
SEMANTIC ACYCLICITY ON GRAPH DATABASES∗

PABLO BARCELÓ† , MIGUEL ROMERO†, AND MOSHE Y. VARDI‡

Abstract. It is known that unions of acyclic conjunctive queries (CQs) can be evaluated in linear
time, as opposed to arbitrary CQs, for which the evaluation problem is NP-complete. It follows from
techniques in the area of constraint-satisfaction problems that semantically acyclic unions of CQs –
i.e., unions of CQs that are equivalent to a union of acyclic ones – can be evaluated in polynomial
time, though testing membership in the class of semantically acyclic CQs is NP-complete.

We study here the fundamental notion of semantic acyclicity in the context of graph databases
and unions of conjunctive regular path queries with inverse (UC2RPQs). It is known that unions of
acyclic C2RPQs can be evaluated efficiently, but it is by no means obvious whether similarly good
evaluation properties hold for the class of UC2RPQs that are semantically acyclic. We prove that
checking whether a UC2RPQ is semantically acyclic is Expspace-complete and obtain as a corollary
that evaluation of semantically acyclic UC2RPQs is fixed-parameter tractable. In addition, our tools
yield a strong theory of approximations for UC2RPQs when no equivalent acyclic UC2RPQ exists.

Key words. Graph databases; conjunctive regular path queries; conjunctive queries; acyclicity;
query evaluation; query approximation; constraint satisfaction problems.

1. Introduction. Conjunctive queries (CQs) are the most fundamental class
of database queries and also the most intensively studied in the database theory
community. The evaluation problem for CQs is as follows: Given a CQ θ, a database
D, and a tuple ā of elements in D, does ā belong to the result θ(D) of applying θ to
D? Notice that the cost of evaluation is thus measured in terms of the size |D| of the
database D and |θ| of the query θ, which in database terminology corresponds to the
combined complexity of the problem [42].

The evaluation problem for CQs is NP-complete [12]; this motivated a flurry
of activity for finding tractable cases of the problem. One of the oldest and most
important such restrictions is acyclicity. Acyclic CQs can in fact be evaluated in
linear time in both data and query size – O(|D| · |θ|) [45]. This good behavior extends
to unions of CQs (UCQs) each one of which is acyclic (the so-called acyclic UCQs).

Acyclicity is a syntactic property of queries that is by now well-understood [25].
On the other hand, the space of UCQs that is defined by the notion of semantic
acyclicity–that is, the UCQs that are equivalent to an acyclic one – has not received
much attention. We call this the space of semantically acyclic UCQs. Two questions
naturally arise in this context:

1. Is the evaluation problem for semantically acyclic UCQs still tractable?
2. What is the cost of verifying whether a UCQ is semantically acyclic?

Answers to these questions can be found by applying known techniques in the area
of constraint satisfaction problems (CSP). This is based on the fact that CQ evaluation
and CSP have a common root – they are both equivalent to the homomorphism
problem [34]. CSP techniques establish the following:

1. Semantically acyclic UCQs can be evaluated in polynomial time.
2. Verifying whether a UCQ is semantically acyclic is NP-complete [14, 17].

∗This paper is the full version of the conference article [7]. Barceló and Romero are funded by
the Millennium Nucleus Center for Semantic Web Research under Grant NC120004. Romero is
also funded by CONICYT Ph.D. Scholarship. We are very grateful to Gaelle Fontaine for helpful
discussions about the role of unions in approximations of UC2RPQs, and for providing us with
Example 7.

2Center for Semantic Web Research & Department of Computer Science, University of Chile
({pbarcelo, mromero}@dcc.uchile.cl).

3Department of Computer Science, Rice University (vardi@cs.rice.edu).

1

In this paper we extend the concept of semantic acyclicity from the classical
setting of relational databases to the newer setting of graph databases [2], which has
been the focus of much research in the last few years [4, 19, 20, 5, 22]. In fact, acyclicity
has been identified as a fundamental tool for obtaining tractable – and even linear time
– query evaluation in such context [29, 4, 5, 36]. It is thus of theoretical importance
to understand what is the space of queries defined by the notion of acyclicity over
graph databases.

Graph databases are typically modeled as edge-labeled directed graphs. In this
context, query languages are navigational, in the sense that they allow to recursively
traverse the edges of the graph while checking for some regular condition [16, 1, 10,
44, 3]. Navigation is often performed by traversing edges in both directions, which
allows to express important properties about the inverse of the relations defined by
the labels of those edges [9, 10]. When this is combined with the expressive power
of CQs, it yields a powerful class of queries – the so-called conjunctive regular path
queries with inverse, or C2RPQs – that lies at the core of many query languages for
graph databases (see, e.g., [16, 15, 9, 4]).

Evaluation of unions of C2RPQs (UC2RPQs) is not more expensive than eval-
uation of CQs, i.e. NP-complete. Recent works have studied the class of acyclic
UC2RPQs – where acyclicity is defined in terms of the underlying CQ of each ele-
ment of the union – and proved that queries in this class preserve the good properties
of acyclic UCQs for evaluation, i.e. they can be evaluated in polynomial time, and
even linearly for suitable restrictions [4, 5].

In this work we study the notion of semantic acyclicity for UC2RPQs, that is, we
study the class of UC2RPQs that are equivalent to an acyclic one, and try to answer
the same questions that we posed before for the class of semantically acyclic UCQs:

1. What is the cost of evaluating queries in this class?
2. How hard is to recognize if a UC2RPQ Γ is semantically acyclic, and, if so,

what is the cost of computing an equivalent acyclic UC2RPQ for Γ?
The first question is important since we want to understand whether semantic acyclic-
ity leads to larger classes of UC2RPQs with good evaluation properties. The second
question is relevant for static optimization, as a positive answer would allow us to con-
struct an equivalent query in a well-behaved fragment for each semantically acyclic
UC2RPQ. We present answers to both questions in the paper, in a way that our
answer to the first question crucially depends on our answer to the second one.

As mentioned before, the evaluation problem for semantically acyclic UCQs is
tractable, and this is proved by applying known techniques from CSP. Those tech-
niques are specifically tailored for checking the existence of a homomorphism from a
relational structure into another one, which fits well the semantics of CQs. On the
other hand, the semantics of C2RPQs is based on a richer notion of homomorphism,
which maps the atoms of a query into pairs of nodes in a graph database linked by
a path satisfying some regular condition. Such notion of homomorphism does not fit
well in the current landscape of CSP techniques, and, in fact, CSP theory does not
yield answers to our questions about semantically acyclic UC2RPQs.

Example 1. To illustrate the usefulness of semantic acyclicity, consider an alpha-
bet {p, f} modeling social networks. Labels p and f stand for “person” and “friend”,
respectively. An object in a graph database is a person if it has an outgoing p-labeled
edge (e.g., to its id). Two persons are friends if there is an f -labeled edge between
them. Suppose we want to know whether there is a group of persons of size n ≥ 2
in the graph database G that forms a clique. This means that there is an f -labeled

2

f+

p p

p p

p p p p

f+

f+

f+ f+

f+

f+

f+ f+

Fig. 1.1. The query from Example 1 and its equivalent acyclic query.

edge between each pair of persons in the group. Evaluating this query basically corre-
sponds to the well-known clique problem, which is NP-complete. Typical algorithms
for this problem take |G|O(n) time.

On the other hand, in the context of graph databases it is sometimes more in-
teresting knowing whether two persons are linked by a path labeled in the friendship
relationship than in checking if they are actual friends. This means that there is a
sequence of mutual friends that connects these two persons, or, more formally, that
there is a path between them labeled by the regular expression f+. Our clique query
can thus also be relaxed by using this condition. The left-hand side figure in Figure
1.1 depicts the result for n = 4 (dots represent variables and arrows represent labeled
atoms). Notice that this query is non acyclic, and by applying standard algorithms
we can still evaluate it in |G|O(n) time. However, it is not hard to prove that the query
is semantically acyclic. Indeed, it is equivalent to a path of n persons that are con-
secutively linked by paths of mutual friends. This query is depicted in the right-hand
side of Figure 1.1 (for n = 4 again). The existence of such path can be checked in
time O(n · |G|2). Therefore, evaluating a semantically acyclic query via its equivalent
acyclic query can significantly improve the running time. ✷

To attack our questions about evaluation of semantically acyclic UC2RPQs, we
consider first the problem of UC2RPQ approximations, which is motivated by recent
work on approximations of UCQs [6]. Typical algorithms require |D|O(|θ|) time to
evaluate a CQ θ on a database D, which might be prohibitively expensive for a large
dataset D even if θ is small. This led the idea of finding approximations of (U)CQs
in tractable classes [6], in particular, in the class of acyclic (U)CQs. Intuitively, an
acyclic UCQ Θ′ is an approximation of a UCQ Θ if Θ′ is contained in Θ and it is “as
close as possible” to Θ in the class of acyclic UCQs. The latter means that Θ′ is a
maximal acyclic UCQ that is contained in Θ. It follows from techniques in [6] that
UCQs have good properties in terms of acyclic approximations: Each UCQ Θ has
a unique acyclic approximation (up to equivalence) and this approximation can be
computed in single-exponential time. These good properties imply that computing
and running the acyclic approximation of a UCQ Θ on a database D takes time
O(|D| · 2p(|Θ|)), for some polynomial p : N → N. This is much faster than |D|O(|Θ|) on
large databases. Thus, if the quality of the approximation is good, we may prefer to
run this faster query instead of Θ.

We show here that the good properties of UCQs in terms of acyclic approxima-
tions extend to UC2RPQs. In particular, we show that each UC2RPQ Γ has a unique
acyclic approximation (up to equivalence) and that an approximation of exponential
size can be computed in Expspace. The data complexity of evaluating this approxi-
mation is then quadratic in the size of the data, just as the data complexity of 2RPQs.
This shows that acyclic approximations might be useful when evaluating the original
query is infeasible, though the cost of computing the approximation is quite high. We

3

also show that UC2RPQs behave provably worse than UCQs in terms of approxima-
tions: Verifying whether an acyclic UCQ Θ′ is the approximation of the UCQ Θ is in
the second-level of the polynomial hierarchy, but it becomes Expspace-complete in
the case of UC2RPQs. This is not surprising, as it is known that testing containment
of UC2RPQs is Expspace-complete [9].

Finally, we apply the machinery of acyclic approximation of UC2RPQs to address
semantic acyclicity of this class of queries. As noted above, we can construct in
Expspace an exponential-sized acyclic approximation Γ′ of a given UC2RPQ Γ. By
construction, Γ′ is contained in Γ. To check whether Γ is semantically acyclic we just
have to check if Γ is contained in Γ′. Because Γ′ is exponentially large, we trivially
get a 2Expspace upper bound for the complexity of this step. Surprisingly, we show
that this can actually be improved to Expspace. In order to prove this, we show that
checking containment of a UC2RPQ Γ1 in an acyclic UC2RPQ Γ2 can be solved using
exponential space but in such a way that the exponent only depends on the width of
Γ2, which is the maximum number of atoms in some disjunct of Γ2 that mention the
same pair of variables. As it turns out, this parameter is polynomial in |Γ| for the
acyclic approximation Γ′. Thus, applying this refined algorithm for containment we
can check whether Γ ⊆ Γ′ in Expspace. We also provide a matching lower bound for
this problem.

This machinery allows us to get answers to the two questions we posed above:

1. First, query evaluation for semantically acyclic UC2RPQ is fixed-parameter
tractable, when we consider the size of the query as the parameter. Recall
that this means that there exists a computable function f : N → N and a
constant k ≥ 1 such that evaluating a UC2RPQ Θ over a database D can be
done in time O(|D|k ·f(|Θ|)). This shows that the class of semantically acyclic
UC2RPQs is well-behaved in terms of evaluation, as in general evaluation of
UC2RPQs (and even CQs) is not fixed-parameter tractable [38] (under widely
held complexity theoretical assumptions).

2. Second, testing semantic acyclicity for UC2RPQs is Expspace-complete.

The question whether semantically acyclic UC2RPQs can be evaluated in polynomial
time is left as an interesting open problem.

Organization The rest of the paper is organized as follows. In Section 2, we study
semantic acyclicity for UCQs and show that the answer to the most basic questions
follow from known CSP techniques. In Section 3, we introduce graph databases
and UC2RPQs. Section 4 is devoted to present the main techniques and results
related to containment of UC2RPQs. In Section 5, we study acyclic approximations
of UC2RPQs and show some of their good properties. Then in Section 6, we study
semantic acyclicity of UC2RPQs. We provide upper and lower bounds for the problem
of verifying whether a UC2RPQ is semantically acyclic and show that this implies that
evaluation of semantically acyclic UC2RPQs is fixed-parameter tractable. In Section
7 we provide concluding remarks and a list of open problems. Finally, the appendix
in Section 8 contains the proofs of some technical results in the paper.

2. Interlude on Unions of Conjunctive Queries. We start by considering
semantic acyclicity in the context of traditional relational databases and unions of
conjunctive queries. Although the results in this section follow from known techniques,
we state them for the sake of completeness and because they will help us developing
the necessary intuitions for the more complicated case of graph databases and unions
of conjunctive regular path queries.

4

2.1. Basic concepts. We first provide the necessary terminology. A schema
is a set σ of relation names R1, . . . , Rℓ, each relation Ri having an arity ni > 0. A
database of schema σ is a function D that maps each relation symbol Ri in σ into a
finite ni-ary relation RD

i over a countably infinite domain dom (i.e. RD
i ⊆ dom

ni).
A conjunctive query (CQ) over σ is a logical formula in the ∃,∧-fragment of

first-order logic, i.e., a formula of the form:

θ(x̄) = ∃ȳ
m
∧

i=1

Pi(ūi), (2.1)

where each Pi is a symbol from σ and ūi is a tuple of variables among x̄, ȳ whose
length is the arity of Pi. As usual, we assume that x̄ are the free variables of θ, i.e.
the variables mentioned in θ that are not existentially quantified. Each Pi(ūi) is an
atom of θ(x̄).

As customary, we define the semantics of CQs in terms of homomorphisms. Let
θ(x̄) be a CQ of the form (2.1) and D a database over schema σ. A homomorphism
h from θ(x̄) to D is a mapping from the variables that appear in the atoms of θ(x̄) to
the elements of D such that Pi(h(ūi)) ∈ D for each 1 ≤ i ≤ m. The evaluation of θ
over D, denoted θ(D), is the set of all tuples of the form h(x̄), for h a homomorphism
from θ(x̄) to D. If θ is a Boolean query (i.e. x̄ is the empty tuple), the answer true
is, as usual, modeled by the set containing the empty tuple, and the answer false by
the empty set.

A union of conjunctive queries (UCQ) is a first-order formula of the form

Θ(x̄) =
∨

1≤i≤m

θi(x̄),

where θi(x̄) is a CQ for each 1 ≤ i ≤ m. Note that every disjunct in Θ(x̄) has the
same tuple of free variables, namely, x̄. We define Θ(D) to be

⋃

1≤i≤m θi(D).
As it is common in database theory [3, 25, 38, 42], we formalize query evaluation as

a decision problem. The evaluation problem for UCQs is as follows: Given a database
D, a UCQ Θ(x̄) and a tuple ā in D, is ā ∈ Θ(D)?

It is well-known that the evaluation of CQs is NP-complete [12]. On the other
hand, tractability of (U)CQ evaluation can be obtained by restricting the syntactic
shape of CQs. The oldest and most common of such restrictions is α-acyclicity (or,
simply, acyclicity) [18], that can be defined in terms of the existence of a well-behaved
tree decomposition of the hypergraph of a CQ [26]. We review such notions below.

Recall that a hypergraph is a tuple H = (V,E), where V is its finite set of vertices
and E ⊆ 2V is its set of hyperedges. With each CQ θ we associate its hypergraph
H(θ) = (V,E) such that V is the set of variables of θ and E consists of all sets of
variables that appear in the same atom of θ. Consider for instance the CQ

θ(x) = ∃y∃z∃u∃v
(

R(x, y, z) ∧ T (y, u, u)∧ S(y, v)
)

.

Then H(θ) = (V,E), where V = {x, y, z, u, v} and E consists of the hyperedges
{x, y, z}, {y, u} and {y, v}.

A tree decomposition of a hypergraph H = (V,E) is a pair (T, λ), where T is a
tree and λ is a mapping from the nodes of T to 2V , that satisfies the following:

• For each v ∈ V the set {t ∈ T | v ∈ λ(t)} is a connected subset of T .
• Each hyperedge in E is contained in one of the sets λ(t), for t ∈ T .

5

Then H is acyclic if there is a tree decomposition (T, λ) of it such that λ(t) is a
hyperedge in E, for each t ∈ T .

A CQ θ is acyclic if its hypergraph H(θ) is acyclic. A UCQ
∨

1≤i≤m θi(x̄) is
acyclic if each θi(x̄) is acyclic (1 ≤ i ≤ m). For instance, the CQ

θ(x) = ∃y∃z∃u∃v R(x, y, z) ∧ T (y, u, u)∧ S(y, v)

presented above is acyclic, as witnessed by the following tree decomposition (T, λ) of
H(θ): T consists of vertices {1, 2, 3} and edges {(1, 2), (1, 3)}, and λ(1) = {x, y, z},
λ(2) = {y, u} and λ(3) = {y, v}.

It follows from the seminal work of Yannakakis that acyclic UCQs have good
properties in terms of evaluation:

Proposition 2.1. [45] The evaluation problem for acyclic UCQs can be solved
in linear time O(|D| · |Θ|).

