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EFFICIENT APPROXIMATIONS OF CONJUNCTIVE QUERIES∗

PABLO BARCELÓ†, LEONID LIBKIN‡ , AND MIGUEL ROMERO†

Abstract. When finding exact answers to a query over a large database is infeasible, it is natural
to approximate the query by a more efficient one that comes from a class with good bounds on the
complexity of query evaluation. In this paper we study such approximations for conjunctive queries.
These queries are of special importance in databases, and we have a very good understanding of the
classes that admit fast query evaluation, such as acyclic, or bounded (hyper)treewidth queries. We
define approximations of a given query Q as queries from one of those classes that disagree with Q as
little as possible. We concentrate on approximations that are guaranteed to return correct answers.
We prove that for the above classes of tractable conjunctive queries, approximations always exist and
are at most polynomial in the size of the original query. This follows from general results we establish
that relate closure properties of classes of conjunctive queries to the existence of approximations. We
also show that in many cases the size of approximations is bounded by the size of the query they
approximate. We establish a number of results showing how combinatorial properties of queries affect
properties of their approximations, study bounds on the number of approximations, as well as the
complexity of finding and identifying approximations. The technical toolkit of the paper comes from
the theory of graph homomorphisms, as we mainly work with tableaux of queries and characterize
approximations via preorders based on the existence of homomorphisms. In particular, most of our
results can also be interpreted as approximation or complexity results for directed graphs.
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1. Introduction. The idea of finding approximate solutions to problems for
which computing exact solutions is impossible or infeasible is ubiquitous in computer
science. It is common in databases too: approximate query answering techniques help
evaluate queries over extremely large databases or queries with very high inherent
complexity; see, e.g., [14, 15, 18, 28, 33]. By analyzing the structure of both the
database and the query one often finds a reasonable approximation of the answer,
sometimes with performance guarantees. Approximate techniques are relevant even
for problems whose complexity is viewed as acceptable for regular-size databases, since
finding precise answers may become impossible for the large data sets we often deal
with these days.

To approximate a query, we must have a good understanding of the complexity of
query evaluation in order to find an approximation that is guaranteed to be efficient.
For one very common class of queries—conjunctive, or select-project-join queries—we
do have a very good understanding of their complexity. In fact, we know which classes
of conjunctive queries (CQs) are easy to evaluate [11, 19, 20, 23, 29, 41]. Given the
importance of CQs, and our good understanding of them, we would like to initiate a
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study of their approximations. We do it from the static analysis point of view, i.e.,
independently of the input database: for a query Q, we want to find another query
Q′ that will be much faster than Q, and whose output would be close to the output
of Q on all databases. Such analysis is essential when a query is repeatedly evaluated
on a very large database (say, in response to frequent updates), and when producing
approximations based on both data and queries may be infeasible.

The complexity of checking whether a tuple ā belongs to the output of a CQ Q
on a database D is of the order |D|O(|Q|), where | · | measures the size of a database
or a query [3, 39]. In fact, the problem is known to be NP-complete, when its input
consists of D as well as Q (even for Boolean CQs). In other words, the combined
complexity of CQs is intractable [10]. Of course the data complexity of CQs is low
(more precisely, it belongs to the circuit complexity class AC0), but having O(|Q|)
as the exponent may be prohibitively high for very large data sets. This observation
led to an extensive study of classes of CQs for which the combined complexity is
tractable. The first result of this kind by Yannakakis [41] showed tractability for
acyclic CQs. That was later extended to queries of bounded treewidth [11, 16, 29];
this notion captures tractability for classes of CQs defined in terms of their graphs [23].
For classes of CQs defined in terms of their hypergraphs, the corresponding notions
guaranteeing tractability are bounded hypertree width [20] and bounded generalized
hypertree width [21], which include acyclicity as a special case. All these conditions
can be tested in polynomial time [8, 17, 20], except for bounded generalized hypertree
width [22].

The question we address is whether we can approximate a CQ Q by a CQ Q′ from
one of such classes so that Q and Q′ would disagree as little as possible. Assume, for
example, that we manage to find an approximation of Q by an acyclic CQ Q′, for
which checking whether ā ∈ Q′(D) is done in time O(|D| · |Q′|) [41]. Then we replaced
the original problem of complexity |D|O(|Q|) with that of complexity

O
(
f(|Q|) + |D| · s(|Q|)),

where s(·) measures the size of the resulting approximation, and f(·) is the complexity
of finding one.

Thus, assuming that the complexity measures f and s are acceptable, the com-
bined complexity of running Q′ is much better than for Q. Hence, if the quality of
the approximation Q is good too, then we may prefer to run the much faster query Q′

instead of Q, especially in the case of very large databases. Thus, we need to answer
the following questions:

• What are the acceptable bounds for constructing approximations, i.e., the
functions f and s above?

• What types of guarantees do we expect from approximations?
For the first question, if Q′ is of the same size as Q, or even if it polynomially increases
the size, this is completely acceptable, as the exponent O(|Q|) is now replaced by the
factor s(|Q|). For the complexity f of static computation (i.e., transforming Q to Q′),
a single exponential is typically acceptable. Indeed, this is the norm in many static
analysis and verification questions [34, 37], and modest exponential functions (like the
2O(|Q|) or 2O(|Q| log |Q|) we shall mainly encounter) are significantly smaller than |D||Q|

if |D| is large. Thus, in terms of their complexity, our desiderata for approximations
are as follows:

1. the approximating query should be at most polynomially larger than Q—and
ideally, bounded by the size of Q; and



EFFICIENT APPROXIMATIONS OF CONJUNCTIVE QUERIES 1087

2. the complexity of finding an approximating query should not exceed single-
exponential.

As for the guarantees we expect from approximations, in general they can be
formulated in two different ways. By doing it qualitatively we state that an approx-
imation is a query that cannot be improved in terms of how much it disagrees with
the query it approximates. Alternatively, to do it quantitatively, we define a measure
of disagreement between two queries and look for approximations whose measure of
disagreement with the query they approximate is below a certain threshold.

Here we develop the qualitative approach to approximating CQs. For a given Q,
we compare queries from some good (tractable) class C by how much they disagree
withQ: to do so, we define an orderingQ1 �Q Q2 saying, intuitively, thatQ2 disagrees
with Q less often than Q1 does. Then the best queries with respect to the ordering
are our approximations from the class C.

Furthermore, we require the approximations to return correct results. This is
standard in databases; for instance, the standard approximation of query results in
the settings of query answering using views and data integration is the notion of
maximally contained rewriting [2, 24, 31].

Our goal is to explore approximations of arbitrary CQs by tractable CQs. We
shall see that approximations are guaranteed to exist for all the tractable classes of
CQs mentioned earlier, which makes the notion worth studying.

The structure of approximations depends heavily on combinatorial properties of
the (tableau of the) query Q we approximate. Consider, for instance, a Boolean
query Q1() :– E(x, y), E(y, z), E(z, x) over graphs. Its best acyclic approximation is
Q′

1() :– E(x, x), which is contained in every Boolean graph query and thus provides
us with little information. It turns out that this will be the case whenever the tableau
of the query is not bipartite. Let Pm(x0, . . . , xm) be the CQ stating that x0, . . . , xm

form a path of length m, i.e., E(x0, x1), . . . , E(xm−1, xm). If we now look at

Q2() :– P3(x, y, z, u), P3(x
′, y′, z′, u′), E(x, z′), E(y, u′),

which has a cycle with variables x, y, z′, u′, then it has a nontrivial acyclic approxi-
mation

Q′
2() :– P4(x

′, x, y, z, u).

What changed is that the tableau of Q2 is bipartite, which guarantees the existence
of nontrivial approximations.

Going beyond graph vocabularies allows us to find more approximations. Con-
sider again Q1 above, replace binary relation E with a ternary relation R, and intro-
duce fresh variables in the middle positions, i.e., look at the query Q() :– R(x, u, y),
R(y, v, z), R(z, w, x). This query does have several nontrivial acyclic approximations:
for instance, Q′() :– R(x, u, y), R(y, v, u), R(u,w, x) is one.

These examples provides a flavor of the results we establish. We now provide
a quick summary of the results of the paper. Recall that there are two ways of
getting tractable classes of CQs over arbitrary vocabularies, depending on whether
one formulates conditions in terms of the graph of a query Q or its hypergraph. We
first study approximations in tractable classes of CQs defined in terms of its graph,
and then in those defined in terms of its hypergraph.

Results for classes of CQs in terms of its graph. For a query Q, we are
interested in approximations Q′ from a good class C defined in terms of its underlying
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Table 1

Summary of results on approximations for conjunctive queries Q.

Class of Type of Existence of Size of Time to compute

queries approximation approximation approximation approximation

CQs in terms of Treewidth 1 at most

underlying graph Treewidth k always |Q| single-

CQs in terms of Acyclic exists polynomial exponential

underlying hypergraph Hypertree width k in |Q| in |Q|

graph. The classes we consider are queries of bounded treewidth k, which capture the
notion of tractability of CQs in the case of graph-based classes [23]. The first two rows
in Table 1 summarize some of our results: approximations exist for all queries (this
will follow from a general existence result that relates closure properties of classes of
graphs to the existence of approximations), they do not increase the complexity of
the query, and they can be constructed in single-exponential time (Corollaries 4.2 and
4.3), thus satisfying all our desiderata for approximating queries.

We also show that there are at most exponentially many nonequivalent approxi-
mations of treewidth k for a CQ Q, and that the exponential number of approxima-
tions can be witnessed even for CQs over graphs (Proposition 4.4).

We then provide further complexity analysis, showing that if the problem of
computing a treewidth-k approximation can be solved in polynomial time, then P =
NP (Proposition 4.11). We also study the decision problem of checking whether Q′ is
a treewidth-k approximation ofQ. We show that this problem is complete for the class
DP (this class, defined formally later, is “slightly” above both NP and coNP [36]),
and that DP-hardness holds even for treewidth 1 and queries over graphs (Theorem
4.12). DP-completeness results appeared in the database literature in connection with
computing cores of structures [13]; our result is of a different nature because it holds
even when both Q and Q′ are minimized (i.e., their tableaux are cores).

Finally, in section 5, we study the structure of approximations over graphs. We
show a close relationship between (k+1)-colorability of the tableau and the existence
of interesting treewidth-k approximations. For Boolean queries, we prove a finer tri-
chotomy result for acyclic approximations (recall that for CQs over graphs, acyclicity
and treewidth-1 coincide), which also shows that such approximations are guaranteed
to reduce the number of joins.

Results for classes of CQs in terms of its hypergraph. For hypergraph-
based notions, we have the original notion of acyclicity from [41] and its more recent
extensions to the notions of bounded hypertree width [20] and bounded generalized
hypertree width [21]. It is known that hypertree width 1 coincides with acyclicity,
and that both are contained in generalized hypertree width 1. We again prove a
general existence result for approximations. However, the closure conditions imposed
on classes of hypergraphs are becoming more involved, and it actually requires an
effort to prove that they hold for classes of bounded hypertree width. We show that
it is still possible to find approximations in single exponential time. As for their sizes,
they need not be bounded by |Q|, but they remain polynomial in |Q|, with polynomial
depending only on the vocabulary (Corollary 6.5). Thus, as the summary table in
Table 1 shows, in this case too, our desiderata for approximations are met.

Regarding techniques required to prove these results, we mainly work with
tableaux of queries and characterize approximations via preorders based on the exis-
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tence of homomorphisms. Thus, we make a heavy use of techniques from the theory
of graphs and homomorphisms [25]. In particular we heavily use the notion of core:
a graph G that cannot be homomorphically mapped into a proper subgraph. Besides
graph theory and combinatorics, techniques from graph homomorphisms are com-
monly used in constraint satisfaction [30], but recently they were applied in database
theory as well [9, 13, 32].

Many of our results therefore can be interpreted as results about directed graphs
(digraphs) and their homomorphisms. We say that an acyclic digraph T is an acyclic
approximation of a digraph G if there is a homomorphism from G to T , but whenever
this homomorphism goes via another acyclic digraph T ′ (i.e., we have homomorphisms
from G to T ′ and from T ′ to T ), then there is also a homomorphism from T to T ′.
Our results then imply the following, which might be of independent interest in graph
theory:

• Every digraph G has an acyclic approximation.
• The size of the core of an acyclic approximation does not exceed the size of
G (hence there could be at most exponentially many of those).

• There are examples of digraphs witnessing exponential number of nonisomor-
phic cores of acyclic approximations.

• Testing whether T is an acyclic approximation of G is DP-complete (even if
both T and G are cores).

• In fact, even checking for the existence of an exact homomorphism from G to
T (i.e., such that there is no homomorphism from G to a proper subgraph of
T ) is DP-complete.

Organization. Basic notation is given in section 2. In section 3 we define the
notion of approximations. Section 4 studies approximations in graph-based classes of
queries, concentrating on bounded treewidth CQs. Section 5 concentrates on queries
on graphs and studies important structural properties of approximations in such sce-
narios. In section 6 we look at approximations in hypergraph-based classes of queries,
concentrating on acyclic and bounded (generalized) hypertree width CQs. Conclu-
sions are in section 7. This paper is a full version based on two conference papers [6]
and [7].

2. Notation.

Graphs and digraphs. Both graphs and digraphs are defined as pairs G =
〈V,E〉, where V is a set of nodes (nodes) and E is a set of edges. For graphs, an edge
is a set {u, v}, where u, v ∈ V ; for digraphs, an edge is a pair (u, v); i.e., it has an
orientation from u to v. If u = v, we have a (undirected or directed) loop.

If G = 〈V,E〉 is a directed graph, then Gu is the underlying undirected graph:
Gu = 〈V, {{u, v} | (u, v) ∈ E}〉. We denote by Km the complete graph on m nodes,
Km = 〈{u1, . . . , um}, {{ui, uj} | i �= j, i, j ≤ m}〉, and by K�

m the complete digraph
on m nodes, i.e., K�

m = 〈{u1, . . . , um}, {(ui, uj) | i �= j, i, j ≤ m}〉, so that edges go
in both directions. Note that (K�

m )u = Km.

Databases (relational structures). A vocabulary (often called a schema in the
database context) is a set σ of relation names R1, . . . , Rl, each relation Ri having an
arity ni. A relational structure, or a database, of vocabulary σ is D = 〈U,RD

1 , . . . , R
D
l 〉,

where U is a finite set, and each RD
i is an ni-ary relation over U , i.e., a subset of Uni .

We usually omit the superscript D if it is clear from the context. We also assume (as
is normal in database theory) that U is the active domain of D, i.e., the set of all
elements that occur in relations RD

i ’s.
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Both directed and undirected graphs, for example, are relational structures of
the vocabulary that contains a single binary relation E. For digraphs, it is the edge
relation; for graphs, it contains pairs (u, v) and (v, u) for each edge {u, v}. We usually
do not distinguish between a (di)graph and the structure that it represents it.

We often deal with databases together with a tuple of distinguished elements,
i.e., (D, ā), where ā is a k-tuple of elements of the active domain for some k > 0.
Technically, these are structures of vocabulary σ expanded with k extra constant
symbols, interpreted as ā.

Homomorphisms and cores. Given databases D1 = 〈U1, (R
D1

i )i≤l〉 and D2 =

〈U2, (R
D2

i )i≤l〉, a homomorphism h : D1 → D2 is a map from U1 to U2 so that

h(t̄) ∈ RD2

i for every ni-ary tuple t̄ ∈ RD1

i for all i ≤ l. The image of h is the

structure Im(h) = 〈h(U1), (R
′
i)i≤l〉, where R′

i = {h(t̄) | t̄ ∈ RD1

i } for each i ≤ l. If

there is a homomorphism h from D1 to D2, we write D1 → D2 or D1
h−→ D2. For

databases with tuples of distinguished elements we have (D1, ā1) → (D2, ā2) if the
homomorphism h in addition satisfies h(ā1) = ā2.

The database D1 is contained in D2 if RD1

i ⊆ RD2

i for each i ≤ �. It is strictly

contained if RD1

i ⊂ RD2

i for some i ≤ �. A database D is a core if there is no
homomorphism D → D′ into a databaseD′ that is strictly contained in D. A database
D′ that is strictly contained in D is a core of D if D′ is a core and D → D′. It is well
known that all cores of a database are isomorphic [25], and hence we can speak of
the core of a database D, denoted by core(D). We say that two databases D and D′

are homomorphically equivalent if both D → D′ and D′ → D hold. Homomorphically
equivalent databases have the same core; i.e., core(D) and core(D′) are isomorphic.

We write D �� D′ if D → D′, but D′ → D does not hold. (i.e., when D → D′ but
D and D′ are not homomorphically equivalent).

Conjunctive queries and tableaux. A conjunctive query (CQ) over a rela-
tional vocabulary σ is a logical formula in the ∃,∧-fragment of first-order logic, i.e.,
a formula of the form Q(x̄) = ∃ȳ ∧m

j=1 Rij (x̄ij ), where each Rij is a symbol from σ,
and x̄ij a tuple of variables among x̄, ȳ whose length is the arity of Rij . These are
often written in a rule-based notation,

(1) Q(x̄) :– Ri1(x̄i1 ), . . . , Rim(x̄im ).

The number of joins in the CQ (1) is m − 1. Given a database D, the answer Q(D)
to Q is {ā | D |= Q(ā)}. If Q is a Boolean query (a sentence), the answer true is, as
usual, modeled by the set containing the empty tuple, and the answer false by the
empty set.

