Semantic Acyclicity on Graph Databases

Pablo Barcel6
Department of Computer
Science, Universidad de Chile
pbarcelo@dcc.uchile.cl

ABSTRACT

It is known that unions of acyclic conjunctive queries (CQs)
can be evaluated in linear time, as opposed to arbitrary CQs,
for which the evaluation problem is NP-complete. It follows
from techniques in the area of constraint-satisfaction prob-
lems that semantically acyclic unions of CQs — i.e., unions of
CQs that are equivalent to a union of acyclic ones — can be
evaluated in polynomial time, though testing membership
in the class of semantically acyclic CQs is NP-complete.

We study here the fundamental notion of semantic acyclic-
ity in the context of graph databases and unions of conjunc-
tive regular path queries with inverse (UC2RPQs). It is
known that unions of acyclic C2RPQs can be evaluated effi-
ciently, but it is by no means obvious whether the same holds
for the class of UC2RPQs that are semantically acyclic.
We prove that checking whether a UC2RPQ is semantically
acyclic is decidable in 2EXPSPACE, and that it is EXPSPACE-
hard even in the absence of inverses. Furthermore, we show
that evaluation of semantically acyclic UC2RPQs is fixed-
parameter tractable. In addition, our tools yield a strong
theory of approximations for UC2RPQs when no equivalent
acyclic UC2RPQ exists.

Categories and Subject Descriptors

H.2.3 [Database Management]|: Languages— Query Lan-
guages

Keywords

Graph databases, conjunctive regular path queries, acyclic-
ity, query evaluation, query approximation.

1. INTRODUCTION

Conjunctive queries (CQs) are the most fundamental class
of database queries and also the most intensively studied in
the database theory community. The evaluation problem
for CQs is as follows: Given a CQ @, a database D, and a
tuple a of elements in D, does a belong to the result Q(D) of
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applying @ to D? Notice that the cost of evaluation is thus
measured in terms of the size |D| of the database D and |Q)|
of the query @, which in database terminology corresponds
to the combined complexity of the problem.

The evaluation problem for CQs is NP-complete [8]; this
motivated a flurry of activity for finding tractable cases of
the problem. One of the oldest and most important such re-
strictions is acyclicity. Yannakakis proved that acyclic CQs
can in fact be evaluated in linear time in both data and
query size — O(|D| - |Q|) [31]. This good behavior extends
to unions of CQs (UCQs) each one of which is acyclic (the
so-called acyclic UCQs).

Acyclicity is a syntactic property of queries that is by now
well-understood [19]. On the other hand, the space of UCQs
that is defined by the notion of semantic acyclicity—that is,
the UCQs that are equivalent to an acyclic one — has not re-
ceived much attention. We call this the space of semantically
acyclic UCQs. Two questions naturally arise in this context:
(1) Is the evaluation problem for semantically acyclic UCQs
still tractable? (2) What is the cost of verifying whether a
UCQ is semantically acyclic?

The answers to these questions follow easily from known
techniques in the area of constraint satisfaction problems
(CSP), as CQ evaluation and CSP are known to have a com-
mon root — they are both equivalent to the homomorphism
problem [24]. CSP techniques establish the following: (1)
Semantically acyclic UCQs can be evaluated in polynomial
time. (2) Verifying whether a UCQ is semantically acyclic
is NP-complete [9, 12].

In this paper we extend the concept of semantic acyclic-
ity from the classical setting of relational databases to the
newer setting of graph databases [2], which has been the
focus of much research in the last few years [3, 14, 15, 4,
17]. In fact, acyclicity has been identified as a fundamental
tool for obtaining tractable — and even linear time — query
evaluation in such context [23, 3, 4, 26]. It is thus of theoret-
ical importance to understand what is the space of queries
defined by the notion of acyclicity over graph databases.

Graph databases are typically modeled as edge-labeled di-
rected graphs. In this context, query languages are naviga-
tional, in the sense that they allow to recursively traverse
the edges of the graph while checking for some regular con-
dition [11, 1, 7]. Navigation is often performed by traversing
edges in both directions, which allows to express important
properties about the inverse of the relations defined by the
labels of those edges [6, 7]. When this is combined with the
expressive power of CQs, it yields a powerful class of queries
— the so-called conjunctive regular path queries with inverse,



or C2RPQs — that lies at the core of many query languages
for graph databases (see, e.g., [11, 10, 6, 3]).

Evaluation of unions of C2RPQs (UC2RPQs) is not more
expensive than evaluation of CQs, i.e. NP-complete. Recent
works have studied the class of acyclic UC2RPQs — where
acyclicity is defined in terms of the underlying CQ of each
element of the union — and proved that queries in this class
preserve the good properties of acyclic UCQs for evaluation,
i.e. they can be evaluated in polynomial time, and even
linearly for suitable restrictions [3, 4].

In this work we study the notion of semantic acyclicity
for UC2RPQs, that is, we study the class of UC2RPQs that
are equivalent to an acylic one, and try to answer the same
questions that we posed before for the class of semantically
acyclic UCQs: (1) What is the cost of evaluating queries in
this class? (2) How hard is to recognize if a UC2RPQ @ is
semantically acyclic, and, if so, what is the cost of computing
an equivalent acyclic UC2RPQ for Q7

The first question is important since we want to under-
stand whether semantic acyclicity leads to larger classes of
UC2RPQs with good evaluation properties. The second
question is relevant for static optimization of UC2RPQs,
as a positive answer would allow us to construct an equiva-
lent query in a well-behaved fragment for each semantically
acyclic UC2RPQ. We present answers to both question in
the paper, in a way that our answer to the first question
crucially depends on our answer to the second one.

As noted above, the evaluation problem for semantically
acyclic UCQs is tractable, and this is proved by applying
known techniques from CSP. Those techniques are specifi-
cally tailored for checking the existence of a homomorphism
from a relational structure into another one, which fits well
the semantics of CQs. On the other hand, the semantics
of C2RPQs is based on a richer notion of homomorphism,
which maps the atoms of a query into pairs of nodes in a
graph database linked by a path satisfying some regular con-
dition. Such notion of homomorphism does not fit well in
the current landscape of CSP techniques, which means that
CSP theory does not yield answers to our questions about
semantically acyclic UC2RPQs.

To attack our questions about evaluation of semantically
acyclic UC2RPQs, we consider first the problem of UC2RPQ
approximations, which is motivated by recent work on ap-
proximations of UCQs [5]. In general, the evaluation of a
CQ Q on a database D is of the order |D|?(?D which might
be prohibitively expensive for a large dataset D even if @ is
small. This led the idea of finding approzimations of (U)CQs
in tractable classes [5], in particular, in the class of acyclic
(U)CQs. Intuitively, an acyclic UCQ Q' is an approximation
of a UCQ Q if Q' is contained in Q and it is “as close as pos-
sible” to @ in the class of acyclic UCQs. The latter means
that Q' is a maximal acyclic UCQ that is contained in Q.
It follows from techniques in [5] that UCQs have good prop-
erties in terms of acyclic approximations: Each UCQ @ has
a unique acyclic approximation (up to equivalence) and this
approximation can be computed in single-exponential time.
These good properties imply that computing and running
the acyclic approximation of a UCQ @ on a database D
takes time O(|D| - 2P(9D)  for some polynomial p : N — N.
This is much faster than |D|°U2D on large databases. Thus,
if the quality of the approximation is good, we may prefer
to run this faster query instead of Q.