2.2. Semantically acyclic UCQs. Acyclicity is a syntactic property of UCQs.
On the other hand, a non-acyclic UCQ can still be equivalent to an acyclic one.
Formally, a UCQ Θ(x̄) is semantically acyclic if there exists an acyclic UCQ Θ′(x̄)
such that Θ(D) = Θ′(D) for each database D. Recall that we are interested in two
questions regarding semantic acyclicity:

1. Is the evaluation problem for semantically acyclic UCQs tractable?
2. What is the cost of verifying semantic acyclicity for UCQs?

As pointed out in [34], there is a close connection between conjunctive query
evaluation and constraint satisfaction: Both can be recast as the problem of deter-
mining whether there is a homomorphism from one relational structure into another
one. This tight connection allows us to export tools from CSP [34, 14] and prove that
semantically acyclic UCQs can be evaluated in polynomial time.

Theorem 2.2. The evaluation problem for semantically acyclic UCQs can be
solved in polynomial time.

The CSP techniques that imply Theorem 2.2 first establish a sophisticated equiv-
alence between the problems of query evaluation for semantically acyclic CQs and
the existence of winning strategies for the duplicator in some refined version of the
existential pebble game, and then prove that the required condition on games can
be checked efficiently. Since the proof of Theorem 2.2 is not essential to our main
argumentation line we relegate to the appendix in Section 8.

Notice that the class of acyclic UCQs is remarkably well-behaved for evaluation:
Queries in the class are not only tractable, but also verifying whether a given UCQ
belongs to the class can be done in polynomial (in fact, linear) time [41]. On the other
hand, using techniques similar to those in [17], one can prove that this good behavior
does not extend to the class of semantically acyclic UCQs, as the problem of verifying
whether a query is semantically acyclic is computationally hard (again, we relegate
the proof of this fact to the appendix):

Proposition 2.3. The problem of verifying whether a UCQ Θ(x̄) is semantically
acyclic is NP-complete. It remains NP-hard even when the input is restricted to
Boolean CQs whose schema consists of a single binary relation (i.e. directed graphs).

3. Graph Databases and Conjunctive Regular Path Queries.

3.1. Graph databases and C2RPQs. A graph database [2, 10, 16] is just a
finite edge-labeled graph. Let Σ be a finite alphabet, and N a countably infinite set
of node ids. Then a graph database over Σ is a pair G = (N,E), where N is the
set of nodes (a finite subset of N), and E is the set of edges, i.e., E ⊆ N × Σ × N .

6

That is, we view each edge as a triple (n, a, n′), whose interpretation, of course, is an
a-labeled edge from n to n′. When Σ is clear from the context, we shall simply speak
of a graph database.

As mentioned before, in this work we consider navigational queries that traverse
edges in both directions. The building block of these languages is the class of regular
path queries with inverse, or 2RPQs [9, 10]. A 2RPQ over finite alphabet Σ is a
nondeterministic finite automaton (NFA) over the alphabet Σ± that extends Σ with
the symbol a− for each a ∈ Σ. Intuitively, a− represents the inverse of a.

Intuitively, the evaluation of a 2RPQ A without inverses over a graph database
G consists of all those pairs (n, n′) of nodes in G such that n′ can be reached from
n in G by following a path whose label is accepted by A. In order to accomodate
inverses one interprets A not over G but over the completion G± of G, which is the
graph database over Σ± that is obtained from G by adding the edge (n′, a−, n), for
each edge (n, a, n′) ∈ E. We formalize this below.

Let G = (N,E) be a graph database. A path ρ from node n to n′ in G is a sequence

ρ = n0a1n1a2n2 . . . nk−1aknk,

where k ≥ 0, n0 = n, nk = n′, and for each 1 ≤ i ≤ k it is the case that (ni−1, ai, ni)
is an edge in E. Notice that when k = 0 this path consists of the single node n0. The
label of ρ, denoted label(ρ), is the word a1a2 . . . ak ∈ Σ∗. The evaluation A(G) of the
2RPQ A over the graph database G is the set of all pairs (n, n′) ∈ N ×N such that
there is a path ρ in G± from n to n′ for which it is the case that the word label(ρ) is
accepted by A.

A folklore result (see, e.g., [3]) establishes that the problem of computingA(G), for
a given graph database G and 2RPQ A, can be solved in polynomial time O(|G|2 · |A|).

When the expressive power of 2RPQs is combined with the ability of CQs to
express arbitrary joins and existential quantification, it yields a powerful class of
queries – namely, the conjunctive regular path queries with inverses, or C2RPQs [9] –
that we define next.

Formally, a C2RPQ over a finite alphabet Σ is an expression of the form:

γ(x̄) = ∃ȳ
∧

1≤i≤m

(ui,Ai, vi), (3.1)

such that each ui and vi is a variable among x̄, ȳ and each Ai is a 2RPQ over Σ, for
1 ≤ i ≤ m. A CRPQ is a C2RPQ without inverses, i.e. a C2RPQ of the form (3.1) in
which each Ai (1 ≤ i ≤ m) is an NFA over Σ. As usual, we assume that x̄ are the free
variables of γ, i.e. the variables mentioned in γ that are not existentially quantified.
Each (ui,Ai, vi) is an atom of γ.

We formally define the semantics of C2RPQs by using a notion of homomorphism
that maps atoms of γ into pairs that satisfy the corresponding 2RPQs. Given γ(x̄) of
the form (3.1) and a graph database G = (N,E), a homomorphism from γ(x̄) to G is
a map h :

⋃

1≤i≤m{ui, vi} → N such that (h(ui), h(vi)) ∈ Ai(G) for every 1 ≤ i ≤ m.
We then define the evaluation γ(G) of γ over G to be the set of all tuples h(x̄) such
that h is a homomorphism from γ(x̄) to G.

A union of C2RPQs (UC2RPQ) is a formula of the form

Γ(x̄) =
∨

1≤i≤m

γi(x̄),

7

where each γi(x̄) is a C2RPQ (1 ≤ i ≤ m). We define Γ(G) as
⋃

1≤i≤m γi(G), for each
graph database G. As before, the UC2RPQ Γ is Boolean if x̄ is the empty tuple. In
such case the evaluation of Γ over G corresponds to either true or false.

Remark: While we use NFAs in order to specify regular languages in UC2RPQs, it
is sometimes more convenient (especially in practice) to specify such languages using
regular expressions. In fact, this is the approach often followed in the graph database
literature (see, e.g., [3, 44]). Each regular expression can be easily translated into an
NFA in polynomial time, and, therefore, all the evaluation upper bounds obtained
in the paper continue to hold in the case when UC2RPQs are specified using regular
expressions. The reason why we use NFA instead is that they allow to express regular
languages more succinctly than the latter (which is crucial for some of our results). For
the sake of readability though, all the examples we present in the paper are specified
using regular expressions.

Example 2. Consider a graph database G = (N,E) of researchers, papers,
conferences and journals over the alphabet Σ = {creator, inJournal, inConf}. The set
of edges E consists of the following:

• All tuples (r, creator, p) such that r is a researcher that (co)authors paper p.
• Each tuple (p, inJournal, j) such that paper p appeared in journal j.
• All tuples (p, inConf, c) such that paper p was published in conference c.

Consider the C2RPQ γ(x, y) defined as:

∃z∃w
(

(x, creator, z) ∧ (z, inConf, w) ∧ (z, creator−, y)
)

.

Its evaluation γ(G) over the graph database G consists of the set of pairs (r, r′) such
that researchers r and r′ have a joint conference paper.

The evaluation over G of the C2RPQ γ′(x, y) defined as:

∃z∃w
(

(x, (creator · creator−)∗, y) ∧ (y, creator, z) ∧ (z, inJournal, w)
)

consists of the set of pairs (r, r′) of researchers that are linked by a coauthorhsip
sequence and such that r′ has at least one journal paper. ✷

If Γ and Γ′ are UC2RPQs, then Γ is contained in Γ′, denoted Γ ⊆ Γ′, if Γ(G) ⊆
Γ′(G) for each graph database G. In addition, Γ and Γ′ are equivalent, denoted Γ ≡ Γ′,
if Γ ⊆ Γ′ and Γ′ ⊆ Γ, or, equivalently, Γ(G) = Γ′(G) for each graph database G.

The evaluation problem for UC2RPQs is defined in the same way as for UCQs,
i.e., this is the problem of checking whether n̄ belong to Γ(G), given a UC2RPQ Γ(x̄),
a graph database G, and a tuple n̄ of nodes in G such that |n̄| = |x̄|. It is folklore that
evaluating UC2RPQs is not more expensive than evaluating CQs, i.e. NP-complete
(see, e.g., [4, 3]).

Acyclic UC2RPQs Acyclicity of C2RPQs has been studied in several recent papers
that define it in terms of the acyclicity of its underlying conjunctive query [4, 5].
Let γ(x̄) = ∃ȳ

∧

1≤i≤m(ui,Ai, vi) be a C2RPQ. Its underlying CQ is the query over
the schema of binary relation symbols T1, . . . , Tm defined as: ∃ȳ

∧

1≤i≤m Ti(ui, vi).
Intuitively, this underlying conjunctive query represents the structure of γ when the
regular languages that label the atoms of γ are turned into relation symbols.

A C2RPQ is acyclic if its underlying CQ is acyclic. A UC2RPQ is acyclic if each
one of its C2RPQs is acyclic. By combining techniques for UC2RPQ evaluation and
polynomial time evaluation of acyclic CQs, it is possible to prove that the evaluation

8

problem for acyclic UC2RPQs can be solved in polynomial time [45, 4]. We present
the simple proof of this fact for the sake of completeness.

Theorem 3.1. The evaluation problem for acyclic UC2RPQs can be solved in
time O(|G|2 · |Γ|2).

Proof: Let G be a graph database and Γ a UC2RPQ. Let us denote by Θ the UCQ
that is obtained from Γ by replacing each C2RPQ γ in Γ by its underlying conjunctive
query. Let T1(u1, v1), . . . , Tn(un, vn) be an enumeration of all the relational atoms in
Θ, and assume that for each i with 1 ≤ i ≤ n the atom Ti(ui, vi) is introduced in Θ
as a replacement for the 2RPQ (ui,Ai, vi). Further, let D be a relational database
over schema {T1, . . . , Tn} such that the interpretation of the binary relation symbol
Ti over D, for each 1 ≤ i ≤ n, is precisely Ai(G). Notice that D can be constructed
in time O(|G|2 · |Γ|) from G and Γ, using the aforementioned fact that each Ai(G) can
be computed in time O(|G|2 · |Ai|) and |A1|+ · · ·+ |An| is O(|Γ|).

It is clear then that checking whether a tuple n̄ of nodes in G belongs to Γ(G)
reduces to checking whether n̄ ∈ Θ(D). Since Θ is acyclic, it follows from Proposi-
tion 2.1 that the latter can be done in time O(|D|·|Θ|), that is, in time O(|G|2 ·|Γ|2). ✷

Recall that a CQ θ is acyclic if its hypergraph H(θ) admits a tree decomposition
(T, λ) such that each set of the form λ(t), for t ∈ T , is a hyperdge of H(θ). The fact
that acyclicity of C2RPQs is defined in terms of the acyclicity of its underlying CQ –
and the latter is specified in a schema of binary arity – allows us to provide a simple
characterization of the class of acyclic C2RPQs that will be useful in our proofs. We
explain this below.

The simple undirected underlying graph of C2RPQ γ(x̄) = ∃ȳ
∧

1≤i≤m(ui,Ai, vi),
which is denoted by U(γ), is the graph whose vertices are the variables of γ and its
set of edges is {{ui, vi} | 1 ≤ i ≤ m and ui 6= vi}. Notice that U(γ) is indeed simple
(it contains neither loops nor multiedges) and undirected. The following self-evident
proposition provides a simple reformulation of the notion of acyclicity of C2RPQs in
terms of the acyclicity of their simple undirected underlying graph:

Proposition 3.2. A C2RPQ γ is acyclic if and only if U(γ) is acyclic.

Example 3. Let us consider again the C2RPQ:

γ(x, y) = ∃z∃w
(

(x, creator, z) ∧ (z, inConf, w) ∧ (z, creator−, y)
)

,

in Example 2. The graph U(γ) consists of nodes x, z, w, y and edges {x, z}, {z, w},
and {z, y}. Clearly, U(γ) is acyclic, and, therefore, γ(x, y) is acyclic. Similarly, it can
be proved that the C2RPQ γ′(x, y) in Example 2 is acyclic. ✷

Notice that this definition of acyclicity allows for the existence of loops and mul-
tiedges in the structure of a C2RPQ, that is, in its underlying CQ, as shown in the
following example.

Example 4. Let L1, L2 and L3 be arbitrary regular expressions over Σ. The
CRPQs γ = ∃x(x, L1, x) and γ′ = ∃x∃y

(

(x, L1, y)∧(y, L2, x)
)

are acyclic. Notice that
the underlying CQ of γ contains a loop, while the underlying CQ of γ′ contains edges
from x to y and from y to x. On the other hand, the CRPQ γ′′ = ∃x∃y∃z

(

(x, L1, y)∧

(y, L2, z) ∧ (z, L3, x)
)

is not acyclic. ✷

Our goal is to study the notion of semantic acyclicity for UC2RPQs. To attack the
problem of evaluation for UC2RPQs that are semantically acyclic we make a necessary
detour in the next section to study the containment problem for UC2RPQs, and then
in Section 5 to study approximations of UC2RPQs.

9

4. Containment of UC2RPQs. To prove our results, it is essential having
a good understanding of the machinery used to study the containment problem for
UC2RPQs. We develop such machinery in this section.

Calvanese et al. proved that the containment problem for C2RPQs is in Ex-

pspace [9]. More specifically, it follows from [9] that checking whether γ ⊆ γ′, when
γ and γ′ are C2RPQs, can be solved using exponential space in such a way that the
exponent only depends on |γ′| and the number of variables in γ. For a UC2RPQ Γ,
we define maxvar(Γ) to be the maximum number of variables over all disjuncts of Γ.
A straightforward extension of the techniques in [9] shows that containment of Γ in
Γ′, when Γ and Γ′ are UC2RPQs, can also be solved in exponential space, but now
the exponent depends only on |Γ′| and maxvar(Γ). It is also shown in [9] that the
containment problem for C2RPQs is Expspace-hard even when both γ and γ′ are
acyclic CRPQs [9]. In summary:

Proposition 4.1. The following hold:
1. Checking whether Γ ⊆ Γ′, for UC2RPQs Γ and Γ′, can be solved using expo-

nential space where the exponent only depends on |Γ′| and maxvar(Γ).
2. The problem of checking whether γ ⊆ γ′, for C2RPQs γ and γ′, is Expspace-

hard. It remains hard even if both γ and γ′ are acyclic CRPQs.
When Γ′ is an acyclic UC2RPQ it is possible to show that the containment of Γ

in Γ′ can be checked in exponential space, but where the exponent only depends on
Γ′, specifically, on the width of Γ′ (defined below). This result will be crucial to later
prove in Section 6 that the problem of checking whether a UC2RPQ is semantically
acyclic (i.e., equivalent to an acyclic UC2RPQ) is in Expspace.

Let γ be a C2RPQ over Σ. For two distinct variables x, y in γ we define Atoms(x, y)
to be the set of atoms in γ that are of the form (x,A, y) or (y,A, x), where A is an
NFA over Σ±. The width w(γ) of γ is defined as follows:

w(γ) = max{ |Atoms(x, y)| | x, y are distinct variables appearing in γ}

If Γ = γ1 ∨ · · · ∨ γm is a UC2RPQ, then the width of Γ is w(Γ) = max{w(γi) | 1 ≤ i ≤
m}. We devote the rest of this section to prove the following theorem.

Theorem 4.2. Containment of a UC2RPQ Γ in an acyclic UC2RPQ Γ′ can be
solved in deterministic O((|Γ| + |Γ′|)C·w(Γ′)) space, for some constant C ≥ 1.

The proof exploit automata techniques as in [9, 11, 39]. It follows from [39] that
checking containment of two UC2RPQs can be reduced to checking containment of a
Boolean single-atom C2RPQ (i.e., a C2RPQ of the form ∃x∃y(x,A, y), for A an NFA)
in a Boolean UC2RPQ (Boolean single-atoms C2RPQs are called Boolean 2RPQs in
[39]). In particular, it is shown that there are integers c, c′ ≥ 1 and a polynomial time
algorithm that, given UC2RPQs Γ and Γ′, constructs a Boolean single-atom C2RPQ
Ẽ and a Boolean UC2RPQ Γ̃ such that the following hold:

1. Γ ⊆ Γ′ if and only if Ẽ ⊆ Γ̃,
2. |Ẽ| = O(|Γ|c) and |Γ̃| = O((|Γ|+ |Γ′|)c

′

),
3. w(Γ′) = w(Γ̃), and
4. if Γ′ is acyclic then Γ̃ also is.

Our proof is based on the following lemma.
Lemma 4.3. There are integers d, d′ ≥ 1 such that the problem of checking

containment of a Boolean single-atom C2RPQ Γ in an acyclic UC2RPQ Γ′ can be
solved in deterministic O(|Γ′|d·w(Γ′) · |Γ|d

′

) space.
Lemma 4.3 directly implies Theorem 4.2. Indeed, in order to check containment

of a UC2RPQ Γ in an acyclic UC2RPQ Γ′ we first construct the single-atom C2RPQ

10

Ẽ and the acyclic UC2RPQ Γ̃, and then apply the algorithm from Lemma 4.3. The
space used is

O(|Γ̃|d·w(Γ̃)|Ẽ|d
′

) = O((|Γ| + |Γ′|)c
′d·w(Γ′)|Γ|cd

′

),

which is O((|Γ| + |Γ′|)Cw(Γ′)), for C ≥ c′d+ cd′.
Before proving Lemma 4.3 we make a necessary detour thorugh the notions of

canonical graph database and foldings, which are an important component of several
containment algorithms for UC2RPQs and its extensions [23, 9, 39].

