
Semantic Optimization in
Tractable Classes of Conjunctive Queries∗

Pablo Barceló
Center for Semantic Web Research &

DCC, University of Chile
pbarcelo@dcc.uchile.cl

Andreas Pieris
School of Informatics

University of Edinburgh
apieris@inf.ed.ac.uk

Miguel Romero
Center for Semantic Web Research &

DCC, University of Chile
mromero@dcc.uchile.cl

ABSTRACT
This paper reports on recent advances in semantic query
optimization. We focus on the core class of conjunctive
queries (CQs). Since CQ evaluation is NP-complete,
a long line of research has concentrated on identify-
ing fragments of CQs that can be efficiently evaluated.
One of the most general such restrictions corresponds
to bounded generalized hypertreewidth, which extends
the notion of acyclicity. Here we discuss the problem of
reformulating a CQ into one of bounded generalized hy-
pertreewidth. Furthermore, we study whether knowing
that such a reformulation exists alleviates the cost of CQ
evaluation. In case a CQ cannot be reformulated as one
of bounded generalized hypertreewidth, we discuss how
it can be approximated in an optimal way. All the above
issues are examined both for the constraint-free case,
and the case where constraints, in fact, tuple-generating
and equality-generating dependencies, are present.

1. INTRODUCTION
Conjunctive queries (CQs) are one of the most fun-

damental classes of database queries (see, e.g., [2, 17,
33, 41, 49]). In particular, CQs correspond to select-
project-join queries in relational algebra and to select-
from-where queries in SQL. However, CQ evaluation is
not an easy task, especially over large volumes of data.
This has led to a flurry of activity for developing heuris-
tics that alleviate CQ evaluation in practice.

One important method of this kind is CQ optimiza-
tion. Recall that query optimization is a basic database
task that amounts to transforming a query into one that is
more efficient to evaluate. The database theory commu-
nity has developed several principled methods for op-
timization of CQs, many of which are based on static-
analysis tasks such as containment [2]. In a nutshell,
such methods compute a minimal equivalent version of

*Part of this work was done while Romero was visiting the Simons In-
stitute for the Theory of Computing. Barceló and Romero are funded
by the Millennium Nucleus Center for Semantic Web Research un-
der Grant NC120004. Pieris is supported by the EPSRC Programme
Grant EP/M025268/.

a CQ, where minimality refers to the number of atoms.
As argued by Abiteboul, Hull, and Vianu [2], this pro-
vides a theoretical notion of “true optimality” for the
reformulation of a CQ, as opposed to practical consid-
erations based on heuristics. For each CQ q, the min-
imal equivalent CQ is its core q′ [39]. Although the
static analysis tasks that support CQ minimization are
NP-complete [17], this is not a major problem for most
real-life applications, as the input (the CQ) is small.

It is known, on the other hand, that semantic infor-
mation about the data, in the form of constraints, can be
used to enrich query optimization by guiding the query
transformation process. This is often referred to as se-
mantic query optimization [15]. In the aforementioned
analysis of CQ minimization, however, constraints play
no role, as CQ equivalence is defined over all databases.
Adding constraints yields a refined notion of CQ equiv-
alence, which holds over those databases that satisfy
a given set of constraints only. Minimization of CQs
under this refined notion thus provides a principled ap-
proach to semantic query optimization [22].

An important shortcoming of the results on CQ min-
imization (under constraints) mentioned above is that
there is no theoretical guarantee that the minimized ver-
sion of a CQ is in fact easier to evaluate (recall that,
in general, CQ evaluation is NP-complete [17]). We
know, on the other hand, quite a bit about classes of
CQs which can be evaluated in polynomial time: These
are the ones that admit a suitable tree decomposition of
small width [18, 20, 34, 37]. Our proposal is to study the
fundamental problem of semantic optimization in such
tractable classes of CQs; i.e., whether a set of constraints
can be used to reformulate a CQ as one of small width,
and if so, what is the cost of computing and evaluating
such a reformulation. Following Abiteboul et al., this
would provide us with a theoretical guarantee of “true
efficiency” for those reformulations.

Due to its relative importance in the database lit-
erature and mature theoretical status, we concentrate
on the classes of CQs of bounded generalized hyper-
treewidth (see [32] for a recent survey). In particular,

1

CQs of generalized hypertreewidth one correspond to
the oldest and most studied tractability condition for
CQs: acyclicity [49]. In terms of constraints, we con-
sider tuple-generating dependecies (tgds) and equality-
generating dependencies (egds), which subsume all
real-life database constraints; in particular, tgds extend
inclusion dependencies, while egds extend functional
dependencies. Tgds and egds are widely applied in
data integration [42], data exchange [24], and ontology-
based data access [12], as a tool for expressing rich
semantic constraints among different relations in the
database. Due to this fact, they can be used to enhance
the semantic optimization process studied here.

In this survey, we present several recent results that
serve as a theoretical framework for the problem of how
to obtain maximal benefit from semantic optimization in
classes of CQs of bounded generalized hypertreewidth.
We focus on the following questions:

1. For which classes of constraints is the reformula-
tion problem decidable? Also, in these decidable
classes, what is the complexity of the problem?

2. How semantic optimization in tractable classes of
CQs can be used to tackle the ultimate problem of
evaluating CQs more efficiently?

Potential impact. While most of the CQs encountered in
practical situations are of low hypertreewidth [32], the
work presented here is relevant due to the following:

1. Evaluating a CQ q of generalized hypertreewidth
k, for k ≥ 1, over a database D takes time
O(|D|k+1 · |q|) [34]. Even if k is small, say k =
3, finding an equivalent CQ q′ of smaller hyper-
treewidth might improve the complexity of evalu-
ation (especially when the database D is large).

2. Assume that q is of hypertreewidth k > 1. In the
case that an equivalent CQ of hypertreewidth k′ <
k cannot be found, the tools presented here provide
an approximation of q of hypertreewidth k′. Such
an approximation is a CQ q′ of hypertreewidth k′

that is maximally contained in q. That is, q′ returns
sound (but not necessarily complete) answers to
q over those databases that satisfy the constraints,
and there is no CQ q′′ of hypertreewidth k′ that
gets “closer” to q than q′. Evaluating such an ap-
proximation q′ might be convenient for obtaining
quick and sound answers to q when exact evalua-
tion is infeasible or is taking too long.

CQs of bounded hypertreewidth require specialized
algorithms for their implementation. Although these
specialized algorithms are not implemented in commer-
cial database systems, there is currently an important
body of research trying to integrate them into some

query optimizers; see, e.g., [1, 3, 5, 29, 30]. This sug-
gests that semantic optimization techniques based on
hypertreewidth have the potential to provide new query
optimization techniques of practical impact.
Organization. Preliminaries are in Section 2. In Sec-
tion 3, we study when a CQ can be reformulated as one
of bounded generalized hypertreewidth in the absence of
constraints, and how such a reformulation helps query
evaluation. The extension of such an investigation to
the case where constraints are available is considered in
the next two sections: Section 4 deals with reformula-
tion and Section 5 with evaluation. Approximations are
studied in Section 6. Final remarks are in Section 7.

2. PRELIMINARIES
Databases. A schema is a finite set of relation symbols,
each one of which has an associated arity n > 0. A
database D over a schema σ is a finite set of atoms of
the formR(ā), whereR is a relation symbol in σ of arity
n > 0 and ā is an n-ary tuple of constants. We write D
also for the set of elements mentioned in D.
Conjunctive queries. A conjunctive query (CQ) q over a
schema σ is a rule of the form:

Ans(x̄) ← R1(x̄1), . . . , Rm(x̄m), (1)

such that (a) each Ri(x̄i) is an atom over σ, for 1 ≤ i ≤
m, (b) x̄ is a sequence of variables taken from the x̄i’s,
and (c) Ans is a distinguished relation symbol that repre-
sents the answer of q. We write q(x̄) to denote that x̄ is
the sequence of variables that appear in such an answer.

As usual, the evaluation of a CQ q of the form (1) over
a database D is obtained by computing the join of the
atoms in the set {R1(x̄1), . . . , Rm(x̄m)}, and then pro-
jecting only the variables x̄ in the answer of q. For the
purposes of this paper, it is convenient to formally de-
fine this in terms of the notion of homomorphism from
q to D. Recall that these are the mappings h from the
set of variables in q to the elements of D such that
Ri(h(x̄i)) ∈ D for each 1 ≤ i ≤ m. The evaluation
of q(x̄) over D, denoted q(D), consists then of those tu-
ples h(x̄) such that h is a homomorphism from q to D.

Example 1. We describe a social network using a
schema σ with two binary relation symbols: Friends and
Likes. The first one establishes when two persons are
friends, while the second one establishes when a person
likes a post. Suppose that we want to retrieve all the
pairs of mutual friends that have some post they like in
common. We can express this as a CQ q(x, y) defined as
Ans(x, y)← Friends(x, y), Likes(x, z), Likes(y, z).

