It contains: (a) Partial
homomorphisms (x0, x

1
1, x

2
1) → (y0, y

1
1 , y

2
1) and (x0, x

1
1, x

2
1) → (y0, y

2
1 , y

1
1), and (b) for each

word w over {1, 2} of length 1 ≤ |w| ≤ n − 1 and j ∈ {1, 2}, the partial homomorphisms
(xj|w|, x

1
|w|+1, x

2
|w|+1)→ (yw|w|, yw1

|w|+1, y
w2
|w|+1) and (xj|w|, x

1
|w|+1, x

2
|w|+1)→ (yw|w|, yw2

|w|+1, y
w1
|w|+1).

It can be seen that this is a winning strategy for Duplicator.
Observe that the size of q′n is Ω(2n). A straightforward case-by-case analysis shows that

q′n is a core [8,19], i.e., there is no homomorphism from q′n to a proper subset of its atoms. We
claim that q′n is the smallest GHW(1)-overapproximation of qn, from which the proposition
follows. Assume, towards a contradiction, that q′ is a GHW(1)-overapproximation of qn
with fewer atoms than q′n. Then, by Corollary 2, we have that q′n ≡ q′. Composing the
homomorphisms h1 : q′n → q′ and h2 : q′ → q′n yields a homomorphism from q′n to a proper
subset of the atoms of q′n. This is a contradiction since q′n is a core. J

4.2 Beyond acyclicity
Theorem 6 characterizes when a CQ has a GHW(k)-overapproximation. We provide an
alternative characterization in terms of a boundedness condition for the existential cover
game. This helps understanding where lies the difficulty of determining the decidability
status of the problem of existence of GHW(k)-overapproximations, for k > 1.

We write (D, ā) →c
k (D, b̄), for k ≥ 1 and c ≥ 0, if Duplicator has a winning strategy

in the first c rounds of the existential k-cover game on (D, ā) and (D, b̄). The next result
establishes that a CQ q has a GHW(k)-overapproximation iff the existential k-cover game
played from q is “bounded”, i.e., there is a constant c ≥ 0 that bounds the number of rounds
this game needs to be played in order to determine if Duplicator wins.

I Theorem 13. Fix k ≥ 1. The CQ q(x̄) has a GHW(k)-overapproximation iff there is an
integer c ≥ 0 such that (q, x̄)→k (D, ā) iff (q, x̄)→c

k (D, ā), for each database D and ā ∈ D.

Boundedness conditions are a difficult area of study, with a delicate decidability boundary.
For least fixed point logic (LFP), undecidability results for boundedness abound with the
exception of a few restricted fragments [7, 26]. Although the existence of winning Duplicator
strategies in existential pebble games is expressible in LFP [24], no result obtained in
such context seems to be directly applicable to determining the decidability status of the
boundedness condition in Theorem 13.

P. Barceló, M. Romero and T. Zeume XX:13

5 Beyond under and overapproximations: ∆-approximations

We now turn to GHW(k)-∆-approximations. Recall that a GHW(k)-∆-approximation of q
is a maximal element in GHW(k) with respect to the order vq, where q′ vq q′′, for CQs
q′, q′′ ∈ GHW(k), iff ∆(q(D), q′′(D)) ⊆ ∆(q(D), q′(D)) for all databases D. It is not surprising
that GHW(k)-∆-approximations generalize over- and underapproximations.

I Proposition 9. Fix k ≥ 1. Let q, q′ be CQs such that q′ ∈ GHW(k). If q ⊆ q′ (resp., q′ ⊆ q),
then q′ is a GHW(k)-∆-approximation of q if and only if q′ is a GHW(k)-overapproximation
(resp., GHW(k)-underapproximation) of q.

Thus, we concentrate on the study of GHW(k)-∆-approximations that are neither GHW(k)-
under nor GHW(k)-overapproximations. Evaluating such ∆-approximations can give us useful
information when the quality of GHW(k)-under- and GHW(k)-overapproximations is poor.
But, are there GHW(k)-∆-approximations that are neither GHW(k)-under- nor GHW(k)-
overapproximations? In the rest of this section, we settle this question and study complexity
questions associated with such GHW(k)-∆-approximations.

5.1 Incomparable GHW(k)-∆-approximations
Let q be a CQ. In view of Proposition 9, the GHW(k)-∆-approximations q′ of q that are neither
GHW(k)-overapproximations nor GHW(k)-underapproximations must be incomparable with
q in terms of containment; i.e., both q 6⊆ q′ and q′ 6⊆ q must hold. Incomparable GHW(k)-∆-
approximations do not necessarily exist, even when approximating in the set of infinite CQs
GHW(k)∞. A trivial example is any CQ q in GHW(k), as its only GHW(k)-∆-approximation
(up to equivalence) is q itself. The following characterization will help us to find CQs with
incomparable GHW(k)-∆-approximations.

I Theorem 14. Fix k ≥ 1. Let q(x̄), q′(x̄) be CQs such that q′ ∈ GHW(k). Then q′ is an
incomparable GHW(k)-∆-approximation of q iff (q, x̄)→k (q′, x̄), and both q 6⊆ q′ and q′ 6⊆ q.

Proof. Suppose first that q′ is an incomparable GHW(k)-∆-approximation of q and assume,
towards a contradiction, that (q, x̄) 6→k (q′, x̄). By Proposition 5, there is a q′′ ∈ GHW(k)
such that (q′′, x̄)→ (q, x̄) and (q′′, x̄) 6→ (q′, x̄). In particular, q ⊆ q′′ and q′ 6⊆ q′′. We claim
that q′ @q (q′′ ∧ q′), which contradicts our hypothesis since (q′′ ∧ q′) ∈ GHW(k). Indeed,
suppose that ā ∈ ∆(q(D), (q′′ ∧ q′)(D)), for a database D and a tuple ā ∈ D. If ā 6∈ q(D),
then ā ∈ (q′′ ∧ q′)(D) ⊆ q′(D), and consequently, ā ∈ ∆(q(D), q′(D)). Otherwise, ā ∈ q(D)
and ā 6∈ (q′′ ∧ q′)(D). Since q ⊆ q′′, the tuple ā is not in q′(D), and then ā ∈ ∆(q(D), q′(D)).
Hence q′ vq (q′′ ∧ q′). On the other hand, since q′ 6⊆ q′′, there is a database D∗ such that
q′(D∗) 6⊆ q′′(D∗), i.e., ā ∈ q′(D∗) but ā 6∈ q′′(D∗), for some tuple ā in D∗. In particular
ā ∈ ∆(q(D∗), q′(D∗)) and ā 6∈ ∆(q(D∗), (q′′ ∧ q′)(D∗)), and thus (q′′ ∧ q′) 6vq q′.

For the other implication, we need the following lemma, whose proof is in the appendix:

I Lemma 15. Fix k ≥ 1. Let q(x̄), q′(x̄), q′′(x̄) be CQs such that q′′ ∈ GHW(k). Suppose
that (q, x̄)→k (q′, x̄). Then (q′′, x̄)→ (q′ ∧ q, x̄) implies (q′′, x̄)→ (q′, x̄).

Assume that q * q′, q′ * q, and (q, x̄) →k (q′, x̄) hold. By contradiction, suppose
that there is a CQ q′′ ∈ GHW(k) such that q′ @q q′′. We show that q′ ≡ q′′, which is
a contradiction. Recall that D(q′∧q) denotes the canonical database of (q′ ∧ q). Clearly,
x̄ ∈ q(D(q′∧q)) and x̄ ∈ q′(D(q′∧q)). It follows that x̄ 6∈ ∆(q(D(q′∧q)), q′(D(q′∧q))), and thus
by hypothesis, x̄ 6∈ ∆(q(D(q′∧q)), q′′(D(q′∧q))). Therefore, x̄ ∈ q′′(D(q′∧q)). Applying Lemma
15, we have that (q′′, x̄) → (q′, x̄), that is, q′ ⊆ q′′. We prove next that also q′′ ⊆ q′.

XX:14 A More General Theory of Static Approximations for Conjunctive Queries

Notice that x̄ 6∈ q(Dq′′); otherwise, q′′ ⊆ q would hold, implying that q′ ⊆ q, which is a
contradiction. Thus, x̄ ∈ q′′(Dq′′), and hence x̄ ∈ ∆(q(Dq′′), q′′(Dq′′)). This implies that
x̄ ∈ ∆(q(Dq′′), q′(Dq′′)). It follows that x̄ ∈ q′(Dq′′), i.e., q′′ ⊆ q′. Hence, q′ ≡ q′′. J

I Example 16. Consider the Boolean CQ q = ∃x∃y∃z(E(x, y) ∧ E(y, z) ∧ E(z, x)) from
Figure 2, which asks for the existence of a directed cycle of length 3. The query q has a
unique GHW(1)-underapproximation q′ = ∃xE(x, x). As mentioned in Section 3.1, q has
no GHW(1)-overapproximations. Does q have incomparable GHW(1)-∆-approximations?
By applying Theorem 14, we can give a positive answer to this question: the CQ q′′ =
∃x∃y(E(x, y) ∧ E(y, x)) is an incomparable GHW(1)-∆-approximation of q. J

Therefore, as Example 16 shows, incomparable GHW(k)-∆-approximations may exist for
some CQs. However, in contrast with overapproximations, they are not unique in general:
I Proposition 10. There is a CQ with infinitely many (non-equivalent) incomparable
GHW(1)-∆-approximations. In fact, this holds for the CQ q in Figure 1.

Identification, existence and evaluation. A direct consequence of Theorem 14 is that
the identification problem, i.e., checking if q′ ∈ GHW(k) is an incomparable GHW(k)-∆-
approximation of a CQ q, is in coNP. In fact, we need to check that q 6⊆ q′ and q′ 6⊆ q – which
are in coNP – and (q, x̄)→k (q′, x̄) – which is in Ptime from Proposition 4. This is optimal:
I Proposition 11. Fix k ≥ 1. Checking if a given CQ q′ ∈ GHW(k) is an incomparable
GHW(k)-∆-approximation of a given CQ q, is coNP-complete.

As in the case of GHW(k)-overapproximations, we do not know how to check existence of
incomparable GHW(k)-∆-approximations, for k ≥ 1. Nevertheless, for k = 1 we can exploit
the automata techniques developed in Section 4 and obtain an analogous decidability result:
I Proposition 12. There is a 2Exptime algorithm that checks if a CQ q has a incomparable
GHW(1)-∆-approximation and, if one exists, it computes one in triple exponential time. The
bounds become Exptime and 2Exptime, respectively, if the arity of the schema is fixed.