4.1. Canonical databases and foldings. A semipath is a graph database
whose underlying graph is a path. Formally, the graph database G = (N,E) over
Σ is a semipath if N = {n0, . . . , nk}, E = {e1, . . . , ek}, and for each 1 ≤ i ≤ k it is
the case that ei is of the form (ni−1, ai, ni) or (ni, ai, ni−1) (for ai ∈ Σ). The internal
nodes of G are {n1, . . . , nk−1}. If k = 0 we call G the empty semipath.

Notice that the completion G± of the semipath G contains a single path ρ from n0

to nk. The label of ρ is b1b2 . . . bk, where for each 1 ≤ i ≤ k it is the case that bi = ai,
if ei is of the form (ni−1, ai, ni), and bi = a−i , otherwise. We slightly abuse notation
and write label(G) in order to denote label(ρ) whenever G is a semipath. Notice that
if G is an empty semipath then label(G) = ε.

Containment of UC2RPQs can be recast in terms of the notion of canonical
database [23, 9], which we describe below. Let γ(x̄) be a C2RPQ of the form γ(x̄) =
∃ȳ

∧

1≤i≤m(ui,Ai, vi). A graph database G is canonical for γ, if there exists a mapping
ν from the variables of γ to the nodes of G such that:

1. G consists of m semipaths, one for each conjunct of γ. Formally, for each
1 ≤ i ≤ m there is a semipath κi in G from ν(ui) to ν(vi). These semipaths
are node and edge disjoint, save for the start and end nodes that can be shared
between different κi’s. E.g., if ui = vj , for 1 ≤ i, j ≤ m, then ν(ui) = ν(vj)
and, thus, the start node of κi coincides with the end node of κj.

2. For each 1 ≤ i ≤ m it is the case that label(κi) is accepted by Ai.
3. For every two distinct variables z and z′ in γ it is the case that ν(z) = ν(z′) if

and only if there is a sequence z0, z1, . . . , zℓ of variables in γ such that z0 = z,
zℓ = z′ and for each 1 ≤ j ≤ ℓ there is an 1 ≤ i ≤ m such that (i) the atom
(ui,Ai, vi) in γ corresponds to either (zj−1,Ai, zj) or (zj ,Ai, zj−1), and (ii)
κi is an empty semipath.

We say that mapping ν is associated with the canonical database G.
The intuition is that a canonical database G is obtained from γ(x̄) as follows. We

view each variable in γ as a node in G. For each atom (ui,Ai, vi) in γ, we add to G a
semipath κi from ui to vi with fresh internal nodes that is accepted by Ai. We then
identify nodes ui and vi each time κi is chosen as an empty semipath. Condition (3)
in the definition of canonical database ensures that the identification of nodes only
occurs due to those empty paths.

A canonical database for a UC2RPQ Γ(x̄) is a canonical database for some disjunct
of Γ(x̄). A slight extension of the techniques used in [9] yields the following proposi-
tion, which states that if Γ 6⊆ Γ′, for UC2RPQs Γ and Γ′, then a counterexample to
Γ ⊆ Γ′ can be found in the set of canonical databases for Γ.

Proposition 4.4. Let Γ(x̄) and Γ′(x̄) be two UC2RPQs. Then Γ ⊆ Γ′ if and
only if for each canonical database G for Γ with associated mapping ν, it is the case
that ν(x̄) ∈ Γ′(G).1

1The original definition of canonical database in [9] only considers conditions (1) and (2). Condi-

11

We now define foldings. Let Σ be a finite alphabet. Recall that we denote by Σ±

the alphabet Σ∪ {a− | a ∈ Σ}. If p ∈ Σ± and p = a for some a ∈ Σ, then p− denotes
a−. On the other hand, if p = a− for a ∈ Σ, then p− denotes a. Let s = s1 . . . sk
and t = t1 . . . tℓ be words over Σ±. We say that t folds into s [10] from j1 to j2, for
j1, j2 ∈ {0, . . . , k}, if there is a sequence i0, . . . , iℓ of positions in the set {0, . . . , k}
such that:

• i0 = j1 and iℓ = j2.
• For each 1 ≤ j ≤ ℓ, it is the case that ij = ij−1+1 and tj = sij , or ij = ij−1−1

and tj = s−ij−1
.

Intuitively, t folds into s if t can be read in s by a two-way automaton that outputs
symbol p, each time p is read from left-to-right, and symbol p−, each time p is read
from right-to-left. For instance, the word abb−a−abb−c folds into abb−c from 0 to 5.

4.2. Proof of Lemma 4.3. We need to introduce some concepts from automata
theory. Recall that two-way alternating automata generalize NFAs with the ability
to move on the input word in both directions, and with the possibility to perform
universal or existential moves (actually a combination of both). We define them
following [11]. Given a set X , let B(X) be the set of positive Boolean formulae over
X , built inductively by applying ∧ and ∨ starting from true, false and elements of
X . For a set Y ⊆ X and a formula ϕ ∈ B(X), we say that Y satisfies ϕ if and only
if assigning true to the elements in Y and false to those in X \ Y makes ϕ true. A
two-way alternating finite automaton (2AFA) is a tuple A = (Σ, Q, δ,Q0, F), where
Σ is a finite alphabet, Q is a finite set of states, Q0 ⊆ Q is the set of initial states,
F ⊆ Q is the set of final states, and δ : Q × Σ → B({−1, 0, 1} ×Q) is the transition
function. Intuitively, a transition δ(q, a) spawns several copies of A, each one starting
in a certain state and with the head on the symbol to the left of a (−1), to the right
of a (1), or on a itself (0), and specifies by means of a positive Boolean formula how
to combine acceptance or non-acceptance of the spawned copies.

A run of A on a word w = a0 . . . aℓ−1, for ℓ ≥ 0, is a pair (T, λ), where T is a
finite rooted tree and λ is a labeling of the nodes of T by elements in Q × {0, . . . , ℓ}
such that:

1. λ(r) = (q0, 0), for some q0 ∈ Q0, where r is the root of T .
2. For each node u in T with λ(u) = (q, i) and δ(q, ai) = ϕ, where q ∈ Q,

0 ≤ i ≤ ℓ − 1, and ϕ ∈ B({−1, 0, 1} × Q), there is a (possible empty) set
X = {(d1, q1), . . . , (dn, qn)} ⊆ {−1, 0, 1} ×Q such that (i) X satisfies ϕ, and
(ii) for all j ∈ {1, . . . , n} there is a child of u in T labeled (qi, i+ dj).

The run is accepting if for each leaf u of T it is the case that λ(u) is of the form
(q, ℓ), for q ∈ F . The 2AFA A accepts w if it has an accepting run on it. It is known
that 2AFAs define regular languages [35]. The following fact was shown in [11].

Lemma 4.5. Given a 2AFA A with n states, one can construct an NFA with
2O(n) states that accepts precisely those words which are not accepted by A.

We now start with the proof of the lemma. Given a Boolean single-atom C2RPQ
Γ and an acyclic UC2RPQ Γ′ over Σ, we define an NFA AΓ,Γ′ (over an extended
alphabet) such that Γ 6⊆ Γ′ if and only if the language accepted by AΓ,Γ′ is not
empty. Assume that Γ is of the form ∃x∃y(x,AΓ, y), where AΓ is an NFA over Σ±.
The definition of AΓ,Γ′ is based on NFAs Acd and Aloops, and on a 2AFA AΓ′ , all of
which are introduced below.

tion (3) is innocuous in terms of the characterization of containment we provide here (i.e., Proposition
4.4 continues to hold if we remove such condition). As we shall see, on the other hand, condition (3)
is important for our proof.

12

All these automata are defined over a suitable alphabet ∆. Let Loops be 2TΓ′ ,
where TΓ′ is the set:

{(A, q, q′) | A is an NFA mentioned in some atom of Γ′ and q, q′ are states of A}.

Then ∆ := Σ± ∪ Loops. Note that the size of ∆ is bounded by O(2|Γ
′|2).

Let us start by defining the NFA Acd as the product of the following two NFAs:
1. Aformat, which accepts all words over ∆ satisfying the regular expression

Loops · (Σ± · Loops)∗. (Here we are slightly abusing notation by writing
Loops and Σ± for the regular expression that represents the union of all
symbols in Loops and Σ±, respectively).

2. Aacc, which accepts all words a1 . . . am over ∆ such that a2a4 . . . a2⌊m/2⌋ is a
word in Σ± accepted by AΓ.

It is easy to see that the number of states of Acd can be bounded by O(|Γ|).
Since Γ is a single-atom C2RPQ it is the case that if G is a canonical database

of Γ with associated mapping ν, then G is simply a semipath from ν(x) to ν(y)
such that label(G) is accepted by AΓ. Thus we can naturally associate the canonical
databases of Γ with the words accepted by AΓ. The NFA Acd then accepts all the
(labels of) canonical databases of Γ “adorned” with some additional information from
Loops. More formally, Acd accepts words of the form L0a1L1 . . . Lm−1amLm, where
Li ∈ Loops and ai ∈ Σ± for each 0 ≤ i ≤ m, such that (i) a1a2 . . . am is the label
of some canonical database of Γ, and (ii) L0L1 . . . Lm represents an “adornment” of
a1a2 . . . am over Loops.

Let us now define the NFA Aloops over alphabet ∆. This NFA will help us
restricting the possible adornments of the words L0a1L1 . . . Lm−1amLm accepted by
Acd in such a way that the following holds for each 0 ≤ i ≤ m:

(†) (A, q, q′) belongs to Li if and only if there is a word w over Σ± and a run of
A over w from state q to q′ such that w folds into a1 . . . am from i to i.

If the word L0a1L1 . . . Lm−1amLm satisfies (†) for each 0 ≤ i ≤ m then we say
that it is correct. The NFA Aloops then satisfies that the intersection of Acd and
Aloops accepts precisely those words accepted by Acd which are correct. We explain
next how Aloops is defined.

We start by defining a function ξ : Loops × Loops → Loops as follows. Given
(L1, L2) ∈ Loops×Loops, the set ξ(L1, L2) contains exactly all those triples (A, q, q′) ∈
TΓ′ such that either (i) q = q′, or (ii) there is a sequence

(A, q0, q1), (A, q1, q2), . . . , (A, qk−1, qk)

for which (a) q0 = q, qk = q′ and the states q0, . . . , qk are all distinct, and (b)
(A, qj , qj+1) ∈ L1 ∪ L2, for each 0 ≤ j ≤ k − 1.

We also define two functions ξℓ and ξr from Loops × Σ± to Loops. Given L ∈
Loops and a ∈ Σ±, the set ξℓ(L, a) contains exactly all those triples (A, q, q′) ∈ TΓ′

such that either (i) q = q′, or (ii) there is a sequence

(A, q0, q1), (A, q2, q3), . . . , (A, q2k, q2k+1),

where all the qi’s are distinct and the following holds:
1. There is an a−-labeled transition in A from q to q0,
2. there is an a-labeled transition from q2k+1 to q′ in A, and

13

3. for each 0 ≤ j ≤ k the tuple (A, q2j , q2j+1) belongs to L, and for each 0 ≤
j ≤ k − 1 there is a run of A over aa− from q2j+1 to q2j+2.

We define ξr(L, a) analogously, but switching a for a−, and viceversa.

Consider a word a1 . . . am, where ai ∈ Σ± for each 1 ≤ i ≤ m. For each 0 ≤ i ≤ m

we define sets T ℓ
i , T

r
i ∈ Loops as follows:

• The set T ℓ
i contains precisely those triples (A, q, q′) such that there is a word

w over Σ± and a run of A over w from state q to q′ such that w folds into
a1 . . . ai from i to i. If i = 0 then T ℓ

i is just the set of all triples of the form
(A, q, q).

• The set T r
i contains precisely those triples (A, q, q′) such that there is a word

w over Σ± and a run of A over w from state q to q′ such that w folds into
ai+1 . . . am from 0 to 0. If i = m then T r

i is just the set of all triples of the
form (A, q, q).

As it turns out, the fact that Li satisfies (†) can be stated in terms of T ℓ
i and T r

i ,
for each 0 ≤ i ≤ m. Indeed, it is not hard to see that Li satisfies (†) if and only if
Li = ξ(T ℓ

i , T
r
i). Furthemore, consecutive T ℓ

i ’s (resp., T
r
i ’s) can be expressed in terms

of the function ξℓ (resp., ξr). In fact, it is easy to see that for each 0 ≤ i ≤ m it is
the case that T ℓ

i+1 = ξℓ(T ℓ
i , ai+1) (resp., T

r
i = ξr(T r

i+1, ai+1)).

Now we construct the NFA Aloops. The set of states is Loops×Loops. The initial
states are the pairs of the form (L1, L2), where L1 is the set of triples in TΓ′ of the
form (A, q, q). Similarly, the final states are the pairs of the form (L1, L2), where now
L2 is the set of all triples in TΓ′ of the form (A, q, q). The transition function δ is
defined as follows:

1. Let L1, L2, L be elements in Loops. Then (L1, L2) ∈ δ((L1, L2), L) whenever
L = ξ(L1, L2).

2. Assume that L1, L2, L
′
1, L

′
2 are elements in Loops and a is a symbol in Σ±.

Then (L′
1, L

′
2) ∈ δ((L1, L2), a) whenever L

′
1 = ξℓ(L1, a) and L2 = ξr(L′

2, a).

Notice that the size of Aloops is bounded by 2O(|Γ′|2).

Therefore, an accepting run of Aloops over L0a1L1 . . . Lm−1amLm is a sequence
of the form:

(L0
1, L

0
2), (L

0
1, L

0
2), (L

1
1, L

1
2), (L

1
1, L

1
2), . . . , (L

m
1 , Lm

2), (Lm
1 , Lm

2),

where the following holds by the definition of the transition function δ:

1. (Li+1
1 , Li

2) = (ξℓ(Li
1, ai+1), ξ

r(Li+1
2 , ai+1)), for each 0 ≤ i ≤ m− 1, and

2. Li = ξ(Li
1, L

i
2), for each 0 ≤ i ≤ m.

Further, (L0
1, L

0
2) and (Lm

1 , Lm
2) are an initial and final state of Aloops, respectively.

We prove now that Aloops has an accepting run over L0a1L1 . . . Lm−1amLm if
and only if this word is correct. From our previous remarks, it is sufficient to prove
that Li = ξ(T ℓ

i , T
r
i) for each 0 ≤ i ≤ m. But since we know that Li = ξ(Li

1, L
i
2), we

only need to prove that Li
1 = T ℓ

i and Li
2 = T r

i for each 0 ≤ i ≤ m. We prove the
former first by induction on 0 ≤ i ≤ m. For the base case i = 0, notice that L0

1 is
the set of all triples in TΓ′ of the form (A, q, q) (because (L0

1, L
0
2) is an initial state of

Aloops). But this set is precisely T ℓ
0 by definition. Consider now the inductive case

i + 1, for 0 ≤ i < m. We know from our previous remarks that T ℓ
i+1 = ξℓ(T ℓ

i , ai+1).
By inductive hypothesis, T ℓ

i = Li
1, and, therefore, T

ℓ
i+1 = ξℓ(Li

1, ai+1). But the latter

is precisely Li+1
1 . Proving that Li

2 = T r
i for each 0 ≤ i ≤ m is completely analogous,

but this time we do it by induction on i from m to 0 (more formally, we prove by
induction on i that Lm−i

2 = T r
m−i for each 0 ≤ i ≤ m).

14

Given a canonical database G of Γ, we denote by wG the unique word L0a1L1 . . .

amLm over ∆ such that label(G) = a1 . . . am and the Li’s satisfy (†). In particular,
L0a1L1 . . . amLm is correct. We now define the 2AFA AΓ′ . This 2AFA satisfies the
following for each canonical database G of Γ: The word wG is accepted by AΓ′ if and
only if Γ′ evaluates to true over G. In order to do this, we define for each disjunct γ′

of Γ′ a 2AFA Aγ′ such that the following holds for each canonical database G of Γ:
The word wG is accepted by Aγ′ iff γ′(G) = true. Then AΓ′ is obtained by simply
taking the union of all the Aγ′ ’s.

Let γ′ be a disjunct of Γ′. A connected component of γ′ is a maximal subquery
γ′′ of γ′ such that its underlying undirected graph U(γ′′) is connected. Since γ′ is
acyclic, we can naturally interpret (the underlying undirected graph of) each con-
nected component of γ′ as a rooted tree. This allows us to talk about the parent or a
child of a variable in γ′, with the obvious meaning. Given a variable x in γ′, we define
Loops(x) to be the set of atoms of γ′ of the form (x,A, x), for A an NFA over Σ±.
Recall that if x and y are variables in γ′ then Atoms(x, y) denotes the set of atoms in
γ′ that mention both x and y. Without lost of generality, we assume that each atom
in Atoms(x, y) is of the form (x,A, y) (otherwise, we simply “reverse” A).

Let x and y be variables in γ′ such that x is the parent of y in γ′. For the rest of
the proof, we fix an enumeration

(x,A1, y), . . . , (x,Ap, y)

of the elements in Atoms(x, y). We then define Cuts(x, y) to be the set of all tuples
of the form (q1, . . . , qp), where qi is a state of Ai for each 1 ≤ i ≤ p. A tuple
(q1, . . . , qp) ∈ Cuts(x, y) is an initial cut (respectively, a final cut) if qi is an initial
state (respectively, a final state) of Ai for each 1 ≤ i ≤ p. Given cuts C = (q1, . . . , qp)
and C′ = (q′1, . . . , q

′
p) in Cuts(x, y), and a symbol a ∈ Σ±, we say that C′ is a-reachable

from C, if there is an a-transition in Ai from qi to q′i for each 1 ≤ i ≤ p. For a symbol
L ∈ Loops we say that C′ is L-reachable from C, if (Ai, qi, q

′
i) ∈ L for each 1 ≤ i ≤ p.