We show here that the good properties of UCQs in terms

of acyclic approximations extend to UC2RPQs. In partic-
ular, we show that each UC2RPQ @ has a unique acyclic
approximation (up to equivalence) and that an approxima-
tion of exponential size can be computed in ExXpPsPACE. The
data complexity of evaluating this approximation is then
quadratic in the size of the data, such like the data com-
plexity of 2RPQs. This shows that acyclic approximations
might be useful when evaluating the original query is infeasi-
ble, though the cost of computing the approximation is quite
high. We also show that UC2RPQs behave provably worse
than UCQs in terms of approximations: Verifying whether
an acyclic UCQ @’ is the approximation of the UCQ Q is
in the second-level of the polynomial hierarchy, but it be-
comes EXPSPACE-complete if Q and Q' are UC2RPQs. This
is not surprising, as it is known that testing containment of
UC2RPQs is EXPSPACE-complete [6].

Finally, we apply the machinery of acyclic approximation
of UC2RPQs to address semantic acyclicity of this class of
queries. As noted above, we can construct in EXPSPACE
an exponential-sized acyclic approximation Q' of a given
UC2RPQ Q. By construction, Q' is contained in Q. To
check whether @ is semantically acyclic we just have to check
if Q is contained in Q’. Because Q’ is exponentially large, we
get a 2EXPSPACE upper bound for the complexity of the last
step. We also prove an EXPSPACE lower bound for the prob-
lem of checking semantic acyclicity. The precise complexity
remains an open question.

Thus, we get answers to the two questions we posed above:
(1) Query evaluation for semantically acyclic UC2RPQ is
fized-parameter tractable. (2) Testing semantic acyclicity
for UC2RPQs is in 2EXPSPACE and EXPSPACE-hard. The
question whether semantically acyclic UC2RPQs can be eval-
uated in polynomial time is left as an open problem.

Organization The rest of the paper is organized as fol-
lows. In Section 2, we study semantic acyclicity for UCQs
and show that the answer to the most basic questions fol-
low from known CSP techniques. In Section 3, we introduce
graph databases and UC2RPQs. In Section 4, we study
acyclic approximations of UC2RPQs and show some of their
good properties. Finally, in Section 5, we study semantic
acyclicity of UC2RPQs. We provide upper and lower bounds
for the problem of verfiying whether a UC2RPQ is seman-
tically acyclic and show that this implies that evaluation of
semantically acyclic UC2RPQs is fixed-parameter tractable.
Finally, in Section 6 we provide concluding remarks and a
list of open problems.

2. INTERLUDE ON UNIONS OF CONJUNC-
TIVE QUERIES

We start by considering semantic acyclicity in the context
of traditional relational databases and unions of conjunc-
tive queries. Although the results in this section follow from
known techniques, we state them for the sake of complete-
ness and because they will help us developing the necesssary
intuitions for the more complicated case of graph databases
and unions of conjunctive regular path queries.

'Recall that the evaluation problem for a class C of queries is
fixed-parameter tractable if there exists a computable func-
tion f : N — N and a constant k£ > 1 such that evaluat-
ing a query @ € C over a database D can be done in time

o(IDI* - £(IQl)).



2.1 Basic concepts

We first provide the necessary terminology. A schema is a
set o of relation names Ry, ..., Ry, each relation R; having
an arity n; > 0. A database of schema o is a function D
that maps each relation symbol R; in ¢ into a finite n;-
ary relation RF over a countably infinite domain dom (i.e.
RP C dom™).

A conjunctive query (CQ) over o is a logical formula in
the d, A-fragment of first-order logic, i.e., a formula of the
form

Q(j) = 3Jy /\ Rij (jij)7
j=1
where each R;; is a symbol from o, and Z;, is a tuple of
variables among 7,y whose length is the arity of R;;. Each
R;;(Z:;) is an atom of Q(Z).

A union of conjunctive queries (UCQ) is a formula of the
form Q(Z) = V;<;c,, Qi(Z), where Q:(Z) is a CQ for each
1 < i < m. We assume familiarity with the semantics (eval-
uation) of (U)CQs. The set of tuples that belong to the eval-
uation of a UCQ @ over database D is denoted by Q(D). If
Q is a Boolean query (i.e. T is the empty tuple), the answer
true is, as usual, modeled by the set containing the empty
tuple, and the answer false by the empty set.

The evaluation problem for UCQs is as follows: Given a
database D, a UCQ Q(Z) and a tuple a in D, is a € Q(D)?
It is well-known that the evaluation of CQs is NP-complete
[8]. On the other hand, tractability of (U)CQ evaluation can
be obtained by restricting the syntactic shape of CQs. The
oldest and most common of such restrictions is a-acyclicity
(or, simply, acyclicity) [13], that can be defined in terms
of the existence of a well-behaved tree decomposition of the
hypergraph of a CQ [20]. We review such notions below.

Recall that a hypergraph is a tuple # = (V, E), where V/
is its finite set of vertices and E C 2V is its set of hyperedges.
With each CQ we associate its hypergraph H(Q) = (V, E)
such that V' is the set of variables of ) and E consists of
all sets of variables that appear in the same atom of Q.
Consider for instance the CQ

Q(x) = FyFzFuv (R(z,y,2) AT (y,u,u) A S(y,v)).

Then H(Q) = (V, E), where V = {z,y, 2, u,v} and F con-
sists of the hyperedges {z,v, 2z}, {y,u} and {y,v}.

A tree decomposition of a hypergraph H = (V, E) is a pair
(T, \), where T is a tree and X : T — 2", that satisfies the
following;:

e Foreachwv € V theset {t € T'| v € A(t)} is a connected
subset of T'.

e Fach hyperedge in F is contained in one of the sets
At), fort € T.

Then H is acyclic if there is a tree decomposition (7, \) of
it such that A(¢) is a hyperedge in E, for each t € T

A CQ Q is acyclic if its hypergraph H(Q) is acyclic. A
UCQ V,<;<m Qi(T) is acyclic if each Q:(Z) is acyclic (1 <
i <'m). For instance, the CQ Q(z) = Jy3z3u3v R(x,y,2) A
T(y,u,u) A S(y,v) presented above is acyclic, as witnessed
by the following tree decomposition (7, A) of H(Q): T con-
sists of vertices {1, 2,3} and edges {(1,2), (1,3)}, and A(1) =
(5,9, 2}, A(2) = {yu} and A3) = {y,v}.

It follows from the seminal work of Yannakakis that the
evaluation problem for acyclic UCQs can be solved in linear
time O(|D] - |Q]) [31].

2.2 Semantically acyclic UCQs

Acyclicity is a syntactic property of UCQs. On the other
hand, a non-acyclic UCQ can still be equivalent to an acyclic
one. Formally, a UCQ Q(Z) is semantically acyclic if there
exists an acyclic UCQ Q'(z) such that Q(D) = Q'(D) for
each database D. Recall that we are interested in two ques-
tions regarding semantic acyclicity: (1) Is the evaluation
problem for semantically acyclic UCQs tractable? (2) What
is the cost of verifying whether semantic acyclicity for UCQs?

