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ABSTRACT
We consider the feature-generation task wherein we are

given a database with entities labeled as positive and neg-

ative examples, and the goal is to find feature queries that

allow for a linear separation between the two sets of exam-

ples. We focus on conjunctive feature queries, and explore

two fundamental problems: (a) deciding whether separating

feature queries exist (separability), and (b) generating such

queries when they exist. In the approximate versions of these

problems, we allow a predefined fraction of the examples

to be misclassified. To restrict the complexity of the gener-

ated classifiers, we explore various ways of regularizing (i.e.,

imposing simplicity constraints on) them by limiting their

dimension, the number of joins in feature queries, and their

generalized hypertree width (ghw). Among other results, we

show that the separability problem is tractable in the case

of bounded ghw; yet, the generation problem is intractable,

simply because the feature queries might be too large. So,

we explore a third problem: classifying new entities without

necessarily generating the feature queries. Interestingly, in

the case of bounded ghw we can efficiently classify without

ever explicitly generating the feature queries.
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1 INTRODUCTION
Feature engineering is a critical and resource-consuming task

in the development of machine-learning solutions in general,

and classifiers in particular [16, 18, 34]. In the framework

proposed by Kimelfeld and Ré [22], the general goal is to

utilize the database’s knowledge of the raw data structure to

provide automated assistance in feature engineering. One of

the fundamental tasks discussed in that framework is that of

separability—given a database with labeled examples, deter-

mine whether a class of queries (e.g., conjunctive queries) is
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rich enough to provide the features needed for classification;

that is, is there a sequence of feature queries and a classifier

that separate the examples according to their labels?

We first summarize the framework of Kimelfeld and

Ré [22]. The database schema has a special unary relation

of entities to be classified, known as the entity schema. A
feature query is a query that selects entities, and a statistic
is a vector of feature queries. Every entity in the database

is then assigned a vector, where the ith entry is +1 if the

entity is selected by the ith feature query in the statistic,

and −1 otherwise. A training database consists of a database
over the entity schema along with a labeling function that

partitions of the entities into positive examples and negative
examples. A classifier maps every vector representing an en-

tity into +1, denoting the positive class, or −1, denoting the

negative class. When evaluating a classifier over a database,

the entities are classified into positive and negative cases by

transforming each entity into a vector, via the statistic, and

then applying the classifier to this vector.

As in [22], we focus on features that are Conjunctive
Queries (CQs) without constants, and on the class of lin-
ear classifiers. We consider the task of feature generation

that aims at automatically proposing feature queries for the

statistic. In the separability problem, we are given a training

database, and the goal is to determine if there exist a statistic

and a classifier that separate the entities according to their

labeling. When separability is tractable, we also study the

ability to actually produce the statistic, i.e., feature generation.
As we shall see, determining the existence of a separating

statistic does not necessarily mean that we can produce the

statistic.

The separability problem is the database variant of the

classic separability from Machine Learning (cf., e.g., [2, 25]),

except that, here, we are given a database and not numeric

vectors, andwe need to generate the features. Themotivation

is the practice of automatically generating features as queries,

and particularly via joins, which is quite common [1, 24, 27,

29]. While such features often involve aggregate queries over
the joins, we aim to take a step forward in understanding

the theoretical ground for this practice, and we begin with

seeking restricted queries that are useful as features in the

sense that they provide (approximate) separation.
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The plain definition of the separability problem allows for

feature queries that are arbitrarily complex. This is indeed

the case in the proof of coNP-completeness of separability

for linear classifiers over CQs shown in [22]. Yet, allowing

complex feature queries entails several problems. The first

problem is the classic risk of overfitting—feature queries seek
information that is too specific to the examples, and hence,

the learned classifier fails to generalize beyond the training

database. The second problem is high computational com-
plexity—feature queries might be hard to evaluate (under

combined complexity). In machine learning, complexity re-

striction and reduction for learned models is known as regu-
larization [30, 31]. Finally, complex queries are complicated

to interpret and manipulate by human engineers.

In this work, we explore regularization at the level of the

statistic and feature queries. We consider simplicity con-

straints on feature CQs and study their implication on the

complexity of separability and feature generation. These re-

strictions are twofold: bounding the number of atoms (join op-
erators), and more generally bounding the generalized hyper-
tree width (ghw).When these bounds are constant, the feature

queries can be evaluated efficiently [9]. Restricting the num-

ber of atoms is an inherent artifact of common algorithms

for feature generation from relational databases, which build

joins incrementally up to a limited (small) depth [1, 24, 27, 29].

While we are not aware of ghw playing a role in features for

machine learning, it has been shown that a very small width

is common in “natural” queries [7]. In addition, we explore

the more traditional form of regularization—bounding the

dimension of (i.e., the number of feature CQs in) the statistic,

which motivates classic notions of regularization (viewed as

the number of nonzero coefficients) [11, 26]. We also study

the complexity of combining the bound on the dimension

with the bounds on the CQ features.

As said, in the absence of any restriction, the separability

problem is coNP-complete even for a fixed schema [22]. If

we fix the schema and pose a constant bound on the number

of atoms, then there is only a polynomial number of possible

feature queries up to equivalence; in that case, the statistic

that consists of all feature CQs (up to equivalence) is itself a

separating statistic, if any such statistic exists. In particular,

both separability and feature generation become tractable.

We show that this tractability continues to hold when the

schema is not necessarily fixed, but rather, we keep fixed just

the maximal arity of the relations. It remains open whether

just bounding the number of atoms in each feature query

(and not fixing the schema or its maximal arity) suffices

to solve separability in polynomial time. Still, even in this

case the problem is feasible by a fixed-parameter tractable
algorithm [10] (the parameter being the arity of the schema).