Intuitively, while reading word wG = L0a1L1 . . . amLm, for G a canonical database
of Γ, the 2AFA Aγ′ looks for a homomorphism from γ′ to G. The positions of the Li’s
represent the nodes of G and the ai’s represent the edges. At any particular moment,
Aγ′ is trying to map a particular variable x in γ′. Once Aγ′ maps x, an universal
transition takes place to ensure that all the children of x can be mapped too. Suppose
x is mapped to the node i, for 0 ≤ i ≤ m. Then, while reading the symbol Li, each
copy of the 2AFA Aγ′ guesses a mapping position 0 ≤ j ≤ m for a particular child y

of x. This copy then moves from position i to j while it verifies that all the atoms in
Atoms(x, y) can be correctly mapped to wG .

Consider an atom of the form (x,A, y) in Atoms(x, y). The 2AFA Aγ′ then has to
verify that there is a a word w over Σ± that can be read in A from an initial state qI
to a final state qF , such that w folds into a1 . . . am from i to j. Let us assume without
loss of generality that i < j (any other case is analogous). Observe that the word w

can always be decomposed in the form:

w = wiai+1wi+1 . . . ajwj ,

where wh is a word over Σ± that can be folded into a1 . . . am from h to h for each
i ≤ h ≤ j. Then Aγ′ guesses the run on A over w from qI to qF , while it reads
Liai+1Li+1 . . . ajLj from left-to-right. If Aγ′ reads ah, with h ∈ {i + 1, . . . , j}, and
the current guessed state is q then it guesses q′ such that there is an ah-transition in
A from q to q′. If Aγ′ reads Lh, with h ∈ {i, . . . , j}, and the current guessed state is

15

q, then it guesses q′ such that (A, q, q′) ∈ Lh. However, there is a slight complication
as the automaton has to do this simultaneously for all atoms in Atoms(x, y). Thus
Aγ′ actually guesses a sequence of cuts C0, . . . , C2(j−i)+1 from Cuts(x, y), where C0

is an initial cut, C2(j−i)+1 is a final cut, and Ch is αh-reachable from Ch−1, for each
h ∈ {1, . . . , 2(j − 1) + 1}, where αh is the h-th symbol in Liai+1Li+1 . . . ajLj . The
2AFA Aγ′ is formally defined below.

Let us assume that γ′ has K connected components with roots r1, . . . , rK , respec-
tively. Then the set of states of Aγ′ is

Q = Cuts× {−1, 1} ∪ {r1, . . . , rK , start, accept},

where Cuts is the set
⋃

{Cuts(x, y) | x is the parent of y in γ′}. The initial state is
start and the final state is accept. Next we define the transition function δ′ of Aγ′ .
For readability, whenever δ′(q, a) = ϕ1 ∨ · · · ∨ ϕn, we write ϕi ∈ δ′(q, a) for each
i ∈ {1, . . . , n}. We also assume that whenever Aγ′ reaches the final state accept, it
stays in the same state and moves its head all the way to the right. The function δ′

is defined as follows:
1. There is an initial transition (0, r1) ∧ · · · ∧ (0, rK) ∈ δ′(start, L), for each

L ∈ Loops.
2. There is a transition (1, ri) ∈ δ′(ri, α), for each i ∈ {1, . . . ,K} and α ∈

Σ± ∪ Loops. These transitions looks for the position where the root ri is
mapped.

3. For each i ∈ {1, . . . ,K} and L ∈ Loops, we have a “root mapping” transition:

[(0, (I1,−1)) ∨ (0, (I1, 1))] ∧ · · · ∧ [(0, (It,−1)) ∨ (0, (It, 1))] ∈ δ′(ri, L),

where (a) u1, . . . , ut are the children of ri in γ′, (b) for each 1 ≤ j ≤ t it is the
case that Ij is an initial cut from Cuts(ri, uj), and (c) Loops(ri) is compatible
with L, i.e., for each atom (ri,A, ri) ∈ Loops(ri) there are initial and final
states qI and qF of A such that (A, qI , qF) ∈ L.
Intuitively, a “root mapping” transition maps ri to the current position h,
and for each child uj it guesses an initial cut and the fact whether uj will
be mapped to the right of h (indicated by the symbol 1) or to the left of h
(indicated by the symbol −1).

4. For each C ∈ Cuts(x, y), with x the parent of y, each D ∈ {−1, 1} and each
a ∈ Σ±, we have an “atom mapping” transition:

(D, (C′, D)) ∈ δ′((C,D), a)

where C′ ∈ Cuts(x, y) is a-reachable from C if D = 1 or a−-reachable from
C if D = −1.

5. For each C ∈ Cuts(x, y), with x the parent of y, each D ∈ {−1, 1} and each
L ∈ Loops, we have a “loop guessing” transition:

(D, (C′, D)) ∈ δ′((C,D), L),

where C′ ∈ Cuts(x, y) is L-reachable from C.
We also have a “variable mapping” transition:

[(0, (I1,−1)) ∨ (0, (I1, 1))] ∧ · · · ∧ [(0, (It,−1)) ∨ (0, (It, 1))] ∈ δ′((C,D), L),

where (a) u1, . . . , ut are the children of y in γ′, (b) for each 1 ≤ j ≤ t we have
that Ij is an initial cut from Cuts(y, uj), (c) Loops(y) is compatible with L,
and (d) there is a final cut C′ ∈ Cuts(x, y) which is L-reachable from C.

16

Finally, we have a “leaf mapping” transition:

(0, accept) ∈ δ′((C,D), L),

whenever (a) y is a leaf in γ′, (b) Loops(y) is compatible with L, and (c)
there is a final cut C′ ∈ Cuts(x, y) which is L-reachable from C.

It is not hard to see that Aγ′ is sound and complete, i.e., that for each canonical
database G of Γ the 2AFA Aγ′ accepts wG iff γ′(G) = true.

Recall thatAΓ′ is the union of theAγ′s, for γ′ a disjunct of Γ′. We now analyze the
size ofAΓ′ . Let γ′ be a disjunct of Γ′. Recall that the width w(γ′) of γ′ is the maximum
value of |Atoms(x, y)|, for x and y distinct variables in γ′. The number of states of Aγ′

is 2|Cuts| +K + 2 (where K is the number of connected components of γ′). Recall
that Cuts is the set

⋃

{Cuts(x, y) | x is the parent of y in γ′}. Notice for each distinct
variables x and y in γ′ it is the case that |Cuts(x, y)| is bounded by O(|γ′|w(γ′)), and,
therefore, |Cuts| is bounded by O(|γ′|·|γ′|w(γ′)) = O(|γ′|w(γ′)+1). Further, clearlyK is
bounded by |γ′|. Thus, the number of states of Aγ′ is O(|γ′|w(γ′)+1). Since the width
w(Γ′) of Γ′ is defined as the maximum value of w(γ′), for γ′ a disjunct of Γ′, it follows
that the number of states of AΓ′ is at most O(|Γ′| · |Γ′|w(Γ′)+1) = O(|Γ′|w(Γ′)+2).

Now we are ready to define the NFA AΓ,Γ′ . This NFA is the product of Acd,
Aloops and AΓ′ , where AΓ′ is the NFA from Lemma 4.5 that accepts the complement
of the language accepted by AΓ′ . From our previous remarks, Γ 6⊆ Γ′ if and only if
the language accepted by AΓ,Γ′ is not empty. Furthermore, notice that the number

of states of AΓ,Γ′ is bounded by 2O(log |Γ|+|Γ′|w(Γ′)+2).
It is well known that nonemptiness of a NFA with n states can be checked in

nondetermistic O(log n) space. Following this approach, our algorithm simply checks
that the language accepted by AΓ,Γ′ is nonemtpy using nondeterministic O(log |Γ|+

|Γ′|w(Γ′)+2) space. Of course we cannot construct explicitly AΓ,Γ′ , as it might be of
double exponential size. Instead, we use a standard “on the fly” implementation:
We generate the states of AΓ,Γ′ on the fly and whenever is needed, we check if there
is a transition from one state to another. It is straightforward to check that, given
two states, we can decide if there is a transition in AΓ,Γ′ from one state to the other
using only polynomial space in |Γ| and |Γ′|. Thus the on the fly implementation
actually uses only O(log |Γ| + |Γ′|w(Γ′)+2) space. By Savitch’s theorem, we conclude
that containment of Γ in Γ′ can be solved in deterministic O((log |Γ|+ |Γ′|w(Γ′)+2)2) =
O(|Γ′|2w(Γ′)+4 ·log2 |Γ|) space, which is O(|Γ′|d·w(Γ′) ·|Γ|d

′

) space, for suitable constants
d, d′ ≥ 1. This concludes the proof of the lemma. ✷

5. Approximations of UC2RPQs. Acyclic UC2RPQs form a good class in
terms of complexity of evaluation: They are tractable as opposed to arbitrary C2RPQs
(and even CQs) for which the evaluation problem is NP-complete and even hard
in parameterized complexity [38]. This motivates our study of approximations of
UC2RPQs in the class of acyclic UC2RPQs, which is inspired by recent research on
approximations of UCQs. We explain this below.

Evaluating an arbitrary CQ on a big database might be prohibitively expensive.
This has led to the recent study of (U)CQ approximations in tractable classes [6],
in particular, in the class of acyclic (U)CQs. Intuitively, an acyclic UCQ Θ′ is an
approximation of a UCQ Θ if the following holds: (1) Θ′ is contained in Θ (i.e. Θ′

returns no false positives with respect to Θ) and (2) Θ′ is “as close as possible” to Θ
among all acyclic UCQs.

It follows from results and techniques in [6] that approximations of UCQs have
good properties.

17

1. First of all, they always exist, that is, each UCQ has at least one acyclic
approximation, and, in addition, such approximation is unique (up to equiv-
alence) and of at most exponential size.

2. Second, for each UCQ Θ, its acyclic approximation Θ′ can be computed in
single-exponential time.

3. Third, verifying whether an acyclic UCQ Θ′ is an approximation of a UCQ
Θ is decidable in the second-level of the polynomial hierarchy.

These good properties imply that computing and running the acyclic approxima-
tion of a UCQ Θ on a database D takes time O(2p(|θ|) + |D| · 2r(|Θ|)), for polynomials
p, r : N → N, which is O(|D|·2s(|Θ|)), for a polynomial s : N → N. On large databases,
this is much better than the general |D|O(|Θ|) cost of evaluating Θ over D. Thus, if
evaluation of Θ is infeasible or too slow and the quality of its acyclic approximation
is good, we may prefer to run this faster approximation instead of Θ.

Here we study acyclic approximations for UC2RPQs, and show that several of
the good properties mentioned above for acyclic approximations of UCQs extend to
the class of UC2RPQs.

5.1. Approximations: Existence and computation. Suppose we want to
approximate a UC2RPQ Γ in the class AC of acyclic UC2RPQs. As explained earlier,
we are interested in approximations that are guaranteed to return correct results only.
Thus, we are looking for an acyclic UC2RPQ that is maximally contained in Γ:

Definition 5.1. (Approximations) Let Γ and Γ′ be UC2RPQs such that
Γ′ ∈ AC and Γ′ ⊆ Γ. Then Γ′ is an approximation of Γ if for every query Γ′′ ∈ AC

with Γ′′ ⊆ Γ we have that Γ′′ ⊆ Γ′.
It is worth noticing that the definition of approximations in [6] is different, but

equivalent to this one.
An important property of UCQs is that each query in the class has an acyclic

approximation, and that such approximation is unique. We can prove that this is also
true for the class of UC2RPQs.

Theorem 5.2. Each UC2RPQ has a unique acyclic approximation (up to equiv-
alence).

As a corollary to the proof of Theorem 5.2 we get the following important result
about the computation and size of approximations.

Corollary 5.3. There exists an Expspace algorithm that takes as input a
UC2RPQ Γ and computes the approximation Γ′ of Γ. This approximation is of at
most exponential size.

It follows from Corollary 5.3 that approximations of UC2RPQs are meaningful.
In fact, computing and running the acyclic approximation of a UC2RPQ Γ on a graph
database G takes time

O

(

22
p(|Γ|)

+ |G|2 · 2r(|Γ|)
)

,

for polynomials p, r : N → N, which is O
(

|G|2 · 22
p(|Γ|))

. In terms of data complexity
this is only O(|G|2), such like the data complexity of 2RPQs. This is much faster than
|G|O(|Γ|) – the order of the evaluation problem for Γ on G – on large datasets.

We finish by proving that there is an important aspect of approximations that
is harder for UC2RPQs than for UCQs: the identification problem, i.e. verifying if
a query is an approximation of another. We mentioned above that checking whether
an acyclic UCQ Θ′ is an approximation of a UCQ Θ can be solved in the second-level

18

of the polynomial hierarchy [6]; more precisely, it is complete for the class DP, that
consists of all those languages that are the intersection of an NP and a coNP problem
[37]. This problem is considerably harder for UC2RPQs:

Proposition 5.4. Let Γ and Γ′ be UC2RPQs such that Γ′ ∈ AC. The problem
of verifying whether Γ′ is an acyclic approximation of Γ is Expspace-complete.

We prove Theorem 5.2, Corollary 5.3 and Proposition 5.4 in the following section.

5.2. Proofs of results. All results in Section 5.1 follow from an important
lemma that states that there exists an Expspace algorithm that, on input a UC2RPQ
Γ, computes an acyclic UC2RPQ Γapp – of at most exponential size – which is a
maximum for the class of acyclic UC2RPQs that are contained in Γ. This lemma
will also be crucial for proving decidability of the notion of semantic acyclicity for
UC2RPQs in Section 6:

Lemma 5.5. There exists an Expspace algorithm that given a UC2RPQ Γ com-
putes an acyclic UC2RPQ Γapp such that:

1. Γapp ⊆ Γ.
2. For every acyclic UC2RPQ Γ′ such that Γ′ ⊆ Γ it is the case that Γ′ ⊆ Γapp.
3. The number of atoms and variables in each disjunct of Γapp is at most poly-

nomial in |Γ|.
4. The number of disjuncts and the size of each NFA appearing in Γapp is at

most exponential in |Γ|.

In particular, the size of Γapp is at most exponential in |Γ|.

Before proving Lemma 5.5 we show how the results in Section 5.1 follow from it.

Proofs of Theorem 5.2, Corollary 5.3 and Proposition 5.4: The algorithm in Lemma
5.5 computes for each UC2RPQ Γ a query Γapp which is the maximum for the class of
acyclic UC2RPQs that are contained in Γ. In other words, Γapp is an approximation
of Γ. This approximation must be unique (up to equivalence) by definition.

In order to prove Corollary 5.3, we use the algorithm in Lemma 5.5 to compute
the approximation Γapp of a UC2RPQ Γ. The algorithm runs in Expspace and its
output Γapp is of at most exponential size in |Γ|.

Finally, we prove Proposition 5.4. Checking whether the acyclic UC2RPQ Γ′ is
an approximation of the UC2RPQ Γ is equivalent to checking whether (†) Γ′ ⊆ Γ and
(††) Γapp ⊆ Γ′. Indeed, if this is the case then Γ′ ≡ Γapp, and, therefore, Γ

′ is the
approximation of Γ. We prove that (†) and (††) can be checked in Expspace.

It directly follows from the first part of Proposition 4.1 that (†) can be verified in
Expspace. Furthermore, checking (††) requires computing Γapp and then checking
whether Γapp ⊆ Γ′. The first step can be done in Expspace from Lemma 5.5, while
the second one can be carried out in exponential space, where the exponent depends
only on |Γ′| and maxvar(Γapp) (again from the first part of Proposition 4.1). Part
(3) of Lemma 5.5 implies that maxvar(Γapp) is at most polynomial in the size of |Γ|.
Therefore, the second step can also be done in Expspace. We conclude that checking
whether Γ′ is an approximation of Γ can be carried out in Expspace.

For the lower bound, observe that Γ′ ⊆ Γ if and only if Γ′ is an acyclic approxi-
mation of Γ∧Γ′. The result now follows since Proposition 4.1 states that containment
of CRPQs is Expspace-hard even when Γ′ is acyclic. ✷

We devote the rest of this section to prove Lemma 5.5. We start by presenting
some definitions and a technical lemma which is crucial for our proof. We conclude
by explaining the construction of the acyclic approximation Γapp for a UC2RPQ Γ.

19

5.2.1. A technical lemma. The lemma requires some terminology which we
define next.

Pseudo acyclic graph databases. A graph database G is connected if for each
pair of nodes n, n′ in G there is a path from n to n′ in G± (that is, if the underlying
undirected graph of G is connected). A subgraph database of G = (N,E) is a graph
database G′ = (N ′, E′) such that N ′ ⊆ N and E′ ⊆ E. A connected component of
G is a maximal connected subgraph database of G. We call G pseudo-acyclic if each
connected component of G can be obtained from a tree T as follows:

• Each edge {n, n′} in T is replaced by a finite number of semipaths from n

to n′ whose internal nodes are “fresh”, i.e., they are disjoint from any other
nodes in G.

• For some (maybe none) nodes n in T we add a finite number of semipaths
from n to n, again with fresh internal nodes.

The fresh internal nodes of the paths in the previous definition are the internal
nodes of the pseudo-acyclic database G. The rest of the nodes (that is, the nodes that
are inherited from T) are called external nodes.

We will slightly abuse notation and talk about the parent (respectively, ancestor)
of an external node n in the pseudo-acyclic graph database G. By this we refer to the
external node in G that corresponds to the parent (respectively, an ancestor) of n in
the tree T . Similarly, we talk about the least common ancestor of two external nodes
in G, which refers to the external node in G that corresponds to their least common
ancestor in T .