A CQ Q is contained in a CQ Q′, written as Q ⊆ Q′, if Q(D) ⊆ Q′(D) for every
database D. As usual, we write Q ⊂ Q′ if Q ⊆ Q′ but it is not the case that Q′ ⊆ Q.
The queries Q and Q′ are equivalent, denoted by Q ≡ Q′, if both Q ⊆ Q′ and Q′ ⊆ Q.

With each CQ Q(x̄) of the form (1) we associate its tableau (TQ, x̄), where TQ is
the body of Q viewed as a σ-database; i.e., it contains tuples x̄ij ’s in relations Rij ’s
for j ≤ m. If Q is a Boolean CQ, then its tableau is just the σ-structure TQ.

Many key properties of CQs can be stated in terms of homomorphisms of tableaux.
For example, ā ∈ Q(D) iff (TQ, x̄) → (D, ā). For CQs Q(x̄) and Q′(x̄′) with the
same number of free variables, Q ⊆ Q′ iff (TQ′ , x̄′) → (TQ, x̄). Hence, the combined
complexity of CQ evaluation and the complexity of CQ containment are in NP (in
fact, both are NP-complete [10]).
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Q

C
Q1

Q2 Q3

C
TQ1 TQ2

TQ3

TQ

C-approximations C-approximations
a query view a tableau view

Fig. 1. C-approximations: an illustration.

3. The notion of approximation. We now explain the main idea of approx-
imations. Suppose C is a class of conjunctive queries (e.g., acyclic, or of bounded
(hyper)treewidth). We are given a query Q not in this class, and we want to approxi-
mate it within C. As explained earlier, we are interested in queries that are guaranteed
to return correct results only. Thus, we are looking for a CQ in C that is maximally
contained in Q.

Definition 3.1 (approximations). Given a class C of CQs and a query Q, a
query Q′ ∈ C such that Q′ ⊆ Q is a C-approximation of Q if there is no Q′′ ∈ C such
that Q′ ⊂ Q′′ ⊆ Q.

In other words, Q′ is an approximation of Q in C if it is guaranteed to return
correct results and no other query in C approximates Q better than Q′. It can be
equivalently proved that Q′ is a C-approximation of Q if Q′ ⊆ Q and no query Q′′ ∈ C
“agrees” with Q more than Q′ does [6]. The latter means that for every database D
and tuple ā of elements of D, if ā ∈ Q(D) but ā /∈ Q′(D), then also ā /∈ Q′′(D).

Before describing the classes in which we shall try to approximate CQs, we present
a useful view of approximations via orderings on queries and tableaux.

Approximations via ordering. Both CQs and their tableaux come natu-
rally equipped with two preorders: containment of CQs, and the existence of ho-
momorphisms between tableaux. These preorders are dual to each other [10]:
Q ⊆ Q′ ⇔ TQ′ → TQ. These relations are reflexive and transitive but not anti-
symmetric (as we may have different equivalent queries), hence they are preorders.
They become partial orders when restricted to cores, or minimized CQs. Indeed, if
both TQ′ → TQ and TQ → TQ′ hold, then TQ′ and TQ are homomorphically equiva-
lent and thus have the same core (which happens to be the tableau of the minimized
version of Q). The preorder → and its restriction to cores have been actively studied
over graphs, digraphs, and relational structures [25], and we shall rely heavily on their
properties in our proofs.

With this view, we can visualize Definition 3.1 as shown in Figure 1. The C-
approximations of Q are the “closest” elements of class C that are below Q in the
⊆ ordering. If we switch to the tableau view, then approximations are the closest
elements of C which are above the tableau of Q in the → ordering.

Good classes of queries. We look for approximations within tractable classes
of CQs, which include acyclic queries, as well as queries of bounded treewidth and
(generalized) hypertree width [11, 16, 20, 21, 23, 29, 41]. We now define the first two
(hypertree width is defined in section 6).
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We first need the notion of tree decompositions of hypergraphs of queries. Recall
that a hypergraph H = 〈V, E〉 has a set of nodes V and a set of hyperedges E ; each
hyperedge is a subset of V . For a CQ Q, its hypergraph H(Q) has all the variables
used in Q as nodes; the hyperedges are sets of variables that appear in the same atom.
For example, for the query with the body R(x, y, z), R(x, v, v), E(v, z), the hyperedges
are {x, y, z}, {x, v}, and {v, z}.

A tree decomposition of a hypergraph H = 〈V, E〉 is a tree T together with a map
f : T → 2V that associates a set of nodes in V with each node of T such that

1. each hyperedge from E is contained in one of the sets f(u) for u ∈ T ; and
2. for every v ∈ V , the set {u ∈ T | v ∈ f(u)} is a connected subset of T .

The width of a decomposition is maxu∈T |f(u)| − 1, and the treewidth of H is the
minimum width of its tree decompositions. If H is a tree (or a forest) to start with,
then its treewidth is 1. We refer to the classes of hypergraphs of treewidth at most k
as TW(k), and, slightly abusing notation, we use TW(k) to also denote the classes of
CQs (and their tableaux) whose hypergraphs have treewidth at most k.

A hypergraph is acyclic if there is a tree decomposition (T, f) of it such that
every f(u) is a hyperedge. A CQ is acyclic if its hypergraph is acyclic. We use AC
to denote the class of acyclic hypergraphs (and also acyclic CQs and their tableaux).
For queries over graphs, we have AC = TW(1). In general the notions of bounded
treewidth and acyclicity are incompatible (see, e.g., [16]).

4. Graph-based approximations. We start by looking for approximations
within classes of CQs defined in terms of its graph, which include queries of bounded
treewidth [11, 16, 23]. This condition fully characterizes tractability of CQ answer-
ing with respect to graph-based classes of queries [23] (under a certain complexity-
theoretic assumption): given a class C, query answering for graph-based C-queries is
tractable iff C ⊆ TW(k) for some k.

For the graph-based notions, one deals with the graph of query Q, denoted by
G(Q). The nodes of G(Q) are variables used in Q. If there is an atom R(x1, . . . , xn)
in Q, then G(Q) has undirected edges {xi, xj} for all 1 ≤ i < j ≤ n. We define classes
of queries in terms of classes C of graphs: a CQ Q is a graph-based C-query iff G(Q)
is in C.

The standard tractable classes of treewidth-k CQs do arise in this way. Indeed,
TW(k) is the class of queries defined by the class C of graphs that have treewidth
at most k (when viewed as a hypergraph). We call a CQ Q′ a graph-based C-
approximation ofQ if it is an approximation ofQ in the class of graph-based C-queries.

Several results from this section apply even for queries over graphs and treewidth
1 (e.g., size and complexity lower bounds). Recall that in such a context it is the case
that AC = TW(1), and hence those results apply as well for the hypergraph-based
notion of acyclicity.

4.1. Existence of approximations. We prove a very general result on the
existence of approximations, which shows good behavior of those for many classes of
queries. For this, we shall need two mild conditions only: The class C of graphs is
closed under taking subgraphs, and there is at least one graph-based C-query that is
contained in the query Q that is being approximated.

Theorem 4.1.

1. Let C be a class of graphs closed under taking subgraphs. Then every CQ Q
that has at least one graph-based C-query contained in it also has a graph-based
C-approximation.

2. Moreover, the number of nonequivalent graph-based C-approximations of Q is
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at most exponential in the size of Q, and every graph-based C-approximation
of Q is equivalent to one which has at most as many joins as Q.

Proof. Given a query Q(x̄), let HC(Q) be the set of all graph-based C-queries
whose tableaux are of the form (Im(h), h(x̄)), where h is a homomorphism defined on
(TQ, x̄). All such queries are contained in Q. Up to equivalence there are finitely many
elements in HC(Q). Moreover, it is nonempty. Indeed, there is a graph-based C-query
Q′(x̄′) with Q′ ⊆ Q and hence (TQ, x̄)

h−→ (T ′
Q, x̄

′) for some h (thus h(x̄) = x̄′). By
the closure under subgraphs we know that (Im(h), x̄′) is a tableau of a graph-based
C-query.

Now consider minimal elements, with respect to the preorder →, in the (tableaux
of) set HC(Q). We claim that they are graph-based C-approximations of Q. Indeed let
(Im(h0), x̄

′) be the tableau of one such element, with x̄′ = h0(x̄). If it is not a graph-
based C-approximation, then there exists a graph-based C-query, whose tableau is

(T, x̄′′), such that (TQ, x̄)
g−→ (T, x̄′′)

g1−→ (Im(h0), x̄
′) for some homomorphisms g

and g1 such that (Im(h0), x̄
′) �→ (T, x̄′′). Hence we have (TQ, x̄)

g−→ (Im(g), x̄′′)
g1−→

(Im(h0), x̄
′), as well as (Im(h0), x̄

′) �→ (Im(g), x̄′′), and (Im(g), x̄′′) is the tableau of a
graph-based C-query since C is closed under taking subgraphs. Hence, (Im(g), x̄′′) is
the tableau of a CQ in HC(Q) and (Im(g), x̄′′) �� (Im(h0), x̄

′), which contradicts the
minimality of (Im(h0), x̄

′).
If Q′(x̄′) is a graph-based C-approximation, then (TQ, x̄)

h−→ (TQ′ , x̄′) and thus
(TQ, x̄)

h−→ (Im(h), x̄′), with Im(h) being a substructure of TQ′ , and (Im(h), x̄′) the
tableau of a graph-based C-query. It follows that (Im(h), x̄′) and (TQ′ , x̄′) are ho-
momorphically equivalent, and the CQ with tableau (Im(h), x̄′) is a graph-based C-
approximation equivalent to Q′. Hence, all graph-based C-approximations can be
chosen to have a tableau of the form (Im(h), x̄′), which shows that there are at most
exponentially many of them, and that they need not have more joins than Q.

Approximations for treewidth-k queries. There is a trivial query that
belongs to all TW(k)’s that every other CQ Q contains. Indeed, let Qtrivial be
the query on a single variable x that is obtained by taking the conjunction of all
atoms of the form R(x, . . . , x) for R a relation symbol in the vocabulary. Then,
for each query Q(x̄) with m free variables, we have via a constant homomorphism
(TQ, x̄) → (TQtrivial

, (x, . . . , x)), and thus Qtrivial is contained in Q.
This, together with Theorem 4.1 and the closure of TW(k) under taking sub-

graphs, gives us the following.
Corollary 4.2. Every CQ Q has a TW(k)-approximation for each k > 0.

4.2. Size and number of approximations. Let C-APPR(Q) be the set of all
graph-based C-approximations of Q. For each k ≥ 1, this set is nonempty when C
is TW(k). It is also infinite, but for a simple reason: each CQ has infinitely many
equivalent CQs.

It is well known though [10] that each CQ Q(x̄) has a unique (up to renaming
of variables) equivalent minimal query: in fact, this is the query whose tableau
is core(TQ, x̄). It is obtained by the standard process of minimization of CQs.
We thus denote by C-APPRmin(Q) the set of all minimizations of graph-based
C-approximations of Q.

From Corollary 4.2 and Theorem 4.1 we obtain the following.
Corollary 4.3. For every CQ Q and k ≥ 1, TW(k)-APPRmin(Q) is a finite

nonempty set of queries. The number of queries in those sets is at most exponential
in the size of Q, and each one has at most as many joins as Q. Moreover, a query
from TW(k)-APPRmin(Q) can be constructed in single-exponential time in |Q|.
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Hence, treewidth-k approximations fulfill the criteria from the introduction: they
always exist, they are not more complex than the original query, and they can be
found with reasonable complexity.

Note that the exponential bound in Corollary 4.3 is not due to the minimization
procedure, which actually happens to be polynomial for queries of fixed treewidth.
In general, there is a simple algorithm for finding approximations that just checks
homomorphisms on TQ and selects one whose image is minimal with respect to → ;
it runs in time 2O(n·logn), where n is the number of variables in Q. We shall discuss
the complexity in more detail in subsection 4.3.

As for the number of elements of C-APPRmin(Q), a simple upper bound is 2n·logn

(a better bound is the nth Bell number [4]). This raises the question of whether the
exponential number of approximating queries can be witnessed. We prove that this
is the case even for queries over graphs and treewidth 1.

Proposition 4.4. There is a family (Qn)n>0 of Boolean CQs over graphs
such that the number of variables and joins in Qn’s grows linearly with n, and
|TW(1)-APPRmin(Qn)| ≥ 2n for all n > 0.

Proof. We need some definitions and results from [25]. An oriented path P =
(u0, . . . , un) is a digraph with nodes u0, . . . , un and n edges such that either (ui, ui+1)
or (ui+1, ui) is an edge for each 0 ≤ i < n. We shall refer to edges (ui, ui+1) as forward
edges and to edges (ui+1, ui) as backward edges. The node u0 is the initial node of
the oriented path and un the terminal one. Typically, we depict an oriented path P
as an edge uv labeled with P , representing that the initial node of P is u and the
terminal node is v. An oriented cycle is an oriented path whose initial and terminal
nodes coincide.

We define the net length of P to be the number of forward edges minus the number
of backward edges of P . Often we write oriented paths as strings in {0, 1}∗, where 0
represents a forward edge and 1 represents a backward edge. For example, P = 001
means that P is the oriented path with two forward edges followed by a backward edge.

A digraph G is balanced if each one of its oriented cycles has net length 0, that is,
the number of forward edges equals the number of backward edges. For a balanced
digraph G and a node v in G, we define the level of v to be

max {net length of P | P is an oriented path in G with terminal node v}.
It can be proved that the level of v is finite since G is balanced [25]. We define

the height of G, denoted hg(G), to be the maximum level of a node in G.
The following is an important lemma from [25].
Lemma 4.5. Let G and H be two balanced digraphs of the same height. Then

any homomorphism from G to H preserves the levels of nodes.
We now prove Proposition 4.4. Consider the oriented paths P1 = 001000 and

P2 = 000100. It is straightforward to check that P1 and P2 are incomparable cores
(i.e., P1 �→ P2 and P2 �→ P1). We define the digraph D as follows: Consider the
digraph 〈V,E〉 such that V = {a, b, c, d} and E = {(a, b), (a, d), (c, b), (c, d)}. Add
disjoint copies of P1 and P2 and identify the initial node of the copy of P1 and P2,
with b and d, respectively. Then add two new disjoint copies of P1 and P2, and identify
the terminal node of the copy of P1 and P2 with a and c, respectively. The resulting
digraph D is depicted in Figure 2.

We also define Dac and Dbd as the digraphs obtained from D by identifying a
with c, and b with d, respectively. This is shown in Figure 3. Note that both Dac and
Dbd are balanced, and have height 9.

Claim 4.6. Dac and Dbd are incomparable cores.
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Fig. 3. Dac and Dbd, and some of its levels.

Proof. We first prove that Dac is a core. Assume otherwise. Then Dac
h−→ Dac,

where h is not surjective. Since Dac is balanced, Lemma 4.5 tells us that h preserves
levels. Figure 3 shows the different levels. Observe that the only node in Dac with
level 4 is e, thus h(e) = e. Note also that h(x1) is either x1 or x3. But h(x1) = x3

implies P1 → P2, which is impossible. It follows that h(x1) = x1. Similarly, we have
h(x3) = x3. Using the same argument, we have h(b) = b; otherwise h(b) = d and
P1 → P2. Similarly, h(d) = d. Finally, we must have h(x2) = x2 and h(x4) = x4. It
follows that h is surjective, which is a contradiction. Analogously, we have that Dbd

is a core.
We prove next that Dac and Dbd are incomparable. Assume otherwise. Suppose

first that Dac
h−→ Dbd. Observe that h preserves levels, since Dac and Dbd have the

same height. It follows that h(e) is either a or c. If h(e) = a, then h(x3) = y1. It
follows that P2 → P1. Similarly, if h(e) = c, it follows that P1 → P2. In any case,
we have a contradiction with the fact that P1 and P2 are incomparable. The case
Dbd �→ Dac is analogous.

For n ≥ 1, we define Gn to be the digraph constructed as follows: Take the union
of n disjoint copies of the digraph D. For each 1 ≤ i < n, add an edge from the
terminal node of the copy of P2 which starts in d in the ith copy of D to the initial
node of the copy of P1 which ends in a in the (i + 1)th copy of D. Figure 4 shows a
graphical depiction of G3.

Consider a string s ∈ {V,H}n for n ≥ 1. We define Gs
n to be the digraph obtained

from Gn by identifying in the ith copy of D, 1 ≤ i ≤ n, the nodes a and c if si = V
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Fig. 4. The digraph G3 and some of its levels.

(that is, turning the ith copy of D in Gn into Dac) and b and d if si = H (that is,
turning the ith copy of D in Gn into Dbd).

Claim 4.7. Let s, s′ ∈ {V,H}n for n ≥ 1 and assume that s �= s′. Then Gs
n and

Gs′
n are incomparable cores.

Proof. We first prove that Gs
n is a core for each s ∈ {V,H}n. Assume otherwise.

Then Gs
n

h−→ Gs
n, where h is not surjective. Observe that Gs

n is balanced and no two
nodes in different copies of Dac or Dbd in Gs

n can share a level, as shown in Figure
4. It follows from Lemma 4.5 that h maps the ith copy of Dac or Dbd in Gs

n to itself.
Thus, h is surjective in such a copy (because from Claim 4.6 both Dac and Dbd are
cores), and, therefore, h itself is surjective. This is a contradiction.