When we consider the class of CQs of bounded ghw (for

some bound k), we observe an interesting phenomenon: sep-

arability is solvable in polynomial time. And yet, we cannot

necessarily generate the separating statistic (when it exists),

simply because the feature queries may be too large. Interest-

ingly, it turns out that, while we cannot generate the feature

CQs of a separating statistic, we can still classify according to

it! To make this formal, we define the classification problem:

given a training database and an evaluation database (which

is simply a database over the entity schema), classify the en-

tities of the evaluation database in a way that is explainable

by a learned statistic; i.e., there exists a statistic that agrees

with both the training labels (over the training database) and

the produced new labels (over the evaluation database). We

prove that in the case of bound ghw, the classification prob-

lem is solvable in polynomial time. This result is obtained by

applying techniques based on the existential cover game [9].
Next, we turn to investigating the complexity implica-

tions of bounding the dimension of the statistic. We first

show a general polynomial-time reduction from a variant

of the problem of Query By Example (QBE) [3, 32, 33]: given
a database and two tables, is there a query such that the

result contains all of the tuples of the first table, and none

of the tuples of the second table? The reduction applies to

any query language L that is used for both problems. Using

this general reduction, we obtain complexity results about

the separability problem for several classes of CQs due to

known results about QBE. For other classes of CQs, we first

prove their complexity in QBE and then apply our reduc-

tion to establish the complexity of separability. In particular,

we prove that for every combination of positive constant

bounds on the dimension of the classifier and the number

of atoms per CQ, separability is NP-complete. For general

CQs, the complexity rises to coNEXPTIME-completeness,

and EXPTIME-completeness for bounded ghw.

Table 1 shows selected complexity results that we obtain

for separability. The classes of feature queries are the one

of all CQs (denoted CQ), the one of all CQs with at most

m atoms (denoted CQ[m]), and the one of all CQs of ghw

bounded by k (denoted GHW(k )). The computational prob-

lems for each class L of feature queries is that of general

separability (L-Sep) and the separability by a statistic with

at most ℓ features (L-Sep[ℓ]). We assume that the schema

is fixed, and throughout the paper, we explain the impor-

tance of this assumption, and moreover, when it is necessary.

However, no such assumption is needed for the tractability

of separability for bounded ghw (i.e., GHW(k )-Sep).
Our analysis so far is applied to perfect classification, which

means that we seek a statistic and a classifier that classify the

examples precisely, no errors allowed. One might wonder if

our (positive and negative) complexity results are based on

the perfection of the classification. This is not the case: most



Table 1: Selected complexity results for the separabil-
ity problem. We assume that the schema is fixed.
Problem L = CQ L = CQ[m] L = GHW(k )
L-Sep coNP-c. [22] PTIME PTIME

L-Sep[ℓ] coNEXPTIME-c. PTIME EXPTIME-c.

of our complexity results apply to approximate classification,
where we are given a number ϵ ∈ [0, 1) and we allow an

ϵ fraction of the examples to be misclassified. In particular,

for the hardness results, we prove a general reduction from

approximate separability to precise separability which holds

for every fixed ϵ . We also obtain feasibility results for CQs

of bounded ghw and CQs with a fixed number of atoms by

revisiting the techniques we use for perfect separability.

We also study the separability problem for more expres-

sive feature queries, in particular FO queries. We observe

that FO has the dimension-collapse property, which means

that every training database that is FO-separable is also sep-

arable by a statistics with a single FO feature. This allows

us to show that FO-separability has the same complexity as

the QBE problem for FO, which is known to be GI-complete

[4]. We also provide a characterization based on a definabil-

ity condition of when a query language has the dimension

collapse property. From this we obtain that several relevant

fragments of FO also have this property: most notably, the

k-variable fragment of FO, for any k ≥ 1, and the class of

existential FO formulas. On the other hand, the class of CQs,

the class of CQs of bounded generalized hypertreewidth, and

even the existential positive FO formulas do not have such

a property. In fact, we prove something stronger: All these

languages have the unbounded-dimension property, implying

that there is no bound on the number of features from the

language that are needed to separate training databases.

Note that our work is restricted to the linear case of clas-
sification, which is commonly viewed as a classic notion

for separability, at least as a baseline to compare to more

expressive classifier classes (cf., e.g., [2, 25]). Moreover, in

some cases, such as Lemma 5.8 of Kimelfeld and Ré [23], or

Lemma 5.4 of the current paper, a linear separation exists

if and only if the class of CQs can distinguish between the

positive and the negative examples, regardless of the classi-

fier class; in such cases, the complexity results immediately

extend to every superclass of the linear classifiers.

The rest of the paper is organized as follows. We give

basic notation and definitions in Section 2, and define the

separability problem in Section 3. In the next three sections,

we study the complexity implications of bounding the maxi-

mum number of atoms per CQ (Section 4), the generalized

hypertree width (Section 5), and the dimension of the statistic

(Section 6). In Section 7, we provide results for approximate

separability. We discuss feature queries beyond CQs in Sec-

tion 8 and conclude in Section 9. Due to space constraints

some proofs are in the appendix.

2 PRELIMINARIES
Databases and homomorphisms. A schema σ is a finite set

of relation symbols, each of which has an associated arity

k > 0. A fact over σ is an expression of the form R (ā), where
R is ak-ary relation symbol inσ and ā is ak-tuple of elements

taken from a predefined universe. A database D over a σ is a

finite set of facts over σ . The domain of D, denoted dom(D),
is the set of universe elements that occur in the facts of D.

Let D and D ′ be databases over σ . A homomorphism from

D to D ′ is a mapping h : dom(D) → dom(D ′) such that for

each fact R (ā) ∈ D we have that R (h(ā)) ∈ D ′. Here, we use
the conventional notation h(ā) := (h(a1), . . . ,h(ak )).
We write D → D ′ if there is a homomorphism from D to

D ′. We also write (D, ā) → (D ′, ā′), where ā and ā′ are tuples
over dom(D) and dom(D ′), respectively, to denote that there
is a homomorphism h from D to D ′ such that h(ā) = ā′.