Now we study evaluation. Let us note that, unlike GHW(k)-overapproximations, incom-
parable GHW(k)-∆-approximations of a CQ q are not unique. In fact, there can be infinitely
many (see Proposition 10). Thus, it is reasonable to start by trying to evaluate at least one
of them. It would be desirable, in addition, if the one we evaluate depends only on q (i.e., it
is independent of the underlying database D). Proposition 12 allows us to do so as follows.
Given a CQ q with at least one incomparable GHW(1)-∆-approximation, we can compute in
3Exptime one such an incomparable GHW(1)-∆-approximation q′. We can then evaluate q′
over a database D in time O(|D| · |q′|) [29], which is O(|D| · f(|q|)), for f a triple-exponential
function. This means that the evaluation of such q′ over D is fixed-parameter tractable, i.e., it
can be solved by an algorithm that depends polynomially on the size of the large database D,
but more loosely on the size of the small CQ q. (This is a desirable property for evaluation,
which is not in general held for the class of all CQs [27]). Formally, then:

I Theorem 17. There is a fixed-parameter tractable algorithm that, given a CQ q that
has incomparable GHW(1)-∆-approximations, a database D, and a tuple ā, checks whether
ā ∈ q′(D), for some incomparable GHW(1)-∆-approximation q′ of q that depends only on q.

It is worth noticing that the automata techniques are essential for proving this result,
and thus for evaluating incomparable GHW(1)-∆-approximations. This is in stark contrast
with GHW(k)-overapproximations, which can be evaluated in polynomial time by simply
checking if (q, x̄)→k (D, ā). It is not at all clear whether such techniques can be extended
to allow for the efficient evaluation of incomparable GHW(k)-∆-approximations.

P. Barceló, M. Romero and T. Zeume XX:15

q:
P1

P2

q∗:
. . .

P1 P2 P1 P2 P1
q′:

Figure 4 The CQ q ∈ GHW(2) from Example 18. The CQ (q∗∧q′) is an incomparable GHW(1)∞-
∆-approximation of q. On the other hand, q has no incomparable GHW(1)-∆-approximations.

The infinite case. All the previous results continue to apply for the class of infinite CQs in
GHW(k)∞. The following example shows that, as in the case of GHW(k)-overapproximations,
considering GHW(k)∞ helps us to obtain better incomparable GHW(k)-∆-approximations.

I Example 18. Consider the CQ q that asks for the existence of the two parallel paths P1
and P2, as shown in Figure 4. Theorem 14 can be used to show that q has no incomparable
GHW(1)-∆-approximation. However, q has an incomparable GHW(1)∞-∆-approximation.
In fact, let q∗ be the GHW(1)∞-overapproximation of q which is depicted in Figure 4 (a
P1-labeled edge represents a copy of the path P1, similarly for P2). Also, let q′ be an
arbitray CQ in GHW(1) which is incomparable with q (one such a q′ is shown in Figure 4).
Applying the extension of Theorem 14 to the class GHW(k)∞, we can prove that (q∗ ∧ q′) is
an incomparable GHW(1)∞-∆-approximation of q. J

Example 18 also illustrates the following fact: If there is a CQ q′ ∈ GHW(k) which is
incomparable with q, then (q∗ ∧ q′) is an incomparable GHW(k)∞-∆-approximation of q,
where q∗ is the GHW(k)∞-overapproximation of q. Given a database D and a tuple ā in
D, we can check whether ā belongs to the evaluation of such a ∆-approximation (q∗ ∧ q′)
over D as follows: First we compute q′, and then we check both (q, x̄) →k (D, ā) and
ā ∈ q′(D). In other words, we evaluate (q∗ ∧ q′) via the existential k-cover game, as for the
GHW(k)∞-overapproximation, and then use the incomparable CQ q′ to filter out some tuples
in the answer. Interestingly, we can easily exploit automata techniques and compute such an
incomparable q′ (in case one exists). Thus we have the following:

I Theorem 19. Fix k ≥ 1. There is a fixed-parameter tractable algorithm that given a CQ q

that has an incomparable q′ in GHW(k), a database D, and a tuple ā in D, decides whether
ā ∈ q̂(D), for some incomparable GHW(k)∞-∆-approximation q̂ of q that depends only on q.

6 Final Remarks

Several problems have been left open by our work; e.g., is the existence of GHW(k)-
overapproximations decidable for k > 1? What is the complexity of checking for the
existence of GHW(1)-overapproximations? What is their exact size? As established in
Section 4.2, answering such questions will require a deeper understanding of the boundedness
condition for existential cover games stated in Theorem 13.

In the future we plan to study how our notions of approximation can be combined with
other techniques to obtain quantitative guarantees. One possibility is to exploit semantic
information about the data – e.g., in the form of integrity constraints – in order to ensure
that certain bounds on the size of the result of the approximation hold. Another possibility is
to try to obtain probabilistic guarantees for approximations based on reasonable assumptions
about the distribution of the data.

XX:16 A More General Theory of Static Approximations for Conjunctive Queries

References
1 Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-

Wesley, 1995.
2 Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F.

Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementation, and
Applications. Cambridge University Press, 2003.

3 Pablo Barceló. Querying graph databases. In PODS, pages 175–188, 2013.
4 Pablo Barceló, Leonid Libkin, and Miguel Romero. Efficient approximations of conjunctive

queries. In PODS, pages 249–260, 2012.
5 Pablo Barceló, Leonid Libkin, and Miguel Romero. Efficient approximations of conjunctive

queries. SIAM J. Comput., 43(3):1085–1130, 2014.
6 Pablo Barceló, Miguel Romero, and Moshe Y. Vardi. Semantic acyclicity on graph data-

bases. SIAM J. Comput., 45(4):1339–1376, 2016.
7 Achim Blumensath, Martin Otto, and MarkWeyer. Decidability results for the boundedness

problem. Logical Methods in Computer Science, 10(3), 2014.
8 Ashok K. Chandra and Philip M. Merlin. Optimal implementation of conjunctive queries

in relational data bases. In STOC, pages 77–90, 1977.
9 Hubie Chen and Víctor Dalmau. Beyond hypertree width: Decomposition methods without

decompositions. In CP, pages 167–181, 2005.
10 Stavros S. Cosmadakis, Haim Gaifman, Paris C. Kanellakis, and Moshe Y. Vardi. Decidable

optimization problems for database logic programs (preliminary report). In STOC, pages
477–490, 1988.

11 Víctor Dalmau, Phokion G. Kolaitis, and Moshe Y. Vardi. Constraint satisfaction, bounded
treewidth, and finite-variable logics. In CP, pages 310–326, 2002.

12 Wenfei Fan, Jianzhong Li, Shuai Ma, Nan Tang, Yinghui Wu, and Yunpeng Wu. Graph
pattern matching: From intractable to polynomial time. PVLDB, 3(1):264–275, 2010.

13 Robert Fink and Dan Olteanu. On the optimal approximation of queries using tractable
propositional languages. In ICDT, pages 174–185, 2011.

14 Minos Garofalakis and Phillip Gibbon. Approximate query processing: taming the tera-
bytes. In VLDB, page 725, 2001.

15 Georg Gottlob, Gianluigi Greco, Nicola Leone, and Francesco Scarcello. Hypertree decom-
positions: Questions and answers. In PODS, pages 57–74, 2016.

16 Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree decompositions and
tractable queries. J. Comput. Syst. Sci., 64(3):579–627, 2002.

17 Georg Gottlob, Zoltán Miklós, and Thomas Schwentick. Generalized hypertree decomposi-
tions: Np-hardness and tractable variants. J. ACM, 56(6), 2009.

18 P. Hell and J. Nešeťril. Graphs and homomorphisms. Oxford University Press, 2004.
19 Pavol Hell and Jaroslav Nesetril. The core of a graph. Discrete Mathematics, 109(1-3):117–

126, 1992.
20 Pavol Hell, Jaroslav Nesetril, and Xuding Zhu. Complexity of tree homomorphisms. Dis-

crete Applied Mathematics, 70(1):23–36, 1996.
21 Yannis Ioannidis. Approximations in database systems. In ICDT, pages 16–30, 2003.
22 Phokion G. Kolaitis and Jonathan Panttaja. On the complexity of existential pebble games.

In CSL, pages 314–329, 2003.
23 Phokion G. Kolaitis and Moshe Y. Vardi. On the expressive power of datalog: Tools and

a case study. J. Comput. Syst. Sci., 51(1):110–134, 1995.
24 Phokion G. Kolaitis and Moshe Y. Vardi. Conjunctive-query containment and constraint

satisfaction. J. Comput. Syst. Sci., 61(2):302–332, 2000.
25 Qing Liu. Approximate query processing. In Encyclopedia of Database Systems, pages

113–119, 2009.

P. Barceló, M. Romero and T. Zeume XX:17

26 Martin Otto. The boundedness problem for monadic universal first-order logic. In LICS,
pages 37–48, 2006.

27 Christos H. Papadimitriou and Mihalis Yannakakis. On the complexity of database queries.
J. Comput. Syst. Sci., 58(3):407–427, 1999.

28 D. Sangiorgi. On the origins of bisimulation and coinduction. ACM Trans. Program. Lang.
Syst., 31(4), 2009.

29 Mihalis Yannakakis. Algorithms for acyclic database schemes. In VLDB, pages 82–94,
1981.

XX:18 A More General Theory of Static Approximations for Conjunctive Queries

v1 v2

v3

v1 v2

v3 v4

v1 v2

v3 v4

v5

Figure 5 Directed graphs that satisfy condition (†) for k = 2, 3, 4, respectively.

7 Appendix

7.1 Proofs for Section “Existence and uniqueness of
overapproximations”

Proposition 2. For each k > 1, there is a Boolean CQ q ∈ GHW(k) without GHW(`)-
overapproximations for any 1 ≤ ` < k.

Proof. Fix k > 1. The CQ q is defined over graphs and consists of k + 1 nodes v1, . . . , vk+1.
For every 1 ≤ i < j ≤ k + 1 we add either the atom (i.e., edge) E(vi, vj) or E(vj , vi) to q in
such a way that the subgraph of G induced by {v1, v2, v3} is a directed cycle and a certain
condition (†), defined below, holds. We start introducing some terminology.

Let G be a directed graph on nodes v1, . . . , vk+1 that contains, for each 1 ≤ i < j ≤ k+ 1,
either the edge E(vi, vj) or E(vj , vi). For a B ⊆ {v1, . . . , vk+1} of size 2 ≤ ` ≤ k − 1 and a
node v ∈ {v1, . . . , vk+1} \B, we define conn(v,B) as the tuple (e1, . . . , ek+1) ∈ {−1, 1,#}k+1

such that for each 1 ≤ p ≤ k + 1:

ep =

#, if vp 6∈ B,
1, if vp ∈ B and the edge E(v, vp) is in G,
−1, otherwise, i.e., vp ∈ B and E(vp, v) is in G.