As first pointed out in [24], there is a close connection
between conjunctive query evaluation and constraint satis-
faction: Both can be recasted as the problem of determin-
ing whether there is a homomorphism from one relational
structure into another one. This tight connection allows us
to export tools from CSP [24, 9] and prove that semantically
acyclic UCQs can be evaluated in polynomial time.

THEOREM 1. The evaluation problem for semantically
acyclic UCQs can be solved in polynomial time.

The CSP techniques that imply Theorem 1 first establish
a sophisticated equivalence between the problems of query
evaluation for semantically acyclic CQs and the existence
of winning strategies for the duplicator in some refined ver-
sion of the existential pebble game, and then prove that the
required condition on games can be checked efficiently.

Notice that the class of acyclic UCQs is remarkably well-
behaved for evaluation: Queries in the class are not only
tractable, but also verifying whether a given UC(Q belongs
to the class can be done in polynomial (in fact, linear) time
[30]. On the other hand, using techniques similar to those in
[12], one can prove that this good behavior does not extend
to the class of semantically acyclic UCQs, as the problem of
verifying whether a query is semantically acyclic is compu-
tationally hard:

PROPOSITION 1. The problem of verifying whether a UCQ
Q(Z) is semantically acyclic is NP-complete. It remains
NP-hard even if the input is restricted to Boolean CQs whose
schema consists of a single binary relation (i.e. the schema
of directed graphs).

3. GRAPH DATABASES & CONJUNCTIVE

REGULAR PATH QUERIES

Graph databases and C2RPQs A graph database |2,
7, 11] is just a finite edge-labeled graph. Let ¥ be a finite
alphabet, and A a countably infinite set of node ids. Then
a graph database over X is a pair G = (N, E), where N is
the set of nodes (a finite subset of N), and F is the set of
edges, i.e., ' C N x X x N. That is, we view each edge
as a triple (n, a,n’), whose interpretation, of course, is an a-
labeled edge from n to n’. When X is clear from the context,
we shall simply speak of a graph database.

As mentioned before, in this work we consider naviga-
tional queries that traverse edges in both directions. This de-
fines the notion of regular path queries with inverse (2RPQs)
[6, 7]: A 2RPQ over finite alphabet X is an expression R de-
fined by the grammar:

R:=c|a(@eX) |a (a€eX) | R+R| R-R | R"



That is, a 2RPQ is nothing else than a regular expression
over the alphabet that extends ¥ with the symbol a™ for
each a € X. Intuitively, a~ represents the inverse of a.

The evaluation of a 2RPQ R over a graph database G =
(N, E) is a binary relation [R]g defined as follows, where
a is a symbol in ¥ and R, R, and Ry are arbitrary 2RPQs
over 3

lel¢ = {(u,u)|ueN}
[[a]]g {(u,v) | (u7a7 U) € E}
[a"]g {(v,u) | (u,a,v) € E}

[R1+ R2]¢ = [Ra]gU[R2]g
[Ri-Re]¢ = [Rilgo[Ra]g
[R'lg = [elgU[RIgU[R-RJgU---

Here, the symbol o denotes the usual composition of binary
relations, that is, [Ri]g o [R2]¢ = {(u,v) | there exists w
s.t. (u,w) € [Ri]g and (w,v) € [R2]g}. As expected, the
expression a~ (a € X) defines the inverse of the expression
a on each graph database. Intuitively, each matching of a™
in G represents a backward traversal of an a-labeled edge.

When the expressive power of 2RPQs is combined with
the ability of CQs to express arbitrary joins and existen-
tial quantification, it yields a powerful class of queries —
namely, the conjunctive reqular path queries with inverses,
or C2RPQs — that we define next.

Formally, a C2RP(Q over a finite alphabet X is an expres-
sion of the form:

Q@ =3y N (w,Riv), 1

1<i<m

such that each u; and v; is a variable among z,y and each
R; is a 2RPQ over ¥, for 1 <i <m. A CRPQ is a C2RPQ
without inverses, i.e. a C2RPQ of the form (1) in which
no 2RPQ R; (1 < i < m) mentions the inverse a~ of a
symbol a € 3. As usual, we assume that T are the free
variables of @), i.e. the variables mentioned in @ that are
not existentially quantified.

Intuitively, a C2RPQ Q(Z) of the form (1) selects tuples Z
for which there exist values of the remaining node variables
from g such that each pair (u;,v;) belongs to the evalua-
tion of the 2RPQ R;. We formally define the semantics
of C2RPQs by using a notion of homomorphism that maps
atoms of @) into pairs that satisfy the corresponding 2RPQs.

Given Q(Z) of the form (1) and a graph database G =
(N, E), a homomorphism from Q(Z) to G is a map h :
U,<icmiui,vi} — N such that (h(ui),h(vi)) € [Ri]g for
every 1 < i < m. Then Q(G) is the set of all tuples h(Z)
such that h is a homomorphism from Q(Z) to G.

ExAMPLE 1. Consider a graph database G = (N, E) of
researchers, papers, conferences and journals over the alpha-
bet ¥ = {creator, inJournal, inConf}. The set of edges E
consists of the following:

e All tuples (r,creator,p) such that r is a researcher
that coauthors paper p.

e Each tuple (p, inJournal, j) such that paper p appeared
in journal j.

e All tuples (p,inConf,c) such that paper p was pub-
lished in conference c.

Consider the C2RPQ Q(z,y) defined as
Jz3w((z, creator, z) A (2, inConf, w) A (2, creator ,y)).

Its evaluation over G consists of the set of pairs (r,7") such
that researchers r and 7’ have a joint conference paper. The
evaluation over G of the C2RPQ Q’(z,y) defined as

Jz3w((z, (creator - creator )", y)A

(y, creator, z) A (z, inJournal, w))

consists of the set of pairs (r,7') of researchers that are linked
by a coauthorhsip sequence and such that ' has at least one
journal paper. O

A union of C2RPQs (UC2RPQ) is a formula of the form
Vicicm Qi(Z), where each Q;(Z) is a C2RPQ (1 <i < m).
We define Q(G) as U, «,<,, Qi(G), for a graph database G. If
Q and Q' are UC2RPQs, then Q is contained in Q’, denoted
Q C @, if Q(G) C Q'(G) for each graph database G. In
addition, Q and Q' are equivalent, denoted Q = Q’, if Q C
Q' and Q" C Q, or, equivalently, Q(G) = Q'(G) for each
graph database G.

The evaluation problem for UC2RPQs is defined in the
same way as UCQs. That is, given a UC2RPQ Q(Z), a
graph database G, and a tuple a of node ids in G such that
|a] = |Z|, does @ belong to Q(G)? It is known that evaluating
UC2RPQ@s is not more expensive than evaluating CQs, i.e.
NP-complete [3].

Acyclic C2RPQs Acyclicity of C2RPQs has been stud-
ied in several recent papers that define it in terms of the
acyclicity of its underlying conjunctive query [3, 4]. Let
Q(Z) = I Ni<;cm (i, Ri,vi) be a C2RPQ. Its underly-
ing CQ is the query over the schema of binary relation
symbols Ti,..., T, defined as: 3y A, ., ., Ti(ui,vi). In-
tuitively, this underlying conjunctive query represents the
structure of @ when the regular languages that label the
atoms of () are turned into relation symbols.