Conjunctive queries. We consider here conjunctive queries

without constants. Formally, a Conjunctive Query (CQ) q over
a schema σ is a First-Order (FO) formula of the form

∃ȳ
(
R1 (x̄1) ∧ · · · ∧ Rn (x̄n )

)
, (1)

such that the following hold: (1) For each i ∈ {1, . . . ,n} we
have that Ri is a k-ary relation symbol in σ and x̄i is a k-tuple
of variables, and (2) ȳ is a tuple of variables from x̄1, . . . , x̄n .
The expressions Ri (x̄i ) are the atoms of q. We write q(x̄ ) to
denote that x̄ is a sequence that consists of all free variables
of q, i.e., the ones that do not occur in ȳ. In this work, we

mainly deal with unary CQs, namely CQs q(x ) with a single

free variable x .
As conventional, we define the evaluation of a CQ in terms

of homomorphisms. To do so, we associate with each CQ

q(x̄ ) a database Dq , known as its canonical database. In par-

ticular, if q is of the form (1), then Dq = {R1 (x̄1), . . . ,Rn (x̄n )}
is the database that consists precisely of the atoms in q,
where variables are treated as elements from the universe.

A homomorphism from q(x̄ ) to a database D is then a ho-

momorphism from Dq to D. The evaluation of q(x̄ ) over D,
denoted q(D), is the set of all tuples ā over dom(D) such that

(Dq , x̄ ) → (D, ā). If q is unary, then we abuse notation and

view q(D) as a set of elements rather than unary tuples.
When there is no risk of ambiguity, we identify q with Dq ;

e.g., we write (q, x̄ ) → (D, ā) instead of (Dq , x̄ ) → (D, ā).

Linear classifiers. A classifier is a functionH : {1,−1}n →

{1,−1}, where n > 0 is the arity. In this paper, we restrict

the discussion to the class of linear classifiers. Recall that a
tuple w̄ = (w0,w1, . . . ,wn ) of real numbers defines a linear

classifierΛw̄ in the followingway. For (b1, . . . ,bn ) ∈ {1,−1}n



we have

Λw̄ (b1, . . . ,bn ) :=

{
1 if

∑
1≤i≤n wibi ≥ w0,

−1 otherwise.

We view a sequence ⟨( ¯b1,y1), . . . , ( ¯bm ,ym )⟩ of vectors in
{1,−1}n+1

as a collection of examples, consisting of positive
examples (where yi = 1) and negative examples (where yi =
−1). As a shorthand notation, we write such a sequence as

( ¯bi ,yi )
m
i=1

and refer to it as a training collection. The training
collection ( ¯bi ,yi )

m
i=1

is linearly separable if there is a linear
classifier Λw̄ such that Λw̄ ( ¯bi ) = yi for all i ∈ {1, . . . ,m}; in
this case, we say that Λw̄ linearly separates ( ¯bi ,yi )mi=1

.

3 THE SEPARABILITY PROBLEM
Our investigation is in the context of the classification frame-

work introduced by Kimelfeld and Ré [22], which recall next.

An entity schema is a schema that includes a distinguished

unary relation symbolη used to represent entities. To improve

readability, we refer to an entity schema simply by σ and

denote the corresponding entity symbol by ησ (but if σ is

clear from the context, we simplywriteη). LetD be a database

over an entity schema σ . An entity of D is a constant a such

that η(a) ∈ D. We denote by η(D) the set of entities of D.
In this work, a feature query is a unary CQ q(x ) over an en-

tity schema σ . We are interested in the set of entities selected

byq(x ) over a databaseD of schemaσ . Hence, without loss of
generality, we assume that the atom η(x ) is always present in
feature queries q(x ), and therefore it holds that q(D) ⊆ η(D).
We denote by 1q (D ) : η(D) → {1,−1} the indicator function
defined by q(D) over η(D); that is, for each e ∈ η(D) we have
that 1q (D ) (e ) = 1 if e ∈ q(D), and 1q (D ) (e ) = −1 otherwise.

A statistic over an entity schema σ is a sequence Π =
(q1, . . . ,qn ) of feature queries over σ . If D is a database, then

we define the mapping ΠD
: η(D) → {1,−1}n as follows for

all entities e ∈ η(D):

ΠD (e ) :=
(
1q1 (D ) (e ), . . . ,1qn (D ) (e )

)
.

A labeling λ of a database D over entity schema σ is a

function λ : η(D) → {1,−1} that partitions the set of entities

into the set {e ∈ η(D) | λ(e ) = 1} of positive examples and the
set {e ∈ η(D) | λ(e ) = −1} of negative examples. A training
database over σ is a pair (D, λ), where D is a database over

σ and λ is a labeling of D.

Definition 3.1 (L-separability). Let L be a class of queries

and (D, λ) a training database. Then (D, λ) is L-separable if
there is a statistic Π = (q1, . . . ,qn ) such that each qi is in L
and (ΠD (e ), λ(e ))e ∈η (D ) is linearly separable. □

In other words, (D, λ) is L-separable if there is a statistic
Π such that each feature query q ∈ Π is in L and a linear

classifier Λw̄ that satisfies Λw̄ (Π
D (e )) = λ(e ) for every e ∈

η(D). In this case, we say that (Π,Λw̄ ) L-separates (D, λ); or
simply that Π L-separates (D, λ) if Λw̄ is irrelevant.

This paper focuses on the L-separability problem, or L-

Sep for short, for a class L of queries (usually CQs). Origi-

nally proposed in [22], in the problem L-Sep the goal is to

determine the existence of a separating statistic Π in L.

Problem: L-Sep

Input: A training database (D, λ)
Question: Is (D, λ) L-separable?

The following is known about the complexity of theL-Sep

problem, when L is the class CQ of all CQs.

Theorem 3.2. [22] The problem CQ-Sep is coNP-complete.
The lower bound holds even if the schema consists of a single
binary relation R and the distinguished symbol η.

We study the complexity of L-Sep for subfamilies L en-

forcing various natural restrictions on the feature CQs. In

addition, we consider two regularization variants of the sep-

arability problem:

• The dimension of (i.e., the number of features in) Π is

bounded by a constant ℓ. We denote this variant by

L-Sep[ℓ].
• The dimension is not bounded, but rather is given as

input. We denote this variant by L-Sep[∗].

Hence, we have three variants of the separability problem,

namely L-Sep, L-Sep[ℓ], and L-Sep[∗].

4 BOUNDED NUMBER OF FEATURE
ATOMS

As we will see next, one can overcome the high complexity

of separability (and related problems), at least under the

yardstick of parameterized complexity [10], by fixing the

number of atoms allowed in feature CQs.