Now, assume that Gs
n

h−→ Gs′
n . Since Gs

n and Gs′
n have the same height, we have

from Lemma 4.5 that h preserves levels. Again, we have that h maps the ith copy
of Dac or Dbd in Gs

n to the ith copy of Dac or Dbd in Gs′
n , respectively. Since there

exists 1 ≤ j ≤ n such that the jth components of s and s′ are different, we have that
h maps Dac to Dbd, or vice versa. This contradicts Claim 4.6, which states that Dac

and Dbd are incomparable.
We state a claim about databases that will be useful in this proof and in other

proofs as well.

Claim 4.8. Let D and D′ be two databases over the same schema. If D h−→ D′

and h(a) = h(b) for a and b in D, then D∗ → D′, where D∗ is the database obtained
from D by identifying a and b with a new element c.

Proof. Just map c to h(a) = h(b) and all other elements to themselves.
For each n ≥ 1 and s ∈ {V,H}n, let Qn be the CQ whose tableau is Gn and Qs

n

the CQ whose tableau is Gs
n. Observe that each Qs

n has treewidth 1.
Claim 4.9. Qs

n is a TW(1)-approximation of Qn for each n ≥ 1 and s ∈ {V,H}n.
Proof. By contradiction, suppose that there exists a CQ Q′′ ∈ TW(1) such that

Gn
h−→ TQ′′ �� Gs

n. Consider the ith copy of D in Gn. If we restrict h to such a
copy, it must be the case that h(a) = h(c) or h(b) = h(d). Otherwise h(a), h(b),
h(c), and h(d) forms an oriented cycle in TQ′′ . With each i such that 1 ≤ i ≤ n we
associate a label ti ∈ {V,H} in the following way: If the restriction of h to the ith
copy of D in Gn satisfies h(a) = h(c), then ti = V ; otherwise ti = H . We then define
a word t in {V,H}n as t1t2 . . . tn. Using Claim 4.8 we have that Gt

n → TQ′′ , and, by
composition, Gt

n → Gs
n. Using Claim 4.7 we have t = s, and then Gs

n → TQ′′ , which
is a contradiction.

We conclude the proof of the proposition now. Observe that for each n ≥ 1 and
s ∈ {V,H}n it is the case that Qs

n ∈ TW(1)-APPRmin(Qn) (because Gs
n is a core).
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Therefore, |TW(1)-APPRmin(Qn)| ≥ 2n for all n ≥ 1. Furthermore, observe that the
number of variables in Qn is 28n and the number of joins is the number of edges in
Gn minus 1, that is, 29n − 2. Therefore, the family (Qn)n≥0 satisfies the required
conditions.

Reinterpretation of results for graphs. Let G be an arbitrary digraph and
T an acyclic digraph. We say that T is an acyclic approximation of G if G → T and
there is no acyclic T ′ such that G → T ′ and T ′ �� T .

Then our results imply the following.
Corollary 4.10.

• Every digraph G has an acyclic approximation.
• The number of nonisomorphic cores of acyclic approximations of G is at most
2n·logn, where n is the number of vertices of G.

• There exists a family Gn, n > 0, of cyclic digraphs so that the number of
edges and vertices in Gn’s grows linearly with n, and each Gn has at least 2n

nonisomorphic cores of acyclic approximations.

4.3. Complexity of computation and identification. We have seen that a
(minimized) treewidth-k approximation can be found in single-exponential time. Of
course this is expected given NP-hardness of most static analysis tasks related to
CQs. It is also in accordance with the following proposition, which states that if
treewidth-k approximations could be computed in polynomial time, then P = NP.

Proposition 4.11. Assume there exists a polynomial time algorithm that, given
a CQ Q, computes a TW(k)-approximation of Q for a fixed k ≥ 1. Then P = NP.

Proof. For each fixed k ≥ 1, the following problem is NP-complete [12]: Given a
Boolean CQ Q over graphs, check if Q is equivalent to a CQ in TW(k). We prove next
that, for each fixed k ≥ 1, this problem can be decided in polynomial time if we assume
the existence of a polynomial time algorithm A that computes TW(k)-approximations
for CQs over graphs.

Let A(Q) be the output of A on input a CQ Q. We claim that Q ⊆ A(Q) iff Q
is equivalent to a CQ Q′ in TW(k) (i.e., Q ≡ Q′). Assume first that Q ≡ Q′ for some
Q′ ∈ TW(k). Since A(Q) is a TW(k)-approximation of Q (and, thus, of Q′), it is the
case that A(Q) ⊆ Q′ ⊆ Q, and hence Q′ ≡ A(Q). It follows that Q ⊆ A(Q), which
was to be proved. On the other hand, if Q ⊆ A(Q), then Q ≡ A(Q) (because A(Q)
is a TW(k)-approximation of Q, and hence it is contained in Q). We conclude that Q
is equivalent to a CQ Q′ that belongs to TW(k).

Since checking whether Q ⊆ A(Q) corresponds to evaluating the bounded tree-
width query A(Q) in the tableau of Q, which can be done in polynomial time, we
conclude that the whole procedure can be done in polynomial time. This finishes the
proof of the proposition.

To do a more detailed analysis of complexity for approximations, we study the
following associated decision problem:

Problem: Treewidth-k Approximation

Input: a CQ Q, a treewidth-k CQ Q′.
Question: Is Q′ a treewidth-k approximation of Q?

To solve Treewidth-k Approximation, we need to check two things:
1. Q′ ⊆ Q; and
2. there is no Q′′ ∈ TW(k) such that Q′ ⊂ Q′′ ⊆ Q.

The first subproblem is solvable in NP. Checking whether there is a query
Q′′ ∈ TW(k) not equivalent toQ′ withQ′ ⊆ Q′′ ⊆ Q is solvable inNP too. This means



1098 PABLO BARCELÓ, LEONID LIBKIN, AND MIGUEL ROMERO

TQ → TQ′′ �� TQ′ , and hence such Q′′, if it exists, can always be chosen not to exceed
the size of Q. Therefore, one can guess TQ′′ and all homomorphisms in NP. Further-
more, since both TQ′′ and TQ′ have treewidth at most k, checking that TQ′ �→ TQ′′

can be done in polynomial time. Thus, the second subproblem is solvable in coNP.
Hence, to solve Treewidth-k Approximation, we need to solve an NP sub-

problem and a coNP subproblem. This means that the problem is in the complexity
class DP: this is the class of problems (languages) which are intersections of an NP

language and a coNP language [36]. It turns out that the problem is also hard for
the class, even when k = 1.

Theorem 4.12. The problem Treewidth-1 Approximation is DP-complete.
It remains DP-complete even if Q and Q′ are CQs over graphs, Q′ is fixed, and both
Q and Q′ are Boolean and minimized (i.e., their tableaux are cores).

DP-completeness appeared in database literature in connections with cores:
checking whether G′ = core(G), for two graphsG and G′, is known to be DP-complete
[13]. The source of DP-completeness in our case is completely different, as hardness
applies even if the tableaux of queries are cores to start with, and the proof, which is
quite involved, uses techniques different from those in [13]. We only sketch the main
ideas behind the proof here, since the complete proof is technical and lengthy. The
complete proof can be found in the appendix.

Proof (sketch) of Theorem 4.12. The class TW(1) over the vocabulary of graphs
contains all acyclic directed graphs, i.e., the directed graphs whose underlying
undirected graph contains no cycles. It thus suffices to show that the following
problem is DP-complete:

Problem: Graph Acyclic Approximation

Input: a digraph G, an acyclic digraph T .
Question: Is G → T, and is there no acyclic digraph A such that G → A �� T ?

In order to prove this, we consider the Exact Four Colorability problem:
Given a graph G, decide if G is 4-colorable but not 3-colorable. It is known that this
problem is DP-complete [38]. We provide a polynomial time reduction from Exact

Four Colorability to Graph Acyclic Approximation.
Using techniques from [26], we construct two digraphs T and T̃ . As Figure 5

shows, T consists of digraphs Z1, Z2, Z3, and Z4, whose only vertex in common is v.
Each of the distinguished vertices t1, t2, t3, and t4 represents a possible color. The
digraph T̃ has two distinguished vertices, p and q.

The key properties of T and T̃ are the following:
(1) If h : T̃ → T is an homomorphism, then h(p), h(q) ∈ {t1, t2, t3, t4} and

h(p) �= h(q).
(2) For any pair (t, t′) of elements of {t1, t2, t3, t4} with t �= t′, there exists a

homomorphism h : T̃ → T such that h(p) = t and h(q) = t′.
(3) If h : T̃ → T is an homomorphism and h(p) = ti or h(q) = ti for 1 ≤ i ≤ 4,

then the subgraph Zi is contained in the homomorphic image of h.
(4) For any pair (t, t′) of elements of {t1, t2, t3} with t �= t′, there exists an

homomorphism h : T̃ → T such that h(p) = t, h(q) = t′ and the homomorphic
image of h is contained in Z1 ∪ Z2 ∪ Z3.

Now, given a graph G we define ϕ(G) to be the digraph obtained from G by
replacing each edge {a, b} with a fresh copy of T̃ , where we identify p with a and
q with b. This is the first step of our construction. Using properties (1)–(4) it is
straightforward to prove the following.
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Fig. 5. The structure of T .

Claim 4.13. G is 4-colorable but not 3-colorable iff ϕ(G) → T and there is no
homomorphism from ϕ(G) to a proper subgraph of T .

Indeed, if G is 4-colorable, we can consider the set {t1, t2, t3, t4} to be the colors.
Using property (2) it follows that ϕ(G) → T . If there is a homomorphism h from ϕ(G)
to a proper subgraph of T , then there exists t∗ ∈ {t1, t2, t3, t4} such that h(a) �= t∗

for all a ∈ G (notice that each vertex of G can be viewed as a vertex of ϕ(G));
otherwise, by property (3), h would be surjective. Therefore, since the image of h over
G contains at most 3 elements from {t1, t2, t3, t4}, using property (1) it follows that G
is 3-colorable. This proves the forward direction. For the backward direction, notice
that ϕ(G) → T implies that G is 4-colorable, again using property (1). Finally, if G
is 3-colorable, we can consider the set {t1, t2, t3} to be the colors. Using property (4),
define the standard homomorphism h from ϕ(G) → T . Observe that h is not surjective
as it is contained in Z1 ∪ Z2 ∪ Z3.

As a corollary we obtain that the following problem is also DP-complete:

Problem: Exact Acyclic Homomorphism

Input: a digraph G, an acyclic digraph T .
Question: Is G → T and G �→ S for every proper subgraph S of T ?

At this point, ϕ(G) does not provide a reduction from Exact Four Colorabil-

ity to Graph Acyclic Approximation: It could be possible that there is no
homomorphism from ϕ(G) to a proper subgraph of T , but still there is an acyclic
digraph A such that ϕ(G) → A �� T . In other words, it is possible that the instance
(ϕ(G), T ) belongs to Exact Acyclic Homomorphism but not to Graph Acyclic

Approximation. We explain next how this problem can be avoided.
We modify ϕ(G) in order to have the following two properties: (†) (ϕ(G), T )

is still a reduction from Exact Four Colorability to Exact Acyclic Homo-

morphism, and (††) (ϕ(G), T ) ∈ Exact Acyclic Homomorphism iff (ϕ(G), T ) ∈
Graph Acyclic Approximation. This immediately implies DP-completeness of
Graph Acyclic Approximation. Our modification of ϕ(G) satisfies the following
property:

(P) Suppose that A is an acyclic digraph, h is an homomorphism from ϕ(G) to
A, g is a surjective homomorphism from A to T , and for each t ∈ {t1, t2, t3, t4} there
exists a vertex u of G such that g ◦ h(u) = t. Then there exists an homomorphism r
from T to A.

Observe that property (P) implies property (††): For the forward implication,
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assume that (ϕ(G), T ) ∈ Exact Acyclic Homomorphism and, by contradiction,
suppose that there exists an acyclic digraph A such that ϕ(G) → A �� T . Let h be
a homomorphism from ϕ(G) to A and g a homomorphism from A to T . Notice that
g must to be surjective; otherwise g ◦ h would be a homomorphism from ϕ(G) to a
proper subgraph of T . Moreover, it must be the case that for each t ∈ {t1, t2, t3, t4}
there exists a vertex u of G such that g ◦ h(u) = t. Assume otherwise. Then using
property (1) we can conclude that G is 3-colorable, and therefore that there exists a
homomorphism from ϕ(G) to a proper subgraph T (considering {t1, t2, t3} to be the
colors and then using property (4)). Thus, using property (P) it follows that T → A,
which is a contradiction. The backward direction is trivially true, as the existence of
a homomorphism h from ϕ(G) to a proper subgraph of T implies the existence of an
acyclic digraph A such that ϕ(G) → A �� T : it suffices to consider the homomorphic
image Im(h) of ϕ(G) in T . Notice that Im(h) is acyclic, ϕ(G) → Im(h) → T, and
T �→ Im(h), since T is a core.

The idea of the construction is to consider a digraph Q∗ such that Z1, Z2, Z3,
and Z4 are acyclic approximations of Q∗. Moreover, Q∗ has an “initial vertex” x and
a “terminal vertex” y. Now, we add to ϕ(G) a fresh node v0, and for each vertex u in
ϕ(G) that corresponds to a vertex of G we add a fresh copy of Q∗, identifying x with
v0 and y with u.

Using the structure of Q∗ it can be shown that ϕ(G) is still a reduction from
Exact Four Colorability, i.e., that satisfies property (a). Moreover, it can be
shown that it satisfies property (P). The intuition behind this is as follows: if A is an
acyclic digraph as in property (P), we can choose u1, u2, u3, and u4 from G such that
g◦h(ui) = ti for each 1 ≤ i ≤ 4. Each ui has an associated copy Q∗

i of Q∗. Each of the
Q∗

i ’s must be mapped via h to an acyclic subgraph Ai of A. At the same time, each
Ai must be mapped via g to Zi. Thus, since Zi is actually an acyclic approximation
of Q∗, there exists a homomorphism ri from Zi to Ai for each 1 ≤ i ≤ 4. These
homomorphisms can be combined to define a homomorphism r from T to A.

Our construction of ϕ(G) does not necessarily yield a digraph that is a core.
However, by applying a more involved construction we can force ϕ(G) also to be a
core. The technical details can be found in the appendix.

5. Queries over graphs. In this section we look more closely at queries over
graphs. That is, the vocabulary σ has a single binary relation E(·, ·), interpreted as a
directed graph. In this restricted scenario we prove several results about the structure
of approximations in graph-based classes.

5.1. Acyclic approximations. We study acyclic (or, equivalently, treewidth-1)
approximations in detail for graph queries. We begin with the case of Boolean queries,
when the tableau of a query is just a graph, and show a trichotomy theorem for them,
classifying approximations based on graph-theoretic properties of the tableau. Note
that a query is acyclic iff its tableau has no oriented cycles of length 3 or more.

5.1.1. Boolean queries. These queries are of the form Q() :– . . . and thus pro-
duce yes/no answers; their tableaux are simply directed graphs TQ. We have already
discussed them in the introduction, and mentioned that for nontrivial approximations,
the tableau must be bipartite. Recall that a digraph G is bipartite if G → K�

2 , i.e.,
G is 2-colorable: its nodes can be split into two disjoint subsets, A and B, so that all
edges have endpoints in different subsets.

Recall the example from the introduction: the cyclic query Q1() :– E(x, y),
E(y, z), E(z, x) had a trivial acyclic approximation Qtriv() :– E(x, x) (which is con-
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tained in every Boolean graph query). The reason for that was TQ1 was not bipartite.
In the introduction, we saw an example of a query with a bipartite tableaux that
had a nontrivial approximation stating the existence of a path of length 4. Note
that every query whose tableau is bipartite will contain the trivial bipartite query
Qtriv

2 () :– E(x, y), E(y, x), whose tableau is K�
2 . For some bipartite queries, e.g.,

Q3() :– E(x, y), E(y, z), E(z, u), E(x, u), this trivial query is the only acyclic approx-
imation. This behavior is caused by the cycle being unbalanced. We next define this
concept [25], and then state the trichotomy result.

We now recall several notions from [25] that have already been introduced in
the proof of Proposition 4.4. An oriented cycle is a digraph with nodes u1, . . . , un

and n edges such that either (ui, ui+1) or (ui+1, ui) is an edge, for each i < n, and
either (u1, un) or (un, u1) is an edge. Edges (ui, ui+1) and (un, u1) are forward edges
and edges (ui+1, ui) and (u1, un) are backward edges. An oriented cycle is balanced if
the number of forward edges equals the number of backward edges, and a digraph is
balanced if every oriented cycle in it is balanced.

Now we can state a trichotomy result for acyclic approximations of Boolean CQs
over graphs.

Theorem 5.1. Let Q be a Boolean CQ over graphs. Then if its tableau TQ

• is not bipartite, then Q has only the trivial acyclic approximation Qtriv (up
to equivalence);

• is bipartite but not balanced, then Q’s only acyclic approximation (up to equiv-
alence) is the trivial bipartite query Qtriv

2 ;
• is bipartite and balanced, then none of Q’s acyclic approximations is trivial,
and none contains two subgoals of the form E(x, y), E(y, x).

Proof. Suppose the tableau TQ is not bipartite, and let Q′ be an acyclic ap-
proximation of Q. If TQ′ has no loops, then, by acyclicity, it is bipartite; hence

TQ → TQ′ → K�
2 , which contradicts the nonbipartiteness of TQ. Hence TQ′ has a

loop, and Q′ is equivalent to Qtriv.
Let TQ be bipartite and not balanced, and let Q′ be an acyclic approximation

of Q. We prove that TQ′ is homomorphically equivalent to K�
2 . Note that TQ′ has

no loops: otherwise TQ → K�
2 �� TQ′ , and Q′ is not an approximation. Thus, TQ′

is bipartite and TQ′ → K�
2 . For the converse, assume K�

2 �→ TQ′ . Then K�
2 is

not a subgraph of TQ′ . Since Q′ is acyclic, this implies that TQ′ is balanced, and
the following claim shows that TQ → TQ′ implies that TQ is balanced too, which is a
contradiction.