A C2RPQ is acyclic if its underlying CQ is acyclic. A
UC2RPQ is acyclic if each one of its C2RPQs is acyclic. By
combining techniques for UC2RPQ evaluation and polyno-
mial time evaluation of acyclic CQs, it is possible to prove
that the evaluation problem for acyclic UC2RPQs can be
solved in polynomial time [31, 3].

THEOREM 2. The problem of checking whether a € Q(G),
for a given graph database G, acyclic UC2RPQ @, and a
tuple @ of node ids in G, can be solved in time O(|G|*> - |Q|?).

Recall that a CQ @Q is acyclic if its hypergraph H(Q) ad-
mits a tree decomposition (7, A) such that each set of the
form A(¢), for t € T, is a hyperdge of H(Q). The fact that
acyclicity of C2RPQs is defined in terms of the acyclicity of
its underlying CQ — and the latter is specified in a schema
of binary arity — allows us to provide a simple characteri-
zation of the class of acyclic C2RPQs that will be useful in
our proofs. We explain this below.

The simple undirected underlying graph of a C2RPQ Q(Z) =
39 N\jcicm (Ui, Ri,vi), denoted U(Q), is the graph whose
vertices are the variables of Q and its set of edges is {{us, vi} |
1 <i<m and u; # v;}. Notice that U(Q) is indeed simple
(it contains neither loops nor multiedges) and undirected.
Then:



PROPOSITION 2. A C2RPQ Q is acyclic if and only if
U(Q) is acyclic.

ExAMPLE 2. Both C2RPQs Q(z,y) and Q'(z,y) in Ex-
ample 1 are acyclic. Recall that Q(z,y) is defined as

323w ((z, creator, z) A (z, inConf, w) A (2, creator ,y)),

and Q’'(z,y) is defined as

Jz3w((z, (creator - creator )", y)A

(y, creator, z) A (z,inJournal,w)). O

Notice that this definition of acyclicity allows for the exis-
tence of loops and multiedges in the structure of a C2RPQ),
i.e. in its underlying CQ), as shown in the following example.

ExAMPLE 3. Let L1, L2 and L3 be arbitrary regular ex-
pressions over . The CRPQs Q = 3z (z,L1,z) and Q' =
Ja3y ((z, L1,y) A (y, L2, x)) are acyclic. Notice that the un-
derlying CQ of @ contains a loop, while the underlying CQ
of Q' contains edges from x to y and from y to x. The
CRPQ Q" = J23y3z ((w,L1,y) A (y,L2,2) A (2, Ls, x)) is
not acyclic. a

Our goal is to study the notion of semantic acyclicity
for UC2RPQs. To attack the problem of evaluation for
UC2RPQs that are semantically acyclic we make a necessary
detour in the next section to study the problem of UC2RPQ
approximation.

4. APPROXIMATIONS OF UC2RPQS

Acyclic UC2RPQs form a good class in terms of complex-
ity of evaluation: They are tractable as opposed to arbitrary
C2RPQs (and even CQs) for which the evaluation problem
is NP-complete and even hard in parameterized complex-
ity [28]. This motivates our study of approximations of
UC2RPQs in the class of acyclic UC2RPQs, which is in-
spired by recent research on approximations of UCQs. We
explain this below.

Evaluating an arbitrary CQ on a big database might be
prohibitively expensive. This has led to the recent study of
(U)CQ approzimations in tractable classes [5], in particular,
in the class of acyclic (U)CQs. Intuitively, an acyclic UCQ
T is an approximation of a UCQ @ if the following holds:
(1) T is contained in @ (i.e. T returns no false positives with
respect to Q) and (2) T is “as close as possible” to Q among
all acyclic UCQs.

It follows from results and techniques in [5] that approxi-
mations of UCQs have good properties.

1. First of all, they always exist, that is, each UCQ has
at least one acyclic approximation, and, in addition,
such approximation is unique (up to equivalence) and
of at most exponential size.

2. Second, for each UCQ @, its acyclic approximation T’
can be computed in single-exponential time.

3. Third, verifying whether an acyclic UCQ T is an ap-
proximation of a UCQ @ is decidable in the second-
level of the polynomial hierarchy.

These good properties imply that computing and running
the acyclic approximation of a UCQ @ on a database D takes

time O(2PURD D[ - 2U9D) | for polynomials p,r : N — N,
which is O(|D| - 2°19D), for a polynomial s : N — N. This is
much faster than [D|°U9D on large databases. Thus, if the
quality of the approximation is good, we may prefer to run
this faster query instead of Q.

Here we study acyclic approximations for UC2RPQs, and
show that several of the good properties mentioned above
for acyclic approximations of UCQs extend to UC2RPQs.

4.1 Approximations: Existence and computa-
tion
Suppose we want to approximate a UC2RPQ @ in the
class AC of acyclic UC2RPQs. As explained earlier, we are
interested in approximations that are guaranteed to return

correct results only. Thus, we are looking for an acyclic
UC2RPQ that is maximally contained in Q:

DEFINITION 1. (Approximations) Let Q and Q' be
UC2RPQs such that Q' € AC and Q" C Q. Then Q' is
an approximation of Q if there is no query Q" € AC with
Q" C Q such that Q' € Q".

It is worth noticing that the definition of approximations
in [5] is different, but equivalent to this one.

An important property of UCQs is that each query in the
class has an acyclic approximation, and that such approxi-
mation is unique. We can prove that this is also true for the
class of UC2RPQs.

THEOREM 3. Fach UC2RPQ has a unique acyclic ap-
prozimation (up to equivalence).

As a corollary to the proof of Theorem 3 we get the fol-
lowing important result about the computation and size of
approximations.

COROLLARY 1. There exists an EXPSPACE algorithm that
takes as input a UCZ2RPQ @Q and computes the approrima-
tion Q" of Q. This approzimation is of at most exponential
size.

Corollary 1 implies that approximations of UC2RPQs are
meaningful. In fact, computing and running the acyclic ap-
proximation of a UC2RPQ @ on a graph database G takes
time

0(22““?‘) +1G1 - y(\@\))

for polynomials p,r : N — N, which is

O<|g|2 _22p(\Q\)>.

In terms of data complexity this is only O(|G|?), such like
the data complexity of 2RPQs. This is much faster than
|g|0(‘Q‘> — the order of the evaluation problem for Q on G —
on large datasets.

We finish by proving that there is an important aspect of
approximations that is harder for UC2RPQs than for UCQs:
the identification problem, i.e. verifying if a query is an ap-
proximation of another. We mentioned above that checking
whether an acyclic UCQ T is an approximation of a UCQ @Q
can be solved in the second-level of the polynomial hierar-
chy [5]; more precisely, it is complete for the class DP, that
consists of all those languages that are the intersection of an
NP and a cONP problem [27]. This problem is considerably
harder for UC2RPQs:



PRrROPOSITION 3. Let Q and T be UCZ2RPQs such that
T € AC. The problem of verifying whether T' is an acyclic
approximation of Q is EXPSPACE-complete.

We prove Theorem 3, Corollary 1 and Proposition 3 in
the following section.