Tractable classes of CQs. The evaluation problem for
CQs is defined as follows: Given a CQ q, a database D,
and a tuple t̄ of constants in D, check if t̄ ∈ q(D). This

2

problem is NP-complete [17], but becomes tractable for
several syntactically defined subclasses of CQs. The
oldest such tractability condition corresponds to acyclic-
ity [10, 31]. Intuitively, a CQ q is acyclic if its atoms can
be arranged in the form of a tree while preserving the
connectivity of its variables. More formally, q is acyclic
if it admits a join tree, that is, a tree T whose nodes are
the atoms of q, and for each variable x that appears in
q it is the case that the set of nodes in which x is men-
tioned defines a connected subtree of T . We denote by
AC the class of acyclic CQs. Yannakakis’s seminal work
established that AC defines a tractable class of CQs; in
fact, the queries in this class can be evaluated in linear
time O(|D| · |q|), where |D| and |q| are the size of the
database D and the CQ q, respectively [49].

Example 2. The CQ in Example 1 is not acyclic. In
any way we arrange its atoms as the nodes of a tree, we
will lose the connectivity for at least one variable. On
the other hand, the CQ

Ans(x, y)← Friends(x, y), Likes(x, z), Likes(y, z′),

which is obtained from q by “breaking” the join on vari-
able z, is in AC. This is witnessed by the join tree whose
root is the atom Friends(x, y), and the atoms Likes(x, z)
and Likes(y, z′) are its children. Such CQ retrieves pairs
of mutual friends each one of which likes some post.

It has been observed, however, that a significant
proportion of the CQs that appear in practice are not
acyclic, but are in some sense mildly acyclic (see, e.g.,
[32]). This motivated the search for notions that rep-
resent the degree of acyclicity of a CQ, and for effi-
cient evaluation algorithms for CQs with low degree of
acyclicity. The degree of acyclicity of a CQ in this con-
text is traditionally known as its width. Such width can
be defined by using the notion of generalized hypertree
decomposition, which extends the notion of join tree by
allowing each node of the tree to be associated with sev-
eral atoms of the query. The formal definition follows.

A generalized hypertree decomposition of a CQ q :=
Ans(x̄) ← R1(x̄1), . . . , Rm(x̄m) is a tuple (T, λ, χ),
where T is a tree, λ is a mapping that assigns a sub-
set of the variables in q to each node t of T , and
χ is a mapping that assigns a subset of the atoms
{R1(x̄1), . . . , Rm(x̄m)} to each node t of T , such that:

1. For each 1 ≤ i ≤ m, the variables in x̄i are con-
tained in λ(t), for some t ∈ T .

2. For each variable x in q, the set of nodes t of T for
which x occurs in λ(t) is connected.

3. For each t ∈ T , the variables in λ(t) are “covered”
by the atoms in χ(t); i.e., λ(t) ⊆

⋃
Ri(x̄i)∈χ(t) x̄i.

For a generalized hypertree decomposition (T, λ, χ),
its width is defined as the maximal size of a set of the
form χ(t) over all nodes t of T . The generalized hy-
pertreewidth of a CQ q is the minimum width over all
generalized hypertree decompositions of q. We denote
by GHW(k), for k ≥ 1, the set of CQs of generalized
hypertreewidth bounded by k. The notion of bounded
generalized hypertreewidth subsumes acyclicity; in par-
ticular, AC = GHW(1) [34].

Example 3. Recall that the CQ in Example 1 is not
acyclic, i.e., is not in GHW(1) = AC. It is, how-
ever, in GHW(2). The generalized hypertree decom-
position of width two that witnesses this fact has only
one node t such that λ(t) = {x, y, z} and χ(t) =
{Likes(x, z), Likes(y, z)}.

It can be shown, by using tools based on the existen-
tial pebble game [19], that CQs of bounded generalized
hypertreewidth can be evaluated in polynomial time.

THEOREM 1. Fix k ≥ 1. The evaluation problem for
the CQs in GHW(k) can be solved in polynomial time.

At this point, it should be stressed that in the above
theorem we assume that the input query already falls
in GHW(k), for some fixed k ≥ 1. However, one can
claim that this is not a realistic assumption. In gen-
eral, the input query is an arbitrary CQ for which we
do not know a priori whether it falls in GHW(k). In
this case, we should first check whether it belongs to
GHW(k), and, if this is the case, then proceed with the
actual evaluation. This brings us to the recognizabil-
ity problem for GHW(k), that is, checking if a given
CQ q is in GHW(k). It is known that for k = 1 (i.e.,
for acyclic queries), the above problem can be solved in
linear time [48]. However, for k > 1, it becomes NP-
complete [27]. This implies that, given a CQ q, we can
check in time 2|q|

c

, for some integer c ≥ 1, whether
q belongs to GHW(k), and, if this is the case, then a
generalized hypertree decomposition of q of width k is
constructed. Now, having such a hypertree decomposi-
tion in place, we can evaluate q over the input database
D in time O(|D|k+1 · |q|) [34].

Summing up, there is an integer c ≥ 1 such that, given
a CQ q, a database D, and a tuple of constants t̄, check-
ing if q belongs to GHW(k), and, if this is the case, then
check if t̄ ∈ q(D), can be carried out in time:

2|q|
c

+ O(|D|k+1 · |q|).

The fact that we spend exponential time in the size of
the query for checking whether q belongs to GHW(k)
is not a big practical drawback since this check cor-
responds to a static analysis task, i.e., it only depends

3

on the size of the “small” CQ. For such tasks, a single-
exponential time procedure is considered to be accept-
able, and it is actually the norm in many cases including
database and verification problems; see, e.g., [2, 45, 47].

A restriction of the notion of generalized hyper-
treewidth, which ensures tractability of recognizition,
known as hypertreewidth, has been also studied in the
literature [32, 34]. However, due to the nature of the
problems that we consider here, it is convenient to use
the less restrictive notion of generalized hypertreewidth,
even at the extra cost of recognition.

CQ containment and equivalence. Two notions that are
crucial for query optimization purposes are CQ contain-
ment and equivalence. Let q and q′ be CQs. Then, q
is contained in q′, denoted q ⊆ q′, if q(D) ⊆ q′(D),
for every database D. Further, q is equivalent to q′, de-
noted q ≡ q′, if q ⊆ q′ and q′ ⊆ q (or, equivalently,
if they return the same answers over every database,
i.e., q(D) = q′(D) for each database D). Interestingly,
containment is polynomially equivalent to CQ evalua-
tion. Given a CQ q, let Dq be the so-called canonical
database of q obtained from q by replacing each vari-
able x in q with a new constant c(x). Then:

PROPOSITION 2. [17] Let q(x̄), q′(x̄′) be CQs. It
holds that q ⊆ q′ iff c(x̄) ∈ q′(Dq).

The above proposition implies that CQ containment
and equivalence are NP-complete problems [17].

The core of a CQ. In CQ minimization one is interested
in finding a minimal CQ (in terms of number of joins)
that is equivalent to a given CQ q. Such a minimal
equivalent CQ always corresponds to a core of q [38].
This is a CQ q′ that is obtained by deleting atoms from
q and the following hold: (a) q ≡ q′, and (b) q is not
equivalent to any CQ q′′ that is obtained by removing
one or more atoms from q′. In other words, a core of
q is a minimally equivalent CQ that is obtained by re-
moving atoms from q. Clearly, a core of a CQ q always
exists. Moreover, all cores of q are isomorphic [38], and,
therefore, we can talk about the core of q.

3. REFORMULATION IN THE AB-
SENCE OF CONSTRAINTS

It is instructive to start our investigation by focussing
on semantic optimization in classes of bounded gener-
alized hypertreewidth in the absence of constraints. We
concentrate on the following problems:

• Reformulation: Fix k ≥ 1. Given a CQ q, is
it the case that it can be reformulated as a CQ that
falls in GHW(k) that yields the same answers over
all databases? More formally, is there a CQ q′ in
GHW(k) such that q ≡ q′?

• Evaluation: In case the latter holds, can we effi-
ciently perform query evaluation for q? Notice that
this is not a priori obvious: Although we know that
the reformulation q′ of q can be efficiently evalu-
ated (since it is in GHW(k)), the cost of computing
such a reformulation might be prohibitively high.

3.1 Reformulation of CQs in GHW(k)

We denote by Equiv(GHW(k)) the class of CQs q that
are equivalent to some CQ q′ ∈ GHW(k). In particular,
the CQs in Equiv(GHW(1)) are known as semantically
acyclic [6, 9]. It is easy to show that semantic acyclic-
ity is incomparable to the notion of bounded generalized
hypertreewidth, i.e., for each k ≥ 1, there is a semanti-
cally acyclic CQ that is not in GHW(k).

Here we study the following problem for k ≥ 1:

PROBLEM : Reformulation(GHW(k))
INPUT : A CQ q.
QUESTION : Is q in Equiv(GHW(k))?