Claim 5.2. Balanced digraphs are closed under inverse homomorphisms. That
is, if G → H and H is balanced, then G is balanced.

Proof. We use the following characterization of balanced digraphs from [25]: G is

balanced iff G → �Pk for some k ≥ 1, where �Pk denotes the directed path of length k.
Now, suppose G → H and H is balanced. Then H is homomorphic to a directed path,
and, by composition, G is homomorphic to such a directed path as well. Therefore,
G is balanced.

Finally, let TQ be bipartite and balanced, and let Q′ be an acyclic approximation
of Q. As above, we see that Q′ is not equivalent to the trivial CQ. We now prove
that K�

2 is not a subgraph of TQ′ , implying the result. Assume otherwise; since

TQ is balanced, we have that TQ → �Pk for some k [25]. Since �Pk �� K�
2 , we have

TQ → �Pk �� TQ′ , which contradicts the minimality of TQ′ .
Note that the conditions used in the theorem—being bipartite and balanced—can

be checked in polynomial time [25, 40].
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As a corollary to the proof of the previous theorem, we obtain the following.
Corollary 5.3. Let Q be a Boolean cyclic CQ over graphs. Then all minimized

acyclic approximations of Q have strictly fewer joins than Q.
Proof. Let Q′ be a minimized acyclic approximation of Q. It suffices to show that

the tableau TQ′ has strictly fewer edges than the tableau TQ. We denote by |E(TQ′)|
and |TQ′ | the numbers of edges and nodes in TQ′ , respectively.

If TQ is not bipartite, or if is bipartite but not balanced, using Theorem 5.1 and
the fact that TQ has at least 3 edges (TQ is cyclic), we have the result.

Now, if TQ is bipartite and balanced, we know that K�
2 � TQ′ (Theorem 5.1),

and since TQ′ is a core (Q′ is a minimized CQ), we know that TQ′ is a homomorphic

image of TQ, via some h, that is, TQ
h−→ TQ′ , where Im(h) = TQ′ . It suffices to show

that there are two edges in TQ which are mapped via h to the same edge in TQ′ .
Since TQ is cyclic there exists a connected component of TQ which is cyclic, namely,
H (connected in the sense that Hu is connected). Let h′ be the restriction of h to

H . Note that Im(h′) is connected and acyclic, and since K�
2 � Im(h′), it follows

that |E(Im(h′))| = |Im(h′)| − 1 ≤ |H | − 1. Finally, observe that |E(H)| > |H | − 1;
otherwise, since H is connected, then H would be acyclic, which is a contradiction.
Thus, |E(Im(h′))| < |E(H)| and h′ maps two edges to one edge in TQ′ . In particular,
h maps two edges to one edge in TQ′ .

Reformulating our results in terms of graphs, we obtain the following.
Corollary 5.4. For every cyclic digraph G and its acyclic approximation T ,

the core of T has strictly fewer edges than G. Moreover, T is not homomorphically
equivalent to a single loop iff G is bipartite.

Theorem 5.1 says that the most interesting case, for graph queries, is when the
tableau is bipartite and balanced (as we already mentioned in the introduction, for
relations of higher arity, such restrictions need not be imposed). A natural question
is whether CQs with such tableaux are still intractable (i.e., whether it still makes
sense to approximate them). We prove next that this is the case.

Proposition 5.5. The combined complexity of evaluating Boolean CQs over
graphs whose tableaux are bipartite and balanced is NP-complete.

Proof. Note that any balanced digraph is bipartite; thus bipartite and balanced
digraphs are exactly balanced digraphs. It suffices to prove (due to the correspondence
between CQs and tableaux) that the following equivalent problem is NP-complete:
Given a balanced digraph G and a digraph H , check if G → H .

It is known that there exists an oriented tree T (undirected tree plus orientation
in the edges) such that the following problem is NP-complete [25]: Given a digraph
G, decide if G → T . This problem remains NP-complete even for G balanced, since
a digraph homomorphic to T must be balanced (using Claim 5.2 and the fact that
any oriented tree is balanced). Thus the result follows and, in fact, the problem is
NP-complete even if H is a fixed oriented tree.

We conclude our investigation of Boolean CQs with a remark on a subclass of
acyclic approximations with special properties. A query Q′ is a tight C-approximation
of Q if it is a C-approximation of Q and there is no query Q′′ such that Q′ ⊂ Q′′ ⊂ Q.
It is not clear a priori whether such approximations exist, and for which classes C they
might exist. The results of [35] (reformulated in terms of tableaux of queries) imply
that if a tight C-approximationQ′ of a query Q is minimized and connected, then Q′ is
acyclic. Hence, tightness forces the approximating query to be acyclic. The next ques-
tion is whether acyclic tight approximations exist. We can show that this is the case.

Proposition 5.6. There is an infinite family of nonequivalent Boolean CQs
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Qn, Q
′
n for n > 0 such that Q′

n is a tight acyclic approximation of Qn.
Proof. Let Gk be the digraph constructed as follows. Take two disjoint copies

of a directed path of length k, the first on nodes x0, x1, . . . , xk, and the second on
nodes y0, y1, . . . , yk. Then add edges (x0, y2), (x1, y3), . . . , (xi, yi+2), . . . , (xk−2, yk).
The picture is shown below.

• ��

���
��

� •
���

��
� ... ... •

���
��

�
�� •

���
��

�
�� • �� •

• �� • �� • �� • ... • �� • �� •

It can then be shown that �Pk+1, the path of length k + 1, has two properties, as
long as k ≥ 3:

1. Gk → �Pk+1; and

2. there is no digraph G such that Gk �� G �� �Pk+1.
The first property is immediate. To show the second, we use the standard con-

struction for gaps in the lattice of digraphs [35]: we take �Pk+1 and compute its dual
Fk (following the procedure in [35] or in Theorem 3.35 in [25]), which has the follow-

ing property: for every digraph H , either H → Fk or �Pk+1 → H holds. Then we

take the digraph Fk × �Pk+1. Of course Fk × �Pk+1 → �Pk+1; the results of [35] further

tell us that there is no digraph between Fk × �Pk+1 and �Pk+1 in the → ordering. We

then compute the core of Fk × �Pk+1, which happens to be Gk. We omit the tedious
calculations.

With properties 1 and 2 above established, we simply take Qn to be the query
whose tableau is Gn+2 (as the properties above are guaranteed starting with G3) and

Q′
n to be the CQ whose tableau is �Pn+3.

Example 5.7. Consider a Boolean query Q whose tableau is the digraph below,
in which number k above an edge represents a path of length k:

• •��
3

���
��

�

•
2 ������

3 ���
��

� •

• •�� 2

������

This digraph is bipartite and balanced, so Theorem 5.1 tells us that it has non-
trivial acyclic approximations. In fact it can be shown that Q has a unique (up to
equivalence) acyclic approximation Q′, whose tableau is the path of length 4 (i.e., the
query Q′() :– P4(x

′, x, y, z, u) mentioned in the introduction).
The same Q′ serves as a tight acyclic approximation to the query, whose tableau

is

• ��

���
��

� • ��

���
��

� • �� •

• �� • �� • �� •
This is exactly the query Q2 from the introduction, for which, as stated there, Q′

is an acyclic approximation.

5.1.2. Non-Boolean queries. For CQs with free variables, it is still true that
those whose tableaux are bipartite have nontrivial acyclic approximations. However,
now some queries with nonbipartite tableaux may have approximations whose bodies
do not trivialize to just E(x, x). For example, consider a query Q(x, y) :– E(x, y),
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E(y, z), E(z, x). It can be shown easily that Q′(x, y) :– E(x, y), E(y, x), E(x, x) is an

acyclic approximation of it; the tableau of Q′ is K�
2 with a loop on one of the nodes

(recall that the definition of query acyclicity refers to tree decompositions of the query
hypergraphs, so Q′ is indeed acyclic).

What distinguishes the case of bipartite tableaux now when we look at queries
with free variables is that they do not have subgoals of the form E(x, x) in approxi-
mations. That is, we have the following dichotomy.

Theorem 5.8. Let Q(x̄) be a cyclic CQ over graphs. If its tableau TQ

• is not bipartite, then all of Q’s acyclic approximations have a subgoal of the
form E(x, x);

• is bipartite, then Q has an acyclic approximation without a subgoal of the
form E(x, x).

Proof. Suppose that the tableau TQ of Q is not bipartite and let Q′ be an acyclic
approximation of Q. Suppose that TQ′ has no loops. Then TQ′ is bipartite (since T u

Q′

is acyclic), implying that TQ′ → K�
2 . Since TQ → TQ′ , we have that TQ → K�

2 as
well. It follows that TQ is bipartite, which is impossible. Therefore, TQ′ has loops,
i.e., Q′ has a subgoal of the form E(x, x).

Now, suppose that the tableau TQ of Q is bipartite. Using an argument similar to
the proof of Theorem 4.1 we shall prove that there exists an acyclic approximation of
Q without a subgoal of the form E(x, x), i.e., whose tableau has no loops. Let AQ be
the set of all digraphs with distinguished elements (H, ū) such that Hu is acyclic and
has no loops, (TQ, x̄) → (H, ū), and |H | ≤ |TQ|+1 (where |G| is the number of nodes
of the digraph G). Clearly, AQ is finite. Moreover, it is not empty, since there exists

a homomorphism h from TQ to K�
2 (this follows from the fact that TQ is bipartite),

and this implies that (K�
2 , h(x̄)) is contained in AQ. We can pick a minimal element

(with respect to →) (H ′, ū′) from AQ. We shall show that Q′(ū′), the CQ whose
tableau is (H ′, ū′), is an acyclic approximation of Q. Suppose not; then there exists

an acyclic CQ Q′′(x̄′′) such that (TQ, x̄)
g−→ (TQ′′ , x̄′′) �� (H ′, ū′). Observe that

(Im(g), x̄′′) has no loops (otherwise, (TQ′′ , x̄′′) �→ (H ′, ū′)), Im(g)u is acyclic (since
Im(g) is subgraph of TQ′′), (TQ, x̄) → (Im(g), x̄′′), and |Im(g)| ≤ |TQ|. Therefore,
(Im(g), x̄′′) is contained in AQ. Finally, note that (Im(g), x̄′′) �� (H ′, ū′), which
contradicts the minimality of (H ′, ū′) in AQ. Thus, Q

′ is an acyclic approximation of
Q, and since TQ′ = H ′ has no loops, we have the result.

Notice that the previous theorem actually generalizes Theorem 5.1, since a
Boolean CQ is trivial iff its tableau has a loop. However, when the query is not
Boolean the latter is not necessarily true.

For Boolean queries we saw that acyclic approximations also have strictly fewer
joins than Q. With free variables, the number of joins may sometimes be the same
as for Q itself.

Proposition 5.9. There is a non-Boolean cyclic CQ over graphs such that all
of its minimized acyclic approximations have exactly as many joins as Q.

Proof. Consider the following query:

Q(x1, x2, x3) :– E(x1, x2), E(x2, x3), E(x3, x4), E(x4, x1).

This query is minimized. Its tableau, which we denote by (G, x1, x2, x3), contains an
oriented cycle on nodes x1, x2, x3, x4, with x1, x2, x3 being distinguished nodes.

Let G′ = 〈V ′, E′〉 be a digraph containing nodes x′
1, x

′
2, x

′
3 (not necessarily dis-

tinct) so that (G′, x′
1, x

′
2, x

′
3) is a tableau of an acyclic approximation of Q. We know

that (G′, x′
1, x

′
2, x

′
3) is an image of some homomorphism h defined on G. Note that if
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the homomorphism h were one-to-one, then all the edges of G would be present in G′

and thus G′ would be cyclic. Hence, |V ′| ≤ 3.
By definition, h(xi) = x′

i for 1 ≤ i ≤ 3. Consider first a homomorphism h so that
x′
i’s, for 1 ≤ i ≤ 3, are distinct. Then there are three possibilities where x4 could be

mapped:
• If h(x4) = x′

1 or h(x4) = x′
3, then Im(h) is a cyclic digraph, contradicting the

assumption.
• If h(x4) = x′

2, we get a digraph consisting of two copies of K�
2 , i.e., a

graph G0 with nodes x′
i, 1 ≤ i ≤ 3, and edges (x′

1, x
′
2), (x

′
2, x

′
1) as well

as (x′
2, x

′
3), (x

′
3, x

′
2). The corresponding query Q0(x

′
1, x

′
2, x

′
3) :– E(x′

1, x
′
2),

E(x′
2, x

′
1), E(x′

2, x
′
3), E(x′

3, x
′
2) has the same 3 joins as the original query.

Next we see what happens when h collapses some of xi’s for 1 ≤ i ≤ 3. First we
look at the cases when h collapses two of those. Suppose we collapse x1 and x2, i.e.,
h(x1) = h(x2) (and thus x′

1 = x′
2) and x′

3 �= x′
1. There are three possibilities for x4:

• If h(x4) = x′
1 = x′

2, then Im(h) is the digraph G1 with nodes x′
1, x

′
3 and edges

(x′
1, x

′
3), (x

′
3, x

′
1), (x

′
1, x

′
1), with distinguished nodes (x′

1, x
′
1, x

′
3). It is routine

to check that (G0, x
′
1, x

′
2, x

′
3) �� (G1, x

′
1, x

′
1, x

′
3), and hence the result of this

homomorphism is not an acyclic approximation.
• If h(x4) = x′

3, then the image of h is a digraph with 4 edges, hence corre-
sponding to a query with 3 joins, same as in the original Q.

• If h(x4) is different from x′
1, x

′
2, x

′
3, then Im(h) has a cycle.

The case when x2 and x3 are collapsed to the same node by h is completely
symmetric. Now assume that h collapses x1 and x3, i.e., x

′
1 = x′

3. Again there are
three cases.

• If h(x4) = x′
2, then the image of h is (G2, x

′
1, x

′
2, x

′
1) where G2 is a copy ofK�

2

on x′
1, x

′
2. In this case again we easily verify (G0, x

′
1, x

′
2, x

′
3) �� (G2, x

′
1, x

′
2, x

′
1),

meaning that the latter cannot be an acyclic approximation.
• If h(x4) = x′

1, then the image of the original tableau is the same digraph as
in the previous case, plus a loop on x′

1. Hence, the same argument as above
shows that it cannot be an acyclic approximation.

• Otherwise, if h(x4) is different from x′
1, x

′
2, x

′
3, then Im(h) is a union of two

copies of K�
2 , and thus it has the same 3 joins as the original query.

Finally, if h collapses all nodes (say to x′
1), there are two possibilities.

• If h(x4) = x′
1, then we end up with a trivial query with the tableau

(K�
1 , x′

1, x
′
1, x

′
1), where K�

1 is the digraph that consists of a directed loop
on a single element, and clearly (G0, x

′
1, x

′
2, x

′
3) �� (K�

1 , x′
1, x

′
1, x

′
1).

• If h(x4) = x′
4 �= x′

1, then Im(h) consists of a copy of K�
2 on x′

1 and x′
4, as

well as a loop on x′
1. In this case we again easily verify that (G0, x

′
1, x

′
2, x

′
3)

�� (Im(h), x′
1, x

′
1, x

′
1).

Hence, in all the cases when the number of joins is reduced, the resulting query
is not an acyclic approximation, which proves the proposition.

5.2. Bounded treewidth queries. We have already seen that treewidth-k ap-
proximations of a CQ Q always exist, that they cannot exceed the size of Q, and that
they can be constructed in single-exponential time. There is an analogue of the di-
chotomy for acyclic queries, in which bipartiteness (i.e., being 2-colorable) is replaced
by (k + 1)-colorability for TW(k).

Theorem 5.10. Let Q be a CQ over graphs. If its tableau TQ

• is not (k + 1)-colorable, then all of its TW(k)-approximations have a subgoal
of the form E(x, x);
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• is (k + 1)-colorable, then Q has a TW(k)-approximation without a subgoal of
the form E(x, x).

Proof. We use arguments similar to the proof of Theorem 5.8. We also use the
well-known result that each digraph without loops of treewidth at most k is (k + 1)-

colorable, or, equivalently, is homomorphic to K�
k+1.

Assume first that the tableau TQ of Q is not (k + 1)-colorable and let Q′ be a
TW(k)-approximation of Q. Assume for the sake of contradiction that TQ′ has no

loops. Then TQ′ is (k + 1)-colorable, implying that TQ′ → K�
k+1. Since TQ → TQ′ ,

we have that TQ → K�
k+1 as well. It follows that TQ is (k + 1)-colorable, which is a

contradiction. Therefore, TQ′ has loops, i.e., TQ′ has a subgoal of the form E(x, x).
Assume, on the other hand, that the tableau TQ of Q is (k+ 1)-colorable and let

AQ be the set of all digraphs with distinguished elements (H, ū) such that Hu has
treewidth at most k and has no loops, (TQ, x̄) → (H, ū), and |H | ≤ |TQ|+ k. Clearly,
AQ is finite. Moreover, it is not empty, since there exists a homomorphism h from

TQ to K�
k+1 (TQ is (k+1)-colorable), and this implies that (K�

k+1, h(x̄)) is contained
in AQ. We pick a minimal element (with respect to →) (H ′, ū′) from AQ. We shall
show that Q′(ū′), the CQ whose tableau is (H ′, ū′), is a TW(k)-approximation of
Q. Suppose not; then there exists a CQ Q′′(x̄′′) with treewidth at most k such that

(TQ, x̄)
g−→ (TQ′′ , x̄′′) �� (H ′, ū′). Observe that (Im(g), x̄′′) has no loops (otherwise,

(TQ′′ , x̄′′) �→ (H ′, ū′)), Im(g)u has treewidth at most k (since Im(g) is subgraph of
TQ′′), (TQ, x̄) → (Im(g), x̄′′), and |Im(g)| ≤ |TQ|. Therefore, (Im(g), x̄′′) is contained
in AQ. Finally, note that (Im(g), x̄′′) �� (H ′, ū′), which is a contradiction with the
minimality of (H ′, ū′) in AQ. Thus, Q′ is a TW(k)-approximation of Q, and since
TQ′ = H ′ has no loops, we have the result.