In simple terms, conn(v,B) specifies how v connects with the nodes in B.
Our condition (†) then establishes the following:

(†) For each B ⊆ {v1, . . . , vk+1} of size 2 ≤ ` ≤ k − 1 and node v ∈ {v1, . . . , vk+1} \B, there
is a node v′ ∈ {v1, . . . , vk+1} \B such that:

conn(v,B) 6= conn(v′, B).

That is, for each such B and v we will always be able to find another v′ outside B that
connects to the nodes in B in a different way than v.

I Example 20. The graphs in Figure 5 satisfy this condition for k = 2, 3, 4, respectively.
Notice that the directed cycle on nodes {v1, v2, v3}, shown in the left-hand side, satisfies
condition (†) trivially.

The next claim establishes that for each k > 1 there is always a graph that satisfies this
condition.
I Claim 1. There is a directed graph G on nodes v1, . . . , vk+1 such that the following hold:

1. For each 1 ≤ i < j ≤ k + 1, either the edge E(vi, vj) or E(vj , vi) is in G;

P. Barceló, M. Romero and T. Zeume XX:19

2. the subgraph of G induced by {v1, v2, v3} is a directed cycle; and
3. G satisfies condition (†).

Proof. For k = 2 this is given by the graph in Example 20. For k ≥ 3 we prove by induction
a stronger claim: There is a directed graph G on nodes v1, . . . , vk+1 such that:

1. G contains either the edge E(vi, vj) or E(vj , vi) for each 1 ≤ i < j ≤ k + 1.
2. The subgraph of G induced by {v1, v2, v3} is a directed cycle.
3. G contains the edges E(v1, v2) and E(v4, v3).
4. G satisfies condition (†).

The basis case k = 3 is given by the graph in Example 20. For the inductive case, assume
by induction hypothesis that there is a directed graph G on nodes v1, . . . , vk+1 that satisfies
the claim above. A new graph G′ is then created from G by adding a new node vk+2 and
connecting it to the nodes in {v1, . . . , vk+1} as follows: For each 1 ≤ i ≤ k, if E(vi, vi+1) is in
G then we add the edge E(vk+2, vi) to G′, otherwise we add the edge E(vi, vk+2). Moreover,
if E(vk+1, v1) is in G then we add the edge E(vk+2, vk+1) to G′, otherwise we add the edge
E(vk+1, vk+2). Notice that G coincides with the subgraph of G′ that is induced by nodes
v1, . . . , vk+1. Moreover, by construction G′ satisfies the first three conditions of the claim.
We prove next that it also satisfies condition (†).

Take an arbitrary B ⊆ {v1, . . . , vk+2} of size 2 ≤ ` ≤ k and a node v outside B. We
prove that the condition holds by cases:

vk+2 6∈ B, v ∈ {v1, . . . , vk+1}, and 2 ≤ ` ≤ k− 1: By inductive hypothesis there is a node
v′ ∈ {v1, . . . , vk+1} \B such that conn(v,B) 6= conn(v′, B).
vk+2 6∈ B, v ∈ {v1, . . . , vk+1}, and ` = k: We set v′ := vk+2 and claim that the predecessor
u of v in {v1, . . . , vk+1} distinguishes v and v′. Here, the “predecessor” of vi+1 is vi
if 2 ≤ i ≤ k + 1, and the predecessor of v1 is vk+1 (note that u ∈ B as ` = k). By
construction of G′, we have that E(u, v) ∈ G′ if and only if E(v′, u) ∈ G′. We conclude
that conn(v,B) 6= conn(v′, B).
vk+2 6∈ B and v = vk+2: There must exist some node v′ in {v1, . . . , vk+1} that does
not belong to B but its predecessor u with respect to {v1, . . . , vk+1} does. Then by
construction of G′, we have that E(u, v′) ∈ G′ if and only if E(v, u) ∈ G′. We conclude
that conn(v,B) 6= conn(v′, B).
vk+2 ∈ B and ` ≥ 3: Then B′ = B \ {vk+2} is of size 2 ≤ ` − 1 ≤ k − 1. By induction
hypothesis, for every node v outside B′ there is another node v′ ∈ {v1, . . . , vk+1} \ B′
such that conn(v,B′) 6= conn(v′, B′). This implies that conn(v,B) 6= conn(v′, B).
vk+2 ∈ B and ` = 2: Then B = {vk+2, u} for some u ∈ {v1, . . . , vk+1}. Suppose first
that u ∈ {v1, v2, v3}. Since the subgraph induced by {v1, v2, v3} in G defines a directed
cycle, it is the case that E(u, z) holds if and only if E(w, u) holds, where {u,w, z} =
{v1, v2, v3}. Therefore, for each v ∈ {v1, . . . , vk+1} \ B there is a node v′ ∈ {z, w} such
that conn(v, {u}) 6= conn(v′, {u}). It follows that conn(v,B) 6= conn(v′, B). Suppose
now that u 6∈ {v1, v2, v3}. It suffices to exhibit two nodes v′ and v′′ outside B such that
E(v′, vk+2) and E(vk+2, v

′′). By induction hypothesis the edges E(v1, v2) and E(v4, v3)
are in G′. Therefore, vk+2 is connected via edges E(v3, vk+2) and E(vk+2, v1) in G′.

This concludes the proof. J

Fix k ≥ 1. We then take as q any Boolean CQ whose canonical database is a graph G on
nodes v1, . . . , v2k+1 such that: (1) For each 1 ≤ i < j ≤ 2k + 1, either the edge E(vi, vj) or
E(vj , vi) is in G, (2) the subgraph of G induced by {v1, v2, v3} is a directed cycle, and (3) G

XX:20 A More General Theory of Static Approximations for Conjunctive Queries

satisfies condition (†). It is easy to see that q is in GHW(k + 1) \ GHW(k) as its underlying
undirected graph is a clique on 2k + 1 elements. In fact, these elements can be covered with
(k + 1) edges, but not with k.

We claim that q has no GHW(`)-overapproximation for any 1 ≤ ` ≤ k. The proofs for
the cases when ` = 1 and ` > 1 are slightly different. We start with the latter, i.e., when
1 < ` ≤ k. The proof for every such an ` is analogous, and thus we concentrate on proving
the claim for ` = k > 1. According to Theorem 3, we need to prove that there is no constant
c ≥ 0 such that for every database D:

q →k D ⇐⇒ q →c
k D.

The proof is conceptually simple. We inductively define a CQ q′c in GHW(k), for each
c ≥ 0, such that q′c defines the existential k-cover game played from q for up to c rounds.
Formally, q′c is the CQ in GHW(k) such that for every D:

q′c → D ⇐⇒ q →c
k D.

Afterwards we show that there is no integer c such that q′c and q′c+1 are equivalent. It follows
that q has no GHW(k)-overapproximation.

The construction of the CQ q′c is technical, but mimics that of q′ ∈ GHW(k)∞ in Lemma
8. Here we obtain q′c to be finite since only a finite number of rounds of the game have to be
represented.

For the definition of q′c, for c ≥ 1, some sets of variables of size 2k in q′c are distinguished.
Each such set will be associated, in a 1-1 correspondence, with a subset S of {v1, . . . , v2k+1}
of size 2k. We exploit this correspondence in the construction. (A similar notion, called
boundaried databases, is used in the proof of some results in [24]). In order to make the proof
more uniform, we assume without loss of generality that we deal with a stronger version
of the existential k-cover game in which the spoiler is allowed to place as many pebbles as
desired in the first round of the game (notice, however, that he cannot place more than 2k
such pebbles, since these have to be covered by at most k atoms from q).

Let us start with the base cases q′0 and q′1. The CQ q′0 has no elements, and therefore no
distinguished sets of elements. We now define q′1. Recall that G is the graph that represents
the canonical database of the CQ q and that {v1, . . . , v2k+1} are the vertices of G. Given
a subset S of {v1, . . . , v2k+1} of size 2k, we denote by G(S) the subgraph of G induced by
the nodes in S. (Notice that the underlying undirected graph of such G(S) is a clique on
2k elements, and thus it belongs to GHW(k) \ GHW(k − 1)). The CQ q′1 is then defined
as the graph that consists of a disjoint copy of each G(S), for S a 2k element subset of
{v1, . . . , v2k+1}. This graph represents all possible moves of Spoiler in the first round of the
existential k-cover game played from q (recall that we allow the Spoiler to place 2k pebbles
in such first round). The distinguished sets of 2k variables from q′1 are then defined precisely
as its connected components. Each one of them can thus be naturally associated with a 2k
element subset of {v1, . . . , v2k+1}.

We now explain how to construct the CQ q′c+1 from q′c. For each S ⊆ {v1, . . . , v2k+1} of
size 2k and node v ∈ S, let Sv be the 2k element set obtained from S by removing v and
adding the only element v(S) in {v1, . . . , v2k+1} \ S. The CQ q′c+1 is then constructed as
follows: For each distinguished set Q of 2k variables in q′c that is naturally associated (in 1-1
correspondence) with S ⊆ {v1, . . . , v2k+1}, and for each node v ∈ S, add a fresh copy Q(Sv)
of G(Sv) to q′c. Then “glue” together the “common elements” of the distinguished set Q
and Q(Sv). Formally, this means to identify in Q(Sv) each node v′ in Sv ∩ S with the node
v′′ ∈ Q that is in 1-1 correspondence with it. (Notice that all nodes in Q(Sv), save for v(S),

P. Barceló, M. Romero and T. Zeume XX:21

are glued with elements in Q). Intuitively, the new nodes correspond to all possible moves of
one Spoiler pebble in q, starting from the configuration in which his pebbles cover S. The
resulting graph is q′c+1.

We now explain what are the distinguished sets of 2k elements in q′c+1. For each
distinguished set Q of q′c that is naturally associated (in 1-1 correspondence) with S ⊆
{v1, . . . , v2k+1} of size 2k, we distinguish the fresh copies of the form Q(Sv) that are glued
to Q (after gluing them). We associate this distinguished set precisely with Sv (respecting
the natural 1-1 correspondence).

The following claim states that the CQs of the form q′c, for c ≥ 0, satisfy the desired
properties. The proof of this claim is standard but cumbersome:
I Claim 2. For each c ≥ 0 the following statements hold:

1. q′c is in GHW(k).
2. For every database D it is the case that:

q′c → D ⇐⇒ q →c
k D.