The following proposition is straightforward.
Proposition 5.6. Let Γ be an acyclic UC2RPQ. Then each canonical database

of Γ is pseudo-acyclic.
We also define pseudo-acyclicity for graphs in the obvious way: instead of adding

semipaths to T we add undirected paths. For pseudo-acyclic graphs we define the
concepts of external/internal node and parent of a node as before.

Types for UC2RPQs. Let Γ be UC2RPQ over Σ. Recall that TΓ denotes the set
of all triples of the form (A, q, q′), where A is an NFA mentioned in some atom of Γ
and q and q′ are states of A. A Γ-type is a 4-tuple π = (τ1, τ2, τ3, τ4), where τi is a
subset of TΓ, for each 1 ≤ i ≤ 4. Let w be a word over Σ± of length ℓ ≥ 0. The Γ-type
of w is the Γ-type πw = (τit, τti, τii, τtt) such that (A, q, q′) belongs to τ∗ if and only
if there is a word u over Σ± and a run of A over u from state q to q′, and u can be
folded into w from (i) 0 to ℓ, if ∗ = it, (ii) from ℓ to 0, when ∗ = ti, (iii) from 0 to 0,
if ∗ = ii, and (iv) from ℓ to ℓ, when ∗ = tt.

Given a Γ-type π = (τ1, τ2, τ3, τ4), we define L⊆(π) to be the language of words
w over Σ± such that π is coordinate-wise contained in the Γ-type πw of w. The proof
of the following lemma is given in the appendix.

Lemma 5.7. Let Γ be a UC2RPQ and π a Γ-type. Then the language L⊆(π) is
regular and can be defined by an NFA Aπ over Σ± of at most exponential size in |Γ|.

The technical lemma. We are now ready to state the main lemma of this section.
Lemma 5.8. Let G be a pseudo-acyclic graph database and n̄ a tuple of external

nodes in G. Let Γ(x̄) be a UC2RPQ with |n̄| = |x̄| such that n̄ ∈ Γ(G). There exists
an acyclic C2RPQ α(x̄) and a finite set RΓ of NFAs over Σ± such that:

1. RΓ can be constructed from Γ in single exponential time.
2. n̄ ∈ α(G) and α ⊆ Γ.
3. The number of atoms in α is at most polynomial in |Γ|.

20

4. Each NFA mentioned in α belongs to RΓ.

Proof: Since n̄ ∈ Γ(G), there is a disjunct γ of Γ such that n̄ ∈ γ(G). Assume that
γ(x̄) = ∃ȳ

∧m
i=1(ui,Ai, vi). Since n̄ ∈ γ(G), there is a mapping h from the variables

of γ to the nodes of G that satisfies h(x̄) = n̄ and a path ρi from h(ui) to h(vi) in G±

such that label(ρi) is accepted by Ai, for each 1 ≤ i ≤ m. We assume without loss of
generality that for each 1 ≤ i ≤ m it is the case that ρi is of minimal length among
the set of paths from h(ui) to h(vi) in G± whose label is accepted by Ai.

We define a subset V of the nodes of G that will help us define the variable set of
the C2RPQ α(x̄). Let I be the set {h(z) | z is a variable in γ}. We define I ′ to be
the set of nodes obtained from I by adding, for each node u in I that is an internal
node of G, its associated external nodes in G (that is, the external nodes that are at
the beginning and at the end of the semipath where u belongs). We then define V
as the set of nodes which is obtained from I ′ by adding the least common ancestor
in G of each pair n, n′ of external nodes from I ′ in the same connected component of
G. Observe that each node in n̄ belongs to I (since h(x̄) = n̄), and thus to V . Also
notice that |V| is O(|γ|2). Indeed, |I| ≤ var, where var is the number of variables in
γ. Moreover, we have that |I ′| ≤ 3|I| and |V| ≤ |I ′| + |I ′|2, as the number of least
common ancestors we add to V is bounded by the number of pairs in |I ′|.

For each 1 ≤ i ≤ m, we decompose the path ρi according to V in the natural way.
That is, the path ρi is decomposed as the concatenation ρ1i · · · ρ

ki

i of paths ρ1i , . . . , ρ
ki

i

such that each path ρ
j
i starts and ends at a node in V and each internal node of ρji

is not in V . As ρi itself starts and ends at h(ui) and h(vi), respectively, which are
nodes in V , this decomposition is always possible. The decomposition is also unique
(assuming that no ρ

j
i is the empty path, except in the case when ρi itself is empty).

Let ρ1i · · · ρ
ki

i be the decomposition of the path ρi, for 1 ≤ i ≤ m. By the
minimality of ρi, it follows that ki ≤ |Qi| · |V| − 1, where Qi is the set of states of
the NFA Ai. Assume for the sake of contradiction that ki ≥ |Qi| · |V|. We fix an
accepting run q0 · · · qℓ of Ai over label(ρi) (i.e., each qj is a state in Qi, q0 and qℓ are
an initial and final state of Ai, respectively, and qj+1 is obtained from qj according

to the transition function of Ai). For each 1 ≤ j ≤ ki, let nj be the last node of ρji
(which belongs to V) and qj be the state of the run q0 · · · qℓ which is associated with
the prefix label(ρ1i . . . ρ

j
i) of label(ρ1i . . . ρ

ki

i). In particular, nki = h(vi) and qki = qℓ.
We also define n0 = h(ui) and q0 = q0. Since ki+1 > |V| · |Qi|, there are two positions
0 ≤ ℓ1 < ℓ2 ≤ ki such that nℓ1 = nℓ2 and qℓ1 = qℓ2 . It is clear then that we can
ignore the subpath ρℓ1+1

i · · · ρℓ2i . This contradicts the minimality of ρi. We conclude
that the number of paths involved in all the decompositions of the ρi’s is at most
(|Q1| + · · · + |Qm|) · |V|. Clearly, |Q1| + · · · + |Qm| is polynomially bounded by |γ|.
Further, we know that |V| is O(|γ|2) and |γ| ≤ |Γ|. We then conclude that the number
of paths involved in all the decompositions of the ρi’s is polynomial in |Γ|.

Let ρji be a path in the decomposition of ρi, for 1 ≤ i ≤ m and 1 ≤ j ≤ ki. We

denote by ℓ(i, j) the length of the word label(ρji), and define (i) c(j) :=
∑j−1

t=1 ℓ(i, t),

and (ii) d(j) :=
∑j

t=1 ℓ(i, t) (we set c(1) to be 0). Let q0 · · · qℓ be an accepting run

of Ai over label(ρi). Then E
j
i is an NFA obtained from Ai by setting qc(j) and qd(j)

as the unique initial and final state, respectively. Notice that label(ρji) is accepted by

E
j
i . Furthermore, Ej

i is of at most polynomial size in |Ai|, and, therefore, in |Γ|.

We now define a C2RPQ α′(x̄), which will be the basis for constructing the
C2RPQ α(x̄) from the statement of the lemma. The variable set of α′ is {zn | n ∈ V}.
The free variables are x̄ = (zp1 , . . . , zpr

), assuming that n̄ = (p1, . . . , pr). Finally, for

21

each 1 ≤ i ≤ m and 1 ≤ j ≤ ki, the atom (zn, E
j
i , zn′) is in α′, where n and n′ are

the initial and terminal nodes of ρji , respectively. The C2RPQ α′(x̄) is not necessarily
acyclic, but it can be turned into an acyclic C2RPQ α(x̄) satisfying conditions (2)
and (3) in the statement of the lemma as we shall see later. But before explaining
how to turn α′ into α, it is important to show that α′(x̄) satisfies conditions (2) and
(3) in the statement of the lemma (recall that (2) states that n̄ ∈ α′(G) and α′ ⊆ Γ,
while (3) states that the number of atoms in α′ is at most polynomial in |Γ|).

First, α′ satisfies condition (3) of the lemma. In fact, the number of atoms in
α′ is at most the number of paths ρ

j
i ’s involved in the decompositions of the ρi’s,

which is at most polynomial in |Γ|. Now we prove that α′ satisfies condition (2).
First, consider the mapping g from the variables of α′ to G that maps each zn to
n. Since label(ρji) satisfies E

j
i , this mapping is actually a homomorphism. It follows

that n̄ ∈ α′(G). In order to show that α ⊆ Γ, we use Proposition 4.4. Let G′ be a
canonical database for α′ with associated mapping ν. Consider the mapping f from
the variables of γ to G′ that maps each variable y to ν(zh(y)). The mapping f is
well-defined since h(y) ∈ I ⊆ V , and thus zh(y) is a variable of α′. Now we show that
for each 1 ≤ i ≤ m, there is a path from ν(zh(ui)) to ν(zh(vi)) in (G′)± whose label is

accepted by Ai. We can simulate the path ρi = ρ1i · · · ρ
ki

i in G± by the path χ1
i · · ·χ

ki

i

in (G′)±, where χ
j
i is the semipath in the canonical database G′ that is associated

with the atom of α′ which is labeled E
j
i . By construction, there is a run of Ai over

χ
j
i from qc(j) to qd(j), and thus label(χ1

i . . . χ
ki

i) is accepted by Ai since it can be read
in Ai from q0 to qℓ. Therefore, f is a homomorphism. Moreover, f(x̄) = ν(x̄). It
follows that ν(x̄) ∈ γ(G′) ⊆ Γ(G′). By Proposition 4.4, we conclude that α ⊆ Γ.

As mentioned before, the problem with α′ is that it is not necessarily acyclic.
In fact, since G is pseudo-acyclic, the underlying graph U(α′) of α′ could be pseudo-
acyclic as opposed to acyclic. (Here we assume that the rooted tree used to con-
struct the pseudo-acyclic graph U(α′) is the natural one, that is, the sets of exter-
nal and internal nodes of U(α′) are precisely {zt | t is an external node in V} and
{zt | t is an internal node in V}, respectively). For this to happen, the homomor-
phism h from γ to G must map two distinct variables in γ to internal nodes u and
u′ in two different semipaths π and π′ in G, such that π and π′ connect exactly the
same pair (n, n′) of external nodes of G. In such case, U(α′) might contain a cycle
n → u → n′ → u′ → n.

Therefore, in order for U(α′) to be pseudo-acyclic but not acyclic, it must contain
bad paths, which are simple paths of the form uu1 . . . uku

′, where u and u′ are distinct
external nodes of U(α′) and u1, . . . , uk are internal ones (notice that k ≥ 1, i.e., at
least one internal node belongs to a bad path). In other words, if U(α′) does not
contain bad paths then it is actually acyclic. Thus, to obtain our desired acyclic
query α we can modify α′ in such a way that we eliminate all the bad paths from
U(α′). This is what we do next.

Let us consider a bad path b in U(α′) of the form zn0 · · · znp+1 , where (i) p ≥ 1, (ii)
zn1 , . . . , znp

are internal nodes of U(α′), and (iii) zn0 and znp+1 are distinct external
nodes of U(α′). We assume without loss of generality that zn0 is the parent of znp+1

in U(α′). Therefore, we have that n0 and np+1 are external nodes in G such that n0

is the parent of np+1, and there is a semipath ζ from n0 to np+1 such that n1, · · · , np

are precisely the internal nodes of ζ that belong to V (since ζ is a semipath it does not
repeat nodes by definition). For k ∈ {0, . . . , p}, let ζk be the subpath of ζ that starts
at nk and ends at nk+1. Further, for k, k′ ∈ {0, . . . , p + 1}, let Pathsk,k′ be the set
of paths in some decomposition of some ρi that starts at nk and end at nk′ . Notice

22

that each path in Pathsk,k, with k ∈ {1, . . . , p}, satisfies that all its internal nodes

are contained either in ζk−1 or in ζk. For each k ∈ {1, . . . , p}, we define Paths
↑
k,k

to be the set of paths in Pathsk,k whose internal nodes are in ζk−1. Analogously,

Paths
↓
k,k = Pathsk,k \ Paths

↑
k,k, i.e., Paths

↓
k,k contains all the paths in Pathsk,k with

internal nodes in ζk. For convenience, we define Paths
↓
0,0 = Paths

↑
p+1,p+1 = ∅.

In addition, for each k ∈ {0, . . . , p} we define a Γ-type πk = (τit, τti, τii, τtt)
as follows. The set τit contains the triple (A, q, q′) if and only if there is a path
ρ
j
i ∈ Pathsk,k+1 such that A = Ai and there is a run of Ai over label(ρ

j
i) from state q

to q′. We define τti, τii and τtt analogously, but this time replacing Pathsk,k+1 with

Pathsk+1,k, Paths
↓
k,k and Paths

↑
k+1,k+1, respectively. Observe that, since Paths

↓
0,0 =

Paths
↑
p+1p+1 = ∅, we have that τii = ∅ for π0 and τtt = ∅ for πp.

We then define Aπk
to be the NFA from Lemma 5.7, i.e., Aπk

defines the language
L⊆(πk). Notice that label(ζk) is accepted by Aπk

. Furthermore, πk, and, therefore,
Aπk

, is completely determined by ζk. For the sake of presentation we thus denote
Aπk

by Aζk from now on. Finally, we define Ib to be the set of atoms

{(zn0 ,Aζ0 , zn1), (zn1 ,Aζ1 , zn2), · · · , (znp
,Aζp , znp+1)}

and Ob to be the set of atoms in α′ of the form (zt, E
j
i , zt′), where (t, t′) is a pair in

{n0, . . . , np+1} × {n0, . . . , np+1} \ {(n0, n0), (np+1, np+1)}.

We define an auxiliary query α′′ as the C2RPQ which is obtained from α′ by
simultaneously replacing all atoms in Ob with those in Ib, for each bad path b in
U(α′). Since Ob and Ob′ are disjoint for different bad paths b and b′, the query α′′

is well-defined. We claim that α′′ satisfies conditions (2) and (3) of the lemma. For
condition (3), note that for each bad path b = zn0 · · · znp+1 in U(α′) the number of
internal nodes p is bounded by the number of variables of γ, and in particular, by |Γ|.
It follows that |Ib| ≤ |Γ|+1. Since the number of bad paths is also polynomial in |Γ|,
we conclude that the number of atoms in α′′ is still polynomial in |Γ|.

Now we show that α′′ satisfies condition (2). As noticed before, for an atom
of the form (·,Aζi , ·) in α′′, we have that label(ζi) is accepted by Aζi . Putting this
together with (i) the fact that the function that maps the variable zn in α′ to the
node n in G is a homomorphism, and (ii) the way in which α′′ is constructed from
α′, we conclude that n̄ ∈ α′′(G). We prove that α′′ ⊆ Γ using Proposition 4.4. Let
G′ be a canonical database for α′′ with associated mapping ν, and assume that f is
the mapping that sends each variable y in γ to ν(zh(y)) (as before, f is well-defined).
Clearly, f(x̄) = ν(x̄). We prove next that (f(ui), f(vi)) belongs to the evaluation
Ai(G′) of Ai over G′, for each 1 ≤ i ≤ m. This implies that ν(x̄) ∈ γ(G′), and,
therefore, that α′′ ⊆ γ ⊆ Γ.

As before, one would like to simulate the path ρi = ρ1i · · · ρ
ki

i in G± by the path

χ1
i · · ·χ

ki

i in (G′)±, where χ
j
i is the semipath in the canonical database G′ that is

associated with the atom of α′′ which is labeled E
j
i . The only problem is that some of

such atoms may have disappeared from α′ and been replaced by atoms labeled with
an NFA Aζl which accepts the semipath ζl in G. Nevertheless, this could have only

happened if one of the endpoints of a path of the form ρ
j
i is an internal node of V .

Let n and n′ be external nodes in V such that n is the parent of n′, and let ζ be a
semipath in G from n to n′. Let t and t′ be internal nodes of ζ (t is closer to n than
t′) and suppose that ρ

j
i goes from t to t′. (All other cases are analogous, i.e., when

ρ
j
i goes from t′ to t, when t = t′, and when t or t′ is an external node). Further, let η

23

be the subpath of ζ that goes from t to t′. We now explain how to simulate ρ
j
i by a

path from ν(zt) to ν(zt′) in (G′)±.
By construction, we have that α′′ contains the atom (zt,Aη, zt′). Let π =

(τit, τti, τii, τtt) be the Γ-type such that Aη = Aπ. Then we have that (Ai, qc(j), qd(j))
is in τit. Let κ be the semipath from ν(zt) to ν(zt′) in G′ that is naturally associated
with the atom (zt,Aη, zt′). By definition, the first coordinate of the Γ-type of label(κ)
contains (Ai, qc(j), qd(j)). Therefore, there is a word u such that Ai has a run over
u from qc(j) to qd(j) and u can be folded into label(κ) from the initial to the final

position. It follows that there is a path ̺
j
i in (G′)± from ν(zt) to ν(zt′) that can be

read in Ai from qc(j) to qd(j). This is the path that simulates ρji . From this reasoning
it is easy to conclude that there must be a path in (G′)± from ν(zh(ui)) to ν(zh(vi))
whose label is accepted by Ai, for each 1 ≤ i ≤ m. Therefore, (f(ui), f(vi)) ∈ Ai(G′)
for each 1 ≤ i ≤ m, which finishes the proof that α′′ satisfies condition (2) in the
statement of the lemma.

Now we define α. The query α is obtained from α′′ by simultaneously replacing
all atoms in Ib with the atom (zn0 ,Aζ0 · Aζ1 · · · Aζp , znp+1), for all bad paths b =
zn0 · · · znp+1 in U(α′′). Notice that this does not remove any free variables from α′′,
as they are external nodes of U(α′′). By construction, U(α) does not contain bad
paths, and thus it is acyclic. Further, α contains less atoms than α′′ which implies
that condition (3) still holds. Clearly, α is equivalent to α′′, and, therefore, α also
satisfies condition (2).