Recall that a Boolean CQ Qtriv() :– E(x, x) is a trivial (acyclic, or treewidth-k)
approximation of every Boolean CQ. In the acyclic case, 2-colorability (or bipartite-
ness) of TQ was equivalent to the existence of nontrivial approximations. This result
extends to treewidth-k.

Corollary 5.11. A Boolean CQ Q over graphs has a nontrivial TW(k)-approxi-
mation iff its tableau TQ is (k + 1)-colorable.

Proof. Let Q′ be a TW(k)-approximation of Q. Assume first that the tableau
TQ of Q is not (k + 1)-colorable. Using Theorem 5.10 we know that TQ′ has loops.
Therefore, Q′ is equivalent to Qtriv. Now, assume that the tableau TQ of Q is (k+1)-

colorable. If TQ′ has loops, we have that TQ → K�
k+1 �� TQ′ , which is a contradiction

with the minimality of TQ′ because K�
k+1 is of treewidth k. Then TQ′ has no loops,

i.e., is not equivalent to Qtriv.
Note the big difference in the complexity of testing for the existence of nontrivial

approximations: while it is in Ptime in the acyclic case, the problem is already
NP-complete for TW(2).

If a Boolean CQ Q has a nontrivial TW(k)-approximation, then the query Qtriv
k+1

with the tableau K�
k+1 is contained in Q. For k = 1, we had a necessary and suffi-

cient condition for such a query to be an approximation (it was the Ptime-testable
condition of not being balanced; see Theorem 5.1). For TW(k), we do not have such
a characterization, but we do know that even for TW(2), the criterion will be much
harder than for the acyclic case due to the following.

Proposition 5.12. For every k > 1, testing, for a Boolean CQ Q over graphs,
whether Qtriv

k+1 is a TW(k)-approximation of Q is NP-hard.
Proof. Let k > 1. We shall prove that there is a polynomial reduction from the
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(k + 1)-coloring problem to our problem. Let G be a graph. The reduction returns

the CQ ϕ(G) whose tableau is �G + K�
k+1, where + denotes disjoint union, and �G

is the directed version of G obtained by replacing each undirected edge {a, b} in G
with both (a, b) and (b, a). We prove next that G is (k + 1)-colorable iff Qtriv

k+1 is a
TW(k)-approximation of ϕ(G).

Suppose that G is (k+1)-colorable; then �G → K�
k+1, implying that the tableau of

ϕ(G) is homomorphically equivalent to K�
k+1, the tableau of Qtriv

k+1. Therefore, ϕ(G)

is equivalent to Qtriv
k+1, and thus Qtriv

k+1 is a TW(k)-approximation of ϕ(G).

Suppose, on the other hand, that Qtriv
k+1 is a TW(k)-approximation of ϕ(G). In

particular, we have that Tϕ(G) → TQtriv
k+1

, implying that �G → K�
k+1. Therefore, G is

(k + 1)-colorable.
Thus, while the behavior of acyclic and treewidth-k approximations for k > 1 is in

general similar, testing conditions that guarantee certain properties of approximations
is harder even for treewidth 2, compared to the acyclic case.

5.3. Graphs vs. higher-arity relations. We now contrast graph queries with
those that use relations of higher arity to demonstrate that higher arity gives a lot
more freedom for finding interesting approximations. Since we deal with graph-based
classes of queries, we shall be looking for the strongest, i.e., TW(1)-approximations.
Suppose we have an arbitrary query Q with n variables. Then the maximum possible
treewidth of Q is n−1. We look for approximation that decrease the treewidth in the
strongest possible way. That is, we say that Q′ is a strong treewidth approximation of
Q if Q′ is a TW(1)-approximation of Q, and Q has the maximum possible treewidth
> 1 (i.e., its treewidth is the number of variables minus 1).

For this subsection we deal with Boolean queries and assume that the vocabulary
consists of one m-ary relation R; when m = 2, we deal with graphs. In fact, in the
case of graphs the notion of strong treewidth approximation trivializes: if Q′ is a
strong treewidth approximation of Q, then Q′ is equivalent to the trivial query Qtriv.
Indeed, if Q is of maximum possible treewidth > 1, then G(Q) is Kn (perhaps with
some loops), and hence for n > 2 it is not bipartite, implying triviality of TW(1)-
approximation.

However, when m > 2, there are many possible strong treewidth approximations,
even in cases that appear to be close to the cases of graphs admitting only trivial
approximations. So for now fix m > 2 and assume that Q′ is a strong treewidth
approximation of Q. First observe that Q′ can have at most 2 variables: indeed, since
G(Q) is a Kn (perhaps with loops), then if G(Q′) has at least 3 nodes, it would have
a triangle and hence be of treewidth at least 2. So we call a Boolean query Q′ over
an m-ary relation R a potential strong treewidth approximation if G(Q′) has at most
2 nodes.

Proposition 5.13. Let Q′ be a potential strong treewidth approximation. As-
sume that Q′ is nontrivial. Then, for every n > m, there is a CQ Q with n variables
such that Q′ is a strong treewidth approximation of Q. Moreover, if the query Q′ has
k atoms, then Q can be chosen to have at most k + n(n−1)

2 − 1 atoms.
Proof. Observe that in every atom inQ′ one variable occurs at least twice. Assume

first that there is an atom in which some variable occurs exactly twice, say, an atom
R(x, . . . , x, y, y). Then in Q we put atoms R(x1, . . . , x1, xi, xj) for all 2 ≤ i ≤ j ≤ n,
assuming Q has variables x1, . . . , xn. For every other atom R(x, . . . , x, y, . . . , y) with r
occurrences of y we put in Q the atom R(x1, . . . , x1, x2, . . . , xr+1) (of course variables
can occur in an arbitrary order; we simply replace all the occurrences of x with x1
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and r occurrences of y with x2, . . . , xr+1, in the same order in which the y’s occur in
the atom). The construction ensures that G(Q) is Kn, and it is easy to verify that

Q has at most k + n − 2 + (n−1)(n−2)
2 = k + n(n−1)

2 − 1 atoms, as only one atom in
Q′ generates multiple atoms in Q. The mapping sending x1 to x and every xi with
i > 1 to y is a homomorphism showing Q′ ⊆ Q. If there were TW(1)-approximation
Q′′ of Q with Q′ ⊂ Q′′ ⊂ Q, then G(Q′′) would be K2 (perhaps with loops), so a
homomorphism of the tableau of Q′′ into the tableau of Q′ can only be the identity,
or swapping the roles of variables x and y. Using this one easily verifies that Q′ is an
approximation.

If we do not have an atom with exactly two occurrences of a variable, then pick
an atom with a minimum number p of repetitions of a variable, say, R(x, . . . , x,
y, . . . , y), where y occurs p times. Then we replace it by putting in Q atoms R(x1, . . . ,
x1, x2, . . . , xp−1, xi, xj) with p ≤ i < j ≤ n (where x1’s correspond to the positions of
x). In addition, we put in Q atoms R(x1, . . . , x1, xi, . . . , xi, xi, xi) whenever 2 ≤ i ≤
n. The proof then is the same (only the number of atoms in Q gets smaller).

Recall that for Boolean graph queries (m = 2), TW(1)-approximations strictly
decrease the number of joins. Beyond graphs, however, this need not be the case.

Proposition 5.14. For every k ≥ 3, one can find a relation symbol R of arity
m > 2, and two minimized conjunctive queries Q and Q′ over R with the same number
of joins such that Q′ is a strong treewidth approximation of Q.

Proof. We take m, the arity of R, to be equal to k. In Q, the first three atoms are
R(x1, x2, x3, x4, . . . , xk), R(x2, x1, xk+1, x4, . . . , xk), and R(x3, xk+1, x1, x4, . . . , xk).
The next k − 3 atoms are of the form R(xj , xj , . . . , xj , x1, xj , . . . , xj), where x1 ap-
pears in the jth position; here 4 ≤ j ≤ k. In Q′, we have k atoms of the form
R(x, y, . . . , y), R(y, x, y, . . . , y), . . . , R(y, . . . , y, x), i.e., x appears once, every time in
a different position. It is straightforward to verify all three conditions of the proposi-
tion.

A slight drawback of the previous result is that it requires relations of high arity.
But we can show that already for ternary relations, the behavior of strong treewidth
approximations is drastically different from the graph case.

Consider the query Qtr() :– R(x, y), R(y, z), R(z, x); it states that a graph con-
tains a triangle. Its graph is not bipartite, since G(Q) = K3, and hence it only has
trivial TW(1)-approximation.

We now look at ternary relations R. We call an instance R of a ternary relation
an almost-triangle if there is an element that belongs to every triple of R, and when
it is removed from every triple, the resulting pairs form a triangle. For instance,
(4, 1, 2), (4, 2, 3), (4, 3, 1) is an almost-triangle: when we remove 4 for each of the
triples, we end up with the pairs (1, 2), (2, 3), (3, 1), which form a triangle.

Proposition 5.15. There is a minimized conjunctive query Q over a ternary
relation R that uses 4 variables, has maximum treewidth 3, such that

• the tableau TQ of Q is an almost-triangle; and
• Q has a strong treewidth approximation Q′ with the same number of joins
as Q.

Proof. We define Q over variables x1, x2, x3, x4 as follows:

Q() :– R(x1, x2, x3), R(x2, x1, x4), R(x4, x3, x1).

Its tableau is an almost-triangle (just remove x1). Furthermore G(Q) = K4, and thus
it has treewidth 3. It is also minimized.
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We then look at

Q′() :– R(x, y, y), R(y, x, y), R(y, y, x).

It is routine to verify that Q′ is a strong treewidth approximation of Q satisfying all
conditions of the proposition.

Thus, indeed, the behavior of treewidth approximations is already drastically
different for the case of ternary relations, compared to graphs.

6. Hypergraph-based approximations. We now switch to study approxima-
tions in tractable classes defined by restricting the hypergraph H(Q) of a CQ Q:
The nodes of H(Q) again are variables used in Q, and its hyperedges correspond
to the atoms of Q; i.e., for each atom R(x1, . . . , xn) in Q, we have a hyperedge
{x1, . . . , xn}. If C is a class of hypergraphs, then a query Q is a hypergraph-based
C-query if H(Q) ∈ C. In general, graph-based and hypergraph-based classes of CQs
are incompatible: there are graph-based classes that are not hypergraph-based, and
vice versa [16].

The oldest tractability criterion for CQs, acyclicity [41], is a hypergraph-based
notion (see the definition in section 3). It corresponds to the class of CQs Q such
that H(Q) belongs to the class AC of acyclic hypergraphs, or, in other words, Q is a
hypergraph-based AC-query. Analogues of bounded treewidth for hypergraphs were
defined in [20, 21]; those notions of bounded hypertree width and generalized hypertree
width properly extended acyclicity and led to tractable classes of CQs over arbitrary
vocabularies.

We look at hypergraph-based C-approximations, i.e., approximations in the class of
hypergraph-based C-queries. Our first goal is to have a general result about the exis-
tence of approximations that will apply to both acyclicity and bounded (generalized)
hypertree width (to be defined formally shortly).

Note we cannot trivially lift the closure condition used in Theorem 4.1 for hy-
pergraphs, since even acyclic hypergraphs are not closed under taking subhyper-
graphs. Indeed, take a hypergraph H with hyperedges {a, b, c}, {a, b}, {b, c}, {a, c}.
It is acyclic: the decomposition has {a, b, c} associated with the root of the tree, and
two-element edges with the children of the root. However, it has cyclic subhyper-
graphs, for instance, the one that contains its two-element edges.

The closure conditions we use instead are the following:
• Closure under induced subhypergraphs. If H = 〈V, E〉 is in C and H′ is an
induced subhypergraph, then H′ ∈ C. Recall that an induced subhypergraph
is one of the form 〈V ′, {e ∩ V ′ | e ∈ E}〉.
For instance, take again the hypergraph H with hyperedges {a, b, c}, {a, b},
{b, c}, {a, c}. Then the only induced subhypergraph of H that contains all of
its two-element edges is H itself.

• Closure under edge extensions. If H = 〈V, E〉 is in C and H′ is obtained by
adding new nodes V ′ to one hyperedge e ∈ E , where V ′ is disjoint from V ,
then H′ ∈ C.

We shall see that these will be satisfied by the classes of hypergraphs of interest
to us. The analogue of the previous existence results can now be stated as follows.

Theorem 6.1. Let C be a class of hypergraphs closed under induced subhyper-
graphs and edge extensions. Then every CQ Q that has at least one hypergraph-based
C-query contained in it has a hypergraph-based C-approximation.

Moreover, the number of nonequivalent hypergraph-based C-approximations of Q
is at most exponential in the size of Q, and every such approximation is equivalent to
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one which has at most O(nm−1) variables and at most O(nm) joins, where n is the
number of variables in Q, and m is the maximum arity of a relation in the vocabulary.

Proof. We make use of the following claim.
Claim 6.2. Let C be a class of hypergraphs closed under induced subhypergraphs

and edge extensions. Let Q(x̄) be a CQ and Q′(x̄′) be a hypergraph-based C-query, both
over vocabulary σ, such that Q′ ⊆ Q. Let us denote by n the number of variables in Q,
by � the number of relation symbols in σ, and by m the maximum arity of a symbol in
σ. Then there exists a hypergraph-based C-query Q′′, with at most n+ (m− 1)2nm−1

variables and at most � · nm joins, such that Q′ ⊆ Q′′ ⊆ Q.

Proof. Since Q′ ⊆ Q it is the case that (TQ, x̄)
h−→ (TQ′ , x̄′). Consider the

database T over σ constructed as follows: Let U be the active domain of Im(h).
For each relation symbol R ∈ σ, add to RT all tuples t̄ ∈ RTQ′ such that Ut̄ ⊆ U ,
where Ut̄ is the set of elements that occur in t̄. Notice that H(T ) is not necessarily
an induced subhypergraph of H(TQ′), as there might be hyperedges e in H(TQ′) that
contain elements in U, but e ∩ U is not a hyperedge in H(T ). As such, it is not pos-
sible to apply the first closure condition of C in order to infer that H(T ) belongs to
C. A straightforward alternative seems to consider the subhypergraph HU of H(TQ′)
induced by U . The problem then is that there might be hyperedges in HU that do
not belong to H(TQ′), and thus it is not clear how to define from HU a query Q′′

that contains Q′, which is one of the properties we are looking for. We will have to
follow a different strategy based on the second closure property of C—closure under
edge extensions—to build the desired query Q′′.

A nonempty subset X of U is an extended subset if (1) there is no tuple t̄ in some
relation of T such that Ut̄ = X , and (2) there exists a tuple s̄ in some relation of TQ′

such that Us̄ � U and Us̄∩U = X . That is, the extended subsets X of U are precisely
the hyperedges of HU that are not hyperedges of H(TQ′), and thus of H(T ). Using
this notion we define a database T ′ that is obtained by extending T as follows: For
each extended subset X of U , choose an arbitrary tuple s̄X and an arbitrary symbol
SX in σ such that (i) s̄X belongs to the interpretation of SX in TQ′ , (ii) Us̄X � U, and
(iii) Us̄X ∩ U = X (we know this tuple exists by definition of extended subset). Add
to the interpretation of SX in T ′ the tuple s̄′X that is obtained from s̄X by renaming
all elements in Us̄X \ U = {z1, z2, . . . , zr} by new elements {z′1, z′2, . . . , z′r}.

Observe that the hypergraph H(T ′) is in C since it is obtained from H(TQ′) in
the following way: Take the induced subhypergraph HU of H(TQ′) whose node set is
U , and then for each extended subset X ⊆ U do an edge extension in X (recall that
each extended subset X of U is a hyperedge of HU ). Using the closure properties of
C and the fact that H(TQ′) ∈ C, it follows that H(T ′) ∈ C.