We now prove that for no integer c ≥ 0 it is the case that:

q′c+1 ≡ q′c.

Clearly, q′c+1 ⊆ q′c for every c ≥ 0, as q′c → q′c+1 by construction. Thus we show that it is not
the case that q′c ⊆ q′c+1 for some c ≥ 0. To this end we prove:

q′c+1 6→ q′c, for each integer c ≥ 0. (3)

We do this by induction. But before doing so, we briefly review the notion of core of a
CQ [8,19], which is heavily used in the rest of the proof.

Formally, a CQ q is a core if there is no CQ q′ with fewer atoms than q such that q ≡ q′.
Given CQs q and q′, we say that q is a core of q′ if q is a core and q ≡ q′. In other words,
the core of q is the minimal CQ (in terms of number of atoms) that is equivalent to q. The
following result summarizes some important properties of cores:
I Proposition 13. [19] The following statements hold:

1. Each CQ q has a core. Moreover, there is a unique core of q up to renaming of variables.
(Therefore, we can talk about the core of q).

2. Each core is a retraction of q. This means that a core q′ of q can always be obtained by
removing some (perhaps none) of the atoms of q. In addition, if q′ is a core of q then
there is a homomorphism h : q → q′ that is the identity on the elements of q′.

We now continue with the proof of the proposition. The claim in Equation (3) clearly
holds for c = 0 (as q′0 is empty while q′1 is not). Let us assume now that the claim holds for
c ≥ 0. That is, q′c+1 6→ q′c. This means, in particular, that the core of q′c+1 is not contained
in q′c. That is, this core contains at least one node w in q′c+1 that does not belong to q′c.
By definition, this w must satisfy the following: Either c ≥ 0, or there is a distinguished
set Q of q′c that is associated with an S ⊆ {v1, . . . , v2k+1} of size 2k, and there is a node
v ∈ S, such that w corresponds to the node in Q(Sv) that represents the unique node in
{v1, . . . , v2k+1} \ S. Recall that Q(Sv) is the fresh copy of G(Sv) that is glued with Q while
building q′c+1. Thus, w is the only node in such copy that is not identified with a node in Q.

From Proposition 13, we can assume that the homomorphism that maps q′c+1 to its core
is a retraction, i.e., it is the identity on the nodes of such core, in particular, in w. On

XX:22 A More General Theory of Static Approximations for Conjunctive Queries

the other hand, w is only linked in q′c+1 to the other nodes of Q(Sv). Furthermore, the
underlying undirected graph of Q(Sv) forms a clique on 2k elements. This implies that the
elements of Q(Sv) are also in the core of q′c+1.

Recall that Q(Sv) is a distinguished set of variables in q′c+1 which is associated with Sv.
Take an arbitrary node v′ ∈ Sv that is different from the one that is represented by w in
Q(Sv). By definition, q′c+2 contains a fresh copy Q((Sv)v′) of G((Sv)v′) whose nodes are
then glued with Q(Sv), save for one node, say w′.

Assume now, for the sake of contradiction, that q′c+2 → q′c+1. Then the core of q′c+2
corresponds to the core of q′c+1. Henceforth, from Proposition 13 there is a retraction h from
q′c+2 to this core. Since all elements in Q(Sv) are in such a core, the homomorphism h must
be the identity on them. But then h maps w′ to the only element in q′c+1 that is linked to
the same nodes than w′ in q′c+2; namely, the node v′. Suppose that w′ and v′ represent the
nodes vi and vj in {v1, . . . , v2k+1}, respectively. By assumption i 6= j. But this implies then
that in the canonical database G of q we have that:

conn(vi, B) = conn(vj , B),

where B = {v1, . . . , v2k+1} \ {vi, vj}. This is a contradiction since B is of size 2k− 1 > 1 and
G satisfies condition (†). This concludes our proof that q has no GHW(k)-overapproximation
(and, analogously, that it has no GHW(`)-overapproximation for every 1 < ` ≤ k).

We prove next that q neither has a GHW(1)-overapproximation. Let us assume, for the
sake of contradiction, that q has a GHW(1)-overapproximation q′. It is an easy observation
that the directed graphs in GHW(1) are precisely those whose underlying undirected graph is
acyclic. Note also that q′ has no directed cycles of length 2 (i.e., atoms E(u, v) and E(v, u));
otherwise q would also have such a cycle (since q′ → q). Using the fact that q′ ∈ GHW(1)
and has no directed cycles of length 2, it is not difficult to show (see e.g. [18]) that there is a
sufficiently large integer n ≥ 1 such that, if ~Pn is the directed path on n vertices, then:

q′ → ~Pn, but ~Pn 6→ q′.

This implies that if q′′ is the Boolean CQ which is naturally defined by ~Pn, then q′′ (q′.
Moreover, ~Pn → G. This is due to the fact that G contains a directed cycle on {v1, v2, v3}.
We conclude that:

q ⊆ q′′ (q′,

and, therefore, that q′ is not a GHW(1)-overapproximation of q. This is a contradiction. This
concludes our proof of Proposition 2. J

7.2 Proofs for Section “A Link to Existential Pebble Games”
A proof of Proposition 5 for Boolean queries is given in [9]. Here we outline a different proof
for arbitrary queries. The proof is easily seen to extend to infinite databases and queries.
Thus Proposition 6 follows. The proof uses the following lemma.

I Lemma 21. Fix k ≥ 1. If q(x̄) ∈ GHW(k) then for every D and tuple ā of constants in D:

(q, x̄)→ (D, ā) ⇐⇒ (q, x̄)→k (D, ā).

Proof sketch. The direction from left to right is straightforward. For the direction from
right to left we define an homomorphism h from (q, x̄) to (D, ā) by inspecting the winning
strategy of Duplicator along a decomposition of (q, x̄) in a top-down fashion.

P. Barceló, M. Romero and T. Zeume XX:23

Thus let H be a compact winning strategy of Duplicator for the game on (q, x̄) and (D, ā)
and let (F, λ) be a tree decomposition of (q, x̄) of generalized hypertreewidth k. Consider
the move of Spoiler that pebbles all nodes λ(r) in the root r of F . The answer of Duplicator
according to H defines a partial homomorphism hr from (q, x̄) to (D, a) with domain λ(r).
Let r1, . . . , rp be the children of r in F . For each 1 ≤ i ≤ p, consider the moves of Spoiler
that pebble all nodes in λ(ri). The answers to those moves by Duplicator define partial
mappings hri

such that each hri
is consistent with hr. Moreover, hr ∪ hri

and hr ∪ hrj
are

also consistent for i 6= j, as each element in the domain of both mappings are also in the
domain of hr (since (F, λ) is a tree decomposition of cover width k). Thus by taking the
union of these mappings we obtain an homomorphism from q1 to D, where q1 is the subgraph
of q induced by λ(r) ∪ λ(r1) ∪ · · ·λ(rp). This argument can be inductively repeated until all
leaves of F are reached. J

Proposition 5. Fix k ≥ 1. Then (D, ā) →k (D′, b̄) iff for each CQ q(x̄) in GHW(k) we
have that if (q, x̄)→ (D, ā) then (q, x̄)→ (D′, b̄).

Proof sketch. Suppose (D, ā) →k (D′, b̄). Let (q, x) ∈ GHW(k) such that (q, x) → (D, ā).
We have that winning strategies for Duplicator compose, thus (q, x̄)→k (D′, b̄). By Lemma
21, we have that (q, x̄)→ (D′, b̄).

Now, suppose (D, ā) 9k (D′, b̄). From Spoiler’s winning strategy we derive a CQ
(q, x̄) ∈ GHW(k) such that (q, x̄)→ (D, ā) and (q, x̄) 9 (D′, b̄). We construct (q, x̄) and its
tree decomposition (F, λ) simultaneously.

Suppose Spoiler strategy starts by choosing a set of variables U ⊆ D. Then q initially
contains a copy q0 of the substructure of (D, ā) induced by U and ā. Further, if r is the
root of F , then λ(r) corresponds to the set Var(q0) of variables of q0 (note that Var(q0)
can be covered by k atoms). Then for each partial homomorphism h from (D, ā) to (D′, b̄)
with domain U (that is, for each possible response of Duplicator to Spoiler’s initial move),
Spoiler can play on some Uh ⊆ D and win the game from this position. For each such partial
homomorphism h we add to q a copy qh of the subgraph of D induced by Uh. The variables
in qh are fresh variables except for those corresponding to elements in (U ∪ ā) ∩ Uh. Thus
Var(qh)∩Var(q0) contains precisely the copies of the elements in (U ∪ ā)∩Uh. For each such
a h we add a child rh to r and we let λ(rh) = Var(qh). We continue this construction until
we reach the leaves of the strategy tree of Spoiler.

By construction (q, x̄) ∈ GHW(k) and (q, x̄) → (D, ā) via Φ (just invert the “copying”
process). Suppose by contradiction that (q, x̄)→ (D′, b̄) via some homomorphism g. Then g
restricted to λ(r), denoted g|λ(r), is a partial homomorphism from (q, x̄) to (D′, b̄). Take the
partial homomorphism g|λ(r) ◦Φ−1 with domain Φ(λ(r)) from (D, ā) to (D′, b̄). By construc-
tion there is a child r′ of r associated with g|λ(r) ◦ Φ−1. Inductively, repeat the argument
from r′ until we reach a leaf s of F . At this point, g|λ(s) ◦ Φ−1 is partial homomorphism
with domain Φ(λ(s)) from (D, ā) to (D′, b̄), but this contradicts the construction of T , as s
is a leaf. J

Lemma 8. Fix k ≥ 1. For every CQ q there is q′ in GHW(k)∞ such that for every D and
ā:

ā ∈ q′(D)⇔ (q′, x̄)→ (D, ā)⇔ (q, x̄)→k (D, ā).

This holds even for countably infinite databases D.

We only sketch the proof as it follows almost directly from techniques developed in [23].