For every fixedm ≥ 1, we denote by CQ[m] the class of

CQs with at mostm atoms (not counting atom η(x ) which we
assume appears in every feature query q(x )). The following
simple observation allows us to obtain a better understanding

of the complexity of the separability problemwhen restricted

to feature queries in CQ[m].

Proposition 4.1. There is an algorithm that determines if a
given training database (D, λ) is CQ[m]-separable, and if so,
constructs a pair (Π,Λw̄ ) that CQ[m]-separates (D, λ). The
running time of is bounded by |D |c · 2q (k ) for a constant c ≥ 1

and polynomial q : N→ N, where k ≥ 1 is the maximal arity
of a relation in D.

Proof. Observe that (D, λ) is CQ[m]-classifiable iff it is

classifiable by the statistic Π that contains all feature queries

q(x ) in CQ[m] that mention only relation symbols that ap-

pear in D. Sincem is fixed, the statistic Π can be computed



in time rm · 2p (k ) , for p a polynomial, where r is the number

of relation symbols mentioned in D. (Thus, rm · 2p (k ) is also
a bound for the number of different feature CQs in Π). Since
r ≤ |D |, the latter is also |D |m · 2p (k ) . Now, for each CQ q(x )
in Π, we can compute q(D) in timeO ( |D |m ), and thus the in-
dicator function 1q (D ) : η(D) → {1,−1} can be computed in

time O ( |D |m+1). Hence, the set of tuples of the form ΠD (e ),
for e ∈ η(D), can be computed in time O ( |D |2m+1 · 2p (k ) ),
which is |D |2m+1 · 2p

′ (k )
, for some polynomial p ′.

Finally, we need to determine whether (ΠD (e ), λ(e ))e ∈η (D )

is indeed linearly classifiable. Recall that linear separability

can be solved in polynomial time, by a reduction to the prob-

lem of finding a solution to a linear program (which is known

to be tractable by a landmark result in combinatorial opti-

mization [19, 21]). This procedure also finds a linear classifier

Λw̄ that separates the training collection (ΠD (e ), λ(e ))e ∈η (D )

in case it exists. Thus, checking if (D, λ) is CQ[m]-separable,

and, if so, computing a pair (Π,Λw̄ ) that CQ[m]-separates

(D, λ), can be done in time |D |c · 2q (k ) for a constant c ≥ 1

and polynomial q. This concludes the proof. □

From Proposition 4.1, the problem CQ[m]-Sep can be

solved in time |D |O (1) · f (k ), for a computable function

f : N→ N, where k is the maximal arity of a relation sym-

bol mentioned in D. In the terminology of parameterized

complexity, this means that the problem is Fixed-Parameter
Tractable (FPT), with the parameter being the maximum ar-

ity k of a relation symbol in the schema (or simply the arity
of the schema from now on). Summing up:

Corollary 4.2. For all fixedm ≥ 1, the problem CQ[m]-Sep
is FPT with the parameter being the arity of the schema.

The restriction on the number of atoms allowed in sta-

tistics is necessary for obtaining the positive result stated

in Corollary 4.2. In fact, Theorem 3.2 states that CQ-Sep is
coNP-hard even if the schema is of a fixed arity; hence, the

problem cannot be FPT if the parameter is the arity of the

schema (assuming PTIME , NP).

It remains an open problem whether CQ[m]-Sep is NP-

hard for some fixedm ≥ 1. Nevertheless, there is a way to

restrict the problem in order to ensure tractability: bounding

the arity of the schema by a fixed constant. As explained in

the proof of Proposition 4.1, the implication of this restriction

is that the number of different feature CQs that one can form

in this case (up to equivalence) is polynomial in the size

of the input. Still, we can do better than fixing the arity,

since the argument remains valid if we assume only that the

maximal number of occurrences per variable in the feature

CQs is bounded by a constant. Formally, for fixedm,p ≥ 1

let CQ[m,p] be the class of CQs with at mostm atoms and

in which each variable occurs at most p times. Then:

Proposition 4.3. CQ[m,p]-Sep can be solved in polynomial
time, for every fixedm and p.

Importantly, the results stated in Corollary 4.2 and Propo-

sition 4.3 are obtained via a constructive proof that allows

to perform the following tasks with the same tractability

guarantees, if the input (D, λ) is indeed CQ[m]-separable.

• Feature generation: Construct a pair (Π,Λw̄ ) that

CQ[m]-separates the training database (D, λ).
• Classification: Apply (Π,Λw̄ ) to a given evaluation

database for performing the actual classification.

As shown next, things become more complicated if, instead

of the number of atoms, we bound the generalized hypertree-
width of feature queries.

5 BOUNDED GEN. HYPERTREE-WIDTH
In this section, we investigate the complexity implications of

regularizing statistics by bounding the generalized hypertree-

width of the feature CQs. We start with some background.

We introduce the classes of CQs of bounded generalized
hypertree-width [13] (also known as coverwidth [9]). We

adopt the definition of Chen and Dalmau [9], which bet-

ter suits non-Boolean queries. A tree decomposition of a CQ

q = ∃ȳ
∧

1≤i≤n Ri (x̄i ) is a pair (T , χ ), whereT is a tree and χ
is a mapping that assigns a subset of the existentially quanti-

fied variables in ȳ to each node t ∈ T , such that:

(1) For all 1 ≤ i ≤ m, the variables in x̄i ∩ ȳ are contained

in χ (t ), for some t ∈ T .
(2) For all variables y in ȳ, the node set {t ∈ T | y ∈ χ (t )}

induces a connected subtree of T .

The width of node t in (T , χ ) is the minimal size of an I ⊆
{1, . . . ,m} such that

⋃
i ∈I x̄i covers χ (t ). The width of (T , χ )

is the maximal width of the nodes of T . The generalized
hypertree-width (ghw for short) of q is the minimum width

of its tree decompositions.

For a fixed k , we denote by GHW(k ) the class of CQs of
ghw at most k . In contrast to the case of general CQs, the

evaluation problem for CQs in GHW(k ) can be solved in

polynomial time [12]. Notice that each CQ in CQ[k] is also

in GHW(k ), but not viceversa.