Notice that h is a homomorphism from (TQ, x̄) to (T ′, h(x̄)) = (T ′, x̄′) since Im(h)
is contained in T ′. Thus, (TQ, x̄) → (T ′, x̄′). We prove next that (T ′, x̄′) → (TQ′ , x̄′).
In fact, let T ∗ be the database that is obtained from T by adding, for each extended
subset X of U , the tuple s̄X to the interpretation of SX , where SX and s̄X are as
defined before for X . By definition, T ∗ is contained in TQ′ , and hence the identity
mapping is a homomorphism from (T ∗, x̄′) to (TQ′ , x̄′). Notice that T ′ is (up to
isomorphism) the database that is obtained from T ∗ by taking each tuple of the form
s̄X in T ∗ and replacing each element z in s̄X that does not belong to U with a fresh
element z′. In particular, two different facts of T ′ can only share elements that belong
to U . It can then be easily seen that the mapping h : T ′ → TQ′, defined as the identity
on U and as h(z′) = z for each element z′ in T ′ that does not belong to U and replaced
element z in T ∗, is a homomorphism. Further, x̄′ belongs to T , and thus to U , and



EFFICIENT APPROXIMATIONS OF CONJUNCTIVE QUERIES 1111

hence h is the identity on x̄′. We conclude that (TQ, x̄) → (T ′, x̄′) → (TQ′ , x̄′).
Recall that for each extended subset X of U it is the case that there exists a tuple

s̄ in some relation of TQ′ such that Us̄ � U and Us̄ ∩ U = X . Thus, |Us̄ \ X | ≥ 1.
Since |Us̄| ≤ m (because |Us̄| is bounded by the maximum arity of a tuple in TQ′ , and
thus by the maximum arity m of a symbol in σ), we conclude that for each extended
subset X of U it is the case that |X | ≤ m− 1. Furthermore, for each extended subset
X of size i ≥ 1 we add at most m− i fresh elements to the domain of T to construct
T ′. It follows that the number of elements in T ′ that do not belong to T is at most

m−1∑
i=1

(|U |
i

)
(m− i) ≤ (m− 1)2 · |U |m−1.

Therefore, it is the case that T ′ has at most |U | + (m − 1)2 · |U |m−1 elements.
Since |U | is bounded by n (which is the number of variables in Q) the number of
elements of T ′ is bounded by n+ (m− 1)2nm−1.

In addition, the number of facts in T ′ equals the number of facts of T plus one
fact for each extended subset X of U . Since for each such X there is no tuple t̄ in a
relation of T with Ut̄ = X , the number of facts in T ′ is bounded by the number of
facts of the form R(t̄), where R ∈ σ and t̄ is a tuple of elements in U . This number
is bounded by l · |U |m, that is, by � · nm.

We conclude that the CQ Q′′ whose tableau is (T ′, x̄′) satisfies all the required
conditions of the claim.

We continue now with the proof of Theorem 6.1. We start with the first part
of it. Let Q(x̄) be a CQ over σ that has at least one hypergraph-based C-query
contained in it, namely, Q′(x̄′). Let l be the number of relations and m the maximum
arity of a relation in σ, respectively. Define HC(Q) as the set of all CQs that are
hypergraph-based C-queries contained in Q and have at most |Q|+ (m− 1)2 · |Q|m−1

variables and at most l · |Q|m joins, where |Q| denotes the number of variables of Q.
Clearly, HC(Q) is finite (up to renaming of variables). From Claim 6.2, it follows that
HC(Q) is not empty. Take a maximal element Q̃ in HC(Q) (with respect to ⊆). We
claim that Q̃ is a hypergraph-based C-approximation of Q. Assume for the sake of
contradiction that this is not the case. Then there exists a hypergraph-based C-query
P such that Q̃ ⊂ P ⊆ Q. Using Claim 6.2, there exists a hypergraph-based C-query
P ′ such that Q̃ ⊂ P ⊆ P ′ ⊆ Q and P ′ is in HC(Q). Since Q̃ ⊂ P ′ and P ′ ∈ HC(Q),
we have a contradiction with the maximality of Q̃. Thus, Q̃ is a hypergraph-based
C-approximation of Q.

It easily follows from Claim 6.2 that each hypergraph-based C-approximation of
Q is equivalent to a CQ in HC(Q). The second part of Theorem 6.1 follows directly
from this observation.

It is straightforward to check that the class of acyclic hypergraphs satisfies both
closure conditions, and that any constant homomorphism on a query Q produces an
acyclic query. Thus, we have the following.

Corollary 6.3. For every vocabulary σ, there exist two polynomials pσ and rσ
such that every CQ Q over σ has a hypergraph-based acyclic approximation of size at
most pσ(|Q|) that can be found in time 2rσ(|Q|).

In the specific case of acyclicity, this result (in fact with linear bounds) can also
be derived from the results of [5]. The general closure-based approach we have here
allows us to extend it further, to both hypertree width and generalized hypertree
width. First we recall the definitions [21]. A generalized hypertree decomposition of a
hypergraph H = 〈V, E〉 is a triple 〈T, f, c〉, where T is a rooted tree, f is a map from
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T to 2V , and c is a map from T to 2E , such that
• (T, f) is a tree decomposition of H;
• f(u) ⊆ ⋃

c(u) holds for every u ∈ T .
A hypertree decomposition of H [20] is a generalized hypertree decomposition that
satisfies, in addition, the following property:

• ⋃
c(u) ∩⋃{f(t) | t ∈ Tu} ⊆ f(u) holds for every u ∈ T , where Tu refers to

the subtree of T rooted at u.
The width of a (generalized) hypertree decomposition 〈T, f, c〉 is maxu∈T |c(u)|.

The (generalized) hypertree width of H is the minimum width over all its (generalized)
hypertree decompositions. We denote by HTW(k) the class of hypergraphs with
hypertree width at most k, and slightly abusing notation, the class of CQs or tableaux
whose hypergraphs have hypertree width at most k. Similarly, we denote by GHTW(k)
the class of hypergraphs, CQs, and tableaux of generalized hyper treewidth at most
k. Obviously, HTW(k) ⊆ GHTW(k) for each k ≥ 1. It is shown in [20] that a
hypergraph H is acyclic iff its hypertree width is 1. That is, AC = HTW(1), and thus
AC ⊆ GHTW(1).

The key result of [20] is that for each fixed k, CQs from HTW(k) can be evaluated
in polynomial time with respect to combined complexity. Notably, the same holds
for the class GHTW(k) for each fixed k [21]. There is, however, a crucial difference
between the two notions: Verifying whether HTW(H) ≤ k, for a given hypergraph
H and a fixed k ≥ 1, can be solved in polynomial time [20], while verifying whether
GHTW(H) ≤ k, for any k ≥ 3, is NP-complete [22].

To apply the existence result, we need to check the closure conditions for hyper-
graphs of fixed hypertree width. It turns out they are satisfied.

Lemma 6.4. For each k, the class HTW(k) is closed under induced subhypergraphs
and edge extensions. The same holds for the class GHTW(k).

Proof. We only prove it for HTW(k). It will be clear from the proof that the same
argument applies to GHTW(k). Let H = 〈V, E〉 be a hypergraph of hypertree width
at most k and 〈T, f, c〉 a hypertree decomposition of H of width at most k.

We consider edge extensions first. Let H′ be a hypergraph obtained from H by
extending hyperedge e with new nodes V ′. Thus, the set of nodes of H′ is V ∪ V ′

and its set of hyperedges is (E \ {e}) ∪ {e′}. First, pick an arbitrary node ue in T
that satisfies e ⊆ f(ue) and is at minimal distance to the root (such element ue exists
because 〈T, f〉 is a tree decomposition of H). Let T ′ be the tree that is obtained from
T by adding a new child z to ue in T . We then define a function f ′ : T ′ → 2(V ∪V ′)

as follows: f ′(u) = f(u) for each node u in T ′ that is neither z nor ue, f
′(z) = e′,

and, finally, f ′(ue) = f(ue) ∪ V ′ if e ∈ c(ue), and f ′(ue) = f(ue) otherwise. We also
define a function c′ : T ′ → 2(E\{e})∪{e′}) such that c′(z) = {e′}, and for each u ∈ T ′

that is not z it is the case that c′(u) = c(u) if e /∈ c(u), and c′(u) = (c(u) \ {e})∪ {e′}
otherwise. Clearly, the width of 〈T ′, f ′, c′〉 is at most k. We prove next that 〈T ′, f ′, c′〉
is a hypertree decomposition of H′.

First, we shall prove that 〈T ′, f ′〉 is a tree decomposition of H′. Consider a
hyperedge d in H′. If d �= e′, then there exists a node u in T such that d ⊆ f(u)
(because 〈T, f〉 is a tree decomposition of H). By definition, d also belongs to f ′(u).
If d = e′, then d ⊆ f ′(z). This shows that each hyperedge of H′ is contained in
f ′(u′) for some node u′ in T ′. Consider now a node v of H′, i.e., v ∈ V ∪ V ′. If
v /∈ e′ = e ∪ V ′, then, by definition, each node u of T ′ such that v ∈ f ′(u) belongs to
T and satisfies that v ∈ f(u) iff v ∈ f ′(u). Thus, since 〈T, f〉 is a tree decomposition
of H, we conclude that {u ∈ T ′ | v ∈ f ′(u)} is a connected subset of T ′. If v ∈ e, then
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a similar argument shows that {u ∈ T ′ | v ∈ f ′(u)} is exactly

{u ∈ T | v ∈ f(u)} ∪ {z}.
Since z is a leaf of ue and, by definition, v ∈ f(ue), we conclude from the fact that
〈T, f〉 is a tree decomposition of H that {u ∈ T ′ | v ∈ f ′(u)} is a connected subset
of T ′. Finally, if v ∈ V ′, then {u ∈ T ′ | v ∈ f ′(u)} is the single node z if e /∈ c(ue),
or the single edge {ue, z} if e ∈ c(ue), both of which are connected subsets of T ′. We
conclude that 〈T ′, f ′〉 is a tree decomposition of H′.

We prove next that f ′(u) ⊆ ⋃
c′(u) for each node u in T ′. First of all, by definition

f ′(z) = e′ ⊆ ⋃
c′(z) = {e′}. Also, since 〈T, f, c〉 is a hypertree decomposition of H, we

have that f(ue) ⊆
⋃
c(ue), and thus f ′(ue) ⊆

⋃
c′(ue) (regardless of whether e is or is

not in c(ue)). For u different from z and ue, we have by definition that f ′(u) = f(u),
and, by hypothesis, f(u) ⊆ ⋃

c(u). But for each u in T ′ that is neither z nor ue we
have by definition that

⋃
c(u) ⊆ ⋃

c′(u), and thus f ′(u) ⊆ ⋃
c′(u).

We prove finally that
⋃
c′(u)∩⋃{f ′(t) | t ∈ T ′

u} ⊆ f ′(u) holds for every u ∈ T ′.
Consider first a node u in T ′ such that ue /∈ T ′

u. If u = z, then the property holds
trivially since c′(z) = {e′}, f ′(z) = e′, and {f ′(t) | t ∈ T ′

z} = {f ′(z)}. Suppose then
that u �= z. By definition, f(x) = f ′(x) for each x ∈ T ′

u, and thus no element in V ′

belongs to f ′(x) for some x ∈ T ′
u. It follows that⋃

c′(u) ∩
⋃

{f ′(t) | t ∈ T ′
u} =

⋃
c(u) ∩

⋃
{f(t) | t ∈ Tu}.

But the latter is contained in f(u) because 〈T, f, c〉 is a hypertree decomposition of
H, and thus in f ′(u), because f(u) = f ′(u).

Consider now a node u in T ′ such that ue ∈ T ′
u. Assume first that u = ue. If

e ∈ c(ue), we have by definition that

⋃
c′(u) ∩

⋃
{f ′(t) | t ∈ T ′

u} = V ′ ∪ (⋃
c(u) ∩

⋃
{f(t) | t ∈ Tu}

)
.

But since 〈T, f, c〉 is a hypertree decomposition of H we have that the latter is con-
tained in V ′ ∪ f(u), which by definition is f ′(u). If e /∈ c(ue), then

⋃
c′(u) =

⋃
c(u)

and thus
⋃
c′(u) does not contain any element in V ′. We conclude that

⋃
c′(u) ∩

⋃
{f ′(t) | t ∈ T ′

u} =
⋃

c(u) ∩
⋃

{f(t) | t ∈ Tu}.

But the latter is contained in f(u) because 〈T, f, c〉 is a hypertree decomposition of
H, and therefore in f ′(u), because f(ue) = f ′(ue). Finally, assume that u �= ue.
Then necessarily e /∈ c(u). Assume otherwise. Then since e ⊆ f(ue) we would have
that e ⊆ ⋃

c(u) ∩ f(ue), and thus in
⋃
c(u) ∩ ⋃{f(t) | t ∈ Tu}. But 〈T, f, c〉 is a

hypertree decomposition of H, and thus e ⊆ f(u), which is a contradiction with the
minimality of ue with respect to distance to the root of T . Then e /∈ c(u), implying
that V ′ ∩⋃

c′(u) = ∅. Therefore,
⋃

c′(u) ∩
⋃

{f ′(t) | t ∈ T ′
u} =

⋃
c(u) ∩

⋃
{f(t) | t ∈ Tu}.

But the latter is contained in f(u) because 〈T, f, c〉 is a hypertree decomposition of
H, and therefore in f ′(u), because f(u) = f ′(u). We conclude then that 〈T ′, f ′, c′〉 is
a hypertree decomposition of H′.

We now consider closure under induced subhypergraphs. Let H′ = 〈V ′, {e ∩ V ′ |
e ∈ E}〉 be an induced subhypergraph of H for V ′ ⊆ V . Let also T ′, f ′, and c′ be
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defined as follows: T ′ = T , and for each u ∈ T ′ it is the case that f ′(u) = f(u) ∩ V ′,
and c′(u) = {e ∩ V ′ | e ∈ c(u)}. Clearly, the width of 〈T ′, f ′, c′〉 is at most k. We
prove next that 〈T ′, f ′, c′〉 is a hypertree decomposition of H′.

We prove first that 〈T ′, f ′〉 is a tree decomposition of H′. Consider a hyperedge
d in H′. Then d = e ∩ V ′ for some e ∈ E . Since 〈T, f〉 is a tree decomposition of H
there is u ∈ T such that e ⊆ f(u). It follows that d = e∩V ′ ⊆ f(u)∩V ′ = f ′(u). Let
v be a node in H′, i.e., v ∈ V ′. It is easy to see that {u ∈ T ′ | v ∈ f ′(u)} is exactly
the same set as {u ∈ T | v ∈ f(u)}. Since 〈T, f〉 is a tree decomposition of H we
conclude that {u ∈ T ′ | v ∈ f ′(u)} is a connected subset of T ′.

For each u ∈ T ′ we have by definition that f ′(u) = f(u) ∩ V ′, and thus
f ′(u) ⊆ ⋃

c(u) ∩ V ′ (because f(u) ⊆ ⋃
c(u) from the fact that 〈T, f, c〉 is a hyper-

tree decomposition of H). But the latter is precisely
⋃
c′(u), which implies that

f ′(u) ⊆ ⋃
c′(u) for each u ∈ T ′. In addition,

⋃
c′(u) ∩⋃{f ′(t) | t ∈ T ′

u} is by defi-
nition equal to the set

⋃
c(u) ∩ ⋃{f(t) | t ∈ Tu} ∩ V ′. Since 〈T, f, c〉 is a hypertree

decomposition of H the latter is contained in f(u) ∩ V ′, which is f ′(u) by definition.
We conclude that 〈T ′, f ′, c′〉 is a hypertree decomposition of H′.

Note that the query Qtrivial from section 4.1 is in HTW(k) and GHTW(k). This
gives the desired result about the existence of approximations within HTW(k) for
every k.

Corollary 6.5. For every vocabulary σ, there exist two polynomials pσ and
rσ such that every CQ Q over σ has a hypergraph-based HTW(k)-approximation or
GHTW(k)-approximation of size at most pσ(|Q|) that can be found in time 2rσ(|Q|) for
every k ≥ 1.

Example 6.6. Consider a Boolean query

Q() :– R(x1, x2, x3), R(x3, x4, x5), R(x5, x6, x1)

over a schema with one ternary relation. If we had a binary relation instead and
omitted the middle attribute, we would obtain a query whose tableau is a cycle of
length 3, thus having only trivial approximations. However, going beyond graphs
lets us find nontrivial acyclic approximations. In fact this query has 3 nonequivalent
acyclic approximations (all queries below are minimized):

• With fewer joins than Q:

Q′
1() :– R(x, y, x).

• With as many joins as Q:

Q′
2() :– R(x1, x2, x3), R(x3, x4, x2), R(x2, x6, x1).

• With more joins than Q:

Q′
3() :– R(x1, x2, x3), R(x3, x4, x5), R(x5, x6, x1), R(x1, x3, x5).

7. Conclusions. We have concentrated on approximations of conjunctive
queries that are guaranteed to return correct answers. Given the importance of acyclic
CQs and very good complexity bounds for them, we have focused on acyclic approx-
imations, but we also provided results on approximations within classes of bounded
treewidth and bounded hypertree width. We have proved the existence of approxima-
tions and showed they can be found with an acceptable computational overhead, and
that their sizes are at most polynomial in the size of the original query and sometimes
are bounded by the size of the original query.
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In this work we only dealt with the qualitative approach to approximations; in the
future we would like to study quantitative guarantees as well by defining measures
showing how different from the original query approximations are. One approach
is to find probabilistic guarantees for approximations. Note that such guarantees
have been studied for queries from expressive languages (e.g., with fixed points or
infinitary connectives) [1, 27], with typical results showing that queries are equivalent
to those from simpler logics (e.g., first-order logic) almost everywhere. One possibility
is to specialize these results to much weaker logics, e.g., to CQs and their tractable
subclasses.

We also plan to study other notions of approximations that are not constrained
to return correct results only. These include overapproximations, which return all
correct results, and arbitrary approximations that simply look for maximal elements
in the preorder �Q. Even the most basic problems related to those notions of approx-
imations, such as existence and complexity, seem challenging.

8. Appendix: Proof of Theorem 4.12. The class TW(1) over graphs contains
all acyclic directed graphs, i.e., directed graphs whose underlying undirected graph
contains no cycles. It thus suffices to show that the following problem is DP-complete:

Problem: Graph Acyclic Approximation

Input: a digraph G, an acyclic digraph T .
Question: Is G → T, and is there no acyclic digraph T ′ such that G → T ′ �� T ?