4.2 Proofs of results

All results in Section 4.1 follow from an important lemma
that states that there exists an EXPSPACE algorithm that,
on input a UC2RPQ @, computes an acyclic UC2RPQ Tq —
of at most exponential size — that is a maximum of the class
of acyclic UC2RPQs that are contained in (). This lemma
will also be crucial for proving decidability of the notion of
semantic acyclicity for UC2RPQs in Section 5:

LEMMA 1. There exists an EXPSPACE algorithm that given
a UC2RPQ Q computes an acyclic UC2RPQ Tq such that:

1. To C Q.

2. For every acyclic UC2RPQ T such that T C @ it is
the case that T C Tq.

3. The size of Tq is at most exponential in |Q).

Before proving Lemma 1 we show how the results in Sec-
tion 4.1 easily follow from it.

Proofs of Theorem 8, Corollary 1 and Proposition 3: The al-
gorithm in Lemma 1 computes for each UC2RPQ @ a query
Tq that is the maximum of the class of acyclic UC2RPQs
that are contained in ). We conclude that T is an approx-
imation of . This approximation must be unique (up to
equivalence) by definition.

In order to prove Corollary 1, we use the algorithm in
Lemma 1 to compute the approximation Ty of a UC2RPQ
Q. The algorithm runs in EXPSPACE and its output T¢ is of
at most exponential size in |Q)].

Finally, we prove Proposition 3. Given a UC2RPQ @ and
T € AC, the following algorithm verifies whether 7' is an
approximation of @: Check whether T"C @ and T C T If
this is the case T" = Ty and, thus, T is an approximation
of Q. Using techniques in [6] both containments can be
performed in EXPSPACE. The lower bound follows by an
easy reduction from the containment problem of an acyclic
CRPQ T in a CRPQ @, which is EXPSPACE-complete [6]. O

We prove Lemma 1 now. We only sketch the main ideas
since the complete proof is rather technical.

Proof (Sketch) of Lemma 1: The proof is based on the fol-
lowing claim:

CraM 1. There exists a polynomial p : N — N such that
for every UC2RPQ @ there exists a set Rg of 2RPQs for
which the following holds:

1. Rg can be constructed in time O(2PUQD),

2. There is an acyclic UC2RPQ T C Q such that each
disjunct in T is of the form 3g N\, ., <, (wi, Ri,v:), for
m < p(|Q|) and R; € Ro (1 <i < m). Moreover, the
union of all such T’s is Tq, i.e., the mazimum of the
class of acyclic UC2RPQs that are contained in Q.

We show first that Claim 1 implies Lemma 1. In fact,
in order to build Ty from () we have to do the following:
Construct Rg in exponential time, and then iterate through
every acyclic C2RPQ T with at most p(|Q|) atoms, all of
them labeled with 2RPQs in Rq, adding as a disjunct to
Tq each such T that satisfies 7' C (). The second item of
Claim 1 implies that T constructed in this way is nonempty
(i.e. it contains at least one disjunct). Since each T" with
at most p(|Q|) atoms — all of them labeled with 2RPQs in
Rq — is of exponential size, and checking whether 7" C Q
can be done in EXPSPACE using techniques in [6], the whole
procedure can be performed in EXPSPACE. Furthermore, the
size of T is at most exponential in |Q|.

We continue with the proof of Claim 1. Let @ be a
UC2RPQ. We start by explaining how the set Rg of 2RPQs
that label the atoms of T is defined. The intuition is that
we do not need more information in those labels than the
types they describe with respect to the 2RPQs that label the
atoms of . Formalizing such intuition requires the intro-
duction of several concepts.

To start with, we need to define the notion of folding,
which is very useful when dealing with 2RPQs [7]. Let w =
pip2 -+ pr be a word over alphabet ¥’ = X U {a™ | a € Z}.
Forp € ¥ wedefinep” =a” ifp=aanda € X,andp” =a
if p=a~ and a € ¥. Then the word u = q1q2 - - - q¢ over ¥’
folds into w from j1 to ja, for ji,j2 € {0,...,k}, if there is a
sequence 4o, i1,...,% of positions in the set {0,...,k} such
that:

e o = j1 and iy = j2, and

e for each 1 < j < /it is the case that i; =i;_1 + 1 and
q; =Dpi;, or i =1i;—1 — 1 and g; :p;,l'

Intuitively, u folds into w if u can be read in w by a two-way
automaton that outputs symbol p, for p € ¥’ each time
that it is read from left-to-right, and symbol p~, for p € &',
each time that it is read from right-to-left. For instance, the
word abb™a~abb™ ¢ folds into abb™ ¢ from 0 to 5.

Assume that {Ry,..., Ry} is the set of 2RPQs that label
the atoms of Q. With each R; we associate an NFA A; over
Y that accepts the language defined by R;. The Q-type of
a word w over Y is the tuple

U = (Tit, Teis Tiis Tet)s

such that 7;; corresponds to the set of triples of the form
(A, s,t), for 1 < < p, for which the following holds: (i) s
and t are states of A;, and (ii) there is a word u that folds
into w from position 0 to |w| and a run of A; from state s to
t over u. Correspondingly, in 7¢; we ask u to fold in w from
|w| to 0, in 73 from 0 to 0, and in 74 from |w| to |w].

A Q-type is the Q-type of some word w. Given two Q-
types I'1 and I'2, we say that I'; is contained in I'y if each
coordinate of I'; is contained in the corresponding coordi-
nate of I's. For a Q-type I'; we denote by W(I") the set of
words w over ¥’ such that I' is contained in the Q-type of
w. The next result is crucial for our proof:

LEMMA 2. For each Q-type I, the language W(T') is regu-
lar and can be defined by a 2RPQ Rr of at most exponential
size in |Q)|.

Let RT be the set of all 2RPQs of the form Rr, for T’
a Q-type. Since the class of 2RPQs is closed under inverse



(i.e. for each 2RPQ R there is a 2RPQ R~ such that [R]¢ =
([R™Jg)™", for every graph database G), we can also define
the set of 2RPQs R~ that contains each inverse of a 2RPQ
in R*. Finally, we define a set R° that consists of the
concatenation of at most k elements in RT UR ™, where k is
polynomially bounded by |Q| (precise bounds are not given
in order not to complicate the presentation).

The definition of Rq is rather technical, but what is im-
portant for us is that it contains the whole set of 2RPQs in
R° and can be computed in exponential time:

LEMMA 3. A set Rq that contains each 2RPQ in R° can
be constructed in exponential time in |Q)|.

In order to prove Claim 1 we use the following important
lemma:

LEMMA 4. For every UC2RPQ @ and acyclic UC2RPQ
T that is contained in Q, there is an acyclic UC2RPQ T’
with the following properties:

1.TCT CQ,

2. each 2RPQ that labels an atom of a disjunct of T' be-
longs to Rq, and

3. the number of atoms in each disjunct of T is polyno-
mially bounded by |Q)|.

In particular, |T'| is at most exponential in |Q|.