The existential cover game. There is a link between the

evaluation of CQs in GHW(k ) and a version of the pebble

game, known as existential cover game [9], that we recall

below. The existential k-cover game (for k a natural number)

is played by Spoiler andDuplicator on pairs (D, ā) and (D ′, ¯b),
where D and D ′ are databases and ā and

¯b are n-ary (n ≥
0) tuples over dom(D) and dom(D ′), respectively. In each

round of the game, Spoiler places (resp., removes) a pebble on

(resp., from) an element of dom(D), and Duplicator responds
by placing (resp., removing) its corresponding pebble on an

element of (resp., from) dom(D ′). The number of pebbles is



not bounded, but Spoiler is constrained as follows: At any

round p of the game, if c1, . . . , cℓ (ℓ ≤ p) are the elements

marked by Spoiler’s pebbles in D, there must be a set of at

most k facts in D that contain all such elements (this is why

the game is called k-cover, as pebbled elements are covered
by no more than k facts).

Duplicator wins if she has a winning strategy, that is, she
can indefinitely continue playing the game in such a way

that after each round, if c1, . . . , cℓ are the elements that are

marked by Spoiler’s pebbles in D and d1, . . . ,dℓ are the ele-
ments marked by the corresponding pebbles of Duplicator

in D ′, then (
(c1, . . . , cℓ, ā), (d1, . . . ,dℓ, ¯b)

)
is a partial homomorphism from D to D ′. That is, for ev-
ery atom R (c̄ ) ∈ D, where each element c of c̄ appears

in (c1, . . . , cℓ, ā), it is the case that R ( ¯d ) ∈ D ′, where ¯d is

the tuple obtained from c̄ by replacing each element c of c̄
by its corresponding element d in (d1, . . . ,dℓ, ¯b). We write

(D, ā) →k (D ′, ¯b) if Duplicator wins.
Notice that→k “approximates”→ as follows:

→ ⊂ · · · ⊂ →k+1 ⊂ →k ⊂ · · · ⊂→1 (k ≥ 1).

These approximations are convenient complexity-wise: Check-

ing whether (D, ā) → (D ′, ¯b) is NP-complete, but (D, ā) →k
(D ′, ¯b) can be solved efficiently (as long as k is fixed).

Proposition 5.1. [9] For all fixed k ≥ 1, whether (D, ā) →k
(D ′, ¯b) can be determined in polynomial time.

Moreover, there is a close connection between →k and

the evaluation of CQs in GHW(k ).

Proposition 5.2. [9] (D, ā) →k (D ′, ¯b) if and only if for
every CQ q(x̄ ) in GHW(k ) we have that

(q, x̄ ) → (D, ā) =⇒ (q, x̄ ) → (D ′, ¯b) .

In particular, for all CQs q(x̄ ) in GHW(k ), databases D and
tuples ā, it holds that ā ∈ q(D) if and only if (q, x̄ ) →k (D, ā).

5.1 Separability
In contrast to the case of arbitrary CQs, the separability

problem for the classes of CQs of bounded ghw is tractable.

We prove this result by applying techniques based on the

existential cover game.

Theorem 5.3. For all fixed k ≥ 1, the problem GHW(k )-Sep
is solvable in polynomial time.

The proof is based on the following lemma.

Lemma 5.4. The following statements are equivalent for all
training databases (D, λ).
(1) (D, λ) is GHW(k )-separable.

(2) There are no entities e, e ′ ∈ η(D) such that λ(e ) , λ(e ′),
and yet e ∈ q(D) ⇔ e ′ ∈ q(D) for all q(x ) ∈ GHW(k ).

Proof. The fact that 1 → 2 is straighforward. We now

prove that 2→ 1. For each e ∈ η(D), we define a query

qe (x ) :=
∧

e ′∈η (D )

qe
′

e (x ),

where qe
′

e (x ) = q(x ) is an arbitrary CQ in GHW(k ) such
that e ∈ q(D) and e ′ < q(D)—if such q(x ) exists at all—and
it is η(x ) otherwise. Then qe (x ) can be reformulated as an

equivalent CQ in GHW(k ). This is because each conjunct

in qe (x ) is in GHW(k ), and GHW(k ) is closed under taking

conjunctions (see, e.g., [6]).

We denote by ⪯ the binary relation over η(D) such that

e ⪯ e ′ iff e ′ ∈ qe (D). It is easy to see that ⪯ is reflexive and

transitive, that is, it is a preorder. Recall that an equivalence
class of ⪯ overη(D) is an equivalence class of the equivalence
relation “e ⪯ e ′ and e ′ ⪯ e”. We overload notation and write

E ⪯ F , for equivalence classes E, F over η(D) defined by ⪯,

iff there are elements e ∈ E and f ∈ F such that e ⪯ f .
Since ⪯ is a partial order, there is a topological sort of such

equivalence classes with respect to ⪯. Let E1,E2, . . . ,Em be

one such a topological sort.

For each Ei , we select an arbitrary entity ei ∈ Ei . It is
not hard to see then that the following hold for each i ∈
{1, . . . ,m} and entity e ∈ Ei : (a) e ∈ qei (D), and (b) e <
qej (D) for each j ∈ {1, . . . ,m} with i < j. It follows from
Kimelfeld and Ré [22] that these properties imply that the

statistics Π = (qe1
, . . . ,qem ) separates (D, λ). Since each qei

can be reformulated as an equivalent CQ in GHW(k ), we
conclude that (D, λ) is GHW(k )-separable. □

Proposition 5.2 establishes that the condition of Lemma 5.4,

stating that for all q(x ) ∈ GHW(k ) it is the case that e ∈
q(D) ⇔ e ′ ∈ q(D), is equivalent to saying that

(D, e ) →k (D, e ′) and (D, e ′) →k (D, e ) .

Hence, the following test checks for GHW(k )-separability:

GHW(k )-separability test:
Given a training database (D, λ), accept if (D, e ) ̸→k
(D, e ′) or (D, e ′) ̸→k (D, e ) for all e, e ′ ∈ η(D) with
λ(e ) , λ(e ′).