The Exact Four Colorability problem is defined as follows: Given a graph
G, decide if G is 4-colorable but not 3-colorable. It is known that this problem
is DP-complete [38]. We define a polynomial time reduction from Exact Four

Colorability to Graph Acyclic Approximation.
We use several notions, such as oriented paths, cycles, heights, and levels, that

were defined in the proof of Proposition 4.4. The proof requires some preparation.
Consider the oriented paths Pi = 0i+11011−i for each 1 ≤ i ≤ 9. Observe that all
these oriented paths are incomparable cores and have net length 11. We have the
following.

Claim 8.1. For each 1 ≤ i < j ≤ 9, there exists an oriented path Pij such that
Pij → Pi, Pij → Pj , and Pij �→ Pk for each 1 ≤ k ≤ 9 with k �= i and k �= j.

Proof. We take Pij = 0i+1100j−i1011−j. Using Lemma 4.5 it can be verified that
the conditions are satisfied.

Claim 8.2. For each 1 ≤ i < j < k ≤ 9, there exists an oriented path Pijk such
that Pijk → Pi, Pijk → Pj, Pijk → Pk, and Pijk �→ P� for each 1 ≤ � ≤ 9 with � �= i,
� �= j, and � �= k.

Proof. We take Pijk = 0i+1100j−i100k−j1011−k. Using Lemma 4.5 it can be
verified that the conditions are satisfied.

Next we define a digraph Q∗ (depicted in Figure 6) as follows: Consider the
balanced cycle (a1, a2, . . . , a8, a1) defined by the string 01010101. For each 1 ≤ i ≤ 8,
we add a disjoint copy of Pi. If i is odd, we identify ai with the terminal node of Pi;
otherwise, we identify ai with the initial node of Pi. Finally, we add two new nodes
x and y and two new edges: one from x to the initial node of the copy of P1, and
another one from the terminal node of the copy of P8 to y. The resulting digraph Q∗

and its levels are depicted in Figure 7. Notice that Q∗ is balanced and that its height,
hg(Q∗), is 25. Moreover, the nodes x and y are the only ones in Q∗ with level 0 and
25, respectively.
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Fig. 6. The digraph Q∗.
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Fig. 7. The digraph Q∗ and some of its levels.

We also define acyclic digraphs T1, T2, T3, and T4 as follows: Each Ti, for 1 ≤ i ≤
4, is obtained from Q∗ by identifying some specific nodes. For T1 we identify a1, a2,
and a3 with a7, a6, and a5, respectively. In the case of T2 we identify a8, a1, and a2
with a6, a5, and a4, respectively. For T3 we identify a7, a8, and a1 with a5, a4, and
a3, respectively. Finally, for T4 we identify a6, a7, and a8 with a4, a3, and a2. Note
that for each 1 ≤ i ≤ 4, hg(Ti) = 25 and the nodes xi and yi are the only ones in Ti

with level 0 and 25, respectively, as depicted in Figures 8 and 9.
Since the Ti’s are acyclic, they are by definition balanced. Using Lemma 4.5

and the incomparability of the Pi’s, it easily follows that T1, T2, T3, and T4 are

incomparable cores. Furthermore, observe that Q∗ hi−→ Ti for all 1 ≤ i ≤ 4, where
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Fig. 8. The digraph T1 and some of its levels.
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Fig. 9. The digraphs T2, T3, and T4 and some of its levels.

hi is the homomorphism naturally defined by the identification of nodes we used to
construct the Ti’s. Note that for each 1 ≤ i ≤ 4, hi is a surjective homomorphism,
i.e., Im(hi) = Ti. Even more, we have the following.

Claim 8.3. For each 1 ≤ i ≤ 4, hi is the unique homomorphism from Q∗ to Ti.
In particular, any homomorphism from Q∗ to Ti is surjective for each 1 ≤ i ≤ 4.

Proof. Let h be a homomorphism that witnesses Q∗ → T1. We shall prove that
h = h1. Since Q∗ and T1 are balanced, we have that h preserves levels (Lemma 4.5).
Thus, either h(a8) = z1, h(a8) = z3, or h(a8) = z5. If h(a8) = z3, then P8 → P2 or
P8 → P6, which is impossible since the Pi’s are incomparable. Similarly, if h(a8) = z5,
then P8 → P4, which is also not possible. It follows that h(a8) = z1 = h1(a8). Using
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Fig. 10. The digraph T5.

Xij

P1 P8
p1 p2

Fig. 11. The structure of the Tij ’s.

the same argument, we can prove that h(c) = h1(c) for each other element c of Q∗.
For T2, T3, and T4 the argument is analogous.

A key property of the Ti’s is the following.
Claim 8.4. For each 1 ≤ i ≤ 4, Q∗ → Ti and there is no acyclic T ′ such that

Q∗ → T ′ �� Ti.
Proof. We only prove the claim for i = 1. For i = 2, 3, 4 the proof is anal-

ogous. By contradiction, assume that there exists an acyclic digraph T ′ such that

Q∗ h−→ T ′ g−→ T1 and T1 �→ T ′. If h(a1) = h(a7), h(a2) = h(a6), and h(a3) = h(a5),
using Claim 4.8, it follows that T1 → T ′, which is a contradiction. Thus, we have
that either h(a1) �= h(a7), h(a2) �= h(a6), or h(a3) �= h(a5). Using Claim 8.3, we
have that g ◦ h = h1. Notice by definition that the sets {h1(a8)}, {h1(a1), h1(a7)},
{h1(a2), h1(a6)}, {h1(a3), h1(a5)}, and {h1(a4)} are mutually disjoint, and hence the
sets {h(a8)}, {h(a1), h(a7)}, {h(a2), h(a6)}, {h(a3), h(a5)}, and {h(a4)} must be mu-
tually disjoint as well. Since h(a1) �= h(a7), h(a2) �= h(a6), or h(a3) �= h(a5), neces-
sarily T ′ has an oriented cycle, which is a contradiction.

We define an acyclic directed graph T5 as follows: Consider the disjoint union
of P1 and P8. Add two new nodes x5 and y5 and three new edges: from x5 to the
initial node of P1, from the terminal node of P1 to the initial node of P8, and from
the terminal node of P8 to y5. Finally, add two disjoint copies of P9 and identify the
terminal node of one copy with the terminal node of P1, and the initial node of the
other copy with the initial node of P8. The resulting graph T5 is depicted in Figure 10.

Since T5 is acyclic, it is also balanced. Using Lemma 4.5 and the incomparability
of the Pi’s, it easily follows that T5 is incomparable with T1, T2, T3, T4, and Q∗.

Claim 8.5. For each (i, j) ∈ {(1, 5), (2, 5), (3, 5), (1, 2), (1, 3), (2, 3)}, there exists
an acyclic digraph Tij such that Tij → Ti, Tij → Tj, and Tij �→ Tk for 1 ≤ k ≤ 5 with
k �= i and k �= j.

Proof. Consider the oriented path P constructed as follows: Take the disjoint
union of P1 and P8. Add two new nodes p1 and p2, and three new edges: from p1 to
the initial node of P1, from the terminal node of P1 to the initial node of P8, and from
the terminal node of P8 to p2. Each Tij is obtained from P by adding a disjoint copy
of a specific path Xij and identifying the terminal node of Xij with the terminal node
of P1, as depicted in Figure 11. The Xij ’s are X15 = P79, X25 = P59, X35 = P39,
X12 = P57, X13 = P37, and X23 = P35. Using Lemma 4.5 and Claim 8.1 it can be
proved that these Tij ’s satisfy the required conditions.
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Xijk

P1 P8
p1 p2

Fig. 12. The structure of T245 and T345.

Claim 8.6. For each (i, j, k) ∈ {(1, 2, 5), (2, 4, 5), (3, 4, 5)}, there exists an acyclic
digraph Tijk such that Tijk → Ti, Tijk → Tj, Tijk → Tk, and Tijk �→ T� for 1 ≤ � ≤ 5,
� �= i, � �= j, and � �= k.

Proof. Consider the oriented path P as in the proof of Claim 8.5. The digraph
T125 is obtained from P by adding a disjoint copy of P579 and identifying the terminal
node of P579 with the terminal node of P1. The others Tijk’s are obtained from P
by adding a disjoint copy of a path Xijk and identifying the initial node of Xijk with
the initial node of P8. The Xijk’s are X245 = P269 and X345 = P249; see Figure
12. From Lemma 4.5 and Claim 8.2, it follows that these Tijk’s satisfy the required
conditions.

We introduce some notation. We work with digraphs that have an initial and a
terminal node, which are simply two distinct distinguished elements in the digraph.
Consider a digraph G with two distinguished nodes i1 and t1, which are its initial
node and terminal node, respectively. Similarly, consider a digraph H with nodes i2
and t2 distinguished as initial node and terminal node, respectively. We define the
concatenation of G and H , denoted G·H , to be the digraph obtained from the disjoint
union of G and H identifying t1 with i2. The initial and terminal nodes of G ·H are
i1 and t2, respectively. Finally, we define G−1 to be the digraph obtained from G by
switching the roles of the initial and terminal nodes, that is, the initial node of G is
t1 and the terminal one is i1.

Let us assume now that the initial node of Q∗ is x and its terminal node is y.
For each 1 ≤ i ≤ 5, we also assume that xi and yi are the initial node and terminal
node of Ti, respectively. Similarly, for each Tij and Tijk defined as in Claims 8.5 and
8.6, respectively, we assume its initial and terminal nodes to be the only nodes in the
respective graphs with level 0 and 25, respectively. In all figures, an edge uv labeled
with a digraph G with initial node i and terminal node t represents the digraph
constructed as follows: delete the arc uv, add a disjoint copy of G, and identify i with
u and t with v.

Let T be the acyclic digraph constructed as follows: Consider the disjoint union
of T1 · T−1

5 , T2 · T−1
5 , T3 · T−1

5 , and T4 · T−1
5 and identify all of their initial nodes into

a single new node v. Observe that hg(T ) = 25, that the only nodes of T with level 0
are v, u1, u2, u3, and u4, and that the only nodes of T with level 25 are t1, t2, t3, and
t4. This is shown in Figure 13.

Now we recall the notion of (i, j)-chooser from [26].
Definition 8.7. Let X = {1, 2, 3} and i, j ∈ X be indices. An (i, j)-chooser is a

digraph T ∗ with two distinguished nodes a and b such that the following hold:
• For every homomorphism h : T ∗ → T , we have h(a) = t1 and h(b) �= ti, or
h(a) = t2 and h(b) �= tj.

• For every k ∈ X with k �= i, there is a homomorphism h : T ∗ → T such that
h(a) = t1 and h(b) = tk.

• For every k ∈ X with k �= j, there is a homomorphism h : T ∗ → T such that
h(a) = t2 and h(b) = tk.
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Fig. 13. The digraph T and some of its levels.
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Fig. 14. The choosers S13, S21, and S32.

An extended (i, j)-chooser is defined exactly as in Definition 8.7, but this time we
consider X = {1, 2, 3, 4}.

Claim 8.8. There exists a (1, 3)-chooser S13, a (2, 1)-chooser S21, and a (3, 2)-
chooser S32.

Proof. The digraphs S13, S21, and S32 are shown in Figure 14. Proving that they
are indeed the corresponding choosers is not hard (and one can in fact mimic the
proof of Lemma 4 in [26]).

We rename the nodes a and b in S13, S21, and S32 to a1, b1, a2, b2, and a3, b3,
respectively.

Claim 8.9. There exists an extended (2, 1)-chooser S̃21 and an extended (3, 4)-
chooser S̃34.

Proof. We define S̃21 = T12 ·T−1
125 ·T345 and S̃34 = T12 ·T−1

25 ·T35 ·T−1
15 ·T245 ·T−1

35 ·T15.
For S̃21 and S̃34, we denote by a the terminal node of their respective copies of T12,
and by b their respective terminal nodes, as illustrated in Figures 15 and 16.

Consider first a homomorphism h : S̃21 → T . It is not hard to see that either
h(a) = t1 or h(a) = t2. Assume first that h(a) = t1. Then either h(x1) = u1 or
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x1a b

T12 T125 T345

Fig. 15. The extended (2, 1)-chooser S̃21.

x5 ba
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Fig. 16. The extended (3, 4)-chooser S̃34.

h(x1) = v. If h(x1) = u1, then h(b) = t1. If h(x1) = v, then either h(b) = t3 or
h(b) = t4. Thus, if h(a) = t1, then h(b) �= t2, and all the following combinations are
possible:

(i) h(a) = t1, h(b) = t1; (ii) h(a) = t1, h(b) = t3; and (iii) h(a) = t1, h(b) = t4.

Assume, on the other hand, that h(a) = t2. Then either h(x1) = u2 or h(x1) = v. If
h(x1) = u2, then h(b) = t2. If h(x1) = v, then either h(b) = t3 or h(b) = t4. Thus, if
h(a) = t2, then h(b) �= t1, and all the following combinations are possible:

(i) h(a) = t2, h(b) = t2; (ii) h(a) = t2, h(b) = t3; and (iii) h(a) = t2, h(b) = t4.

Therefore, S̃21 is an extended (2, 1)-chooser.
Consider now a homomorphism h : S̃34 → T . Again, either h(a) = t1 or h(a) = t2.

Assume first that h(a) = t1. Then h(x1) = u1 and h(x2) = t1, and we have either
h(x3) = u1 or h(x3) = v. If h(x3) = u1, then h(x4) = t1, h(x5) = u1, and h(b) = t1.
If h(x3) = v, then h(x4) = t2 or h(x4) = t4. If h(x4) = t2, then h(x5) = u2 and
h(b) = t2. If h(x4) = t4, then h(x5) = u4 and h(b) = t4. Thus, if h(a) = t1, then
h(b) �= t3, and all the following combinations are possible:

(i) h(a) = t1, h(b) = t1; (ii) h(a) = t1, h(b) = t2; and (iii) h(a) = t1, h(b) = t4.

Assume, on the other hand, that h(a) = t2. Then we have either h(x1) = u2 or
h(x1) = v. If h(x1) = u2, then h(x2) = t2, h(x3) = u2, h(x4) = t2, h(x5) = u2, and
h(b) = t2. If h(x1) = v, then h(x2) = t3, h(x3) = u3, and h(x4) = t3, and we have
either h(x5) = u3 or h(x5) = v. If h(x5) = u3, then h(b) = t3. If h(x5) = v, then
h(b) = t1. Thus, if h(a) = t2, then h(b) �= t4, and all the following combinations are
possible:

(i) h(a) = t2, h(b) = t1; (ii) h(a) = t2, h(b) = t2; and (iii) h(a) = t2, h(b) = t3.

We conclude that S̃34 is an extended (3, 4)-chooser.
Next we borrow techniques from [26] and define an acyclic graph T ′ as follows:

We take the disjoint union of S13, S21, and S32 and identify their respective terminal
nodes b1, b2, and b3 into a new node b (see Figure 17). The following claim will be
useful.

Claim 8.10. There is no homomorphism h : T ′ → T such that h(a1) = h(a2) =
h(a3). Furthermore, for any triple (ti, tj , tk) ∈ {t1, t2}3 \ {(t1, t1, t1), (t2, t2, t2)} there
exists a homomorphism h : T ′ → T such that h(a1) = ti, h(a2) = tj , and h(a3) = tk.

Proof. The proof is exactly that of Lemma 5 in [26].
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Fig. 17. The digraph T ′.

Next, we construct our main gadget T̃ : Let p and q be two fresh nodes. We add
two disjoint copies of T ′, namely, T ′

1 and T ′
2. We rename the nodes a1, a2, a3, and b in

T ′
1 to a11, a

1
2, a

1
3, and b1, respectively, and the nodes a1, a2, a3, and b in T ′

2 to a21, a
2
2, a

2
3,

and b2, respectively. We then add three disjoint copies of S̃21, namely, S̃1
21, S̃

2
21, and

S̃3
21, and for each 1 ≤ i ≤ 3 we rename the nodes a and b in S̃i

21 to ai21 and bi21,
respectively. Afterwards, we identify the nodes b121 and b221 with p, and b321 with q.
We also identify, for each 1 ≤ i ≤ 3, the node ai21 with a1i . Analogously, we add three
disjoint copies of S̃34, namely, S̃1

34, S̃
2
34, and S̃3

34, and for each 1 ≤ i ≤ 3 we rename
the nodes a and b in S̃i

34 to ai34 and bi34, respectively. We then identify the vertices
b134 and b234 with p, and b334 with q. Finally, for each 1 ≤ i ≤ 3, we identify the node
ai34 with a2i . The resulting digraph T ′ is shown in Figure 18.

Claim 8.11. There is no homomorphism h : T̃ → T such that h(p) = h(q).
Furthermore, for any pair (ti, tj) ∈ {t1, t2, t3, t4}2 \ {(t1, t1), (t2, t2), (t3, t3), (t4, t4)}
there exists a homomorphism h : T̃ → T such that h(p) = ti and h(q) = tj.