XX:24 A More General Theory of Static Approximations for Conjunctive Queries

Proof sketch. The main idea is to see a generalized hypertreewidth k tree decomposition of
q′ as representing all possible strategies of the Spoiler in the existential k-cover game played
from q. The root contains all atoms induced in q by the elements where the Spoiler starts
placing his pebbles. The children of this root represent all possible moves of one pebble from
this initial configuration (i.e., the atoms induced in q by set of elements obtained by changing
one element from the initial configuration), and so on. Elements correspond to variables in q
and elements in common between a node and its children correspond to join variables in q
(i.e., a node and any one of its children share all their variables, save perhaps for one). J

7.3 Proofs for Section “Existence of Overapproximations”
7.3.1 The acyclic case
Addendum to the Proof of Proposition 7: We analyze the number of states needed by
the 2ATA more precisely. As described in the main part, the automaton reads a encoding
of T ′ = Enc(Tq′ , χ) in which each node t′ encodes (a) the variables {u1, . . . , u2r}, (b) the
atoms of q′ covered by those variables, and is annotated by (c) an encoding of an intended
homomorphism h : q′ → q and (d) an encoding of the part of the winning strategy of
Duplicator for variables from {u1, . . . , u2r} that annotate t′. The size of an alphabet for
encoding (a)-(d) is of double-exponential size in q if the schema is unbounded (basically due
to (d), which requires to store a subset of exponentially many partial homomorphisms) and
of polynomial size in q if the schema is bounded.

Even though the alphabet is double-exponential in q, the number of states used by A1 and
A2 is exponential for schemas of unbounded arity and polynomial for schemas of bounded
arity.

The automaton A1 can be easily seen to be implementable by an exponential number of
states. Using universal nodes it checks that (1) the homomorphism from (c) is consistent for
variables that annotate adjacent nodes of the tree, and that (2) for all nodes t′ of the tree
the encoded variables from (a), the atoms from (b), and the part of the homomorphism from
q′ to q from (c) are consistent.

For A2, an exponential upper bound for the number of states for schemas of unbounded
arity has already been shown in the main part. The essential part for reducing the number
of states for schemas of fixed arity k is that after universally guessing (U,U ′) and g, the
automaton only has to store the encodings of those objects in its state. However, as the arity
is fixed, the sets U and U ′ are of constant size and each of their elements, variables of q, can
be encoded by logarithmically many bits in q. Similarly the partial homomorphism g can be
encoded by O(log |q|) many bits. Hence only polynomially many states are necessary.

We now turn from boolean queries to non-boolean queries. The construction provided
in the main part can be easily extended to non-boolean queries (q, x̄) and (q′, x̄′). In this
case, the encoding T ′ = Enc(Tq′ , χ) of q′ includes atoms that may contain free variables. The
2ATA A1 additionally checks that whenever a node in T ′ is annotated by an atom R(ȳ′)
then there is an atom R(ȳ) in q such that h′(ȳ′) = ȳ where h′ is the extension of the intended
homomorphism h that also maps x̄′ to x̄. The 2ATA A2 does an analogous check for the
partial homomorphisms.

7.3.2 The case of binary schemas
Theorem 12. There is a Ptime algorithm that checks if a CQ q over a schema of maximum
arity two has a GHW(1)-overapproximation q′, and computes such q′ if it exists.

P. Barceló, M. Romero and T. Zeume XX:25

Proof. We need to introduce some notation. The Gaifman graph of a CQ q, denoted by
G(q), is the undirected graph whose set of nodes is the set of variables of q and where there
is an edge {z, z′} whenever z and z′ are distinct variables that appear together in an atom
of q. The existential Gaifman graph of q, denoted by G∃(q), is the subgraph of G(q) induced
by the existentially quantified variables of q. The following claim is straightforward:

I Claim 3. Let q(x̄) be a CQ. Then q ∈ GHW(1) iff G∃(q) is an acyclic graph.

We start by proving Theorem 12 for Boolean CQs; thus, until stated otherwise, we assume
all CQs to be Boolean. A CQ q is connected if G(q) is connected. The following claim is
straightforward:

I Lemma 22. Let q be a connected CQ. If q has a GHW(1)-overapproximation, then it has
one that is connected.

First we show Theorem 12 for connected CQs and then we extend it to the non-connected
case. The idea is to show that if a CQ q has a GHW(1)-overapproximation then it can be
extracted from q in a simple way: it is a subquery of q or it is a subquery of a CQ qu#qv
constructed from q and two distinguished variables u, v in q. The algorithm then greedily
searches through the subqueries of q and qu#qv to find an overapproximation of q.

We start with the following technical lemma:

I Lemma 23. Let q be a connected CQ in GHW(1). If q is a core then for all variables u
and v in q there is at most one endomorphism of q that maps u to v.

Proof. Assume that there are two distinct endomorphisms h1 and h2 with h1(u) = h2(u) = v.
Recall that, since q is a core, h1 and h2 are isomorphisms. We root G(q) at u. Let x be a
variable in q with h1(x) 6= h2(x) whose distance to u is minimal in G(q). Then there is a
unique y such that h1(x) = h2(y). We claim that x and y have the same parent in G(q). Let
z be the parent of x. Since h1 is an isomorphism, h1(x) and h1(z), and therefore also h2(y)
and h2(z), are adjacent in G(q). Thus, also y and z are adjacent. However, y cannot be the
parent of z since h1 and h2 agree on all variables above z in G(q). Therefore z is the parent
of y.

Construct a new endomorphism h that maps variables w in the subtree G(q) rooted at y
to h2(w), and all other variables w′ to h1(w′). Then h is an endomorphism, but not injective
as both x and y are mapped to h1(x) = h2(y). This is a contradiction to q being a core, and
therefore there are no two distinct endomorphisms h1 and h2 mapping u to v. J

Let q be a CQ. We say that u and v are adjacent if {u, v} is an edge in G(q), that is, if
u and v appear together in an atom of q. Suppose q ∈ GHW(1) is connected and u, v are
adjacent. If we remove all the atoms that mention u, v, we obtain two connected CQs, one
containing u and the other containing v. We denote these CQs by tqu and tqv, respectively.

Suppose q ∈ GHW(1) is a connected core. If an endomorphism h of q maps u to v where
u and v are adjacent, then it is the case that h(u) = v and h(v) = u, and h swaps the
subqueries tqu and tqv. We call such an h a swapping endomorphism for u and v. Note that
Lemma 23 tells us that if such a swapping homomorphism for u and v exists, then it is
unique.

I Lemma 24. Let q be a connected core in GHW(1). Then q has at most one endomorphism
besides the identity mapping. If this endomorphism exists, it is a swapping endomorphism.

XX:26 A More General Theory of Static Approximations for Conjunctive Queries

Proof. Let P = x0, x1, ...xm be a simple path of maximal length in G(q). For each endo-
morphism h of q, the path P ′ = y1 . . . ym where yi = h(xi) is a simple path of the same
length (as q is a core and therefore h is an isomorphism). Furthermore, P and P ′ share a
vertex. Indeed, if this not the case, since q is connected, one can pick w in P and w′ in P ′
such that w and w′ are connected by a path P ′′ vertex-disjoint (except for w and w′) from
P and P ′, and construct a longer path than P .

Now, if |P | is even, then its middle vertex u = xm/2 is in the intersection of P and P ′ (as
otherwise q would contain a path longer than P). But then h(u) = u and then h must be
the identity mapping by Lemma 23.

If |P | is odd, then u = xbm/2c and v = xdm/2e are in the intersection of P and P ′ (again,
as otherwise q would contain a path longer than P). If h(u) = u, again we have that h is
the identity. Otherwise, if h(u) = v, since u and v are adjacent, we have that h must be the
swapping endomorphism for u and v. J

For a CQ q and variables u, v in q the CQ qu#qv is defined as follows. Denote by q \ v the
CQ obtained from q by removing all atoms that contain v. Let qu be the query constructed
from q \ v by replacing each variable z by a fresh variable zu. Similarly let qv be the CQ
where each variable z in q \u is replaced by a fresh variable zv. The CQ qu#qv is the union of
qu and qv plus all atoms R(uu, vv) when R(u, v) is an atom in q. Likewise for atoms R(v, u).
The following claim is straightforward:
I Claim 4. For each CQ q and variables u, v in q, it is the case that qu#qv → q.

Before immersing into the proof of Theorem 12 for connected CQs, we state some
important properties of GHW(1)-overapproximations.

I Lemma 25. Suppose q is a CQ and suppose q′ is a connected core that is a GHW(1)-
overapproximation of q. Then we have the following:

If the only endomorphism of q′ is the identity, then any homomorphism from q′ to q is
injective. In particular, q′ is a subquery of q.
If q′ has a swapping endomorphism for u′ and v′, then for any homomorphism h from q′

to q, we have that

(q, {h(u′), h(v′)})→1 (q′, {u′, v′}), and
h is “almost” injective, more precisely, h(z′) 6= h(z′′) for all pairs of variables z′, z′′,
except maybe for z′ 6= u′ in tq

′

u′ and z′ 6= v′ in tq
′

v′ . In particular, q′ is a subquery of
qh(u′)#qh(v′).

Proof. Suppose the only endomorphism of q′ is the identity and towards a contradiction,
suppose there is a non-injective homomorphism h from q′ to q. Then we have h(z′) = h(z′′),
for distinct variables z′, z′′ in q′. Using the fact that q →1 q

′, it is easy to see that there is a
Duplicator winning strategy on q′ and q′ such that z′′ is a possible response of Duplicator
when Spoiler starts playing on z′. Since q′ ∈ GHW(1), we can define an endomorphism g of
q′ that maps z′ to z′′. Then g is an endomorphism different from the identity, which is a
contradiction.

Suppose now that q′ has a swapping endomorphism for u′ and v′, and let h be a
homomoprhism from q′ to q. First, assume by contradiction that Duplicator’s strategy
witnessing q →1 q′ is such that for h(u′) (the case for h(v′) is analogous), Duplicator
responds with z′ 6∈ {u′, v′}. By composing h with this strategy, and using the fact that
q′ ∈ GHW(1), it follows that there is an endomorphism g of q′ that maps u′ to z′. This
endomorphism is different from the identity and from the swapping endomorphism for u′ and

P. Barceló, M. Romero and T. Zeume XX:27

v′, which contradicts Lemma 24. Finally, suppose towards a contradiction, that h(z′) = h(z′′),
where z′ 6= z′′ and z′ = u′ and z′′ is in tq

′

v′ (the other case is analogous). Again by composing
h with the strategy witnessing q →1 q

′ and the fact that q′ ∈ GHW(1), it is easy to derive an
endomorphism of q′ that is neither the identity nor the swapping endomorphism for u′ and
v′.

J

As a corollary of Lemma 25 and Lemma 24, we have that whenever q′ is a connected
core, and it is a GHW(1)-overapproximation of q, then q′ is a subquery of q or a subquery of
qu#qv, for some variables u, v in q.