The main tool that we exploit in the investigation of
the above problem is a simple characterization of the
classes Equiv(GHW(k)), for k ≥ 1, in terms of the core:

PROPOSITION 3 (IMPLICIT IN [9]). Fix k ≥ 1.
For each CQ q the following are equivalent:

• q ∈ Equiv(GHW(k)).

• The core of q is in GHW(k).

The upward implication is trivial: if the core q′ of q
is in GHW(k), then q ∈ Equiv(GHW(k)) since q ≡ q′

by definition. The downward implication states that if a
CQ q is equivalent to some CQ q′ ∈ GHW(k), then q′

can always be assumed to be the core of q. The proof
of this fact for the case k = 1 can be found in [9], but
the same ideas can be used to show that this holds for
any k ≥ 1. It is worth noticing that similar techniques
have also been used to prove analogous results for the
notion of bounded treewidth [20]. This is yet another
tractability-ensuring condition for CQ evaluation, which
is particularly well-suited for the case when the arity of
the schema is fixed [36].

Since the core of a CQ q is obtained by removing
atoms from q, and such a core is equivalent to q, Propo-
sition 3 implies the following small query property:

PROPOSITION 4. Fix k ≥ 1 and let q be a CQ. If q ∈
Equiv(GHW(k)), then there exists a CQ q′ ∈ GHW(k),
where |q′| ≤ |q|, such that q ≡ q′.

The above small query property allows us not only
to establish that Reformulation(GHW(k)) is decidable,
but also to pinpoint its exact complexity. Given a CQ
q, here is a simple procedure that decides whether q ∈

4

Equiv(GHW(k)): Guess a CQ q′ of size at most |q|, and
verify that (a) q′ ∈ GHW(k), and (b) q ≡ q′. Since, as
mentioned before, both (a) and (b) can be carried out in
NP, we conclude that the whole procedure can be per-
formed in NP. A matching lower bound can be proved
using more elaborate techniques [20]. From the above
discussion we get that:

THEOREM 5. For each fixed k ≥ 1, the problem
Reformulation(GHW(k)) is NP-complete.

3.2 Evaluation of CQs in Equiv(GHW(k))

Does knowing that a CQ q can be reformulated as a
CQ q′ in GHW(k) alleviate the cost of query evaluation?
As for CQs in GHW(k), it can be shown, by exploiting
techniques based on the existential pebble game [19],
that CQs in Equiv(GHW(k)), for some fixed k ≥ 1, can
be evaluated in polynomial time.

THEOREM 6. Fix k ≥ 1. The evaluation of CQs in
Equiv(GHW(k)) can be solved in polynomial time.

In the previous theorem, we assume that the input
query falls in Equiv(GHW(k)), for a fixed k ≥ 1. How-
ever, as already discussed in Section 2 for GHW(k), this
is not a realistic assumption. In a practical context, we
should first check whether the input query belongs to
Equiv(GHW(k)), and, if this is the case, then proceed
with the actual evaluation. From Theorem 5 (and the
underlying algorithm) we know that, given a CQ q, we
can check in time 2|q|

c

, for some integer c ≥ 1, whether
q belongs to Equiv(GHW(k)). Now, if this is the case,
then a CQ q′ such that q ≡ q′ and |q′| ≤ |q| that be-
longs to GHW(k), and a generalized hypertree decom-
position of q′ of width k are constructed; actually, q′

is the core of q. Having q′ and its decomposition in
place, we can evaluate it over the input database D in
time O(|D|k+1 · |q|) [34]. Summing up:

COROLLARY 7. Fix k ≥ 1. There is an integer
c ≥ 1 such that, given a CQ q, a database D, and
a tuple of constants t̄, checking whether q belongs to
Equiv(GHW(k)), and, if this is the case, then check
whether t̄ ∈ q(D), can be solved in time:

2|q|
c

+ O(|D|k+1 · |q|).

This bound simply states that, after a preprocessing
step that takes single-exponential time in the size of the
CQ q to check whether q belongs to Equiv(GHW(k)), an
evaluation step that takes polynomial time is performed.
While the running time of the procedure is not polyno-
mial in the combined size of the database D and the CQ
q, it can still be considered as efficient for the reasons
already explained in Section 2.

4. REFORMULATION IN THE PRES-
ENCE OF CONSTRAINTS

As said above, in the constraint-free case, a CQ q is
equivalent to one in GHW(k) iff its core is in GHW(k).
Hence, the only reason why q is not in GHW(k) in the
first place is because it has not been minimized (since
CQ minimization reduces to computing the core). Thus,
semantic optimization in GHW(k) is not really differ-
ent from usual CQ minimization. The presence of con-
straints, on the other hand, yields a more interesting
notion of semantic optimization. This is because con-
straints can be applied on CQs to produce GHW(k) re-
formulations of them. Let us show this via an example.

Example 4. Consider a database that stores informa-
tion about customers, records, and musical styles. The
relation Interest contains pairs (c, s) such that the cus-
tomer c is interested in the style s. The relation Class
contains pairs (r, s) such that the record r is of style s.
Finally, the relation Owns contains a pair (c, r) when
the customer c owns the record r. Consider now a CQ
q(x, y) defined as follows:

Ans(x, y) ← Owns(x, y),Class(y, z), Interest(x, z).

The above query asks for pairs (c, r) such that the cus-
tomer c owns the record r and has expressed interest in
at least one of the styles with which r is associated. It
can easily be proved that q is the core of itself but it is
not acyclic. Therefore, Proposition 3 implies that q is
not equivalent to an acyclic CQ (without constraints).

Assume now that the record store keeps a full list of
interests for its customers, based on the styles of the
records each customer has bought in the past. In other
words, the database satisfies the constraint τ defined as:

∀x∀y∀z
(
Owns(x, y),Class(y, z)→ Interest(x, z)

)
.

Having this information in place, we can reformulate
q(x, y) as the following acyclic CQ q′(x, y):

Ans(x, y) ← Owns(x, y),Class(y, z).

Notice that q and q′ are in fact equivalent over every
database that satisfies the constraint τ .

Before we proceed further, let us introduce the classes
of constraints that we consider in this paper, and some
basics on CQ equivalence under constraints.

Constraints. We consider the two most important classes
of database constraints; namely:

1. Tuple-generating dependencies (tgds), i.e., expres-
sions of the form ∀x̄∀ȳ

(
φ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)

)
,

where φ and ψ are conjuntions of atoms. Notice
that the constraint in Example 4 is a tgd. Tgds

5

subsume the central class of inclusion dependen-
cies (IDs) [23]. For example, assuming that R and
P are binary relations, the ID R[1] ⊆ P [2], which
simply states that the set of values occurring in the
first attribute ofR is a subset of the set of values in
the second attribute of P , is expressed via the tgd
∀x∀y(R(x, y)→ ∃z P (z, x)).

2. Equality-generating dependencies (egds), i.e., ex-
pressions of the form ∀x̄

(
φ(x̄) → y = z

)
, where

φ is a conjunction of atoms and y, z are variables
in x̄. Egds subsume the important classes of keys
and functional dependencies (FDs). For exam-
ple, assuming that R is a ternary relation, the FD
R : {1} → {3}, i.e., the first attribute of R func-
tionally determines the third attribute of R, is ex-
pressed via the egd ∀x∀y∀z∀y′∀z′(R(x, y, z) ∧
R(x, y′, z′)→ z = z′). Notice that FDs that have
more than one attribute in the right-hand side, are
expressed via a set of egds.

A database D satisfies a tgd of the above form if the
following holds: for each tuple (ā, b̄) of elements such
that all atoms in φ(ā, b̄) are in D, there is a tuple c̄ of
elements such that all atoms in ψ(ā, c̄) are in D. Anal-
ogously, D satisfies an egd ∀x̄(φ(x̄) → y = z) if, for
each tuple ā of elements such that all atoms in φ(ā) are
in D, the elements in ā that correspond to variables y
and z are the same. Finally, D satisfies a set Σ of con-
straints if it satisfies every tgd and egd in Σ.

CQ equivalence under constraints. In semantic opti-
mization, one uses the information provided by the con-
straints to replace a given CQ q by an equivalent one
that is easier to evaluate. However, in this context the
right notion of equivalence corresponds to the one that
is measured over those databases that satisfy the con-
straints only (as we know that our datasets satisfy such
constraints). We formalize this as follows. Let q, q′ be
CQs and Σ a set of constraints. Then q is equivalent to q′

under Σ, denoted q ≡Σ q′, if and only if q(D) = q′(D)
for each database D that satisfies Σ. The notion of con-
tainment is defined analogously, and we write q ⊆Σ q′.

If Σ consists only of egds, then deciding q ≡Σ q′ re-
mains NP-complete. This is obtained by applying the
well-known chase procedure [44] on q and q′, respec-
tively, and then checking for equivalence of the resulting
queries. When applied on a CQ q, the chase procedure
fires each egd on the canonical database Dq of q, equat-
ing variables if needed in order to restore consistency.
The procedure finishes when the resulting database sat-
isfies all egds in Σ.