We show first that Lemma 4 implies Claim 1. The set Rg
can be constructed in exponential time, so we have to prove
the following: (f) There is an acyclic UC2RPQ T C @ such
that each disjunct in 7" is of the form 3y A, ., ., (wi, Ri, vi),
where m < p(|Q|) and R; € Rq, for each 1 < i < m.
(f1) The UC2RPQ T defined by the union of all such T"s
is precisely Tq, i.e. T™ is the maximum acyclic UC2RPQ
contained in Q.

Assume that T = (x1,...,2,) is the tuple of free vari-
ables of the UC2RPQ Q. It is easy to see that the CRPQ
Nicj<r1(@ie,2541) A Nyes(21,a,21) is contained in Q,
and, thus, from Lemma 4 we have (1), i.e. there is an acyclic
UC2RPQ T of the form 3y A, _, ., (ui, Ri,v;) such that (i)
m is polynomially bounded by |Q|, (ii) for each 1 < i < m
it is the case that R; € Rq, and (iii) 7' C Q. We prove ({1)
next, i.e. that 7% = Tg. Clearly, T" C @Q since each dis-
junct of T is contained in Q. Let T be an arbitrary acyclic
UC2RPQ that is contained in ). Then Lemma 4 tells us
that T is contained in some union of C2RPQs that is con-
tained in T, and hence T" C T"*. Thus, T is the maximum
of the class of acyclic UC2RPQs contained in ), and hence
T* is equivalent to Tg.

Next we prove Lemma 4. Let T" be an acyclic UC2RPQ
such that 7" C Q. We make use of the following lemma to
prove Lemma 4:

LEMMA 5. Let G be an arbitrary graph database and a
a tuple of node ids in T(G). Then there exists an acyclic
C2RPQ T(g,a) such that:

1. T(g’a) CQanda € T(gya) (g),

2. each 2RPQ that labels an atom of T(g a) belongs to Rq,
and

3. the number of atoms in T(g ay s polynomially bounded

by |QI.

We start by proving that Lemma 5 implies Lemma 4. In
fact, we can simply define 7”7 to be the UC2RPQ

U{T(g’a) | G is a graph database and @ a tuple in T(G)}.

From Lemma 5 each disjunct in 7" is contained in @, and,
thus, 7" C Q. Furthermore, the same lemma implies that
for every graph database G and tuple a € T'(G) it is the case
that @ € T'(G). Thus, T C T’. Finally, each disjunct of 7"
has a polynomial number of atoms and each one of its atoms
is labeled by a 2RPQ in Rq.

The last step in the construction is proving Lemma 5,
which is our technically more involved result. By known
techniques we do not have to consider each graph database
G, but only those that are canonical for some disjunct 71
of T [18, 6]. Intuitively, these are the graph databases G’
that can be constructed as follows. Each variable in T} is
added as a node id to G’, and then for each atom of the form
(u, R,v) in Ty we build a single semipath (i.e. a path that
traverses edges in both directions) of fresh node ids from
u to v whose label satisfies R. Since a 2RP(Q may accept
an infinite number of strings, the space of canonical graph
databases for T is potentially infinite.

Let G be an arbitrary canonical graph database for 7" and
a a tuple in T(G). Assume that Q =\/, ., ., Q:, where each
Q. is a C2RPQ. Since T' C Q we have that a € Q(G), and,
thus, that a € Q;(G) for some ¢ < £. This implies that there
is a homomorphism h from Q;(Z) to G such that h(Z) = a.
Assume that Q; = 3y A\, .., (ui, Ri,v;). Then h satisfies
that for each 1 < i < m the pair (h(u:), h(v:)) € [Ri]g, or,
equivalently, that there is a semipath p; in G from h(u;) to
h(vi) whose label satisfies the 2RPQ R;. We choose each p;
to be of minimal length.

Let Z be the set of node ids in G that are of the form h(u),
for some variable u of @), or the least common ancestorin G of
two elements in Z that are in the same connected component
of G. (This least common ancestor is well-defined since G
“resembles” T, which is acyclic). In the search for an acyclic
C2RPQ T(g a), as defined in the statement of Lemma 5, we
construct from G a graph database G’ that contains as node
id each element in Z. In addition, we connect h(u;) to h(v;)
in G’ by the semipath p;, for each 1 < ¢ < m. However,
since we construct G’ in the search for the acyclic C2RPQ
T(g,a), this last step has to be carried out carefully in order
to avoid undesirable cycles. We explain the process below.

The idea is to avoid cycles among elements in Z. In order
to do that, we first have to define a notion of adjacency be-
tween elements of Z that defines an acylic graph, and then
add semipath p; from h(u;) to h(v;) in G, 1 < i < m, by
joining contiguous elements of Z with respect to this adja-
cency relationship.

Finally, from G’ we construct the C2RPQ T(g,a) as follows:
For each pair of contiguous elements in Z that are linked in
G’ by a semipath labeled by word w € X', we replace such
semipath by the 2RPQ in R° that completely describes w
with respect to Q. Clearly, each atom in T\g ) is labeled by
a 2RPQ in Rq. It can also be proved that T(g 4) is acyclic,
and, further, that a € T(g 4)(G). The latter is not hard
to see since the identity mapping is a homomorphism from
T(g,a) in G. Furthermore, the number of atoms in T(g gz is
polynomially bounded by |Q|. This follows from the fact



that |Z| is polynomially bounded and the minimality of the
semipaths p; that have been chosen to populate G’ (as each
path p; is decomposed in a polynomial number of contiguous
segments in G').

It just rests to show that T{g 5 is contained in Q). But this
can be intuitively explained using the facts that a € Q(G),
and the canonical databases of T(g 3) are indistinguishable
from G by @, i.e. for each canonical database G; of T(g,a)
it is the case that a € Q(G) < a € Q(G1). The latter holds
because T(g a) is constructed from G by replacing semipaths
with 2RPQs that respect the Q-type of its label.

S. SEMANTIC ACYCLICITY OF UC2RPQS

We finish the paper by studying the notion of semantic
acyclicity in the context of graph databases and conjunctive
regular path queries. As opposed to the case of CQs, the
results in this section do not follow from known results in the
literature and require new techniques. We start by defining
the terminology and providing some basic insights about the
nature of semantic acyclicity for UC2RPQs.

5.1 Basic terminology and insights

A UC2RPQ @ is semantically acyclic if there exists an
acyclic UC2RPQ Q' such that Q = Q’. As we mentioned
before, we want to answer two basic questions about seman-
tically acyclic UC2RPQs: (1) What is the cost of evaluating
queries in this class? (2) What is the cost of checking if a
UC2RPQ is semantically acyclic? We will see that an an-
swer to the second question will provide us with an answer
for the first one.

Since acyclicity of C2RPQs is defined in terms of the
acyclicity of its underlying CQ, one may be tempted to think
that the two notions coincide. Clearly, if the underlying CQ
of a C2RPQ @ is semantically acyclic then @ is also se-
mantically acyclic. The following example shows that the
opposite does not hold.

ExaMPLE 4. Consider again the non-acyclic CRPQ Q" =
JxIy3z ((ac7 Li,y)A(y, L2, z)\(z, L3, x)) in Example 3. It is
not hard to prove that Q" is equivalent to the acyclic CRPQ
Jz (x, L1L2Ls, x), and, thus, it is semantically acyclic. On
the other hand, the underlying CQ of Q" is JzJy3z (11 (z, y),
Ta(y, ), Ts(z,x)), which is not semantically acyclic.