Proof of Theorem 12 for connected, boolean CQs. We assume that the given CQ q is
connected. The algorithm first checks whether a subquery of q is a GHW(1)-overapproximation.
This is Step 1. In Step 2, the algorithm checks whether a subquery of qu#qv is a GHW(1)-
overapproximation, for some u and v in q. If neither step succeed then the algorithm rejects.
Step 1 is as follows:

1. Set q0 to be q.
2. While qi /∈ GHW(1), search for an atom e such that qi →1 qi \ e. If there is no such atom

then continue with Step 2. Otherwise, set qi+1 to be qi \ e.
3. If qi ∈ GHW(1), for some i, then accept and output qi.

For Step 2, let P be an enumeration of the pairs (u, v) such that u, v are adjacent in
q and q →1 qu#qv. Suppose q̂, q̂′ are CQs and X,Y are set of variables from q̂ and q̂′,
respectively. We denote by (q̂, X)→1 (q̂′, Y) the fact that Duplicator has a winning strategy
in the existential 1-cover game on q̂ and q̂′ with the property that whenever Spoiler places a
pebble on an element of X in q̂, then Duplicator responds with some element of Y in q̂′. It
is easy to see that whether (q̂, X)→1 (q̂′, Y) holds can be checked in polynomial time. Step
2 is as follows:

1. Let (u, v) be the first pair in P.
2. Set q0 to be qu#qv.
3. While qi /∈ GHW(1), search for an atom e that does not mention uu and vv simultaneously

such that (qi, {uu, vv}) →1 (qi \ e, {uu, vv}). If there is no such atom, let (u, v) be the
next pair in P and repeat from item 2. Otherwise, set qi+1 to be qi \ e.

4. If qi ∈ GHW(1), for some i, then accept and output qi.

It is easy to see that the described algorithm can be implemented in polynomial time.
Below we argue that it is correct.

Suppose first that the algorithm, on input q, accepts with output q∗. By construction
q∗ ∈ GHW(1). Assume first that the algorithm accepts in the m-th iteration of Step 1, and
thus q∗ = qm. By construction, for each 0 ≤ i < m, we have that qi →1 qi+1 and qi+1 →1 qi.
In particular, q →1 q∗ and q∗ →1 q, and thus q∗ is a GHW(1)-overapproximation of q.
Suppose now that the algorithm accepts in Step 2 for a pair (u, v) ∈ P , in the m-th iteration.
Again we have that qi →1 qi+1 and qi+1 →1 qi, for each 0 ≤ i < m, and thus qu#qv →1 q

∗

and q∗ →1 qu#qv. Since (u, v) ∈ P, it follows that q →1 qu#qv, and then q →1 q
∗. Using

the fact that qu#qv → q, we have that q∗ →1 q. Hence, q∗ is a GHW(1)-overapproximation
of q.

It remains to show that if q has a GHW(1)-overapproximation q′ then the algorithm
accepts. Since q is connected, we can assume that q′ also is. Moreover, we can assume

XX:28 A More General Theory of Static Approximations for Conjunctive Queries

w.l.o.g. that q′ is a core. By Lemma 24, we have two cases: (1) the only endomorphism of
q′ is the identity, or (2) q′ has two endomorphisms, namely, the identity and the swapping
endomorphism for some variables u′ and v′.

First suppose case (1) applies. We show that the algorithm accepts in Step 1. By
definition, qi →1 qi+1 and qi+1 →1 qi (actually qi+1 → qi), for each 0 ≤ i ≤ m, where m is
the number of iteration in Step 1. It follows that q0 = q →1 qm and qm →1 q. Since the
relation →1 composes, q′ is a GHW(1)-overapproximation of qm and by using Lemma 25, q′
is a subquery of qm. Now for the sake of contradiction assume that the algorithm does not
accept in Step 1. Then qm 6∈ GHW(1) and there is no edge e in qm such that qm →1 qm \ e.
Since q′ is GHW(1)-overapproximation of qm, we have that qm →1 q

′ and, since q′ ∈ GHW(1),
q′ is a proper subquery of qm. It follows that there is an edge e in qm such that qm →1 qm \ e,
which is a contradiction.

Suppose case (2) holds. In this case the algorithm accepts in Step 2. Let h be a
homomorphism from q′ to q, and let u = h(u′) and v = h(v′). By Lemma 25, u 6= v and
then u and v are adjacent. Also, by Lemma 25, q′ is a subquery of qu#qv. Since q →1 q

′, it
follows that q →1 qu#qv, and then (u, v) ∈ P. We claim that the algorithm accepts when
(u, v) is chosen from P. First, note that q′ is a GHW(1)-overapproximation of qm. Indeed,
by definition, qm → qu#qv, qu#qv → q (Claim 4), and q →1 q

′. It follows that qm →1 q
′.

On the other hand, we have that (q′, (u′, v′))→ (qu#qv, (uu, vv)) (q′ is a subquery of qu#qv)
and (qu#qv, {uu, vv}) →1 (qm, {uu, vv}). It follows that (q′, {u′, v′}) →1 (qm, {uu, vv}),
which implies that (q′, (u′, v′)) → (qm, (uu, vv)) via a homomorphism g. Then q′ is a
GHW(1)-overapproximation of qm. By applying Lemma 25 to qm, q′ and g, we obtain that
(qm, {uu, vv}) →1 (q′, {u′, v′}), and g is “almost” injective. Observe that g(z′) 6= g(z′′) for
all z′ 6= u′ in tq

′

u′ and z′′ 6= v′ in tq
′

v′ , since {uu, vv} is a bridge of G(qm), that is, its removal
disconnect G(qm). We conclude that g is injective and then q′ is a subquery of qm.

Towards a contradiction, assume that the algorithm do not accept when (u, v) is chosen
from P. Then qm 6∈ GHW(1) and there is no edge e that does not mention both uu, vv such
that (qm, {uu, vv})→1 (qm\e, {uu, vv}). Since (qm, {uu, vv})→1 (q′, {u′, v′}), (q′, (u′, v′))→
(qm, (uu, vv)) via the injective homomorphism g and q′ ∈ GHW(1), it follows that there is
an edge e that does not mention both uu, vv such that (qm, {uu, vv})→1 (qm \ e, {uu, vv}).
This is a contradiction. J

Now we consider the non-connected case. A connected component of a CQ is a maximal
connected subquery. Given a CQ q with connected components q1, . . . , qm, the algorithm
proceeds as follows:

1. Start by simplifying q: Compute a minimal subset of CQs Q in {q1, . . . , qm} such that
for each 1 ≤ i ≤ m, there is a p ∈ Q with qi →1 p.

2. Check whether each p ∈ Q has a GHW(1)-overapproximation p′ using the algorithm
described for connected CQs. If this is the case then accept and output

∧
p∈Q p

′.

Clearly, the algorithm can be implemented in polynomial time. For the correctness,
suppose first that the algorithm accepts and outputs q′ =

∧
p∈Q p

′. Then q′ →
∧
p∈Q p→ q.

We also have that q →1
∧
p∈Q p (by definition of Q), and

∧
p∈Q p→1 q

′. This implies that q′
is a GHW(1)-overapproximation of q.

Suppose now that q has a GHW(1)-overapproximation q′. Since q →1
∧
p∈Q p and∧

p∈Q p →1 q, it follows that q′ is also a GHW(1)-overapproximation of
∧
p∈Q p. By the

minimality of Q, we have that p 6→1 p̂, for each pair of distinct CQs p, p̂ ∈ Q. Let p be a
CQ in Q. Since p→1 q

′ and p is connected, it follows that p→1 p
∗, where p∗ is a connected

P. Barceló, M. Romero and T. Zeume XX:29

component of q′. Also, since q′ →
∧
p∈Q p, there is p0 ∈ Q such that p∗ → p0. In particular,

p →1 p0. It follows that p0 = p, and then p∗ is a GHW(1)-overapproximation of p. We
conclude that each p ∈ Q has a GHW(1)-overpproximation, and thus the algorithm accepts.

Finally, we consider the general case that includes non-boolean queries. Let q(x̄) be
a CQ. We denote by qB the Boolean CQ obtained from q(x̄) by existentially quantifying
the free variables x̄. Recall that G(q) is the Gaifman graph of q, while G∃(q) denotes the
restriction of G(q) to the existentially quantified variables of q. A CQ q(x̄) is connected if
G(q) is connected. A connected component of q is a maximal connected subquery. For a
connected CQ q(x̄), we say that q′(x̄) is a part of q if it is a maximal subquery of q with
G∃(q′) connected.

Let q(x̄) be a CQ. Let q1 . . . , qm be the connected component of q. Let Cfree be the CQs
in {q1 . . . , qm} that contain a free variable from x̄, and let C∃ be the rest of the CQs. The
algorithm proceeds as follows:

1. Simplify q(x̄): Compute a minimal subset of CQs Q in {q1, . . . , qm} such that Cfree ⊆ Q
and for each 1 ≤ i ≤ m, there is a p ∈ Q with qBi →1 p

B .
2. Check whether each p ∈ Q has a GHW(1)-overapproximation p′. If this is the case then

accept and output
∧
p∈Q p

′. To check if p ∈ Q has a GHW(1)-overapproximation, for a
p ∈ C∃, we simply apply the algorithm for the Boolean and connected case described
previously. In case p(z̄) ∈ Cfree ∩Q, where z̄ are the free variables from x̄ present in p,
the algorithm does the following:

a. Simplify p(z̄): Compute a minimal subset S of the parts of p(z̄) such that for each
part p′(z̄) of p(z̄) there is a part p′′(z̄) ∈ S such that (p′, z̄)→1 (p′′, z̄).

b. Check whether each part p′(z̄) ∈ S has a GHW(1)-oveapproximation p′∗(z̄). If this is
the case then accept and output

∧
p′∈S p

′
∗(z̄).

It remains to explain how the algorithm checks the existence of GHW(1)-overapproximations
for a part p′(z̄) of a connected CQ p(z̄). This is done by applying an adaptation of the
algorithm described for the connected and Boolean case. For p′(z̄) and two existentially
quantified variables u, v adjacent in G∃(p′), we define p′u#p′v(z̄) as the CQ obtained from
p′(z̄) as follows: the free variables are z̄ and the atoms in p′u#p′v(z̄) mentioning variables
in z̄ are exactly those in p′(z̄). The CQ induced by the existentially quantified variables of
p′u#p′v(z̄) is the Boolean CQ p′′u#p′′v , where p′′ is the subquery of p′ induced by the existential
variables. Finally, if there is an atom in p′ mentioning a free variable and an existential
variable w, then the same atom appears in p′u#p′v(z̄) but replacing w by its “copies”, that is,
by wu or wv, if w = u or w = v respectively, or by wu and wv, if w 6∈ {u, v}.