Proposition 5.5. A training database (D, λ) is GHW(k )-
separable iff the GHW(k )-separability test accepts (D, λ).

From Proposition 5.1, the GHW(k )-separability test can

be performed in polynomial time, which yields Theorem 5.3.

While Theorem 5.3 establishes the tractability ofGHW(k )-
Sep, the proof is not constructive, that is, it does not show



how to efficiently construct a statistic that realizes GHW(k )-
separability. As shown next, this is not coincidental: separa-

bility and feature generation behave differently forGHW(k ).

5.2 Feature Generation
We now look at the problem of generating a statistics that

GHW(k )-separates a training database (D, λ). It follows from
Chen and Dalmau [9] that there is an exponential time algo-

rithm that takes as input an entity e ∈ η(D) and constructs

a CQ q′e (x ) in GHW(k ) that is equivalent to qe (x ), where
qe (x ) is as defined in the proof of Lemma 5.4. On the other

hand, Lemma 5.4 states that if (D, λ) is GHW(k )-separable,
then it is separable by a statistic that contains only queries of

the form q′e (x ) for e ∈ η(D). Therefore, if (D, λ) is GHW(k )-
separable, then there exists a statistic Π with polynomially

many features, each of which is of at most exponential size,

such that Π GHW(k )-separates (D, λ). This statistic Π can

be constructed in exponential time from (D, λ). Summing

up:

Proposition 5.6. For all fixed k , there is an exponential-time
algorithm that determines whether a given training database
(D, λ) is GHW(k )-separable, and if so, generates a statistic Π
that:
• GHW(k )-separates (D, λ);
• has a dimension linear in the number of entities in η(D);
• consists of CQs of size at most exponential in that of D.

As it turns out, the size of statistic Π in Proposition 5.6 is

essentially optimal.

Theorem 5.7. For all n,m ≥ 1 there is a training database
(D, λ) with |D | = O (n) and |η(D) | = O (m) such that:
• (D, λ) is GHW(k )-separable.
• For all statistics Π = (q1, . . . ,qp ) that linearly separate
(D, λ), it is the case that (a) p ≥ m, and (b) at least one
of the qi s, for i ∈ {1, . . . ,p}, has Ω(2n ) atoms.

We are thus faced with an apparently contradictory situ-

ation: while we can efficiently check for the existence of a

statistic that GHW(k )-separates the input (D, λ), material-

izing such a statistic might be infeasible. Interestingly, for

classifying unseen entities, this statistic does not need to be

materialized—we can perform this task efficiently by apply-

ing techniques based on the existential cover game. Next, we

formalize this statement and prove it.

5.3 Classification
In this section, we discuss the problem of classifying an

evaluation database based on a training database, without

necessarily materializing a statistic. Formally, in this problem

we are given a training database (D, λ) and an evaluation

database D ′, which is a database over the same schema as D.

The goal is to classify the entities of D ′ according to some
statistic and linear classifier that separate D.

Problem: L-Cls

Input: An L-separable training database (D, λ)
and an evaluation database D ′

Output: A labeling λ′ ofD ′ such that there is (Π,Λw̄ )
that L-separates both (D, λ) and (D ′, λ′)

We prove the following:

Theorem 5.8. GHW(k )-Cls can be solved in polynomial
time for all fixed k ≥ 1.

Proof. Consider an input for GHW(k )-Cls that consists
of a GHW(k )-separable training database (D, λ) over an en-

tity schema σ and an evaluation database D ′ over σ . We

need to construct a labeling λ′ of η(D ′) such that there exists

(Π,Λw̄ ) that GHW(k )-separates both (D, λ) and (D ′, λ′).
Let us consider again the CQs qe (x ), for e ∈ η(D), defined

in the proof of Lemma 5.4. From the definition of qe (x ) it
follows that for all e ′ ∈ η(D) we have that e ′ ∈ qe (D) iff for

all CQs q(x ) ∈ GHW(k ) it is the case that e ∈ q(D) implies

e ′ ∈ q(D). In turn, from Proposition 5.2 we get that the latter

holds iff (D, e ) →k (D, e ′). Therefore, the problem of testing

whether e ′ ∈ qe (D), given e, e ′ ∈ η(D), can be solved in

polynomial time due to Proposition 5.1.

Let E1, . . . ,Em be an arbitrary topological sort of the equiv-

alence classes defined by ⪯ over η(D). From the proof of

Lemma 5.4 it follows that the training database (D, λ) is
GHW(k )-separable by any statisticΠ = (qe1

(x ), . . . ,qem (x ))
such that ei ∈ Ei .

The topological sort E1, . . . ,Em and, therefore, also the ele-

ments e1, . . . , em , can be constructed in polynomial time from

(D, λ). This is due to the fact that the relation ⪯ over η(D)
can be constructed efficiently (as we have already mentioned

that e ⪯ e ′ iff e ′ ∈ qe (D) iff (D, e ) →k (D, e ′), which is de-

cidable in polynomial time). In addition, it follows from [22]

that one can construct in polynomial time a linear classi-

fier Λw̄ such that (Π,Λw̄ ) separates (D, λ), without actually
constructing Π, but rather just using ⪯.
We define a labeling λ′ of η(D ′) such that for each f ∈

η′(D) it holds that λ′( f ) = Λw̄ (Π
D′ ( f )). Clearly, (Π,Λw̄ )

GHW(k )-separates (D, λ) and (D ′, λ′). We need to show that

λ′ can be constructed in polynomial time, or equivalently,

that given f ∈ η(D ′) we can compute λ′( f ) = Λw̄ (Π
D′ ( f ))

in polynomial time. By definition,

Λw̄ (Π
D′ ( f )) = 1 ⇔

∑
1≤i≤m

wi · 11qei (D
′) ( f ) ≥ w0,

assuming that w̄ = (w0, . . . ,wm ). The latter can be checked

in polynomial time, since computing 1qei (D′) ( f ) boils down
to checking (D, ei ) →k (D ′, f ). The pseudo-code of the pro-
cedure is shown in Algorithm 1. □



Algorithm 1 Classification algorithm GHW(k )-Cls.