It remains to define the set RΓ. For an NFA A and states q, q′ in A, let A(q, q′)
be the NFA obtained from A by setting q as the initial state and q′ as the only final
state. Let BΓ = {A(q, q′) | A appears in Γ and q, q′ are states of A}. Further, let CΓ
be the set of all NFAs of the form Aπ, where π is a Γ-type (according to Lemma 5.7),
and DΓ be the set of all NFAs that accept the concatenation of the languages accepted
by at most p NFAs in CΓ, where p ≤ |Γ| + 1. Then we define RΓ = BΓ ∪ DΓ. It is
easy to see that RΓ can be constructed from Γ in single exponential time. Moreover,
it is clear that all NFAs mentioned in α belong to RΓ. Therefore conditions (1) and
(4) are satisfied, which concludes the proof of the lemma. ✷

5.2.2. Construction of Γapp. We now present the proof of Lemma 5.5. That
is, we provide an Expspace algorithm that, given a UC2RPQ Γ, constructs an acyclic
UC2RPQ Γapp such that:

1. Γapp ⊆ Γ.
2. For every acyclic UC2RPQ Γ′ such that Γ′ ⊆ Γ it is the case that Γ′ ⊆ Γapp.
3. The number of atoms and variables in each disjunct of Γapp is at most poly-

nomial in |Γ|.
4. The number of disjuncts and the size of each NFA appearing in Γapp is at

most exponential in |Γ|.
Recall that Lemma 5.8 tells us that if G is a pseudo-acyclic graph database, n̄ is a

tuple of external nodes in G and Γ(x̄) is a UC2RPQ with |n̄| = |x̄| such that n̄ ∈ Γ(G),
then there is an acyclic C2RPQ α(x̄) and a finite set RΓ of NFAs over Σ± such that:

1. RΓ can be constructed from Γ in time 2|Γ|
d

, for d ≥ 1.
2. n̄ ∈ α(G) and α ⊆ Γ.
3. The number of atoms in α is at most |Γ|c, for c ≥ 1.
4. Each NFA mentioned in α belongs to RΓ.

Given a UC2RPQ Γ(x̄) over Σ our algorithm proceed as follows:
a. We construct the finite set RΓ of NFAs over Σ± from Lemma 5.8.

24

b. We iterate through every acyclic C2RPQ α′(x̄) with at most |Γ|c atoms, all
of them labeled with NFAs in RΓ. If the C2RPQ α′(x̄) is contained in Γ(x̄),
then we add it as a disjunct to the output Γapp.

First, observe that our algorithm is actually in Expspace. In fact, step (a) can be
carried out in exponential time. Furthermore, the size of each NFA in RΓ is at most

2|Γ|
d

. This implies that the size of every acyclic C2RPQ α′ that we need to consider in

the loop of step (b) is bounded by |Γ|c·2|Γ|
d

, i.e., it is exponentially bounded by |Γ|. We
can thus iterate over all such queries using no more than exponential space. Further,
from item (1) of Proposition 4.1 it follows that checking whether α′ ⊆ Γ can be done
using space which is at most exponential in |Γ| and maxvar(α′). But maxvar(α′) is at
most 2|Γ|c, and thus checking α′ ⊆ Γ can be carried out in exponential space in |Γ|.
Therefore, the whole procedure can be performed in Expspace.

Notice that Γapp is nonempty. Indeed, assume that x1, . . . , xn are the free vari-
ables of Γ, i.e., those in x̄. We assume without loss of generality that RΓ contains
the NFAs that define the empty word ε and the symbol a, for each a ∈ Σ. (If not,
we simply extend RΓ with those NFAs. The resulting set continues to satisfy all the
desired conditions for RΓ). We also assume that the codification of Γ has size at
least n + |Σ|. In particular, we have that n + |Σ| ≤ |Γ|c. Consider now the C2RPQ
α∗(x1, . . . , xn) :=

∧

1≤i≤n−1(xi, ε, xi+1) ∧
∧

a∈Σ(x1, a, x1). Clearly, α∗ is acyclic and
its number of atoms is at most n+ |Σ| ≤ |Γ|c. By the previous observations, it follows
that α∗ is one of the C2RPQs visited in step (b) of the procedure. Moreover, it is
easy to verify that α∗ ⊆ Γ. In fact, the only canonical database G of α∗ consists of
a single node u (which represents all the free variables x1, . . . , xn) and a self-loop on
u labeled a, for each a ∈ Σ. It is easy to see that x̄ ∈ Γ(G). This is because if γ(x̄)
is an arbitrary C2RPQ in Γ, then the mapping h that sends every variable y of γ to
u is a homomorphism which satisfies h(x̄) = x̄. We conclude that α∗ is a disjunct of
Γapp and, therefore, that Γapp is not empty.

We now prove that Γapp satisfies conditions (1), (2), (3) and (4) in the statement
of Lemma 5.5. Conditions (3) and (4) are trivially satisfied by construction. For
condition (1), we have by definition that each disjunct α′ of Γapp is contained in Γ,
from which we conclude that Γapp ⊆ Γ.

For condition (2), let Γ′(x̄) be an acyclic UC2RPQ such that Γ′ ⊆ Γ. We need to
show that Γ′ ⊆ Γapp. Let G be a canonical database of Γ′ with associated mapping
ν. By Propositon 4.4, it suffices to show that ν(x̄) ∈ Γapp(G). Since Γ′ is acyclic,
we have from Proposition 5.6 that G is pseudo-acyclic. We also have that the tuple
ν(x̄) only contains external nodes of G. Moreover, since Γ′ ⊆ Γ it is the case that
ν(x̄) ∈ Γ(G). Therefore we can apply Lemma 5.8 to UC2RPQ Γ, graph database
G and tuple of nodes ν(x̄). This ensures the existence of an acyclic C2RPQ α(x̄)
satisfying conditions (1)-(4) in the statement of Lemma 5.8. Conditions (3) and (4)
ensure that α is visited by our algorithm in step (b). On the other hand, the second
statement in condition (2) ensures that α ⊆ Γ, from which we have that α is a disjunct
of Γapp. Finally, the first statement of condition (2) tells us that ν(x̄) ∈ α(G), and,
therefore, ν(x̄) ∈ Γapp(G). This completes the proof of Lemma 5.5.

6. Semantic Acyclicity of UC2RPQs. We finish the paper by studying the
notion of semantic acyclicity in the context of graph databases and conjunctive regular
path queries. As opposed to the case of CQs, the results in this section do not
follow from known results in the literature and require new techniques. We start
by defining the terminology and providing some basic insights about the nature of
semantic acyclicity for UC2RPQs.

25

6.1. Basic terminology and insights. A UC2RPQ Γ is semantically acyclic
if there exists an acyclic UC2RPQ Γ′ such that Γ ≡ Γ′. As we mentioned before, we
want to answer two basic questions about semantically acyclic UC2RPQs: (1) What
is the cost of evaluating queries in this class? (2) What is the cost of checking if a
UC2RPQ is semantically acyclic? We will see that an answer to the second question
will provide us with an answer for the first one.

Since acyclicity of C2RPQs is defined in terms of the acyclicity of its underlying
CQ, one may be tempted to think that the two notions coincide. Clearly, if the
underlying CQ of a C2RPQ γ is semantically acyclic then γ is also semantically
acyclic. The following example shows that the opposite does not hold.

Example 5. Consider again the non-acyclic CRPQ γ′′ = ∃x∃y∃z
(

(x, L1, y) ∧

(y, L2, z) ∧ (z, L3, x)
)

in Example 4. It is not hard to prove that γ′′ is equivalent to
the acyclic CRPQ ∃x(x, L1 · L2 · L3, x), and, thus, it is semantically acyclic. On the
other hand, the underlying CQ of γ′′ is ∃x∃y∃z

(

T1(x, y), T2(y, z), T3(z, x)
)

, which is
not semantically acyclic.

Intuitively, the query γ′′ is semantically acyclic because it can be “simplified” by
concatenating the regular languages that label its atoms. A more interesting example
is given by the Boolean CRPQ γsa over alphabet Σ = {a, $1, $2, $3} shown in Figure
6.1. (Dots represent variables and arrows represent labeled atoms).

$2

a∗

a∗

a∗

$1 $3

Fig. 6.1. The CRPQ γsa.

a
∗$2$1 $3

a
∗

a
∗

a
∗

Fig. 6.2. The acyclic CRPQ that is equivalent to γsa.

It is easy to see that the underlying CQ of γsa is not semantically acyclic. On
the other hand, it can be proved that γsa is equivalent to the acyclic CRPQ shown
in Figure 6.2. In this case, semantic acyclicity is obtained by the way in which the
regular languages that label the atoms of γsa interact with each other. ✷

The previous example shows that the notion of semantic acyclicity of C2RPQs is
richer than the notion of semantic acyclicity of its underlying CQs, as many queries
fall in the former category but not in the latter. Not only that, the first notion is
also theoretically more challenging: While the same techniques used in Section 2 can
be applied to prove that the evaluation problem is tractable for UC2RPQs whose
underlying CQ is semantically acyclic, it is by no means clear whether the same is
true for the class of semantically acyclic UC2RPQs (and even for semantically acyclic
CRPQs). We delve into this issue below.

As is mentioned in the Introduction, the CSP techniques used in Section 2 to prove
that the evaluation of semantically acyclic UCQs is tractable do not yield answers to

26

a

a a

$2

$1 $3

Fig. 6.3. The CRPQ γna from Example 6.

our questions about semantically acyclic UC2RPQs. The results in Section 6.2 help us
proving, on the other hand, that the problem is fixed-parameter tractable (Theorem
6.3), which was not known to date. We leave as an open question whether the class
of semantically acyclic UC2RPQs can be evaluated in polynomial time.

Before finishing the section we explore the limits of the notion of semantic acyclic-
ity. The next example shows a simple CQ over graph databases that is not equivalent
to any acyclic UC2RPQ.

Example 6. Let Σ = {a, $1, $2, $3} be a finite alphabet and consider the Boolean
CRPQ γna over Σ that is graphically depicted in Figure 6.3. Notice that the underlying
CQ of γna coincides with that of the semantically acyclic CRPQ γsa from Figure 6.1.
However, a simple case-by-case analysis shows that γna is not semantically acyclic.
The reason is that γna forbids the interaction between the different RPQs that label
its atoms by replacing each RPQ of the form a∗ in γsa with a. ✷

6.2. Verification of semantic acyclicity. We start by considering our second
question above: Is the notion of semantic acyclicity for UC2RPQs decidable? In this
section we show that this is indeed the case and provide matching upper and lower
bounds for its computational cost.

We start by proving that the notion of semantic acyclicity for UC2RPQs is de-
cidable, and provide an Expspace upper bound for the problem. The algorithm
also yields an equivalent UC2RPQ Γ′ of exponential size for a semantically acyclic
UC2RPQ Γ.

Theorem 6.1. There exists an Expspace algorithm that on input a UC2RPQ
Γ does the following:

1. It checks whether Γ is semantically acyclic.
2. If the latter holds, it outputs an acyclic UC2RPQ Γ′ of single-exponential size

such that Γ ≡ Γ′.

Proof: The algorithm in Lemma 5.5 computes on input Γ an acyclic UC2RPQ Γapp

such that Γapp is the maximum among all acyclic UC2RPQs that are contained in Γ.
It follows that Γ is semantically acyclic if and only if Γ ⊆ Γapp. Thus, in order to
check semantic acyclicity of Γ we can compute Γapp, which can be done in Expspace,
and then check whether Γ ⊆ Γapp. It follows from item (1) of Proposition 4.1 that
the latter can be done using space exponential in maxvar(Γ) and |Γapp|, and hence
double-exponential in |Γ| (since Γapp can be of exponential size in |Γ|). This provides
us with an easy 2Expspace procedure for checking semantic acyclicity of UC2RPQs.

To obtain an Expspace procedure we exploit Theorem 4.2. Observe first that the
width w(Γapp) of Γapp is at most the maximum number of atoms over its disjuncts,
which by Lemma 5.5 item (3) is at most polynomial in |Γ|. Since Γapp is acyclic,
Theorem 4.2 tells us that the problem of checking Γ ⊆ Γapp can be decided using
O((|Γ| + |Γapp|)C·w(Γapp)) space, for some constant C ≥ 1. Hence, from the fact that

27

w(Γapp) is polynomially bounded by |Γ| we obtain that checking Γ ⊆ Γapp can be
solved in Expspace. This gives an Expspace algorithm for checking whether Γ is
semantically acyclic. For the second part of the theorem, we output the query Γapp

if Γ ⊆ Γapp; otherwise, we reject the input. ✷

We now provide a lower bound for the problem that shows that checking semantic
acyclicity of (U)C(2)RPQs is considerably harder than for UCQs:

Proposition 6.2. It is Expspace-hard to check whether a UC2RPQ Γ is seman-
tically acyclic. The problem remains Expspace-hard even if the input is restricted to
Boolean CRPQs.

Proof: First we claim that checking containment of γ1 in γ2, where γ1 and γ2 are
UC2RPQs, is Expspace-hard even when γ1 is a Boolean acyclic CRPQ, γ2 is a
Boolean CRPQ with U(γ2) connected and γ2 is not semantically acyclic.

Indeed, it follows from [9] (also stated in item (2) of Proposition 4.1) that contain-
ment is Expspace-hard, even for γ1 and γ2 acyclic CRPQs. Moreover, the reduction
in [9] yields CRPQs γ1 and γ2 of the following form:

γ1(x1, x2) = (x1, E, x2)

γ2(x1, x2) = ∃y1∃y2
(

(x1, E1, y1) ∧ (
∧

0≤i≤n

(y1, Fi, y2)) ∧ (y2, E1, x2)
)

,

where E,E1, F0, . . . , Fn are RPQs over an alphabet ∆. We then construct Boolean
CRPQs γ′

1 and γ′
2 from γ1, γ2 as follows:

γ′
1() = ∃x1∃x2

(

(x1, E, x2) ∧ (x1,#1, x1) ∧ (x2,#2, x2) ∧ (
∧

b∈Σ

(x2, b, x2))
)

γ′
2() = ∃x1∃x2∃y1∃y2∃z2∃z3∃w1∃w2∃w3

(

(x1,#1, x1) ∧ (x2,#2, x2) ∧ (x1, E1, y1) ∧ (
∧

0≤i≤n

(y1, Fi, y2)) ∧ (y2, E1, x2)∧

(x2, a, z2) ∧ (z2, a, z3) ∧ (z3, a, x2) ∧ (w1, $1, x2) ∧ (w2, $2, z2) ∧ (w3, $3, z3)

)

,

where Σ = {a, $1, $2, $3} is disjoint from ∆ and #1,#2 are fresh symbols not in ∆∪Σ.
Intuitively, γ′

1 is the Boolean version of γ1, where we have marked the free variables
x1 and x2 of γ1 with special symbols #1 and #2, respectively, and appended a loop
labeled b to x2, for each b ∈ Σ. Similarly, γ′

2 is the Boolean version of γ2, where we
have again marked the free variables x1 and x2 of γ2 with special symbols #1 and
#2, respectively, and appended to x2 a copy of the (non-semantically acyclic) query
γna from Example 6.

It is straightforward to show that γ1 ⊆ γ2 if and only if γ′
1 ⊆ γ′

2. Note also
that γ′

1 is a Boolean acyclic CRPQ and γ′
2 is a Boolean CRPQ such that U(γ′

2) is
connected. Moreover, since γna is not semantically acyclic, it is easy to show that γ′

2 is
not semantically acyclic neither. Thus containment is Expspace-hard even for these
kind of queries. Next we reduce this Expspace-hard restriction of the containment
problem to our problem of checking whether a query is semantically acyclic.

Let γ1 and γ2 be Boolean CRPQs such that γ1 is acyclic, U(γ2) is connected and
γ2 is not semantically acyclic. We claim that γ1 is contained in γ2 if and only if the
CRPQ γ1∧γ2 is semantically acyclic (we rename the variables of γ1 and γ2 so they are

28

disjoint in γ1∧γ2). Assume first that γ1 is contained in γ2. Then γ1∧γ2 is equivalent
to γ1, which is acyclic, and thus γ1 ∧ γ2 is semantically acyclic.

On the other hand, assume that γ1 ∧ γ2 ≡ α, where α =
∨

1≤i≤m αi and each αi

is an acyclic C2RPQ. Since γ1 ∧ γ2 ⊆ γ2, it follows that α ⊆ γ2. Also, since αi ⊆ α it
follows that αi ⊆ γ2, for each 1 ≤ i ≤ m. Let α1

i , . . . , α
ki

i be the C2RPQs associated

with each connected component of U(αi). Thus αi ≡ α1
i ∧· · · ∧αki

i . We show that for

each 1 ≤ i ≤ m, there exists 1 ≤ ji ≤ ki such that αji
i ⊆ γ2. Assume to the contrary.

Then, by Proposition 4.4, there exist for each 1 ≤ j ≤ ki, a canonical graph database
Gj for αj

i such that γ2(Gj) = false. Note that since U(αj
i) is connected, then Gj also

is. Consider the disjoint union G of G1, . . .Gki
. Clearly this is a canonical database

for αi. Since αi ⊆ γ2, it follows that γ2(G) = true. But U(γ2) is connected, which
implies that γ2(Gj) = true, for some 1 ≤ j ≤ ki. This is a contradiction.