On the other hand, the situation is more difficult if Σ
consists of tgds. Although a characterization based on
the chase procedure exists, the result of the chase un-
der a set of tgds is, in general, infinite. Hence, this tool

no longer provides a decision procedure. This is not
surprising since checking CQ containment/equivalence
under arbitrary sets of tgds is undecidable [11]. This
negative result has motivated a long search for practical
restrictions of the class of tgds with decidable CQ con-
tainment (and, thus, equivalence) problems. Such re-
strictions are often classified into four main paradigms:

1. Full tgds: These are tgds without existentially
quantified variables, i.e., of the form ∀x̄(φ(x̄) →
ψ(x̄)). In the database literature, such sets are par-
ticularly important as they correspond to queries
expressible in the widely studied Datalog lan-
guage [2]. CQ containment is decidable for sets
of full tgds since the chase always terminates.

2. Guardedness: A tgd is guarded if its body φ(x̄, ȳ)
contains an atom, called the guard, that contains
all the variables in (x̄∪ ȳ). Although the chase un-
der guarded tgds does not necessarily terminate,
CQ containment is decidable in this case since the
result of such a chase has finite treewidth [12]. A
crucial subclass of guarded tgds is the class of lin-
ear tgds [13], i.e., tgds with only one atom in the
body, which subsume inclusion dependencies.

3. Non-recursiveness: A set Σ of tgds is non-
recursive if its predicate graph contains no di-
rected cycles. (Non-recursive sets of tgds are also
known as acyclic [24, 43], but we reserve this term
for CQs). This class ensures the termination of the
chase, and thus decidability of CQ containment.

4. Stickiness: The goal of stickiness is to capture
joins among variables that are not expressible via
guarded tgds, but without forcing the chase to ter-
minate. The definition is based on an inductive
marking procedure that marks the variables that
could violate a particular semantic property of the
chase [14]. Decidability of CQ containment is ob-
tained by applying query rewriting techniques.

The complexity of CQ containment and equivalence
varies from class to class. It is EXPTIME-complete for
full tgds [21] and sticky sets of tgds [21], 2EXPTIME-
complete for guarded tgds [12], PSPACE-complete for
linear tgds [13, 40], and NEXPTIME-complete for non-
recursive sets of tgds [43]. Fixing the schema, or even
its arity, yields better complexities in most of the cases.

4.1 Reformulation with tgds
One of the main tasks of our work is to study the prob-

lem of checking if a CQ q can be reformulated as a CQ
in GHW(k), for a fixed k ≥ 1, over those databases
that satisfy a set Σ of tgds. We formally define such
a reformulation problem below. Given a set Σ of con-
straints, we write Equiv(GHW(k))Σ for the set of CQs

6

q for which there exists a CQ q′ in GHW(k) such that
q ≡Σ q′. We assume in the following that C is a class of
sets of tgds (e.g., guarded, non-recursive, sticky, etc.):

PROBLEM : Reformulation(GHW(k),C)
INPUT : A CQ q and a finite set Σ ∈ C.
QUESTION : Is q in Equiv(GHW(k))Σ?

One might be tempted to think, in view of the Exam-
ple 4, that when a reformulation q′ ∈ GHW(k) of q un-
der a set Σ of tgds exists, then such a q′ is not very “big”,
or at least its size is bounded by |q| + |Σ|. This would
allow us to state a small query property for the reformu-
lation problem, and thus establish its decidability. As
explained next, this is not the case since the decidabil-
ity of Reformulation(GHW(k),C) depends not only on
the decidability of CQ containment under sets of tgds in
C, but also on other considerations.
Undecidable cases. Under mild syntactic assumptions
on its input, Reformulation(GHW(k),C) is as hard as
CQ containment under C, i.e, we can obtain decidability
of Reformulation(GHW(k),C) only for those C’s for
which CQ containment is decidable [6]. At this point,
one might think that some version of the converse also
holds, i.e., Reformulation(GHW(k),C) is reducible to
CQ containment under sets of tgds in C. This would
imply the decidability of Reformulation(GHW(k),C)
for any class C of sets of tgds for which CQ contain-
ment is decidable (in particular, for the full, guarded,
non-recursive, and sticky sets of tgds). The next result
shows that the picture is more complicated than this, as
the reformulation problem is undecidable even if we fo-
cus on the class AC = GHW(1) of acyclic CQs and the
class F of sets of full tgds:

THEOREM 8. [6] Reformulation(GHW(1),F) is
undecidable.

The question that comes up is whether the reformu-
lation problem is decidable for the remaining classes of
tgds, i.e., guarded, non-recursive and sticky, that have a
decidable CQ containment problem, and if yes, what is
the exact complexity of the problem.
Decidable cases. The next proposition is the main tool
that we use to show the decidability of the reformulation
problem under certain classes of tgds:

PROPOSITION 9. Fix k ≥ 1. Let q and q′ be CQs
over schema σ such that q′ ∈ GHW(k) and q′ ⊆ q.
There is a CQ q′′ ∈ GHW(k) such that q′ ⊆ q′′ ⊆ q and
|q′′| ≤ |q| · (2k+ 1) ·aσ , where aσ is the maximum arity
over all predicates of σ.

PROOF (SKETCH). Since, by hypothesis, q′(x̄′) ⊆
q(x̄), it is the case from Proposition 2 that there exists a

homomorphism h from q toDq′ such that h(x̄) = c(x̄′).
Also, since q′ ∈ GHW(k), it admits a generalized hy-
pertree decomposition (T, λ, χ) of width k. Assume
that α1, . . . αn are the atoms of q. By definition, the
atoms h(α1), . . . , h(αn) are covered by some nodes
v1, . . . , vm, where m ≤ n, of T . In other words, for
each i ∈ {1, . . . , n}, there exists j ∈ {1, . . . ,m} such
that the elements occurring in h(αi) form a subset of
λ(vj). Consider now the subtree Tq of T consisting of
v1, . . . , vm and their ancestors. From Tq we extract the
tree F = (V,E) defined as follows:

• V consists of all the root and leaf nodes of Tq , and
all the inner nodes of Tq with at least two children.

• For v, u ∈ V , (v, u) ∈ E iff u is a descendant of
v in Tq , and the only nodes of V that occur on the
unique simple path from v to u in Tq are v and u.

Our intention is to construct the desired CQ q′′ by
transforming the atoms occurring in F into a CQ. Let
J =

⋃
v∈V χ(v). Notice that F is not necessarily a gen-

eralized hypetree decomposition ofJ . Indeed, it may be
the case that there exists an atom R(t̄) in J , but there is
no node v in F such that t̄ ⊆ λ(v). Interestingly, we can
transform F into a generalized hypertree decomposition
(F, λ′, χ′) of some instance J ′, by renaming some of
the terms in J , and then exploit J ′ for constructing q′′.
For example, a node v in F labeled by λ(v) = {t1, t2}
and χ(v) = {R(t1, t

′), P (t2, t
′, t′′)} will be trans-

formed into a node labeled by λ′(v) = {t1, t2,#1,#2}
and χ′(v) = {R(t1,#1), P (t2,#1,#2)}, where #1

and #2 are fresh constants. The set J ′ is then defined
as {h(α1), . . . , h(αn)} ∪

⋃
v∈V χ

′(v).
It is not difficult to verify that (F, λ′, χ′) is a gen-

eralized hypertree decomposition of J ′ of width k.
Moreover, by construction, F has at most 2 · |q| nodes,
and each such node is labeled (via χ′) with at most k
atoms. Thus, |J ′| ≤ 2·|q|·k+|q| = |q|·(2k+1). There-
fore, by transforming J ′ into a CQ, we obtain a query
in GHW(k) of size at most |J ′| ·aσ ≤ |q| · (2k+1) ·aσ;
let q′′(x̄′) be this query. Observe that c(x̄′) ∈ q(Dq′′)
since the homomorphism h maps q to Dq′′ . This fact
allows us to conclude that q′′ ⊆ q by Proposition 2.
Furthermore, there exists a homomorphism, obtained
by reversing the renaming substitutions applied during
the construction of (F, λ′, χ′), that maps q′′ toDq′ . This
allows us to show that c(x̄′) ∈ q′′(Dq′), and, therefore,
that q′ ⊆ q′′ from Proposition 2. Consequently, q′′ is
the desired CQ, and Proposition 9 follows. 2

We write G, L,NR and S for the classes of guarded,
linear, non-recursive, and sticky sets of tgds, respec-
tively. By exploiting Proposition 9, we can establish a
small query property, analogous to Proposition 4 for the
constraint-free case, for all the above classes. We de-

7

fine, for each C ∈ {G,L,NR,S}, a function fC from
the set of pairs (Σ, q), where Σ ∈ C and q is a CQ, to the
natural numbers, which will be used to bound the size of
the “small” query. Given a set Σ of tgds and a CQ q, let
(i) pΣ,q be the number of predicates in Σ and q, (ii) aΣ,q

the maximum arity over all those predicates, and (iii) bΣ
the maximum number of atoms in the body of a tgd in
Σ. Then:

fC(Σ, q) =

|q|, C = G,
|q|, C = L,
|q| · (bΣ)pΣ,q , C = NR,
pΣ,q · (aΣ,q · |q|+ 1)aΣ,q , C = S.