Require: An GHW(k )-separable training database (D, λ)
and an evaluation database D ′

1: ([e1], . . . , [em]) := topological sort of the equivalence

classes defined by→k over η(D)
2: Λw̄ = (w0, . . . ,wm ) := linear classifier such that (Π,Λw̄ )

separates (D, λ), where Π = (qe1
(x ), . . . ,qem (x )) ▷ It

can be computed efficiently without computing Π
3: for each f ∈ η(D ′) and i ∈ {1, . . . ,m} do
4: if (D, ei ) →k (D ′, f ) then
5: 1qei (D′) ( f ) = 1

6: else
7: 1qei (D′) ( f ) = −1

8: end if
9: end for
10: for each f ∈ η(D ′) do
11: if

∑
1≤i≤m wi · 1qei (D′) ( f ) ≥ w0 then

12: λ′( f ) = 1

13: else
14: λ′( f ) = −1

15: end if
16: end for
17: return λ′ : η(D ′) → {1,−1}

In summary, in this section we have established that it

takes polynomial time to decide whether a given training

database (D, λ) is GHW(k )-separable (Theorem 5.3). A the

same time, it may be infeasible to actually materialize the

separating statistic, since it might be too large (Theorem 5.7).

Then again, to classify entities of a given evaluation database

D ′, we do not need to materialize such a statistic, and in

fact, this classification can be carried out in polynomial time

(Theorem 5.8).

6 BOUNDING THE DIMENSION
While the separability and classification problems become

tractable if we restrict to statistics formed byCQs inGHW(k ),
for each fixed k ≥ 1, there is one aspect of such statistics

that complicates its applicability: as stated in Theorem 5.7,

the number of feature queries required to separate a training

database (D, λ) might depend on the number of entities in

η(D). This problem is not exclusive to the class GHW(k );
in fact, a similar negative result can be proved for statistics

based on the general class of CQs.

To address this issue, we study the separability problem for

the restricted class of statistics that allow a bounded number

of features only. Recall that this problem is denotedL-Sep[∗],

forL a class of CQs. The input consists of a training database

(D, λ) and an integer ℓ ≥ 1, and the task is to decide if there

is a statistic formed by at most ℓ feature queries in L that

separates (D, λ). If, in addition, the number ℓ of features is
fixed, we denote the problem by L-Sep[ℓ].
As we show next, the study of L-Sep[∗] and L-Sep[ℓ] is

directly related to query-by-example problem (QBE). This

allow us to apply the wide arsenal of results and tools for

QBE [6, 32, 33] in order to understand the complexity of

L-Sep[∗]. We first introduce QBE.

6.1 The Query-by-Example Problem
Let D be a database, and assume that S+ and S− are relations
over D of positive and negative examples, respectively. An

L-explanation for (D, S+, S−) is a query q(x̄ ) in L such that

S+ ⊆ q(D) and q(D) ∩ S− = ∅. Then QBE for the class L is

defined as follows.

Problem: L-QBE

Input: A databaseD and relations S+ and S− over
D

Question: Is there an L-explanation for (D, S+, S−)?

The following is known regarding the complexity of QBE:

Theorem 6.1. [6, 32, 33] The following statements hold:

• CQ-QBE is coNEXPTIME-complete.
• GHW(k )-QBE is EXPTIME-complete, for each k ≥ 1.

The lower bounds continue to hold even if the schema is fixed
and S+, S− are nonempty unary relations such that S− =
dom(D) \ S+.

6.2 Separability for Bounded Dimension
One of the crucial properties used in the study of separability

is that a training database (D, λ) is CQ-separable iff there

are no entities e, e ′ ∈ η(D) such that λ(e ) , λ(e ′), yet e and
e ′ are “indistinguishable” by CQs [22]. As the next example

shows, this does not hold under the current restriction on

the dimension of the statistic.

Example 6.2. Let σ be an entity schema with two unary

symbols R and S and the entity symbol η. Consider the data-
base D = {R (a), S (a), S (c ),η(a),η(b),η(c )} over σ . We define

a labeling λ : η(D) → {1,−1} such that λ(a) = λ(b) = 1

and λ(c ) = −1. It is not hard to see that (D, λ) is not CQ-
separable by a statistic with one feature. This is in spite of

the fact that a can be distinguished from c by the CQ R (x ),
and b can be distinguished from c by the CQ S (x ). On the

other hand, (D, λ) is CQ-separable by a statistic with two

features; namely, Π = (R (x ), S (x )). □

On the other hand, we can design a simple “guess-and-

check” algorithm that solves L-Sep[∗], for an arbitrary class

L of CQs, if we know how to solve L-QBE.



(L, ℓ)-separability test:
Given a training database (D, λ),

• Guess a vector κ̄e ∈ {1,−1}ℓ , for each e ∈ η(D);
• Check (κ̄e , λ(e ))e ∈η (D ) for linear separability;

• For all j ∈ {1, . . . , ℓ}, test whether an L-

explanation for (D, S+j , S
−
j ) exists, where S

+
j = {e |

κ̄e [j] = 1} and S−j = {e | κ̄e [j] = −1}.

Here, κ̄e [j] is the j-th component of κ̄e [j]. It is easy to see

that the following holds for every class L of CQs.

Lemma 6.3. A training database is L-separable by a statistic
with at most ℓ features if and only if the (L, ℓ)-separability
test accepts (D, λ).

It is not hard to see, by applying Theorem 6.1, that for

every ℓ ≥ 1 the (CQ, ℓ)-separability test can be carried out in
coNEXPTIME, while for every fixed k ≥ 1, the (GHW(k ), ℓ)-
separability test can be carried out in EXPTIME. Then, from

Lemma 6.3 we obtain an upper bound for the complexity of

CQ-Sep[∗] and GHW(k )-Sep[∗], for every k ≥ 1.

Proposition 6.4. CQ-Sep[∗] is in coNEXPTIME, while the
problem GHW(k )-Sep[∗] is in EXPTIME for every k ≥ 1.

It can be shown that these bounds are optimal by using a

general reduction from QBE for any class L of CQs (under a

mild assumption on L). This reduction actually states some-

thing stronger: The lower bound for our problems continue

to hold even if the number of features ℓ ≥ 1 is fixed.