Intuitively, the query Q" is semantically acyclic because it
can be “simplified” by concatenating the regular languages
that label its atoms. A more interesting example is the fol-
lowing Boolean CRPQ Qsa over ¥ = {a, $1, %2, $3}

. $2 °
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(Dots represent variables and arrows represent labeled atoms).
It is easy to see that the underlying CQ of Q)sa is not seman-
tically acyclic. On the other hand, it can be proved that Qsa
is equivalent to the acyclic CRPQ
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In this case, semantic acyclicity is obtained by the way in
which the regular languages that label the atoms of Qsa
interact with each other. |

The previous example shows that the notion of semantic
acyclicity of C2RPQs is richer than the notion of acyclicity
of its underlying CQs, as many queries fall in the former
category but not in the latter. Not only that, the first no-
tion is also theoretically more challenging: While the same
techniques used in Section 2 can be applied to prove that
the evaluation problem is tractable for UC2RPQs whose un-
derlying CQ is semantically acyclic, it is by no means clear
whether the same is true for the class of semantically acyclic
UC2RPQs (and even for semantically acyclic CRPQs). We
delve into this issue below.

As is mentioned in the Introduction, the CSP techniques
used in Section 2 to prove that the evaluation of seman-
tically acyclic UCQs is tractable do not yield answers to
our questions about semantically acyclic UC2RPQs. The
results in Section 5.2 help us proving, on the other hand,
that the problem is fixed-parameter tractable (Theorem 5),
which was not known to date. We leave as an open question
whether the class of semantically acyclic UC2RPQs can be
evaluated in polynomial time.

Before finishing the section we explore the limits of the
notion of semantic acyclicity. The next example shows a
simple CQ over graph databases that is not equivalent to
any acyclic UC2RPQ.

EXAMPLE 5. Let ¥ = {a,$1,%2,$3} be a finite alphabet
and consider the Boolean CRPQ Q.. over X that is graphi-
cally defined as:
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Notice that the underlying CQ of @na coincides with that
of the semantically acyclic CRPQ Qsa from Example 4. How-
ever, a simple case-by-case analysis shows that Qna is not
semantically acyclic. The reason is that Q. forbids the in-
teraction between the different RPQs that label its atoms
by replacing each RPQ of the form a* in Qs with a. O

5.2 Verification of semantic acyclicity

We start by considering our second question above: Is the
notion of semantic acyclicity for UC2RPQs decidable? In
this section we show that this is indeed the case and prove
both upper and lower bounds for its computational cost.

We start by proving that the notion of semantic acyclic-
ity for UC2RPQs is decidable, and provide an elementary
upper bound for the problem. The algorithm also yields an
equivalent UC2RPQ Q' of exponential size for a semanti-
cally acyclic UC2RPQ Q.

THEOREM 4. There exists a 2EXPSPACE algorithm that
on input a UC2RPQ Q does the following:

1. It checks whether Q is semantically acyclic.

2. If the latter holds, it outputs an acyclic UC2RPQ Q'
of single-exponential size such that Q = Q’.



Proof: The algorithm in Lemma 1 computes on input ) an
acyclic UC2RPQ Tq such that T is the maximum among
all acyclic UC2RPQs that are contained in Q. It follows that
@ is semantically acyclic iff Q C Ty. Thus, in order to check
semantic acyclicity of @ we only have to compute T, which
can be done in EXPSPACE, and then check whether Q C Tq,
which can be done in exponential space in (|Q| + |Tg]) [6],
and hence in double-exponential space in |Q| (because Tg
is of at most exponential size in |@Q|). The whole procedure
can be done in 2EXPSPACE. ad

We now provide a lower bound for the problem that shows
that checking semantic acyclicity of (U)C(2)RPQs is consid-
erably harder than for UCQs:

PROPOSITION 4. It is EXPSPACE-hard to check whether a
UC2RPQ Q is semantically acyclic. The problem remains
EXPSPACE-hard even if the input is restricted to Boolean CR-
PQs.

Proof: Since the proof is rather tedious we only sketch it
here. Checking whether a Boolean CRPQ @1 is contained
in a Boolean CRPQ Q2 is EXPSPACE-complete [6]. From the
proof it follows that this problem remains hard even if Q1 is
acyclic and the underlying undirected graph U(Q2) of Q2 is
connected, which is crucial for our construction.

The construction in [6] also yields an acyclic Q2, but for
our proof to work we require Q2 not to be semantically
acyclic. Nevertheless, this can be easily fixed: In fact, given
Q1 and Q2 as above, we can do the following: (1) Construct
in polynomial time CRPQ Q5 by “appending” to a partic-
ular variable of Q2 a fresh copy of the Boolean CRPQ Qna
in Example 5 (which is not semantically acyclic), over an
alphabet ¥ that is disjoint from that of Q1 and Q2. (2)
Construct in polynomial time CRPQ Q) from Qi by “ap-
pending” to a suitable variable in @1 a fresh copy of the
acyclic query Q = 3z A\, .y (2,a,2). Tt can be proved that
Q1 is contained in Q2 iff Q) is contained in Q5. Moreover,
Q1 is acyclic (because @ is acyclic and “appending” it to
Q1 does not create cycles), U(Q5) is connected, and Q5 is
not semantically acyclic (because otherwise Qna would be
semantically acyclic). We use this EXPSPACE-hard restric-
tion of the containment problem to prove that our problem
is also EXPSPACE-hard.

Let Q1 and Q2 be Boolean CRPQs such that Q; is acyclic,
U(Q2) is connected and Q2 is not semantically acyclic. We
claim that @i is contained in Q2 iff the CRPQ Q1 A Q2 is
semantically acyclic. Assume first that @1 is contained in
Q2. Then Q1 A Q2 is equivalent to @1, which is acyclic.
Assume, on the other hand, that Q1 A Q2 = T, where T' =
\/1<i<m T; and each T; is an acyclic C2RPQ. Since Q1A AQ2 C
Q2, it follows that T C Q2. Also, since T; C T, it follows
that T; C Q2, for each 1 <7 < m.

Let TH, ..., Tiki be the C2RPQs associated with each con-
nected component of U(T;). Thus, T; = T A--- A Tiki. For
each ¢ with 1 < ¢ < m, we shall prove that Tij C @2 for
some 1 < j < k;. Assume to the contrary. Then there
exist graph databases Gi,...Gk, such that T7(G;) = true
and Q2(G;) = false, for each 1 < j < k;. Since U(T7)
is connected, we can choose G; to be connected as well (in
the sense that the underlying undirected graph of G; is con-
nected), for each 1 < j < k;. Consider the disjoint union G
of Gi,...Gy,. Clearly, T;(G) = true, and since T; C @2, it

follows that Q2(G) = true. But since U(Q2) is connected it
must be the case that Q2(G;) = true, for some 1 < j < k;,
which is a contradiction.