We can now state the following small query property:

PROPOSITION 10. Fix k ≥ 1. Let Σ be a finite set
of tgds in C ∈ {G,L,NR,S} and q a CQ . If q ∈
Equiv(GHW(k))Σ, then there is a CQ q′ ∈ GHW(k),
where |q′| ≤ fC(Σ, q)·(2k+1)·aΣ,q , such that q ≡Σ q′.

PROOF (SKETCH). We first focus on the class G; the
same proof applies for linear tgds since L ⊆ G. By
hypothesis, q ∈ Equiv(GHW(k))Σ, which means that
there exists a CQ q′(x̄′) in GHW(k) such that q ≡Σ q′.
Let qΣ and q′Σ, respectively, be the CQs that are obtained
by applying the chase procedure over the atoms of q and
q′, respectively, using the tgds of Σ. Notice that such
queries might contain an infinite number of atoms. The
notion of evaluation, as well as generalized hypertree
decomposition and generalized hypetreewidth, naturally
extend to such infinite queries. It is well-known that
q ⊆Σ q′ iff qΣ ⊆ q′; see, e.g., [12].

Guarded tgds enjoy a property called generalized hy-
petreewidth preserving chase. This means that if we
chase a CQ in GHW(k) using guarded tgds, the resulting
query also falls in GHW(k). Therefore, q′Σ ∈ GHW(k).
It can easily be checked that Proposition 9 holds even
if the left-hand side query q′ is infinite. Since q′Σ ⊆ q,
there exists a CQ q′′ ∈ GHW(k) such that q′Σ ⊆ q′′ ⊆ q
and |q′′| ≤ |q| · (2k + 1) · aΣ,q . Since q′′ ⊆ q, we
have that q′′ ⊆Σ q. Moreover, q ⊆Σ q′′. This follows
from the fact that q ⊆Σ q′ (by hypothesis) and q′ ⊆Σ q′′

(since q′Σ ⊆ q′′). We conclude that q ≡Σ q′′.
We now focus on non-recursive sets of tgds. It is not

difficult to verify that this class does not enjoy the gen-
eralized hypetreewidth preserving chase property, and,
thus, we cannot apply the same argument as for guarded
tgds. However,NR enjoys some other crucial property,
which is very useful for our purposes. Given a CQ q, and
a set Σ ∈ NR, we can construct a union of CQs (UCQ)
Q such that: for every q′(x̄′), it holds that q′ ⊆Σ q iff
c(x̄′) ∈ Q(Dq′). Moreover, the height of such a rewrit-
ing Q, that is, the maximal size of its disjuncts, is at
most fNR(Σ, q); for more details see [35].1 We can
now explain how Proposition 10 is obtained for NR.
1Let us clarify that the work [35] does not explicitly consider

Since q ∈ Equiv(GHW(k))Σ, there is a CQ q′(x̄′) in
GHW(k) such that q ≡Σ q′. AsNR is UCQ rewritable,
there is a UCQ Q such that c(x̄′) ∈ Q(Dq′), i.e., there
exists a CQ qr (one of the disjuncts of Q) such that
c(x̄′) ∈ qr(Dq′). Hence, q′ ⊆ qr by Proposition 2.
From Proposition 9, there is a CQ q′′ ∈ GHW(k) such
that q′ ⊆ q′′ ⊆ qr and |q′′| ≤ |qr| · (2k+1) ·aΣ,q . Since
|qr| ≤ fNR(Σ, q), we have |q′′| ≤ fNR(Σ, q)·(2k+1)·
aΣ,q . We claim now that q ≡Σ q′′. In fact, q ⊆Σ q′ by
hypothesis, and thus q ⊆Σ q′′ (since q′ ⊆ q′′). On the
other hand, qr ⊆Σ q (otherwise, Q would not be a UCQ
rewriting), and since q′′ ⊆ qr, we get that q′′ ⊆Σ q.

Finally, for the class of sticky sets of tgds, we follow
the same approach as for non-recursive sets of tgds.
The class S is UCQ rewritable, and, given a set Σ ∈ S
and a CQ q, the height of each UCQ rewriting of q and
Σ is at most fS(Σ, q); for more details see [35]. 2

Since CQ containment is decidable for any class C ∈
{G,L,NR,S}, Proposition 10 provides a decision pro-
cedure for Reformulation(GHW(k),C). Given a CQ q
and a finite set Σ ∈ C, this procedure is as follows:

1. Guess a CQ q′ that falls in GHW(k) of size at most
fC(Σ, q) · (2k + 1) · aΣ,q; and

2. Verify that q ≡Σ q′.

By exploiting known results on the complexity of CQ
containment for the classes of tgds under consideration
(see above), and carefully analyzing the time and space
complexity of the above procedure, we obtain worst-
case optimal upper bounds, apart from the case of sticky
sets of tgds for which the complexity remains open. The
lower bounds are inherited from CQ containment. Then:

THEOREM 11. Fix k ≥ 1 and a class of tgds C ∈
{G,L,NR,S}. Reformulation(GHW(k),C) is

• 2EXPTIME-complete for C = G.
• PSPACE-complete for C = L.
• NEXPTIME-complete for C = NR.
• in NEXPTIME and EXPTIME-hard for C = S.

If we assume that the underlying schema is fixed, then
in all cases the complexity becomes NP-complete. Bet-
ter complexity results can be obtained in the case of G,
L and S if the arity of the schema is fixed, while forNR
it remains NEXPTIME-hard; for details see [6].

4.2 Reformulation with egds
The reformulation problem under egds is quite chal-

lenging, and not very well-understood up to date. Al-
though the CQ containment problem under egds can
easily be shown to be decidable (as said before, it is
the class NR. However, the rewriting algorithm in that paper
works also for non-recursive sets of tgds.

8

NP-complete), currently we do not even know the de-
cidability status of the reformulation problem under the
simple class of egds that correspond to keys.

A positive, yet very challenging result in this direction
has been recently obtained by Figueira [25]. It states that
the reformulation problem is decidable for the class of
unary FDs, denoted UFD, when restricted to schemas
consisting of unary and binary relations. Recall that
unary FDs are FDs of the form R : A → B, where
the cardinality of A is one. The following holds:

THEOREM 12. [25] Fix k ≥ 1. Given a finite set Σ ∈
UFD over a schema with unary and binary relations,
and a CQ q, we can decide in double-exponential time
if there exists a CQ q′ ∈ GHW(k) such that q ≡Σ q′.

Let us clarify that in [25] the above result is shown for
CQs of bounded treewidth. However, the proof adapts
to CQs of bounded generalized hypetreewidth [26].

5. THE EVALUATION PROBLEM
As we observed earlier, in the absence of constraints

the property of being equivalent to a CQ in GHW(k),
for k ≥ 1, has a positive impact on query evaluation.
We observe here that, at least partially, this good behav-
ior extends to the notion of being equivalent to a CQ
in GHW(k), for k ≥ 1, under the decidable classes
of constraints we identified in the previous section. In
particular, evaluation of CQs in Equiv(GHW(k))Σ, for
sets Σ of constraints in such classes can be solved by a
fixed-parameter tractable (fpt) algorithm, assuming the
parameter to be |q|+ |Σ|. Recall that this means that the
problem can be solved in timeO(|D|c ·f(|q|+ |Σ|)), for
c ≥ 1 and f : N→ N a computable function. This is an
improvement over general CQ evaluation for which no
fpt algorithm is believed to exist; see, e.g., [28, 46].

Fix k ≥ 1 and a class C of constraints. We study the
following problem in this section:

PROBLEM : Evaluation(GHW(k),C)
INPUT : Σ ∈ C, a CQ q ∈ Equiv(GHW(k))Σ,

a database D such that D satisfies Σ,
and a tuple t̄ of elements in D.

QUESTION : Is t̄ ∈ q(D)?

5.1 Evaluation under tgds
Recall that Theorem 6 establishes that the evalua-

tion problem for CQs that can be reformulated in the
class GHW(k) in the absence of constraints is feasible
in polynomial time. As stated next, this good behavior
extends to the class G of sets of guarded tgds:

PROPOSITION 13. Evaluation(GHW(k),G) is fea-
sible in polynomial time, for each fixed k ≥ 1.

The proof of Proposition 13 for the case k = 1 can be
found in [6]. A slight modification of this proof yields
the result for any k ≥ 1. We do not know if this good be-
havior extends to the classes NR and S. We can prove,
nevertheless, that the problem in question retains some
good properties; in fact, it is fixed-parameter tractable
under such classes:

PROPOSITION 14. Fix k ≥ 1 and C ∈ {NR,S}.
Evaluation(GHW(k),C) is fixed-parameter tractable.