Consider the acyclic UC2RPQ α′ =
∨

1≤i≤m α
ji
i . Notice that α ⊆ α′. By defi-

nition, we have that α′ ⊆ γ2. Note also that since γ2 is not semantically acyclic, it
must be the case that γ2 * α′. Hence there is a canonical database G∗ for γ2 such
that α′(G∗) = false. We now prove that γ1 ⊆ α′, which implies γ1 ⊆ γ2. Let G be a
canonical database for γ1. Consider the disjoint union G′ of G and G∗. Clearly G′ is a
canonical database for γ1 ∧ γ2. Since γ1 ∧ γ2 ≡ α ⊆ α′, it follows that α′(G′) = true.
Then α

ji
i (G

′) = true, for some 1 ≤ i ≤ m. Since U(αji
i) is connected, it follows that

either αji
i (G) = true or αji

i (G
∗) = true. But α′(G∗) = false, and thus αji

i (G
∗) = false.

We conclude that αji
i (G) = true, and thus α′(G) = true. By Proposition 4.4, we con-

clude that γ1 ⊆ α′. This proves the proposition. ✷

6.3. Evaluation of semantically acyclic UC2RPQs. With the help of The-
orem 6.1 we can provide an answer to our first question regarding semantically acyclic
UC2RPQs: Its evaluation is fixed-parameter tractable.

Theorem 6.3. The problem of checking whether n̄ ∈ Γ(G), for a given graph
database G, semantically acyclic UC2RPQ Γ, and tuple n̄ of node ids in G, is fixed-
parameter tractable.

Proof: Using the algorithm in Theorem 6.1 it is possible to compute in Expspace

(i.e., in double-exponential time) an acyclic UC2RPQ Γ′ such that Γ ≡ Γ′. Clearly,
n̄ ∈ Γ(G) if and only if n̄ ∈ Γ′(G). From Theorem 3.1 the latter can be checked in time
O(|G|2 · |Γ′|2), and hence in time O(|G|2 · 2p(|Γ|)), where p : N → N is a polynomial.
Thus, semantically acyclic UC2RPQs can be evaluated in time O(f(|Γ|)+|G|2 ·2p(|Γ|)),
where p : N → N is a polynomial and f : N → N is a double-exponential function. ✷

6.4. Features of the language: Inverses. The algorithm in Theorem 6.1
introduces inverses in the construction of an equivalent acyclic query, even if we start
from a semantically acyclic UCRPQ (i.e., a UC2RPQ without inverses). A natural
question is whether this is necessary, that is, whether there are semantically acyclic
UCRPQs that find an equivalent query in the class of acyclic UC2RPQs, but not in
the class of acyclic UCRPQs. We prove that this is the case:

Proposition 6.4. There is a semantically acyclic CRPQ that is not equivalent
to any acyclic UCRPQ.

Proof: The Boolean query γ = ∃w, x, y, z((w, $, x), (x, b, y), (z, a, y), (z, a, x)) that is
graphically depicted in Figure 6.4 is semantically acyclic. In fact, it is equivalent
to the acyclic C2RPQ ∃x∃y((x, $, y) ∧ (y, ba−a, y)). For the sake of contradiction,

29

a

$

a

b

Fig. 6.4. The query γ from Proposition 6.4.

suppose there is an acyclic UCRPQ γ′ equivalent to γ. It follows from Proposition
4.4, that there exists a canonical database Gγ′ , and homomorphisms h and g from
Gγ to Gγ′ , and from Gγ′ to Gγ , respectively, where Gγ is the canonical database of γ.
Observe that Gγ′ is pseudo acyclic (recall the definitions from section 5.2.1), and since
γ′ is a UCRPQ, each internal node in Gγ′ has in-degree and out-degree 1. Suppose
first that h(x), h(y), h(z) are distinct elements in Gγ′ . It follows that the in-degree of
h(x) and h(y) is 2, and the out-degree of h(z) is 2. By the observation above, we have
that h(x), h(y), h(z) must be external nodes in Gγ′ , which contradicts the acyclicity
of γ′. Then, h(x), h(y), h(z) are not distinct in Gγ′ . This is also a contradiction, as
it implies that there is an a-labeled or b-labeled loop in Gγ′ , and thus g cannot be an
homomorphism. ✷

6.5. Features of the language: Unions. The algorithm that constructs an
equivalent acyclic UC2RPQ Γ′ for a semantically acyclic UC2RPQ Γ (Theorem 6.1)
outputs a union of C2RPQs Γ′ even if Γ is a C2RPQ. But is this necessary? That
is, is there a C2RPQ Γ that is semantically acyclic, but yet it is not equivalent to a
single acyclic C2RPQ Γ′? We currently do not have an answer to this question. But
as the following example shows, finding such an answer might not be as simple as one
thinks beforehand. This is due to the interplay of regular expressions in C2RPQs,
which allows for intricate ways of expressing unions of C2RPQs as single C2RPQs.

Example 7. Let γ be the CRPQ over Σ = {a, b} shown in Figure 6.5, where
aε and bε are abbreviations for (a+ ε) and (b+ ε), respectively. This query has four
nonequivalent canonical databases, which are depicted in Figure 6.6. Notice that each
one of these canonical databases is acyclic, and, therefore, γ is semantically acyclic
(as a C2RPQ is always equivalent to the union of CQs represented by its canonical
databases).

Somewhat surprisingly, γ is also equivalent to the single CRPQ γ′ shown in Figure
6.7. In fact, it is tedious but not difficult to verify that each one of the canonical
databases of γ shown in Figure 6.6 satisfies γ′ and, conversely, that each canonical
database of γ′ satisfies γ. From this we conclude that γ ≡ γ′. ✷

7. Conclusions and Open Problems. We have studied the space of UCQs
and UC2RPQs defined by the notion of acyclicity. This is relevant since acyclicity
is a robust explanation for the tractability of several query languages for relational
and graph databases. Furthermore, some notions of acyclicity explain the linear-time
behavior of various querying mechanisms for graph databases (e.g. XPath [36], PDL
[29], nested regular expressions [5], etc).

While the results about semantic acyclicity of UCQs follow from techniques in
CSP, studying the notion of semantic acyclicity of UC2RPQs requires new tools and
insights. We have shown that it is Expspace-complete to check whether a UC2RPQ
is semantically acyclic, and that this shows that evaluation of queries in the class

30

a

aε

bε b

aε

a

a

bε

b

b

Fig. 6.5. The CRPQ γ from Example 7.

a b
a

a

b

b

a a b
a

b

b

a a b
a

b

b

a b
a

a

b

b

Fig. 6.6. The four canonical databases of γ.

aa + ε
aa

bb + ε

bb

a b

a b

Fig. 6.7. The acyclic CRPQ γ
′ which is equivalent to γ.

is fixed-parameter tractable. The techniques used to prove decidability also yield a
strong theory of approximations of UC2RPQs.

As far as the notion of semantic acyclicity of UC2RPQs is concerned, in this work
we have only uncovered the tip of the iceberg. Many questions remain open and we
list some of them below.

Complexity We have proven that evaluation of semantically acyclic UC2RPQs is
fixed-parameter tractable. But is it also polynomial? Tractability of semantically
acyclic UCQs follows from a sophisticated characterization of the problem in terms of
winning strategies in the existential pebble game, but we do not know whether those
techniques can be extended to deal with UC2RPQs.

Size of equivalent acyclic queries The algorithm presented in Theorem 6.1 com-
putes an equivalent acyclic query of single-exponential size for a semantically acyclic
UC2RPQ. Is this optimal, i.e. is there a family (Γn)n≥1 of semantically acyclic
UC2RPQs such that (1) |Γn| is polynomially bounded by n, and (2) the smallest
acyclic UC2RPQ that is equivalent to Γn is of size Ω(2n), for each n ≥ 1?

Beyond acyclic queries Acyclicity is a simple syntactic criterion that ensures
efficient evaluation of CQs, but it is not the only one. In the last years several criteria
have been identified that extend acyclicity in different ways while retaining polynomial
time evaluation for the CQs that satisfy them. Most of these criteria are based on the

31

idea of restricting evaluation to CQs θ of bounded treewidth [13, 17], which are also
defined in terms of the existence of a tree decomposition of θ with desirable properties.

It is known that the results in Section 2 (Theorem 2.2 and Proposition 2.3) also
apply to UCQs that are equivalent to unions of CQs of bounded treewidth [17, 14].
That is, such classes of UCQs can be evaluated in polynomial time, and it is NP-
complete to check whether a CQ is equivalent to a CQ of treewidth at most k, for
each k ≥ 1.

On the other hand, our results for UC2RPQs are specifically designed for semantic
acyclicity, and we do not know at this point how to extend them to verify whether
a UC2RPQ is equivalent to a UC2RPQ of bounded treewidth. In the same way, one
might be interested in extending results on approximations of UC2RPQs to classes of
bounded treewidth, as it has been done for UCQs [6].

Beyond C2RPQs Instead of working with C2RPQs one could also consider the
class of conjunctions of nested regular expressions (CNREs), that properly extends
the former [5]. Acyclicity of CNREs also leads to tractability, and thus it makes sense
to study semantic acyclicity in this extended setting. The problem is relevant since
several linear-time query languages for graph databases are contained in the class of
CNREs but not in the class of UC2RPQs [29, 5].

Enumeration In the evaluation problem, we are given a query θ, a database D,
and a tuple t̄, and we have to decide whether t̄ belongs to the evaluation of θ over D.
However, in many practical applications it is also useful to enumerate the tuples that
belong to the evaluation of θ over D. The complexity of this enumeration problem has
been studied for several query languages; e.g., (U)CQs [8, 27]. It follows from [27] that
the tuples in the evaluation of a semantically acyclic UCQs can be enumerated with
polynomial delay. This means that there is an algorithm that, given a semantically
acyclic UCQ Θ and a database D, enumerates Θ(D) (without repetitions) in such a
way that: (i) the first tuple is produced in polynomial time, and (ii) each subsequent
tuple is produced within polynomial time from the previously produced tuple. Notice
that this tractability result actually extends Theorem 2.2. An important open ques-
tion is whether we can obtain a similar tractability result for enumerating the output
of semantically acyclic UC2RPQs.

CSP for C2RPQs Our work can also be viewed as opening a new line of research
in constraint satisfaction. As noted above, there is an intimate connection between
conjunctive-query evaluation and constraint-satisfaction. In general this problem is
NP-complete, but there is an extensive body of research studying tractable cases,
either by fixing the database and focusing on expression complexity, or by studying
the combined complexity of restricted classes of queries [21, 33]. The same approach,
fixing the database or restricting the class of queries can also be applied to the eval-
uation of C2RPQs. In particular, as noted above, it is an open question whether the
class of semantically acyclic C2RPQs is an “island of tractability” in the sense of [33],
that is, whether its evaluation problem is tractable.

8. Appendix.

Proof of Theorem 2.2:. The existential k-cover game was introduced in [14],
in order to define tractable restrictions of the constraint satisfaction problem. This
game is a variant of the existential k-pebble game defined by Kolaitis and Vardi [32].
In the k-cover game, instead of imposing the Spoiler to use at most k pebbles – as
in the existential k-pebble game – he is allowed to use any number of pebbles, but

32

only as long as the set of elements where the pebbles are placed can be covered by at
most k tuples in the database where the Spoiler is playing. We skip here the formal
definition of the k-cover game but recall some important properties of the game that
were proved in [14].

Proposition 8.1. The following hold:
1. There is a polynomial time algorithm that, given databases D and D′ over the

same schema, decides whether the Duplicator has a winning strategy in the
1-cover game on D and D′.

2. Assume that the Duplicator has a winning strategy in the 1-cover game on D
and D′. Then for each acyclic Boolean CQ θ it is the case that θ(D) = true

implies θ(D′) = true.
Let θ(x̄) = ∃ȳ

∧m
i=1 Pi(ūi) be a CQ over schema σ. As usual, we define the

canonical database Dθ of θ to be the database over σ whose facts are precisely the
Pi(ūi)’s, for 1 ≤ i ≤ m. The proof of the theorem makes use of the following well-
known characterization of containment of UCQs in terms of evaluation over canonical
databases, which is due to Sagiv and Yannakakis:

Proposition 8.2. [40] Let Θ(x̄) =
∨

1≤i≤m θi(x̄) and Θ′(x̄) =
∨

1≤j≤n θ′j(x̄) be
UCQs. Then Θ(x̄) ⊆ Θ′(x̄) if and only if for each 1 ≤ i ≤ m there exists 1 ≤ j ≤ n

such that x̄ ∈ θ′j(Dθi).
Let D be a database over schema σ and ā = (a1, . . . , ar) a tuple of elements over

D. We denote by (D, ā) the database over σ∪{P1, . . . , Pr}, where P1, . . . , Pr are fresh
symbols, obtained from D by adding the new facts P1(a1), . . . Pr(ar).

We now present an algorithm for evaluating semantically acyclic UCQs. Given
a semantically acyclic UCQ Θ(x̄) =

∨

1≤i≤m θi(x̄), a database D, and a tuple ā of
elements in D, the algorithm checks whether there is an index i ∈ {1, . . . ,m} such that
the Duplicator has a winning strategy in the 1-cover game on (Dθi , x̄) and (D, ā). If
this is the case, it accepts (i.e., it declares that ā ∈ Θ(D)); otherwise it rejects. From
the first part of Proposition 8.1 it follows that this algorithm runs in polynomial time.
We show next that the algorithm is sound and complete.

Assume first that ā ∈ Θ(D). Then, ā ∈ θi(D), for some 1 ≤ i ≤ m. By
definition, there is a homomorphism h from θi (or, equivalently, from Dθi) to D such
that h(x̄) = ā. In particular, h is also an homomorphism from (Dθi , x̄) to (D, ā).
This trivially implies the existence of a winning strategy for the Duplicator in the 1-
cover game on (Dθi , x̄) and (D, ā). Therefore, the algorithm accepts. (Notice that in
this direction the assumption that Θ is semantically acyclic is not used). Conversely,
suppose that the algorithm accepts. Then there exists a winning strategy for the
Duplicator in the 1-cover game on (Dθi , x̄) and (D, ā), for some 1 ≤ i ≤ m. Let
Θ′(x̄) =

∨

1≤j≤n θ′j(x̄) be an acyclic UCQ which is equivalent to Θ. By Proposition
8.2, there exists 1 ≤ j ≤ n such that x̄ ∈ θ′j(Dθi). Let θ′′j be the acyclic Boolean CQ
obtained from θ′j(x̄) by adding the atoms P1(x1), . . . , Pr(xr), where x̄ = (x1, . . . , xr).
Then, θ′′j ((Dθi , x̄)) = true. Using the second part of Proposition 8.1 with θ = θ′′j , it
follows that θ′′j ((D, ā)) = true, and, thus, ā ∈ θ′j(D). This implies that ā ∈ Θ′(D).
Since Θ′ ≡ Θ, we conclude that ā ∈ Θ(D).

Proof of Proposition 2.3:. For the membership in NP we show that, if Θ(x̄)
is semantically acyclic, then it is equivalent to an acyclic UCQ Θ′(x̄) whose size is
bounded by the size of Θ. Then, given a UCQ Θ(x̄), the NP algorithm guesses an
acyclic UCQ Θ′(x̄) with |Θ′| ≤ |Θ|, and then checks whether Θ(x̄) ≡ Θ′(x̄). The
latter can be done in NP [12], and hence the whole procedure is in NP.

Let θ(x̄) be a CQ. We say that a CQ θ′(x̄) is a core of θ [30, 12] if (a) θ(x̄) ≡ θ′(x̄),

33

and (b) no CQ with strictly fewer atoms than θ′ is equivalent to θ. It is known (see,
e.g., [30]) that each CQ θ(x̄) has a unique (up to isomorphism) core, and thus we can
talk about the core of θ(x̄). We make use of the following proposition in our proof:

Proposition 8.3. If θ is an acyclic CQ, then the core of θ is also acyclic.

Proof: We show the claim in two steps. First, we show that the class of acyclic CQs
is closed under taking strong induced subqueries. Then we prove that the core of a
CQ θ is always a strong induced subquery.

For each atom P of θ we denote by VP the set of variables that are mentioned in
P . A CQ θ′ is a strong induced subquery of a CQ θ if:

1. The set Vθ′ of variables mentioned in θ′ is contained in the set Vθ of variables
mentioned in θ.

2. The atoms of θ′ are exactly the atoms of θ induced by the variables in Vθ′ .
3. The free variables of θ′ are exactly the free variables of θ.
4. If P is an atom in θ but not in θ′, then there exists an atom P ′ in θ′ that

contains all the variables in VP ∩ Vθ′ .

Suppose θ is an acyclic CQ and let θ′ be a strong induced subquery of θ. Let
(T, λ) be a tree decomposition ofH(θ) witnessing the acyclicity of θ. Consider the tree
decomposition (T, λ′) such that, for each t ∈ T , λ′(t) = λ(t)∩Vθ′ . Clearly, (T, λ′) is a
tree decomposition of H(θ′). We now show that we can transform the decomposition
(T, λ′) into a tree decomposition (T̃ , λ̃) ofH(θ′) such that λ̃(t) is a hyperedge ofH(θ′),
for each t ∈ T̃ . This would imply that θ′ is acyclic, as required.

Let t ∈ T be a node such that λ′(t) is not a hyperedge of H(θ′). By definition,
λ(t) is a hyperedge of H(θ). We can then pick an atom P in θ such that the set of
variables VP mentioned in P is precisely λ(t). Then, by definition, λ′(t) = VP ∩ Vθ′ .
By condition (4) in the definition of strong induced subquery, there is an atom P ′ in
θ′ such that λ′(t) = VP ∩ Vθ′ ⊆ VP ′ . Moreover, by definition of tree decomposition,
there is a node t∗ ∈ T such that VP ′ ⊆ λ′(t∗). It follows that λ′(t) ⊆ λ′(t∗). Applying
standard techniques (see, e.g., [24]), we can remove the node t from T while preserving
the tree decomposition properties. Iteratively applying this modification, we end up
with a tree decomposition (T̃ , λ̃) that witnesses the acyclicity of θ′.