Therefore, for each ¢ with 1 < ¢ < m there exists j; with
1 < ji < ki such that T/? C Q2. Consider the acyclic
UC2RPQ T" = \/,,,, T/". Notice that T C T". More-
over, T' C Q2. We shall prove that Q; C T7”, which implies
our desired result that @1 C Q2. Since ()2 is not semanti-
cally acyclic, it must be the case that Q2 ¢ T'. Hence there
exists a graph database G* such that Q2(G*) = true and
T'(G*) = false. Consider an arbitrary database G such
that Q1(G) = true. We prove next that T'(G) = true,
which implies that Q1 C T’. Consider the disjoint union
G’ of G and G*. Clearly, Q1 A Q2(G’) = true, and since
Qi ANQ:=T C T, it follows that T'(G’) = true. Then
T7(G') = true, for some 1 < i < m. Since U(T’") is con-
nected, it follows that either 771 (G) = true or T/ (G*) =
true. But 7'(G*) = false, and, thus, 7/ (G*) = false. We
conclude that T/ (G) = true, and, thus, 7/(G) = true. O

Evaluation of semantically acyclic UC2RPQs With
the help of Theorem 4 we can provide an answer to our
first question regarding semantically acyclic UC2RPQs: Its
evaluation is fixed-parameter tractable.

THEOREM 5. The problem of checking whether a € Q(G),
for a given graph database G, semantically acyclic UC2RPQ
Q, and tuple a of node ids in G, is fived-parameter tractable.

In particular, semantically acyclic UC2RPQs can be eval-
uated in time O(f(|Q]) +|G|*-2PU2D), where p : N — Nis a
polynomial and f : N — N is a triple-exponential function.

Features of the language: Inverses The algorithm
in Theorem 4 introduces inverses in the construction of an
equivalent acyclic query, even if we start from a semantically
acyclic UCRPQ (i.e., a UC2RPQ without inverses). A nat-
ural question is whether this is necessary, that is, whether
there are semantically acyclic UCRPQs that find an equiv-
alent query in the class of acyclic UC2RPQs, but not in the
class of acyclic UCRPQs. We prove next that this is the
case:

PROPOSITION 5. There is a semantically acyclic CRPQ
that is no equivalent to any acyclic UCRPQ).

PrOOF. The Boolean query @ that is graphically depicted

below
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is semantically acyclic. In fact, it is equivalent to the acyclic
C2RPQ Fz3y((z,8,y) A (y,ba"a,y)). A tedious case-by-
case analysis proves that it is not equivalent to any acyclic
UCRPQ. O

5.

6. CONCLUSIONS AND OPEN PROBLEMS

We have studied the space of UCQs and UC2RP Qs defined
by the notion of acyclicity. This is relevant since acyclicity
is a robust explanation for the tractability of several query
languages for relational and graph databases. Furthermore,



some notions of acyclicity explain the linear-time behavior
of various querying mechanisms for graph databases (e.g.
XPath [26], PDL [23], nested regular expressions [4], etc).

While the results about semantic acyclicity of UCQs fol-
low from techniques in CSP, studying the notion of semantic
acyclicity of UC2RPQs requires new tools and insights. We
have shown that it is decidable in 2EXPSPACE whether a
UC2RPQ is semantically acyclic, and that this shows that
evaluation of queries in the class is fixed-parameter tractable.
The techniques used to prove decidability also yield a strong
theory of approximations of UC2RPQs.

As far as the notion of semantic acyclicity of UC2RPQs
is concerned, in this work we have only uncovered the tip of
the iceberg. Many questions remain open and we list some
of them below.

Complexity We have proven that evaluation of seman-
tically acyclic UC2RPQs is fixed-parameter tractable. But
is it also polynomial? Tractability of semantically acyclic
UCQs follows from a sophisticated characterization of the
problem in terms of winning strategies in the existential peb-
ble game, but we do not know whether those techniques can
be extended to deal with UC2RPQs.

Also, we have left a gap in the complexity problem of
identifying whether a UC2RP(Q is semantically acyclic: Our
current upper and lower bounds are 2EXPSPACE and EX-
PSPACE, respectively. The reason why we do not know how
to lower the upper bound at this point, is that we need to
check containment of a UC2RPQ @ into Tg, which might be
exponentially bigger than (). The main problem with this is
not that there might be an exponential number of disjuncts
in T, but that some of the 2RPQs that label the atoms
of T might be of exponential size. Proving that this con-
tainment can be checked in EXPSPACE may require of more
sophisticated techniques.

Size of equivalent acyclic queries The algorithm pre-
sented in Theorem 4 computes an equivalent acyclic query of
single-exponential size for a semantically acyclic UC2RPQ.
Is this optimal, i.e. is there a family (Qn)n>1 of semanti-
cally acyclic UC2RPQs such that (1) |Qn| is polynomially
bounded by n, and (2) the smallest acyclic UC2RPQ that is
equivalent to @ is of size Q(2"), for each n > 17

Features of the language The algorithm that constructs
an equivalent acyclic UC2RPQ T for a semantically acyclic
UC2RPQ @ (Theorem 4) outputs a union of C2RPQs T'
even if @ is a C2RPQ. But is this necessary? That is, is
there a C2RP(Q @ that is semantically acyclic, but yet it is
not equivalent to a single acyclic C2RPQ 17

Beyond acyclic queries Acyclicity is a simple syntactic
criterion that ensures efficient evaluation of CQs, but it is
not the only one. In the last years several criteria have been
identified that extend acyclicity in different ways while re-
taining polynomial time evaluation for the CQs that satisfy
them. Most of these criteria are based on the idea of re-
stricting evaluation to CQs @ of bounded (hyper)-treewidth
[21], which are also defined in terms of the existence of a
tree decomposition of ) with desirable properties.

It is known that the results in Section 2 (Theorem 1 and
Proposition 1) also apply to UCQs that are equivalent to
unions of CQs of bounded treewidth [12, 9]. That is, such
classes of UCQs can be evaluated in polynomial time, and

it is NP-complete to check whether a CQ is equivalent to a
CQ of treewidth at most k, for each k£ > 1.

On the other hand, our results for UC2RPQs are specifi-
cally designed for semantic acyclicity, and we do not know at
this point how to extend them to verify whether a UC2RPQ
is equivalent to a UC2RPQ of bounded hyper-treewidth.
In the same way, one might be interested in extending re-
sults on approximations of UC2RPQs to classes of bounded
hyper-treewidth, as it has been done for UCQs [5].

Beyond C2RPQs Instead of working with C2RPQs one
could also consider the class of conjunctions of nested regular
expressions (CNREs), that properly extends the former [4].
Acyclicity of CNREs also leads to tractability, and thus it
makes sense to study semantic acyclicity in this extended
setting. The problem is relevant since several linear-time
query languages for graph databases are contained in the
class of CNREs but not in the class of UC2RPQs [23, 4].

CSP for C2RPQs Our work can also be viewed as open-
ing a new line of research in constraint satisfaction. As noted
above, there is an intimate connection between conjunctive-
query evaluation and constraint-satisfaction. In general this
problem is NP-complete, but there is an extensive body
of research studying tractable cases, either by fixing the
database and focusing on expression complexity, or by study-
ing the combined complexity of restricted classes of queries
[16, 25]. The same approach, fixing the database or restrict-
ing the class of queries can also be applied to the evaluation
of C2RPQs. In particular, as noted above, it is an open
question whether the class of semantically acyclic C2RPQs
is an “island of tractability” in the sense of [25], that is,
whether its evaluation problem is tractable.
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