Evaluation(GHW(k),C), as in the constraint-free
case, makes the unrealistic assumption that we know
in advance that the CQ q is in Equiv(GHW(k))Σ, for a
given set Σ of tgds in C. To study the more realistic sce-
nario in which we want to first check if this is the case,
and then, if so, check whether t̄ ∈ q(D), we have to re-
turn to the guess-and-check procedure from Section 4.1.
This procedure checks in double-exponential time if a
CQ q is in Equiv(GHW(k))Σ, for any set of tgds Σ ∈ C.
More importantly, in case that q ∈ Equiv(GHW(k))Σ

it also yields an equivalent CQ q′ in GHW(k) of at
most exponential size in |q| + |Σ|. We can then com-
pute and evaluate such a query q′ on D, and return
q(D) = q′(D). We know that the latter can be done
in time O(|D|k+1 · |q′|), which is |D|k+1 · 2O(|q|+|Σ|).
Summing up:

COROLLARY 15. Fix k ≥ 1 and C ∈ {G,NR,S}.
Given a CQ q, a set Σ of tgds in C, a database D sat-
isfying Σ, and a tuple t̄ in D, the problem of checking if
q is in Equiv(GHW(k))Σ, and, if this is the case, then
check whether t̄ ∈ q(D), can be solved in time:

22O(|q|+|Σ|)
+ |D|k+1 · 2O(|q|+|Σ|).

Notice that Proposition 14 follows directly from this
result. The algorithm presented above, however, can
hardly be claimed to be practical. In fact, it requires
a preprocessing step for computing an equivalent re-
formulation of q under Σ that takes double-exponential
time. Although this is a static analysis task, a double-
exponential time procedure is too costly in practice even
for small q and Σ. Thus, it would be useful to develop
heuristics that lower the complexity of this task to at
least single-exponential time. A notable exception is the
class of linear tgds since, in this case, the guess-and-
check algorithm from Section 4.1 takes exponential time
to check if a CQ q is in Equiv(GHW(k))Σ, for Σ ∈ L.

5.2 Evaluation under egds
Following the same approach as above, we can prove

that Evaluation(GHW(k),UFD) is fixed-parameter
tractable, when restricted to schemas with unary and bi-
nary relations. This is because, again, the procedure that
checks reformulation for a CQ q under a set Σ ∈ UFD,

9

used in the proof of Theorem 12, yields an equivalent
CQ q′ in GHW(k) in case that such a q′ exists. Impor-
tantly enough, this fixed-parameter tractable algorithm
works without the unrealistic assumption that q belongs
to Equiv(GHW(k))Σ, for the given set Σ.

Notably, it follows from techniques in [6] that fixed-
parameter tractability of evaluation extends to the whole
class EGD of sets of egds. Moreover, for the class FD
of FDs it is even possible to obtain tractability:

PROPOSITION 16. Fix k ≥ 1. It holds that:

1. Evaluation(GHW(k),EGD) is fixed-parameter
tractable.

2. Evaluation(GHW(k),FD) can be solved in poly-
nomial time.

In contrast to the case of UFD, though, the evaluation
algorithms underlying Proposition 16 require knowing
in advance that q ∈ Equiv(GHW(k))Σ, for the given set
Σ of egds. However, checking whether such a promise
holds for q might be an undecidable problem.

6. APPROXIMATIONS
Let C be any of the decidable classes of finite sets of

tgds we study in this paper (i.e., G,NR, or S). Then, for
any CQ q and set Σ of constraints in C, our techniques
yield the maximally contained CQs q′ in GHW(k) un-
der Σ.2 Following the recent database literature, such
q′s correspond to the GHW(k)-approximations of q un-
der Σ; see, e.g., [7, 8, 9]. Computing and evaluat-
ing the GHW(k)-approximations of q might help find-
ing “quick” (i.e., fixed-parameter tractable) answers to
it when exact evaluation is infeasible.

We define the notion of GHW(k)-approximation of
q under Σ below, following the idea that such approxi-
mations correspond to its maximally contained CQs in
GHW(k) under Σ:

Definition 1. (GHW(k)-approximations) Fix k ≥ 1.
Let q be a CQ and Σ a finite set of tgds. A GHW(k)-
approximation of q under Σ is a CQ q′ ∈ GHW(k) that
satisfies the following two conditions:

• Soundness: q′ only retrieves sound answers with
respect to q; in other words, q′ ⊆Σ q.

• Maximality: There is no CQ q′′ in GHW(k) that
approximates q better in terms of containment; i.e.,
for every q′′ ∈ GHW(k) it is the case that:

q′ ⊆Σ q′′ ⊆Σ q =⇒ q′ ≡Σ q′′.

Notice that whenever q is in Equiv(GHW(k))Σ, i.e.,
there is a CQ q′ ∈ GHW(k) such that q ≡Σ q′, then
2As said, the decidability of reformulation under egds is not
well-understood. Thus, we concentrate on tgds in this section.

the unique GHW(k)-approximation of q under Σ is q′

itself. That is, the notion of GHW(k)-approximation
provides a suitable extension of the notion of GHW(k)-
reformulation. We show in the following example that
computing an approximation might be useful when ex-
act reformulation is impossible.

Example 5. Recall the database given in Example 4
whose schema is {Interest,Class,Owns}. Suppose we
additionally have a relation Incompatible that contains
pairs (s1, s2) whenever style s1 is incompatible with
style s2. Consider now the query that retrieves all the
customers c that own a record r from a style s in which
he/she is interested, and also c has shown interest in at
least two incompatible styles. This query can be ex-
pressed by the following CQ q(x):

Ans(x) ← Owns(x, y),Class(y, z),

Interest(x, z), Interest(x, z1), Interest(x, z2),

Incompatible(z1, z2).

As in Example 4, suppose that the database satisfies
the constraint τ := ∀x∀y∀z

(
Owns(x, y),Class(y, z)→

Interest(x, z)
)
. As it turns out, q cannot be reformu-

lated in GHW(1). The intuition is that, although we can
remove atom Interest(x, z) as in Example 4, the cycle
over variables {x, z1, z2} is still present. Nevertheless,
we can approximate q in GHW(1) via the CQ q′(x):

Ans(x) ← Owns(x, y),Class(y, z),

Interest(x,w), Incompatible(w,w).

Note that q′ is obtained by removing Interest(x, z) from
q, and identifying the variables z1 and z2 with w. Inter-
estingly, this example also shows that approximations
can improve in the presence of constraints. Indeed, a
possible approximation of q, ignoring τ , is q′′(x):

Ans(x) ← Owns(x, t),Class(t, t), Interest(x, t),

Interest(x,w), Incompatible(w,w).

It is easy to verify that q′′ (Σ q′.

6.1 Approximations in the absence of con-
straints

As in the case of the reformulation problem, it is in-
structive to start by studying approximations in the ab-
sence of constraints. We call GHW(k)-approximations
of q under Σ = ∅ simply GHW(k)-approximations of
q. As shown in [7], GHW(k)-approximations have good
properties in this context that justify its application. In
particular, they always exist, are of polynomial size, and
can be computed in single-exponential time in the size
of the CQ q. For brevity, we write Approx(q,GHW(k))
for the set of all the GHW(k)-approximations of q (up
to equivalence). The following holds:

10

THEOREM 17. Fix k ≥ 1. Then:

1. Every CQ q has a GHW(k)-approximation.
2. Given a CQ q, there is an exponential time algo-

rithm that computes the set Approx(q,GHW(k)).
3. For each CQ q, each CQ in Approx(q,GHW(k))

is of polynomial size.

The proof of the above result relies on Proposition 9.
Recall that the latter proposition states that for every CQ
q and CQ q′ ∈ GHW(k) such that q′ ⊆ q, we can find a
CQ q′′ ∈ GHW(k) that approximates q at least as well
as q′, i.e., q′ ⊆ q′′ ⊆ q, and its size is polynomially
bounded by that of q. Let us now explain how Theo-
rem 17 follows from Proposition 9.

First, observe that for every CQ q there is at least one
q′ in GHW(k) of polynomial size such that q′ ⊆ q. Sim-
ply take a single variable x and add a tuple R(x, . . . , x)
for each symbol R in the underlying schema σ. The re-
sulting CQ q′ is in GHW(1), and thus in GHW(k) for
each k ≥ 1. Moreover, there is a homomorphism from
q to the canonical databaseDq′ of q′: just map each vari-
able of q to c(x). Thus, (c(x), . . . , c(x)) ∈ q(Dq′), and
hence q′ ⊆ q from Proposition 2. It is clear that q′ is
of polynomial size. Let tσ : N → N be the polynomial
such that tσ(n) = max{|q′|, n · (2k + 1) · aσ}. (Recall
that aσ is the maximum arity of a relation in σ).