Now it is easy to check that Lemma 3–5, Claim 4 and Lemma 25 hold for the non-Boolean
case, when we consider the adapted definition for qu#qv (exactly the same arguments apply).
Using this, it is straightforward to check that the algorithm developed for Boolean and
connected CQs still works for non-Boolean CQs p′(z̄) that are parts of connected CQs.

This finishes the proof of Theorem 12.
J

7.3.3 Size of overapproximations

Addendum to Proof of Proposition 8: For showing that q′n is indeed a core it suffices
to show that each homomorphism h from q′n to q′n is a bijection. Denote the substructure
of q′n induced by ywi , ywai , and ywbi by Cw (where w ∈ {1, 2}≤n−1, i def= |w|, and a, b ∈ {1, 2}
with a+ 1 = b modulo 2). Observe that the homomorphism h bijectively maps each Cw to

XX:30 A More General Theory of Static Approximations for Conjunctive Queries

some Cw′ . Now, h has to map Cε to itself, since no other Cw can be mapped to Cε (as y0 is
the only variable occurring only in one R-atom). But then h has to either map C1 and C2

to themselves or to swap them. Inductively continuing this argument, one can show that h
induces a bijection on the structures Cw, and is therefore a bijection from q′n to q′n.

7.3.4 Beyond acyclicity
Theorem 13. Fix k ≥ 1 and let q(x̄) be a CQ. Then q has a GHW(k)-overapproximation
iff there is an integer c ≥ 0 such that for every database D and tuple ā in D:

(q, x̄)→k (D, ā) ⇐⇒ (q, x̄)→c
k (D, ā).

Proof. For the direction from right to left, recall from the proof of Proposition 2 that for
every integer c ≥ 0 there is a CQ q′c(x̄) in GHW(k) such that for every database D and tuple
ā in D:

(q′c, x̄)→ (D, ā) ⇐⇒ (q, x̄)→c
k (D, ā).

By hypothesis, it is then the case that for every database D and tuple ā in D:

(q′c, x̄)→ (D, ā) ⇐⇒ (q, x̄)→k (D, ā).

Then, (q′c, x̄) can be seen to be a GHW(k)-overapproximation of (q, x̄) by choosing (D, ā) as
(q, ~x) and as (q′c, x̄), respectively. the claim follows.

Now we prove the direction from left to right. Let q′′ be a GHW(k)-overapproximation
of q. From Theorem 6 we obtain that for every (finite) database D and tuple ā in D:

(q′′, x̄)→ (D, ā) ⇐⇒ (q, x̄)→k (D, ā).

As a first step we prove that this continues being true for countably infinite databases.
We do so by refining the proof of Theorem 6. Let D be a countably infinite database. Assume
first that (q, x̄)→k (D, ā). Due to the fact that q′′ is a GHW(k)-overapproximation of q, we
have that (q′′, x̄) → (q, x̄). Proposition 6 then implies that (q′′, x̄) → (D, ā) since q′′ is in
GHW(k).

Assume, on the other hand, that (q′′, x̄)→ (D, ā). Suppose, for the sake of contradiction,
that (q, x̄) 6→k (D, ā). Proposition 6 then establishes that there is a CQ q∗(x̄) in GHW(k)∞
such that:

(q∗, x̄)→ (q, x̄), but (q∗, x̄) 6→ (D, ā).

Therefore, q ⊆ q∗ since this direction of Equation 1 continues being true when q is finite. This
implies that (q∗, x̄)→ (q′′, x̄) since Corollary 2 continues being true for CQs in GHW(k)∞.
We conclude that (q∗, x̄)→ (D, ā) since (q′′, x̄)→ (D, ā). This is a contradiction.

Therefore, if q′(x̄) is the CQ given by Lemma 8 for CQ q(x̄), then for every countable
database D and tuple ā in D:

(q′, x̄)→ (D, ā) ⇐⇒ (q, x̄)→k (D, ā) ⇐⇒ (q′′, x̄)→ (D, ā).

In particular, (q′, x̄) → (q′′, x̄) and (q′′, x̄) → (q′, x̄). Moreover, by composing the first
homomorphism with the second one, we obtain that there is a homomorphism from (q′, x̄) to
(q′fin, x̄), where q′fin is a finite subset of the atoms of q′.

It is easy to prove that any finite subset of the atoms of q′ must be contained (in usual
set theoretical terms) in the atoms of a CQ in GHW(k) of the form q′c, for a constant c ≥ 0,

P. Barceló, M. Romero and T. Zeume XX:31

i.e., the one that describes the first c rounds of the existential k-cover game played from
(q, x̄). That is, there exists a c ≥ 0 such that (q′, x̄)→ (q′c, x̄). On the other hand, it is also
easy to prove that (q′c, x̄)→ (q′, x̄). (As is to be expected, since q′ describes the full spoiler
strategy in the existential pebble game, while q′c does it for the first c rounds only). We
conclude that for every database D and tuple ā in D:

(q′, x̄)→ (D, ā) ⇐⇒ (q′c, x̄)→ (D, ā).

In other words, over every database D and tuple ā of elements in D,

(q, x̄)→k+1 (D, ā) ⇐⇒ (q, x̄)→c
k+1 (D, ā).

This finishes the proof of the theorem. J

7.4 Proofs for Section “Beyond under and overapproximations:
∆-approximations”

Proposition 9. Fix k ≥ 1. Let q, q′ be CQs such that q′ ∈ C. If q ⊆ q′ (resp., q′ ⊆ q),
then q′ is a GHW(k)-∆-approximation of q if and only if q′ is a GHW(k)-overapproximation
(resp., underapproximation) of q.

Proof. Suppose first that q′ is a GHW(k)-∆-approximation of q. Assume, towards a contra-
diction, that there is a query q′′ such that q ⊆ q′′ ⊂ q′. Then q(D) ⊆ q′′(D) ⊆ q′(D)
for all databases D and there is a database D∗ such that q′(D∗) 6⊆ q′′(D∗). In par-
ticular ∆(q(D), q′′(D)) ⊆ ∆(q(D), q′(D)) for all databases D and ∆(q(D∗), q′(D∗)) 6⊆
∆(q(D∗), q′′(D∗)). This is a contradiction to q′ being a GHW(k)-∆-approximation of q.

Now suppose that q′ is a GHW(k)-overapproximation of q. Assume, towards a contradic-
tion, that there is a query q′′ such that ∆(q(D), q′′(D)) ⊆ ∆(q(D), q′(D)) for all databases
D and ∆(q(D∗), q′(D∗)) 6⊆ ∆(q(D∗), q′′(D∗)) for some database D∗. Then q ⊆ q′′ ⊆ q′ as
∆(q(D), q′(D)) may only contain tuples in q′(D) but not in q(D). Moreover q′(D∗) 6⊆ q′′(D∗).
This is a contradiction to q′ being a GHW(k)-overapproximation of q.

The argument for underapproximations is analogous. J

7.4.1 Incomparable GHW(k)-∆-approximations
Lemma 15. Fix k ≥ 1. Let q(x̄), q′(x̄), q′′(x̄) be CQs such that q′′ ∈ GHW(k). Suppose
that (q, x̄)→k (q′, x̄). Then (q′′, x̄)→ (q′ ∧ q, x̄) implies (q′′, x̄)→ (q′, x̄).

Proof. Before proving the lemma, we need some terminology and claims. Let D be a
database and (A1, . . . , An) be a tuple of pairwise-disjoint subsets of elements of D, where
n ≥ 0. Let also be D′ be a database and (a1, . . . , an) a tuple of elements in D′. Then we
write (D, (A1, . . . , An)) → (D′, (a1, . . . , an)) iff there is a homomorphism h from D to D′
such that, for each i ∈ {1, . . . , n} and a ∈ Ai, it is the case that h(a) = ai.

For such a pair (D, (A1, . . . , An)), with n ≥ 0, we define its generalized hypertreewidth
in the natural way. The intuition is that we see (D, (A1, . . . , An)) as a “query”, where
A1 ∪ · · · ∪An are the “free variables” and the rest of the elements the “existential variables”.
Formally, a tree decomposition of (D, (A1, . . . , An)) is a pair (T, χ), where T is a tree and χ
is a mapping that assigns a subset of the elements in D \A1 ∪ · · · ∪An to each node t ∈ T ,
such that:

XX:32 A More General Theory of Static Approximations for Conjunctive Queries

1. For each atom R(ā) in D, it is the case that ā ∩ (D \A1 ∪ · · · ∪An) is contained in χ(t),
for some t ∈ T .

2. For each element a in D \A1 ∪ · · · ∪An, the set of nodes t ∈ T for which a occurs in χ(t)
is connected.

The width of node t in (T, χ) is the minimal number ` for which there are ` atoms in D
covering χ(t), i.e., atoms R(ā1), . . . , R(ā`) in such that χ(t) ⊆

⋃
1≤i≤` āi The width of (T, χ)

is the maximal width of the nodes of T . The generalized hypertreewidth of (D, (A1, . . . , An))
is the minimum width of its tree decompositions.

Using the same argument as in the proof of the forward implication of Proposition 5, we
can show the following:

I Claim 5. Fix k ≥ 1. Let q(x̄), q′(x̄) be CQs, where x̄ = (x1, . . . , xn), for n ≥ 0. Suppose
that (q, x̄) →k (q′, x̄). Then, for each database D and tuple (A1, . . . , An) of subsets of D
such that (D, (A1, . . . , An)) has generalized hypertreewidth at most k, it is the case that
(D, (A1, . . . , An))→ (q, (x1, . . . , xn)) implies (D, (A1, . . . , An))→ (q′, (x1, . . . , xn)).

Proof Sketch. Let H be a winning strategy of Duplicator witnessing the fact that (q, x̄)→k

(q′, x̄). Let (D, (A1, . . . , An)) have generalized hypertreewidth at most k and to be such that
(D, (A1, . . . , An))→ (q, (x1, . . . , xn)) via a homomorphism h. Then we can compose h with
the strategy H to define a homomorphism g witnessing (D, (A1, . . . , An))→ (q′, (x1, . . . , xn)).
The mapping g is defined in a top-down fashion over the tree decomposition (T, χ) of
width at most k of (D, (A1, . . . , An)). One starts at the root r of T , and forces Spoiler to
play his pebbles over the set h(χ(r)). If Duplicator responds according to H with a partial
homomorphism fr, we then let g(a) = fr(h(a)), for each a ∈ χ(r). We then move to each child
of r and so on, until all leaves are reached and g is defined over all elements in D\A1∪· · ·∪An.
Since Duplicator responds to Spoiler’s moves with consistent partial homomorphisms, g is
actually a well-defined homomorphism from (D, (A1, . . . , An)) to (q′, (x1, . . . , xn)). J

Now we are ready to show our lemma. Suppose that (q, x̄) →k (q′, x̄), where x̄ =
(x1, . . . , xn), for some n ≥ 0. Assume that (q′′, x̄)→ (q′ ∧ q, x̄) via a homomorphism h, for
q′′(x̄) ∈ GHW(k). For each i ∈ {1, . . . , n}, we define Vi to be the set of variables x in q′′ such
that h(x) = xi. In particular, xi ∈ Vi, for each i ∈ {1, . . . , n}. We define V to be the set
of variables x in q′′ such that h(x) = y, where y is an existentially quantified variable of q.
Similarly, we define V ′ with respect to the existentially quantified variables of q′. Note that
the sets V, V ′, V1, . . . , Vn form a partition of the variables of q′′.