Proof. Assume, for the sake of contradiction, that there exists h : T̃ → T such that
h(p) = h(q). Since S̃21 and S̃34 are extended choosers, either h(a11) = h(a12) = h(a13) or
h(a21) = h(a22) = h(a23), which contradicts Claim 8.10. We only prove the second part
of the claim for the pair (t1, t2), all other cases being similar. We define h : T̃ → T
in such a way that h(p) = t1 and h(q) = t2. We start by defining h(a11) = t1,
h(a12) = t1, and h(a13) = t2. We then extend h to the disjoint copies of S̃21 in T̃ using
the definition of extended chooser. Also, we extend h to T ′

1 using Claim 8.10. If we
choose (h(a21), h(a

2
2), h(a

2
3)) to be any triple in {t1, t2}3 \ {(t1, t1, t1), (t2, t2, t2)}, then

it is easy to extend h to the disjoint copies of S̃34 in T̃ . Finally, using Claim 8.10 we
extend h to T ′

2.
Note that the digraph T contains as a subgraph a copy of Ti · T−1

5 for each
1 ≤ i ≤ 4. Abusing notation, we will say that Ti · T−1

5 is a subgraph of T , or write
Ti · T−1

5 ⊆ T for 1 ≤ i ≤ 4. Let Z be the subgraph of T , defined by the union of
T1 · T−1

5 , T2 · T−1
5 , and T3 · T−1

5 . From the proofs of Claims 8.11 and 8.9, we obtain
the next corollary.

Corollary 8.12. For each pair (ti, tj) ∈ {t1, t2, t3}2 \ {(t1, t1), (t2, t2), (t3, t3)}
there exists a homomorphism h : T̃ → T such that h(p) = ti, h(q) = tj, and the image
of h is contained in Z.

We can now define the reduction from Exact Four Colorability to Graph

Acyclic Approximation: Given an undirected graph G = 〈V,E〉, the output of our
reduction is the instance (ϕ(G), T ), where ϕ(G) is a digraph and T is the directed
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Fig. 18. The gadget T̃ .

acyclic graph we defined before. The digraph ϕ(G) is constructed as follows: The
node set of ϕ(G) is V . For each edge {u, u′} ∈ E, we add a new disjoint copy of T̃
and identify the node p in T̃ with u and the node q in T̃ with u′. We then add a new
node v0. For each node u ∈ V we add new disjoint copies of Q∗ and T5 (as defined
before) and identify the initial node of Q∗ with v0, the terminal node of Q∗ with u,
and the terminal node of the copy of T5 with u. Figure 19 shows the graph ϕ(G) for
a particular graph G. Clearly, the reduction can be computed in polynomial time in
the size of G. We prove next that G is 4-colorable but not 3-colorable iff ϕ(G) → T,
but there is no proper subgraph S of T such that ϕ(G) → S.

First, suppose that G = 〈V,E〉 is 4-colorable but not 3-colorable. Since G is
4-colorable, there exists a 4-coloring c : V → {1, 2, 3, 4} of G. We shall define a
homomorphism h : ϕ(G) → T . For each u ∈ V let h(u) = tc(u). Then for each
{u, u′} ∈ E it holds that h(u) �= h(u′) (because c is a coloring). Using Claim 8.11 we
can extend h to all disjoint copies of T̃ in ϕ(G). Finally, we define h(v0) = v. Notice
that the images of the copies of Q∗ and T5 in ϕ(G) are completely determined. For
example, if u ∈ V satisfies h(u) = t1, then the copy of Q∗ associated with u has to
be mapped to T1 in T and the copy of T5 associated with u has to be mapped to the
copy of T5 in T whose initial node is u1. We conclude that ϕ(G) → T .

Assume, for the sake of contradiction, that there exists a proper subgraph S of

T such that ϕ(G)
g−→ S. Then there exists i∗ ∈ {1, 2, 3, 4} such that g(u) �= ti∗

for all u ∈ V . Assume this is not the case, i.e., for all i ∈ {1, 2, 3, 4} there exists
u ∈ V such that g(u) = ti. Consider i = 1 and take u ∈ V with g(u) = t1. Since
hg(ϕ(G)) = hg(S) = 25 we have that g preserves levels, implying that g(v0) is either
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ϕ
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u4 u3
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Q∗ Q∗
T5

v0

T̃

T̃

T̃

u1

u2

u4

T5

T5

T5

Q∗

Q∗

Fig. 19. The digraph ϕ(G) for the graph G = ({u1, u2, u3, u4}, {{u1, u2}, {u2, u3}, {u2, u4}}).

v, u1, u2, u3, or u4. Because Q∗ and T5 are incomparable, it follows that g(v0) = v.
This implies that the copy of Q∗ associated to u is mapped via g to the copy of T1 in
T . Using Lemma 8.3, Q∗ is mapped via g in a surjective manner. Also, using again
the incomparability between Q∗ and T5, it follows that the copy of T5 associated with
u is mapped via g to the copy of T5 in T whose initial node is u1. Furthermore,
since T5 is a core, this mapping is surjective as well. Then we conclude that T1 · T−1

5

is contained in the homomorphic image of g. The same argument can be mimicked
for each i ∈ {2, 3, 4}, and thus g is surjective, which implies that S = T , which is
a contradiction. Thus, effectively there exists i∗ ∈ {1, 2, 3, 4}, such that g(u) �= ti∗
for all u ∈ V . Using Claim 8.11 we have that g(u) �= g(u′) for all {u, u′} ∈ E. This
implies that G is 3-colorable, which is a contradiction.

Assume now that ϕ(G) → T but there is no proper subgraph S of T such that

ϕ(G) → S. Since ϕ(G)
h−→ T , using Claim 8.11 we can deduce that h(u) �= h(u′) for

all {u, u′} ∈ E. Furthermore, we can define a 4-coloring for G. In fact, we can just
take c : V → {1, 2, 3, 4} such that c(u) = i iff h(u) = ti for each u ∈ V .

Assume, for the sake of contradiction, that there exists a 3-coloring c : V →
{1, 2, 3} of G. We then define a homomorphism g : ϕ(G) → T as follows: First, for
each u ∈ V we define g(u) = tc(u). Since c is a coloring we have that g(u) �= g(u′) for
all {u, u′} ∈ E. Using Corollary 8.12, we can extend g to all ϕ(G) in a way that the
homomorphic image of g is contained in Z. But this is a contradiction since Z is a
proper subgraph of T .

Note that as a corollary, we obtain that the following problem is alsoDP-complete:

Problem: Exact Acyclic Homomorphism

Input: a digraph G, an acyclic digraph T .
Question: Is G → T and G �→ S for every proper subgraph S of T ?

Before proceeding with the proof, we recall the following lemma from [25].
Lemma 8.13. If G and H are two balanced digraphs such that G → H, then

hg(G) ≤ hg(H).
We conclude the DP-hardness result proving the following proposition, which

tell us that (ϕ(G), T ) is actually a reduction from Exact Four Colorability to
Graph Acyclic Approximation.
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Proposition 8.14. Let G = 〈V,E〉 be a graph. Then ϕ(G) → T, but there is
no proper subgraph S of T such that ϕ(G) → S iff ϕ(G) → T, but there is no acyclic
digraph S such that ϕ(G) → S �� T .

Proof. The backward direction is trivial using the easily verifiable fact that T is a
core. For the forward direction, assume by contradiction that there exists an acyclic

digraph A such that ϕ(G)
h−→ A

g−→ T and T �→ A. Suppose first that there exists
i∗ ∈ {1, 2, 3, 4}, such that g ◦ h(u) �= ti∗ for all u ∈ V . Using similar arguments as
before, we have that G is 3-colorable and then there exists a proper subgraph S of T
such that ϕ(G) → S (in fact, we can take S = Z), which is a contradiction. Thus,
necessarily for each i ∈ {1, 2, 3, 4} there exists u ∈ V such that g ◦ h(u) = ti.

Consider i = 1 and take u ∈ V with g ◦ h(u) = t1. Let Q∗
1 be the copy of Q∗

associated with u, and let A′ be the homomorphic image of the restriction of h to
Q∗

1. Using the incomparability of Q∗ and T5, and the fact that g ◦ h preserves levels,
it follows that the homomorphic image of the restriction of g ◦ h to Q∗

1 is exactly T1.
This implies that the homomorphic image of A′ via g is T1. Thus Q

∗
1→A′→T1. Using

the fact that A′ is acyclic (it is a subgraph of A) and Claim 8.4, we have that there
exists a homomorphism g′ : T1 → A′. Let h5 be the restriction of h to the copy of
T5 associated with u. We define a homomorphism r1 from T1 · T−1

5 ⊆ T to A. For
each z in the copy of T1 we define r1(z) = g′(z), and for each z in the copy of T5 we
define r1(z) = h5(z). We prove that r1 is well defined, i.e., g′(t1) = h5(t1). Using
Lemma 8.13, we know that hg(A) = 25, so h preserves levels. Thus, h(u) and h(v0)
are the only nodes in A′ with level 25 and 0, respectively. Again, since hg(A′) = 25
we have that g′ preserves levels, implying that g′(t1) = h(u) = h5(u) = h5(t1). Notice
also that g′(v) = h(v0). Thus, r1 is well defined. Moreover, it is a homomorphism
and r1(v) = g′(v) = h(v0). We can apply the same argument for each i ∈ {2, 3, 4},
obtaining for each 1 ≤ i ≤ 4 a homomorphism ri from Ti · T−1

5 ⊆ T to A, such that
ri(v) = h(v0). Finally, we can define a homomorphism r : T → A as follows: First, if u
is in Ti ·T−1

5 for 1 ≤ i ≤ 4, then r(u) = ri(u). Since v is the only common node of the
subgraphs Ti · T−1

5 , with i ∈ {1, 2, 3, 4}, and r1(v) = r2(v) = r3(v) = r4(v) = h(v0), r
is well defined and it is a homomorphism, which is a contradiction.

Finally, we show that Graph Acyclic Approximation is DP-hard even when
G and T are cores and T is fixed. We define a new function ϕ̃ from ϕ, such that for
each undirected graph G it is the case that ϕ̃(G) is a core and G is 4-colorable but
not 3-colorable iff ϕ̃(G) → T and there is no acyclic S such that ϕ̃(G) → S �� T .
Since T is already a fixed core, this is enough to prove the result.

First, note that T̃ is not a core, since for each aij there are two distinct copies of

T12 whose terminal nodes are identified with aij (due to the structure of the choosers

S13, S21, and S32). We modify T̃ and leave only one copy of T12 for each aij . Observe
that Claim 8.11 is still valid.

Next we introduce some notation. For a set of indicesX ⊆ {1, 2, 3, 4, 5}, we denote
by TX the corresponding digraph from Claims 8.5 and 8.6. For example, forX = {3, 5}
and X = {1, 2, 5}, TX denotes T35 and T125 from Claims 8.5 and 8.6, respectively. If
X = {k}, then TX = Tk. Notice that TX �→ TY for each X,Y ⊆ {1, 2, 3, 4, 5} such
that Y � X .

Claim 8.15. If h is a homomorphism from T̃ to T̃ such that h(p) = p and
h(q) = q, then h is the identity mapping.

Proof. Using Lemma 4.5, Claims 8.5 and 8.6, and the fact that TX �→ TY for each
X,Y ⊆ {1, 2, 3, 4, 5} such that Y � X , the claim follows by a straightforward case
analysis.
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5 .

For each n ≥ 1, consider the oriented path Wn = 000(10)n0, illustrated in Figure
20. Notice that hg(Wn) = 4. For each 1 ≤ k ≤ n we define W k

n to be Wn plus an
edge from a new element zk to xk (an example is depicted in Figure 21). Notice that
hg(W k

n ) = 4 as well.
Claim 8.16. For each n ≥ 1 the digraphs W k

n (k ∈ {1, . . . , n}) are incomparable
cores.

Proof. Suppose that W k
n is not a core for some 1 ≤ k ≤ n. Then there exists

W k
n

h−→ W k
n , where h is not surjective. Necessarily, h(a) = a, h(b) = b, h(c) = c,

h(d) = d, and h(e) = e (since h preserves levels). This implies that h(xi) = xi and
h(yi) = yi for each 1 ≤ i ≤ n (see Figure 21). Since h(xk) = xk, it must be the case
that h(zk) = zk. This implies that h is surjective, which is a contradiction.

Now, suppose that W k
n

h−→ W k′
n for k �= k′. Since h preserves levels, we have that

h maps a, b, c, d, and e in W k
n to a, b, c, d, and e in W k′

n , respectively. This implies that
h maps, for each 1 ≤ i ≤ n, xi and yi in W k

n to xi and yi in W k′
n , respectively. Since

k �= k′, we have that zk cannot be mapped inW k′
n via h, which is a contradiction.

Consider the digraph S as defined in Figure 22. Recall that �Pk = 0k, P6 = 07105,
and P8 = 09103. The oriented path P135 is from Claim 8.2.

For each n ≥ 1 and 1 ≤ k ≤ n, we define the digraph Sk
n as follows: Take S

and replace the directed path of length 4 in S that starts at z′ and ends at z by a
copy of W k

n , identifying a with z′ and renaming e to z (see Figure 23). Observe that

W k
n → �P4, thus S

k
n → S.

Claim 8.17. For each n ≥ 1 the digraphs Sk
n (k ∈ {1, . . . , n}) are incomparable

cores.
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Fig. 22. The digraph S.
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Fig. 23. The digraph Sk
n.

Proof. The proof follows easily from Lemma 4.5, Claim 8.16, and the fact that
P6 and P8 are incomparable.

Now we define our main construction. Consider an undirected graph G and let
u1, u2, . . . , un be an arbitrary enumeration of its nodes. We define ϕ̃(G) to be ϕ(G),
where, in addition, for each 1 ≤ k ≤ n we add a disjoint copy of Sk

n and identify z in
Sk
n with uk. Clearly, ϕ̃(G) can be computed in polynomial time in the size of G. To

conclude, we prove the following proposition.
Proposition 8.18. For every undirected graph G, the digraph ϕ̃(G) is a core.

Furthermore, G is 4-colorable but not 3-colorable iff ϕ̃(G) → T and there is no acyclic
S such that ϕ̃(G) → S �� T .

Proof. Let G be an undirected graph and h a homomorphism from ϕ̃(G) to ϕ̃(G).
We shall prove that h is surjective, implying that ϕ̃(G) is a core. Recall that u1, . . . , un

is an enumeration of the nodes of G, which are by definition contained in ϕ̃(G). We
have that h(uk) = uk for each 1 ≤ k ≤ n. Indeed, since h preserves levels, we know
that h maps uk to ul for some 1 ≤ l ≤ n, or maps uk to some node in a copy of T̃
with level 25. Using the facts that Q∗ �→ TX for some X that contains element 5
(since Q∗ �→ T5) and TX �→ TY for Y � X , we can easily show that the second case is

not possible, since we have copies of T345 (from S̃21), T15 (from S̃34), and Q∗ whose
terminal nodes are identified with uk, as shown in Figure 24. For example, h cannot
map uk to a11; otherwise T345 → T12, T345 → T15, or T345 → T125. Similarly, h cannot
map uk to b1; otherwise Q∗ → T15, Q

∗ → T25, or Q
∗ → T35 (see Figure 24). For the

other nodes in T̃ with level 25, we have similar contradictions.
Thus, h maps uk to ul for some 1 ≤ l ≤ n. We shall show that l = k. Indeed,

suppose that l �= k. Since h preserves levels and the only node with level 25 in the
copy of Sk

n whose terminal node is uk is precisely uk, we have that h maps this copy
of Sk

n either to a copy of Q∗, T345, T15, T5, or S
l
n, whose terminal node is ul. Suppose

that h maps the copy of Sk
n to the copy of Q∗. Necessarily, h maps w in Sk

n to a7
in Q∗ (see Figures 23 and 6). This implies that P135 → P7, which is a contradiction
with Claim 8.2. Now, suppose that h maps the copy of Sk

n to the copy of T5. It
follows that h maps w′ in Sk

n to the initial node of the copy of P8 in T5, implying
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Fig. 24. The node uk and a copy of T̃ .

that P6 → P8 or P6 → P9 (Figures 23 and 10), which is a contradiction. The cases
when the copy of Sk

n is mapped to T345 or T15 lead to a contradiction as well, since
T345 → T5 and T15 → T5. Finally, suppose that h maps the copy of Sk

n to the copy
of Sl

n whose terminal node is ul. It follows that Sk
n → Sl

n, which contradicts Claim
8.17. In any case we have a contradiction, and thus l = k and h(uk) = uk for each
1 ≤ k ≤ n.

Now, observe that for each 1 ≤ k ≤ n, the copies of T5 and Sk
n whose terminal

node is uk have to be mapped via h to themselves in a surjective manner. Moreover,
h(v0) = v0; otherwise Q∗ → T5, Q

∗ → T15, or Q∗ → T345, which is a contradiction.
This implies that hmaps all disjoint copies of Q∗ to themselves, in a surjective manner
as well. Finally, observe that h maps all the copies of T̃ to themselves too. Indeed,
using the facts that h preserves levels, TX �→ TY for Y � X , and h(uk) = uk for each

1 ≤ k ≤ n, we can easily show that h maps each node in a copy of T̃ to a node inside
the same copy of T̃ . Thus, we can use Claim 8.15 to conclude that h maps all copies
of T̃ to themselves in a surjective manner, implying that h is actually surjective. This
proves that ϕ̃(G) is a core.

Finally, observe that for each 1 ≤ i ≤ 4 and 1 ≤ k ≤ n, there is a homomorphism
gi from Sk

n to Ti such that gi maps the node z in Sk
n to the terminal node of Ti.

Thus, if we are constructing a homomorphism from ϕ̃(G) to T for any values of the
images of the uk’s, we can always define images for the copies of the Sk

n’s. Therefore,
we can use exactly the same arguments as in the proofs of the correctness of ϕ and
Proposition 8.14.

This finishes the proof of Theorem 4.12.
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