Consider now the set Cont(q,GHW(k)) of CQs q′

in GHW(k) over σ of size at most tσ(|q|) such that
q′ ⊆ q. From the above discussion, this set is nonempty.
Let us consider the set Maximal(q,GHW(k)) consist-
ing of the ⊆-maximal elements of Cont(q,GHW(k)).
We claim that Maximal(q,GHW(k)) consists of all the
GHW(k)-approximations of q (up to equivalence). We
first show that each GHW(k)-approximation q′ of q is
equivalent to some CQ q′′ ∈ Maximal(q,GHW(k)).
Consider such a GHW(k)-approximation q′ of q. By
definition, q′ ∈ GHW(k) and q′ ⊆ q, and, thus, from
Proposition 9 there is a CQ q∗ ∈ GHW(k) such that
q′ ⊆ q∗ ⊆ q and the size of q∗ is at most tσ(|q|). There-
fore, q∗ ∈ Cont(q,GHW(k)), and there is a CQ q′′ ∈
Maximal(q,GHW(k)) such that q′ ⊆ q∗ ⊆ q′′ ⊆ q. By
definition, q′′ ∈ GHW(k) and, thus, q′ ≡ q′′ since q′

is a GHW(k)-approximation of q. The proof that each
CQ q′ in Maximal(q,GHW(k)) is, in fact, a GHW(k)-
approximation of q follows a similar reasoning.

Notice that Maximal(q,GHW(k)) contains at least
one CQ (since Cont(q,GHW(k)) is nonempty). Thus,
each CQ q has at least one GHW(k)-approximation.
This yields item (1) of Theorem 17. For item (2), it is
sufficient to observe that the set Maximal(q,GHW(k))
can be computed in single-exponential time. This is
done by simply enumerating all CQs q′ of size at most
tσ(|q|), and for each one of them checking the follow-
ing: (a) q′ ∈ GHW(k), (b) q′ ⊆ q, and (c) there is no
q′′ ∈ GHW(k) such that q′ (q′′ ⊆ q and the size of q′′

is at most tσ(|q|). Each one of these steps can be carried
out in single-exponential time.
Evaluation of approximations. Let us look at the prob-
lem of evaluating the GHW(k)-approximations of q, i.e.,
given a CQ q, a databaseD, and a tuple t̄ inD, checking
whether t̄ ∈ q′(D) for some GHW(k)-approximation q′

of q. Since each such a q′ is contained in q, we can then
be sure that t̄ also belongs to q(D).

As explained above, the set Approx(q,GHW(k))
of GHW(k)-approximations of q can be computed in
single-exponential time. Hence, checking if t̄ ∈ q′(D)
for some GHW(k)-approximation q′ of q can be carried
out by a fixed-parameter tractable algorithm in time:

2r(|q|) + |D|k+1 · 2r
′(|q|),

for polynomials r, r′ : N→ N. Notably, unless P = NP
this problem cannot be solved in polynomial time:

PROPOSITION 18. Fix k ≥ 1. Given a CQ q, a
databaseD, and a tuple t̄ inD, checking if t̄ ∈ q′(D) for
some GHW(k)-approximation q′ of q is NP-complete.

Let us end up by explaining more in detail why it
might be convenient, in some cases, to evaluate the ap-
proximations of a CQ q as as way to obtain quick an-
swers when exact evaluation is infeasible or is taking
too long. Suppose, in particular, that q cannot be refor-
mulated as a CQ in GHW(k). Hence, it must be the case
that q ∈ GHW(k′) for some k′ > k. Let us assume that
a generalized hypertree decomposition of q of width k′

is available to us. We can then use this decomposition to
solve the exact evaluation problem for q over D in time
O(|D|k′+1 · |q|). Still, in the realistic case in which D
is too large – in particular, when 2r(|q|) + 2r

′(|q|) � |D|
– we have that evaluating the GHW(k)-approximations
of q over D in time 2r(|q|) + |D|k+1 · 2r

′(|q|) can
be considerably faster than evaluating q itself in time
O(|D|k′+1 · |q|).
Number of approximations. Theorem 17 establishes a
single-exponential upper bound on the number of
GHW(k)-approximations that a CQ can have. As es-
tablished next, this is optimal even for the case k = 1.

PROPOSITION 19. [7] There is a family {qn}n≥1 of
CQs such that each CQ qn is of size at most O(n) and
has Ω(2n) non-equivalent GHW(1)-approximations.

6.2 Approximations with tgds
Let us now study GHW(k)-approximations under

sets Σ of tgds. Our main result establishes that if Σ
comes from one of the well-behaved classes of sets of
tgds we study in the paper (i.e., G, NR, or S), then
the GHW(k)-approximations under Σ continue to have
good properties in terms of existence and computation.
For brevity, we write Approx(q,GHW(k), Σ) for the set

11

of all the GHW(k)-approximations of q under Σ (up to
equivalence). The following holds:

THEOREM 20. Fix k ≥ 1 and C ∈ {G,NR,S}:

1. Every CQ q has a GHW(k)-approximation under
Σ, where Σ ∈ C.

2. Given a CQ q and a set Σ ∈ C, there is a double-
exponential time algorithm that computes the set
Approx(q,GHW(k), Σ).

3. For each CQ q and set Σ ∈ C, each CQ in
Approx(q,GHW(k), Σ) is of exponential size.

As for the case of Theorem 17, we prove Theorem 20
by exploiting a small query property:

PROPOSITION 21. Fix k ≥ 1 and assume that C ∈
{G,NR,S}. There is a polynomial t : N → N such
that for each CQs q, q′ and set Σ ∈ C, if q′ ∈ GHW(k)
and q′ ⊆Σ q, then there is a CQ q′′ ∈ GHW(k) such
that q′ ⊆Σ q′′ ⊆Σ q and |q′′| ≤ 2t(|q|+|Σ|).

The explanation of how Theorem 20 follows from
Proposition 21 mimics the explanation of how Theo-
rem 17 follows from Proposition 9. Let us note that
Proposition 21 follows from the proof of Proposition 10,
and moreover, we can refine the upper bound for |q′′| to
be fC(Σ, q) · (2k + 1) · aΣ,q . Since fG(Σ, q) is polyno-
mial, we can obtain an improved version of Theorem 20,
for the case of guarded tgds, stating that the approxima-
tions are of polynomial size.

The comparison of Theorem 17 and Theorem 20
shows that the addition of constraints does not come for
free: (1) Computing the set of approximations under sets
of tgds in C takes double-exponential time, as opposed
to the single-exponential time procedure obtained in the
absence of them. (2) Approximations in the presence of
non-recursive and sticky sets of tgds can be of exponen-
tial size, while they are polynomial in their absence.
Evaluation of approximations. From Theorem 20, we
obtain that evaluating GHW(k)-approximations under
Σ, where Σ is a set of tgds in C, can be solved in time:

22r(|q|+|Σ|)
+ |D|k+1 · 22r′(|q|+|Σ|)

,

for suitable polynomials r, r′ : N → N. That is, this
problem is fixed-parameter tractable. On the other hand,
the double-exponential dependence on |q| + |Σ| is im-
practical. It would be important then to develop heuris-
tics that find at least some of these approximations in at
most single-exponential time on the size of q and Σ.

7. FINAL REMARKS
We have not only surveyed, but also provided a com-

mon framework for recent results about semantic opti-
mization in the classes GHW(k) – of CQs of bounded

generalized hypertreewidth – under tgds or egds. Sur-
prisingly, there are cases where CQ containment is de-
cidable, while reformulation is undecidable. Such cases
include the class of full tgds. We have then focussed on
the main classes of tgds for which CQ containment is de-
cidable, and do not subsume full tgds, i.e., guarded, non-
recursive and sticky sets of tgds. For all these classes we
have explained why the reformulation problem is de-
cidable, and provided several complexity results. Re-
garding egds, we have presented a deep result that es-
tablishes the decidability of the reformulation problem
under unary FDs over binary schemas.

We have also considered the problem of evaluating
a query that can be reformulated in GHW(k) over a
database that satisfies certain constraints. In all cases,
when the refomulation problem is decidable such an
evaluation problem can be solved by a fixed-parameter
tractable procedure. This procedure is “realistic”, as it
also checks whether the query satisfies the reformula-
tion requirements. By lifting this condition, one can
further show that the aforementioned evaluation prob-
lem remains fixed-parameter tractable under any sets of
egds, and even tractable for sets of guarded tgds or FDs.

Finally, we explained how the techniques developed
for studying the reformulation problem also yield the
GHW(k)-approximations of a query when an exact re-
formulation in GHW(k) cannot be found. Such approx-
imations can be used to “quickly” find sound answers to
the query when its exact evaluation is infeasible.

Interestingly, all the complexity results on reformula-
tion under tgds presented in the paper continue to hold
for a more liberal version of reformulation under con-
straints that is based on unions of CQs. In such case
we are given a UCQ Q and a finite set Σ of tgds, and
the question is whether there is a union Q′ of CQs in
GHW(k) that is equivalent to Q under Σ. Moreover,
when such a reformulation exists we obtain that evalua-
tion, as above, is fixed-parameter tractable.