Finally, we show that the core θ′(x̄) of a CQ θ(x̄) is a strong induced subquery.
Indeed, it follows from well-known core properties [30] that conditions (1), (2) and
(3) in the definition of strong induced subquery hold. We prove next that condition
(4) also holds. Again by well-known properties of cores [30], we can assume without
loss of generality that there is a retract h from θ to θ′, i.e., a homomorphism from Dθ

to D′
θ that is the identity over the variables Vθ′ of θ′. Let P = R(u1, . . . , um) be an

atom in θ but not in θ′. Then it is the case that R(h(u1), . . . , h(um)) is an atom of
θ′. Since h is the identity in VP ∩ Vθ′ , we conclude that condition (4) holds. ✷

We also make use of the following proposition in our proof:

Proposition 8.4. Let θ(x̄) be a CQ. Then θ(x̄) is semantically acyclic if and
only if its core is acyclic.

Proof: The if direction is trivial since θ and its core are equivalent. For the only
if direction, assume that θ is semantically acyclic. Then there is an acyclic UCQ
Θ′(x̄) =

∨

1≤i≤m θ′i(x̄) such that θ(x̄) ≡ Θ′(x̄). It then follows from Proposition 8.2
that there is some i ∈ {1, . . . ,m} for which it is the case that θ ≡ θ′i. Since θ′i is
acyclic, we have from Proposition 8.3 that its core is also acyclic. On the other hand,
it is known (see, e.g., [30]) that equivalent CQs have the same core (up to renaming of

34

variables). It follows that the core of θ coincides with the core of θ′i (up to renaming
of variables), and, therefore, it is acyclic. ✷

Now we turn to our initial claim: If Θ(x̄) is a semantically acyclic UCQ, then it is
equivalent to an acyclic UCQ Θ′(x̄) with |Θ′| ≤ |Θ|. Assume that Θ(x̄) is semantically
acyclic and let Θ′(x̄) be an equivalent acyclic UCQ. Further, let Θmin be a subset of
the disjuncts in Θ such that (1) Θmin is equivalent to Θ, and (2) no proper subset of
Θmin is equivalent to Θ. Analogously, we define Θ′

min to be “minimally” equivalent
to Θ′. By minimality, there are no distinct disjuncts θ1 and θ2 in Θmin such that
θ2 ⊆ θ1. From Proposition 8.2 and the fact that Θmin ≡ Θ′

min, it follows that, for each
disjunct θ of Θmin, there is an equivalent disjunct θ′ in Θ′

min. Thus, each disjunct of
Θmin is semantically acyclic. Let Θ∗ be the UCQ obtained from Θmin, by replacing
each disjunct by its core. From Proposition 8.4, we have that Θ∗ is acyclic. Moreover,
Θ∗ ≡ Θ and |Θ∗| ≤ |Θ|. This completes the proof of the NP upper bound.

The lower bound follows from [17], which shows that the problem of checking
whether a Boolean CQ over a single binary relation is equivalent to an acyclic one is
NP-hard.

Proof of Lemma 5.7. We start introducing some terminology. A two-way
nondeterminisitic finite automaton (2NFA) [31, 43] is a tuple B = (Σ, Q,Q0, δ, F),
where Σ is a finite alphabet, Q is a finite set of states, Q0 ⊆ S is the set of initial
states, δ : Q×Σ → 2Q×{−1,0,1} is the transition function, and F ⊆ Q is the set of final
states. Intuitively, a transition indicates both the new state of the automaton and
whether the head should move left (−1), right (1), or stay in place (0). A configuration
of B is a pair (q, j) consisting of a state q ∈ Q and a position represented as an integer
j ≥ 0. The sequence (q0, j0), . . . , (qm, jm) of configurations of B is an accepting run
of B on a word w = a0 . . . aℓ−1 ∈ Σ∗, for ℓ ≥ 0, if (i) q0 ∈ Q0, (ii) j0 = 0, (iii) qm ∈ F ,
(iv) jm = ℓ, and (v) for each i ∈ {0, . . . ,m− 1} we have that 0 ≤ ji < ℓ and there is
some (q′, d) ∈ δ(qi, aji) such that qi+1 = q′ and ji+1 = ji + d. The 2NFA B accepts w
if it has an accepting run on w. The following fact is well-known [43]:

Proposition 8.5. Given a 2NFA with n states, one can construct an equivalent
NFA with O(2n logn) states.

Assume that A1, . . . ,Am is an enumeration of all the NFAs over Σ± mentioned
in Γ. For the Γ-type π and 1 ≤ i ≤ 4, we denote by π(i) the i-th coordinate of π. Let
1 ≤ j ≤ m and assume that Aj = (Σ±, Q,Q0, δ, F), where δ is a transition function
of the form Q×Σ → 2Q, and that q and q′ are states of Aj . We then define a 2NFA
Bit(j, q, q

′) that accepts the following language:

{z ∈ (Σ±)∗ | (Aj , q, q
′) ∈ πz(1), where πz is the Γ-type of z}.

Intuitively, Bit(j, q, q
′) guesses a folding from the first to the last position of z and

verifies that such folding can be read from state q to q′ in Aj (as this implies, by
definition, that (Aj , q, q

′) belongs to πz(1)). It is not hard to see that Bit(j, q, q
′) can

be constructed in such a way that its size is bounded by O(|Aj |), and thus by O(|Γ|).
Similarly, we define a 2NFA Bti(j, q, q

′) that accepts the language:

{z ∈ (Σ±)∗ | (Aj , q, q
′) ∈ πz(2), where πz is the Γ-type of z}.

This NFA also guesses a folding from the first to the last position of z – which
represents the “inverse” of a folding from the last position of z to the first one –
and then verifies that such folding can be read “backwards” from state q′ to q in Aj

35

(as this implies, by definition, that (Aj , q, q
′) belongs to π2(z)). As before, the 2NFA

Bti(j, q, q
′) can be easily constructed in such a way that its size is bounded by O(|Aj |),

and thus by O(|Γ|).
Let Ait(j, q, q

′) and Ati(j, q, q
′) be the NFAs over Σ± which are equivalent to the

2NFAs Bit(j, q, q
′) and Bti(j, q, q

′), respectively, according to Proposition 8.5. Thus,
the number of states in Ait(j, q, q

′) and Ati(j, q, q
′) is bounded by O(2s(|Γ|)), for a

polynomial s : N → N.
We now explain how to construct an NFA Aii(j, q, q

′) which accepts the language:

{z ∈ (Σ±)∗ | (Aj , q, q
′) ∈ πz(3), where πz is the Γ-type of z}.

Notice that if z = a0 . . . aℓ−1, where each ak is a symbol in Σ±, then the triple
(Aj , q, q

′) belongs to πz(3) if and only if there is a state p of Aj and a position
0 ≤ k ≤ ℓ − 1 such that (Aj , q, p) ∈ πzk(1) and (Aj , p, q

′) ∈ πzk(2), where for each
0 ≤ k ≤ ℓ − 1 we have that zk = a0 . . . ak. Then for each state p of Aj we define an
NFA Aii(j, q, p, q

′) which accepts the language:

{z ∈ (Σ±)∗ | (Aj , q, p) ∈ πz′(1) and (Aj , p, q
′) ∈ πz′(2), for some prefix z′ of z}.

It is easy to define the NFA Aii(j, q, p, q
′) by (i) taking the cross product between

Ait(j, q, p) and Ati(j, p, q
′), (ii) adding an ε-transition from each final state of this

cross product to a fresh state f , (iii) adding a transition a from f to f , for each
a ∈ Σ±, and (iv) letting f be the unique final state of the resulting NFA. The NFA
Aii(j, q, q

′) is then defined as the union of all the NFAs in the set:

{Aii(j, q, p, q
′) | p is a state in Aj}.

The number of states of Aii(j, q, q
′) is O(2s

′(|Γ|)) for a polynomial s′ : N → N.
Using the previous idea it is then straightforward to construct an NFA Att(j, q, q

′)
which accepts the language:

{z ∈ (Σ±)∗ | (Aj , q, q
′) ∈ πz(4), where πz is the Γ-type of z}.

Again, the number of states of Att(i, q, q
′) is O(2s

′(|Γ|)).
In order to construct the NFA Aπ which accepts the language L⊆(π) we proceed

as follows. We first define NFAs Ait,Ati,Aii and Att as the product of the NFAs in
the set:

{Ait(j, q, q
′) | (Aj , q, q

′) ∈ π(1), 1 ≤ j ≤ m}

{Ati(i, q, q
′) | (Aj , q, q

′) ∈ π(2), 1 ≤ j ≤ m}

{Aii(j, q, q
′) | (Aj , q, q

′) ∈ π(3), 1 ≤ j ≤ m}

{Att(j, q, q
′) | (Aj , q, q

′) ∈ π(4), 1 ≤ j ≤ m},

respectively. Then we define Aπ as the product of Ait,Ati,Aii and Att. It is straight-
forward to check that the language acepted by Aπ is precisely L⊆(π). Further, the
number of states of Aπ is O(2s

′′(|Γ|)), for a polynomial s′′ : N → N. Thus the size of
Aπ is at most exponential in |Γ|, as required.

36

REFERENCES

[1] S. Abiteboul, P. Buneman and D. Suciu, Data on the Web: From Relations to Semistruc-
tured Data and XML, Morgan Kauffman, 1999.

[2] R. Angles and C. Gutiérrez, Survey of graph database models, ACM Computing Surveys,
40(1)(2008).

[3] P. Barceló, Querying graph databases, in Proceedings of the 32nd Symposium on Principles
of Database Systems, PODS’13, 2013, pp. 175-188.

[4] P. Barceló, L. Libkin, A.W. Lin and P. Wood, Expressive languages for path queries over
graph-structured data, ACM Transactions on Database Systems, 37(4): 31 (2012).

[5] P. Barceló, J. Perez and J. Reutter, Relative expressiveness of nested regular expressions,
in Proceedings of the 6th Alberto Mendelzon International Workshop on Foundations of
Data Management, AMW’12, 2012, pp. 180-195.

[6] P. Barceló, L. Libkin and M. Romero, Efficient approximations of conjunctive queries,
Journal of the ACM, 61(1): 8 (2014).

[7] P. Barceló, M. Romero and M. Y. Vardi, Semantic Acyclicity on Graph Databases, in
Proceedings of the 32nd ACM Symposium on Principles of Database Systems, PODS’13,
2013, pp. 237-248.

[8] A. Bulatov, V. Dalmau, M.Grohe and D. Marx, Enumerating homomorphisms, Journal of
Computer and System Sciences (2012), 78(2): 638–650.

[9] D. Calvanese, G. de Giacomo, M. Lenzerini and M. Y. Vardi. Containment of conjunctive
regular path queries with inverse, in Proceedings of the 7th International Conference on
Principles of Knowledge Representation and Reasoning, KR’00, 2000, pp. 176-185.

[10] D. Calvanese, G. de Giacomo, M. Lenzerini and M. Y. Vardi, Rewriting of regular expres-
sions and regular path queries, Journal of Computer and System Sciences, 64(3) (2002),
pp. 443-465.

[11] D. Calvanese, G. de Giacomo, M. Lenzerini and M. Y. Vardi, View-based query answering
and query containment over semistructured data, in Proceedings of the 8th International
Workshop on Database Programming Languages, DBPL’02, 2002, pP. 40-61.

[12] A. Chandra and P. Merlin, Optimal implementation of conjunctive queries in relational
data bases, in Proceedings of the 9th Annual ACM Symposium on Theory of Computing,
STOC’77, 1977, pp. 77-90.

[13] C. Chekuri, A. Rajaraman, Conjunctive query containment revisited, Theoretical Computer
Science, 239(2) (2002), pp. 211-229.

[14] H. Chen and V. Dalmau, Beyond hypertree width: Decomposition methods without decompo-
sitions, in Proceedings of the 11th International Conference on Principles and Practice of
Constraint Programming, CP’05, 2005, pp. 167-181.

[15] M. P. Consens and A. O. Mendelzon, GraphLog: a visual formalism for real life recursion, in
Proceedings of the Ninth ACM Symposium on Principles of Database Systems, PODS’90,
1990, pp. 404-416.

[16] I. Cruz, A. O. Mendelzon and P. T. Wood, A graphical query language supporting recursion,
in Proceedings of the ACM SIGMOD Conference, SIGMOD’87, 1987, pp 323-330.

[17] V. Dalmau, Ph. G. Kolaitis and M. Y. Vardi, Constraint satisfaction, bounded treewidth,
and finite-variable logics, in Proceedings of the 8th International Conference on Principles
and Practice of Constraint Programming, CP’02, 2002, pp. 310-326.

[18] R. Fagin, Degrees of acyclicity for hypergraphs and relational database schemes, Journal of the
ACM, 30(3) (1983), pp. 514-550.

[19] W. Fan, J. Li, S. Ma, N. Tang and Y. Wu, Graph pattern matching: from intractable to
polynomial time, in Proceedings of the VLDB Endowment, PVLDB 3(1), 2010, pp. 264-275.

[20] W. Fan, J. Li, S. Ma, N. Tang and Y. Wu, Adding regular expressions to graph reachability
and pattern queries, Frontiers of Computer Science, 6(3) (2012), pp. 313-338.

[21] T. Feder and M. Y. Vardi, The computational structure of monotone monadic SNP and
constraint satisfaction: A study through datalog and group theory, SIAM Journal on Com-
puting 28(1) (1998), pages 57-104.

[22] G. Fletcher, M. Gyssens, D. Leinders, D. Surinx, J. van den Bussche, D. Van Gucht, S.

Vansummeren and Y. Wu, Relative expressive power of navigational querying on graphs,
Information Sciences, 298 (2015), pp. 390-406.

[23] D. Florescu, A. Levy and D. Suciu, Query containment for conjunctive queries with reg-
ular expressions, in Proceedings of the 17th ACM Symposium on Principles of Database
Systems, PODS’98, 1998, pp. 139-148.

[24] J. Flum, M. Frick, M. Grohe, Query evaluation via tree-decompositions, Journal of the ACM
49(6) (2002), pp. 716-752.

37

[25] G. Gottlob, N. Leone and F. Scarcello, The complexity of acyclic conjunctive queries,
Journal of the ACM, 48(3) (2001), pp. 431–498.

[26] G. Gottlob, N. Leone and F. Scarcello, Hypertree decompositions and tractable queries,
Journal of Computer and System Sciences, 64(3) (2002), pp. 579-627.

[27] G. Greco and F. Scarcello, Structural tractability of enumerating CSP solutions, Con-
straints (2013) 18: 38–74.

[28] M. Grohe, The structure of tractable constraint satisfaction problems, in Proceedings of the
31st International Symposium on the Mathematical Foundations of Computer Science,
MFCS’06, 2006, pp. 58-72.

[29] D. Harel, D. Kozen and J. Tiuryn, Dynamic Logic, MIT Press, 2000.
[30] P. Hell and J. Nešeťril, Graphs and Homomorphisms, Oxford University Press, 2004.
[31] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages, and Com-

putation, Addison Wesley, 1979.
[32] Ph. G. Kolaitis and M. Y. Vardi, On the expressive power of Datalog: Tools and a case

study, Journal of Computer and System Sciences, 51 (1995), pp. 110-134.
[33] Ph. G. Kolaitis and M. Y. Vardi, A Logical Approach to Constraint Satisfaction, in The

Book Complexity of Constraints: An Overview of Current Research Themes, N. Creignou,
P. G. Kolaitis, H. Vollmer, eds., Springer, 2008, pp 125–155.

[34] Ph. G. Kolaitis and M. Y. Vardi, Conjunctive query-containment and constraint satisfaction,
Journal of Computer and System Sciences, 61(2), 2002, pp. 302-332.

[35] R. E. Ladner, R. J. Lipton and L. J. Stockmeyer, Alternating pushdown and stack au-
tomata, SIAM Journal on Computing, 13(1) (1984), pp. 135-155.

[36] L. Libkin, W. Martens and D. Vrgoc, Querying graph databases with XPath, in Proceedings
of the 16th International Conference on Database Theory, ICDT’13, 2013, pp. 129-140.

[37] Ch. H. Papadimitriou and M. Yannakakis, The complexity of facets (and some facets of
complexity), Journal of Computer and System Sciences, 28 (1986), pp. 244–259.

[38] Ch. H. Papadimitriou and M. Yannakakis, On the complexity of database queries, in Pro-
ceedings of the 16th ACM Symposium on Principles of Database Systems, PODS’97, 1997,
pages 12-19.

[39] J. Reutter, M. Romero and M. Y. Vardi, Regular queries on graph databases, In Proceedings
of the 18th International Conference on Database Theory, ICDT’15, 2015, pp. 177–194.

[40] Y. Sagiv and M. Yannakakis, Equivalences among relational expressions with the union and
difference operator, Journal of the ACM, 27(4) (1980), pp. 633–655.

[41] R. Tarjan and M. Yannakakis, Simple linear-time algorithms to test chordality of graphs,
test selectivity of hypergraphs and selectively reduce acyclic hypergraphs SIAM Journal of
Computing, 13 (1984), pp. 566–579.

[42] M. Y. Vardi, The complexity of relational query languages (Extended Abstract), STOC 1982,
pages 137–146.

[43] M. Y. Vardi, A note on the reduction of two-way automata to one-way automata, Information
Processing Letters, 30(5) (1989), pp. 261-264.

[44] P. T. Wood, Query languages for graph databases, SIGMOD Record, 41(1) (2012), pp. 50-60.
[45] M. Yannakakis, Algorithms for acyclic database schemes, in Proceedings of the 7th Interna-

tional Conference on Very Large Data Bases, VLDB’81, 1981, pp. 82-94.

38