Let Dq′′ be the canonical database of q′′. Since q′′ ∈ GHW(k), we know that (Dq′′ ,

({x1}, . . . , {xn})) has generalized hypertreewidth at most k, as defined above. Let DV be
the database induced in Dq′′ by the set of variables V ∪ V1 ∪ · · · ∪ Vn, i.e., the set of atoms
R(t̄) ∈ Dq′′ such that each element in t̄ is in V ∪ V1 ∪ · · · ∪ Vn. We now show that (DV ,

(V1, . . . , Vn)) has also generalized hypertreewidth at most k. Indeed, let (T, χ) be the tree
decomposition of (Dq′′ , ({x1}, . . . , {xn})) of width at most k. Define χ′ such that for each
t ∈ T , we have that χ′(t) = χ(t) ∩ V . We claim that (T, χ′) is a tree decomposition of (DV
, (V1, . . . , Vn)) of width at most k. Since (T, χ) is tree decomposition, we have that, for
each a ∈ V , it is the case that the set {t ∈ T | a ∈ χ′(t)} is connected; and for each atom
R(ā) ∈ DV , there is a node t ∈ T such that ā∩ V ⊆ χ′(t). To see that the width of (T, χ′) is
no more than k, let t be a node in T . Since the width of (T, χ) is at most k, there are ` atoms
R(ā1), . . . , R(ā`) in Dq′′ , with ` ≤ k, such that χ(t) ⊆

⋃
1≤i≤` āi. Let R(āi1), . . . , R(āip),

where 1 ≤ i1 < · · · < ip ≤ ` and p ≤ `, be the atoms in {R(ā1), . . . , R(ā`)} that contain an
element in χ′(t). Since χ′(t) ⊆ χ(t), it is the case that χ′(t) ⊆

⋃
1≤j≤p āij . It suffices to show

P. Barceló, M. Romero and T. Zeume XX:33

that each R(āij) is actually an atom in DV , for 1 ≤ j ≤ p. Towards a contradiction, suppose
that this is not the case. Then, there is an atom in Dq′′ that contains simultaneously one
variable in χ′(t) ⊆ V and one variable in V ′. By the definitions of V ′ and V , and the fact that
h is a homomorphism, it follows that there is an atom in (q′∧q) that mentions simultaneously
one existentially quantified variable from q′ and one from q; this contradicts the definition of
(q′ ∧ q). We conclude that the generalized hypertreewidth of (DV , (V1, . . . , Vn)) is no more
than k.

Recall that h is our initial homomorphism from (q′′, x̄) to ((q′ ∧ q), x̄). Let hV be
the restriction of h to the set V ∪ V1 ∪ · · · ∪ Vn. By construction, (DV , (V1, . . . , Vn)) →
(q, (x1, . . . , xn)) via hV . We can then apply Claim 5 and obtain that (DV , (V1, . . . , Vn))→
(q′, (x1, . . . , xn)) via a homomorphism h′. We define our required homomorphism g from
(q′′, x̄) to (q′, x̄) as follows: if a ∈ V ∪V1∪· · ·∪Vn, then g(a) = h′(a); otherwise, if a ∈ V ′, then
g(a) = h(a). To see that g is a homomorphism, it suffices to consider an atom R(ā) ∈ Dq′′

such that ā contains an element in V ′ and one element not in V ′, and show that R(g(ā)) ∈ Dq′ .
Let A be the set of elements in ā that are not in V ′. As mentioned above, there are no atoms
in Dq′′ mentioning elements in V ′ and V simultaneously, thus A ⊆ V1∪· · ·∪Vn. In particular,
h(a) = h′(a), for each a ∈ A. It follows that R(g(ā)) = R(h(ā)), and thus R(g(ā)) ∈ Dq′ . J

Proposition 10. There is a CQ with infinitely many (non-equivalent) incomparable
GHW(1)-∆-approximations. In fact, this holds for the CQ q in Figure 1.

Proof. Consider the Boolean CQ q from Figure 1, defined as

q = ∃x∃y∃zPa(x, y) ∧ Pa(y, x) ∧ Pa(y, z) ∧ Pa(z, y) ∧ Pb(z, x) ∧ Pb(x, z)

and the CQ q′ from the same figure defined by

q′ = ∃x∃y1∃y2∃zPa(x, y1) ∧ Pa(y1, x) ∧ Pa(y2, z) ∧ Pa(z, y2) ∧ Pb(z, x) ∧ Pb(x, z)

For each n ≥ 1, we define the CQ

qn = ∃x1 · · · ∃xn+1Pa(x1, x2) ∧ · · · ∧ Pa(xn, xn+1) ∧ Pb(x1, x1) ∧ Pb(xn+1, xn+1)

Observe that q′∧qn ∈ GHW(1), for each n ≥ 1. We now show that, for each n ≥ 1, q′∧qn
is an incomparable GHW(1)-∆-approximation of q. As mentioned in Example 4, we have
that q →1 q

′. In particular q →1 q
′ ∧ qn. Clearly, q 6→ q′ ∧ qn. Also, qn 6→ q since variables

x1 and xn+1 of qn cannot be mapped to any variable in q via a homomorphism. Therefore,
q′∧qn 6→ q. By Theorem 14, it follows that q′∧qn is incomparable GHW(1)-∆-approximation
of q.

Now we show that the CQs {q′ ∧ qn}n≥1 form a family of non-equivalent CQs. First note
that qn 6→ q′, for each n ≥ 1. Also, observe that qi → qj iff i = j, for i, j ≥ 1. It follows that
for each i, j ≥ 1 such that i 6= j, it is the case that q′ ∧ qi 6→ q′ ∧ qj and q′ ∧ qj 6→ q′ ∧ qi. In
particular, {q′ ∧ qn}n≥1 is a family of non-equivalent CQs. J

Proposition 11. Fix k ≥ 1. Checking if a given CQ q′ ∈ GHW(k) is an incomparable
GHW(k)-∆-approximation of a given CQ q, is coNP-complete.

Proof. As already mentioned, the coNP upper bound follows directly from Theorem 14.
For the lower bound, we consider the Non-Hom(H) problem, for a fixed directed graph H,
which asks, given a directed graph G, whether G 6→ H. Let us assume that, for each k ≥ 1,
there is a directed graph Hk such that:

XX:34 A More General Theory of Static Approximations for Conjunctive Queries

1. Hk ∈ GHW(k), or more formally, the Boolean CQ qHk
whose canonical database is Hk

belongs to GHW(k).
2. Non-Hom(Hk) is coNP-complete even when the input directed graph G satisfies that

Hk 6→ G.

We later explain how to obtain these graphs Hk’s. Now reduce from the restricted
version of Non-Hom(Hk). Let G be a directed graph such that Hk 6→ G. We first check
in polynomial time whether G→k Hk. If G 6→k Hk, we output a fixed pair q0, q

′
0 such that

q0 ∈ GHW(k) and q′0 is an incomparable GHW(k)-∆-approximation of q0. In the case that
G→k Hk, we output the pair qG, qHk

, where qG and qHk
are Boolean CQs whose canonical

databases are precisely G and Hk, respectively. Since qHk
∈ GHW(k) by item (1) above, the

reduction is well-defined.
Suppose first that G 6→ Hk. If G 6→k Hk, then we are done, since q′0 is an incomparable

GHW(k)-∆-approximation of q0. Otherwise, if G→k Hk, since G 6→ Hk and Hk 6→ G (item
(2) above), Theorem 14 implies that qHk

is an incomparable GHW(k)-∆-approximation of
qG. On the other hand, assume that G→ Hk. In particular, we have that G→k Hk, and
then, in this case, the reduction outputs the pair qG, qHk

. Since G→ Hk and Theorem 14,
we conclude that qHk

is not an incomparable GHW(k)-∆-approximation of qG.
It remains to define the directed graph Hk. If k ≥ 2, it suffices to consider the clique on

2k vertices, that is, the directed graph ~K2k whose vertex set is {1, . . . , 2k} and whose edges
are {(i, j) | i 6= j, for i, j ∈ {1, . . . , 2k}}. We have that ~K2k ∈ GHW(k), and thus item (1)
above is satisfied. Also, we can reduce from the non-2k-colorability problem by replacing
each undirected edge {u, v} of a given undirected graph G, by a one directed edge in an
arbitrary direction, e.g., from u to v. Clearly, this is a reduction from non-2k-colorability to
Non-Hom(~K2k). Also note that the output f(G) of the reduction satisfies that ~K2k 6→ f(G),
as f(G) has no directed loops nor parallel edges. Therefore, item (2) above is satisfied.
For k = 1, it is known from [20] that there is a oriented tree T (i.e., a directed graph
whose underlying undirected graph is acyclic and has no loops nor parallel edges) such that
Non-Hom(T) is coNP-complete. Since T is an oriented tree then it belongs to GHW(1),
and then item (1) is satisfied. Also, by inspecting the reduction in [20], we have that item
(2) also holds. J

	Introduction
	Preliminaries
	Overapproximations
	Existence and uniqueness of overapproximations
	A link with the existential pebble game
	Identification and evaluation of GHW(k)-overapproximations
	More liberal GHW(k)-overapproximations

	Deciding existence of GHW(k)-overapproximations
	The acyclic case
	Beyond acyclicity

	Beyond under and overapproximations: -approximations
	Incomparable GHW(k)–approximations

	Final Remarks
	Appendix
	Proofs for Section ``Existence and uniqueness of overapproximations''
	Proofs for Section ``A Link to Existential Pebble Games''
	Proofs for Section ``Existence of Overapproximations''
	The acyclic case
	The case of binary schemas
	Size of overapproximations
	Beyond acyclicity

	Proofs for Section ``Beyond under and overapproximations: -approximations''
	Incomparable GHW(k)–approximations