Many challenging problems remain open, the most
noticeable being the decidability status of reformulation
under egds/FDs. For egds, we have some indications
that the problem is undecidable; in fact, that the existing
proof of undecidability for the reformulation problem
under full tgds can be recast in terms of egds. For FDs
we have no understanding whatsoever at this stage.

So far, decidability results for reformulation have
been obtained separately for tgds, on the one hand, and
egds, on the other. But in practice tgds and egds often
appear together. The decidability boundary for CQ con-
tainment in the presence of both types of constraints is
delicate [16], but some restricted decidable instances of
the problem have been identified [4]. It deserves to be
explored whether such restrictions also yield decidabil-
ity for the reformulation problem studied here.

12

8. REFERENCES
[1] Christopher R. Aberger, Susan Tu, Kunle Olukotun, and

Christopher Ré. Emptyheaded: A relational engine for graph
processing. In SIGMOD, pages 431–446, 2016.

[2] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations
of Databases. Addison-Wesley, 1995.

[3] F. Afrati, M. Joglekar, C. Ré, S. Salihoglu, and J. D. Ullman.
GYM: A multiround join algorithm in mapreduce. CoRR,
abs/1410.4156, 2014.

[4] Antoine Amarilli and Michael Benedikt. Finite open-world
query answering with number restrictions. In LICS, pages
305–316, 2015.

[5] K. Amroun, Z. Habbas, and W. Aggoune-Mtalaa. DBToaster:
Higher-order delta processing for dynamic, frequently fresh
views. VLDB, 5(10):968–979, 2012.

[6] Pablo Barceló, Georg Gottlob, and Andreas Pieris. Semantic
acyclicity under constraints. In PODS, pages 343–354, 2016.

[7] Pablo Barceló, Leonid Libkin, and Miguel Romero. Efficient
approximations of conjunctive queries. SIAM J. Comput.,
43(3):1085–1130, 2014.

[8] Pablo Barceló, Reinhard Pichler, and Sebastian Skritek.
Efficient evaluation and approximation of well-designed
pattern trees. In PODS, pages 131–144, 2015.

[9] Pablo Barceló, Miguel Romero, and Moshe Y. Vardi. Semantic
acyclicity on graph databases. In SIAM J. Comput., 2016.

[10] Catriel Beeri, Ronald Fagin, David Maier, Alberto O.
Mendelzon, Jeffrey D. Ullman, and Mihalis Yannakakis.
Properties of acyclic database schemes. In STOC, pages
355–362, 1981.

[11] Catriel Beeri and Moshe Y. Vardi. The implication problem for
data dependencies. In ICALP, pages 73–85, 1981.

[12] Andrea Calı̀, Georg Gottlob, and Michael Kifer. Taming the
infinite chase: Query answering under expressive relational
constraints. J. Artif. Intell. Res., 48:115–174, 2013.

[13] Andrea Calı̀, Georg Gottlob, and Thomas Lukasiewicz. A
general Datalog-based framework for tractable query
answering over ontologies. J. Web Sem., 14:57–83, 2012.

[14] Andrea Calı̀, Georg Gottlob, and Andreas Pieris. Towards
more expressive ontology languages: The query answering
problem. Artif. Intell., 193:87–128, 2012.

[15] Upen S. Chakravarthy, John Grant, and Jack Minker.
Logic-based approach to semantic query optimization. ACM
Trans. Database Syst., 15(2):162–207, 1990.

[16] A. K. Chandra and M. Y. Vardi. The implication problem for
functional and inclusion dependencies. SIAM J. of Comput.,
14:671–677, 1985.

[17] Ashok K. Chandra and Philip M. Merlin. Optimal
implementation of conjunctive queries in relational data bases.
In STOC, pages 77–90, 1977.

[18] Chandra Chekuri and Anand Rajaraman. Conjunctive query
containment revisited. Theor. Comput. Sci., 239(2):211–229,
2000.

[19] Hubie Chen and Vı́ctor Dalmau. Beyond hypertree width:
Decomposition methods without decompositions. In CP, pages
167–181, 2005.

[20] Vı́ctor Dalmau, Phokion G. Kolaitis, and Moshe Y. Vardi.
Constraint satisfaction, bounded treewidth, and finite-variable
logics. In CP, pages 310–326, 2002.

[21] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei
Voronkov. Complexity and expressive power of logic
programming. ACM Comput. Surv., 33(3):374–425, 2001.

[22] Alin Deutsch, Lucian Popa, and Val Tannen. Query
reformulation with constraints. SIGMOD Record, 35(1):65–73,
2006.

[23] Ronald Fagin. A normal form for relational databases that is
based on domains and keys. ACM Trans. Database Syst.,
6(3):387–415, 1981.

[24] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and
Lucian Popa. Data exchange: Semantics and query answering.
Theor. Comput. Sci., 336(1):89–124, 2005.

[25] Diego Figueira. Semantically acyclic conjunctive queries
under functional dependencies. In LICS, pages 847–856, 2016.

[26] Diego Figueira, 2017. Personal communication.
[27] Wolfgang Fischl, Georg Gottlob, and Reinhard Pichler.

General and fractional hypertree decompositions: Hard and
easy cases. CoRR, abs/1611.01090, 2016.

[28] Jörg Flum and Martin Grohe. Parameterized Complexity
Theory. Springer-Verlag, 2006.

[29] L. Ghionna, L. Granata, G. Greco, and F. Scarcello. Hypertree
decompositions for query optimization. In ICDE, pages 36–45,
2007.

[30] L. Ghionna, L., G. Greco, and F. Scarcello. H-DB: A hybrid
quantitative-structural SQL optimizer. In CIKM, pages
2573–2576, 2011.

[31] Nathan Goodman and Oded Shmueli. Tree queries: A simple
class of relational queries. ACM Trans. Database Syst.,
7(4):653–677, 1982.

[32] Georg Gottlob, Gianluigi Greco, Nicola Leone, and Francesco
Scarcello. Hypertree decompositions: Questions and answers.
In PODS, pages 57–74, 2016.

[33] Georg Gottlob, Nicola Leone, and Francesco Scarcello. The
complexity of acyclic conjunctive queries. J. ACM,
48(3):431–498, 2001.

[34] Georg Gottlob, Nicola Leone, and Francesco Scarcello.
Hypertree decompositions and tractable queries. J. Comput.
Syst. Sci., 64(3):579–627, 2002.

[35] Georg Gottlob, Giorgio Orsi, and Andreas Pieris. Query
rewriting and optimization for ontological databases. ACM
Trans. Database Syst., 2014.

[36] Martin Grohe. The complexity of homomorphism and
constraint satisfaction problems seen from the other side. J.
ACM, 54(1), 2007.

[37] Martin Grohe and Dániel Marx. Constraint solving via
fractional edge covers. ACM Trans. Algorithms,
11(1):4:1–4:20, 2014.

[38] Pavol Hell and Jaroslav Nešetřil. The core of a graph. Discrete
Mathematics, 109:117–126, 1992.

[39] Pavol Hell and Jaroslav Nešetřil. Graphs and
Homomorphisms. Oxford University Press, 2004.

[40] David S. Johnson and Anthony C. Klug. Testing containment
of conjunctive queries under functional and inclusion
dependencies. J. Comput. Syst. Sci., 28(1):167–189, 1984.

[41] Paris C. Kanellakis. Elements of relational database theory. In
Handbook of Theoretical Computer Science, Volume B:
Formal Models and Sematics (B), pages 1073–1156. 1990.

[42] Maurizio Lenzerini. Data integration: A theoretical
perspective. In PODS, pages 233–246, 2002.

[43] Thomas Lukasiewicz, Maria Vanina Martinez, Andreas Pieris,
and Gerardo I. Simari. From classical to consistent query
answering under existential rules. In AAAI, pages 1546–1552,
2015.

[44] David Maier, Alberto O. Mendelzon, and Yehoshua Sagiv.
Testing implications of data dependencies. ACM Trans.
Database Syst., 4(4):455–469, 1979.

[45] S. Malik and L. Zhang. Boolean satisfiability: from theoretical
hardness to practical success. CACM, 52(68):76–82, 2009.

[46] Christos H. Papadimitriou and Mihalis Yannakakis. On the
complexity of database queries. J. Comput. Syst. Sci.,
58(3):407–427, 1999.

[47] A. Robinson and A. Voronkov. Handbook of Automated
Reasoning. The MIT Press, 2001.

[48] Robert Endre Tarjan and Mihalis Yannakakis. Simple
linear-time algorithms to test chordality of graphs, test
acyclicity of hypergraphs, and selectively reduce acyclic
hypergraphs. SIAM J. Comput., 13(3):566–579, 1984.

[49] Mihalis Yannakakis. Algorithms for acyclic database schemes.
In VLDB, pages 82–94, 1981.

13