Lemma 6.5. Let L be a class of CQs such that L contains
all CQs with only one atom (over every schema). Fix ℓ ≥ 1.
Then L-QBE, when restricted to inputs of the form (D, S+, S−)
where S+, S− are nonempty unary relations such that S− =
dom(D) \ S+, reduces in polynomial time to L-Sep[ℓ].

Proof. Let D be a database over some schema σ and as-

sume that S+, S− are nonempty unary relations over D such

that S− = dom(D) \ S+. Define an entity schema σ ′ that
extends σ with the entity symbol η and ℓ − 1 fresh unary

symbols κ1, . . . ,κℓ−1. We construct a database D ′ over σ ′

that extends D with fresh constants c−, c1, ..., cℓ−1 and facts

κ1 (c1), . . . ,κℓ−1 (cℓ−1). We define

η(D ′) = S+ ∪ S− ∪ {c−, c1, ..., cℓ−1} = dom(D ′),

and a labeling λ : η(D ′) → {1,−1} in such away that λ(e ) = 1

if e ∈ S+ ∪ {c1, ..., cℓ−1} and λ(e ) = −1 if e ∈ S− ∪ {c−}.
By construction of D ′, for any CQ q(x ) over σ ′:

(1) If c− ∈ q(D ′) then q(D ′) = η(D ′) = dom(D ′).
(2) For each i ∈ {1, . . . , ℓ − 1}, if ci ∈ q(D ′) then either

q(D ′) = {ci } or q(D
′) = η(D ′) = dom(D ′).

We claim that there is an L-explanation for (D, S+, S−)
iff (D ′, λ) is L-separable by a statistics with ℓ features. As-
sume first that q(x ) is an L-explanation for (D, S+, S−). Let
qi (x ) := κi (x ), for each 1 ≤ i ≤ ℓ − 1. Then the statistic

Π = (q1, . . . ,qℓ−1,q) belongs to L by hypothesis. Moreover,

(Π,Λw̄ ) separates (D
′, λ), where w̄ = (1− l , 1, . . . , 1). In fact,

notice that for each e ∈ η(D ′) = dom(D ′) it is the case that
Λw̄ (Π

D′ (e )) = 1 iff e belongs to the evaluation of at least

some CQ in Π over D ′. Let us first consider the elements e
with λ(e ) = 1. If e = ci , for i ∈ {1, . . . , ℓ− 1}, then e ∈ qi (D

′).
If e ∈ S+ then e ∈ q(D ′). Consider now an arbitrary ele-

ment e in S−. Then e < qi (D), for each i ∈ {1, . . . , ℓ − 1},

since qi (x ) = κi (x ). Also, e < q(D ′). This is because the

restriction of D ′ to the symbols in σ homomorphically maps

to D, and, thus, if e ∈ q(D ′) we would have that e ∈ q(D).
This contradicts the fact that q(D) ∩ S− = ∅. Finally, since
S− , ∅, it follows by property (1) above that c− < q(D ′). Oth-
erwise, we would have that b ∈ q(D ′), for some b ∈ S−, and
thus b ∈ q(D), contradicting the fact that q(D) ∩ S− = ∅. In
addition, c− < qi (D), for each i ∈ {1, . . . , ℓ− 1}, by definition.

Assume, on the other hand, thatΠ separates (D ′, λ), where
Π is a statistic with ℓ features fromL. For each i ∈ {1, . . . , ℓ−
1} it is the case that λ(ci ) , λ(c

−), and, therefore,

Λw̄ (Π
D′ (ci )) , Λw̄ (Π

D′ (c−)).

Hence, for each i ∈ {1, . . . , ℓ − 1} there is at least some

q(x ) in Π such that q(D ′) ∩ {c−, ci } is either {c
−} or {ci }. But

q(D ′)∩{c−, ci } = {c
−} is ruled out by property (1), and hence

for each i ∈ {1, . . . , ℓ − 1} there exists a q(x ) in Π such that

q(D ′) ∩ {c−, ci } = {ci }. By property (2) now, it follows that

q(D ′) = {ci }.
Let ci , c

′
i ∈ {c1, ..., cℓ−1} with ci , c ′i . Then there are

queries q(x ) and q′(x ) in Π such that q(D ′) = {ci } and
q′(D ′) = {c ′i }. It must be the case then that q , q′. Thus,
there are at least ℓ − 1 distinct feature queries q1, . . .qℓ−1 in

Π, such that for each 1 ≤ j ≤ ℓ − 1 and e ∈ S+ ∪ S− ∪ {c−} it
holds that e < qj (D).
Aside from {q1, . . .qℓ−1}, there is only one more feature

query q(x ) in Π. By our previous observation, it must be

the case that e ∈ q(D ′) ⇔ e ′ < q(D ′) for each e ∈ S+ and
e ′ ∈ S− ∪ {c−} (as otherwise there would be entities e ∈ S+

and e ′ ∈ S− ∪ {c−} such that ΠD′ (e ) = ΠD′ (e ′), contradicting
the fact thatΠ separates (D ′, λ)). By property (1) then, it must

be the case that e ∈ q(D ′) for each e ∈ S+, and e ′ < q(D ′)
for each e ′ ∈ S− ∪ {c−}. This means that S+ ⊆ q(D ′) and
(S− ∪ {c−}) ∩ q(D ′) = ∅.
It remains to show that we can restrict q so that it only

contains symbols from σ , i.e., if q′ is the query obtained

from q by removing atoms of the form η(x ) and κi (x ), then
q′(D ′) = q(D ′). Since η(D ′) = dom(D ′), an atom η(x ) is



equal to the trivial condition x ∈ dom(D ′) and can be re-

moved. Let us assume then that

q(x ) := ∃ȳ
(
κi1 (z1) ∧ · · · ∧κim (zm ) ∧R1 (x̄1) ∧ · · · ∧Rn (x̄n )

)
,

where 1 ≤ i1, . . . , im ≤ ℓ − 1 and the Ris come from σ .
Since S+ is a nonempty unary relation, there is some a ∈
q(D ′); hence x , zj , for each j ∈ {1, . . . ,m}. Thus, q(x ) :=

∃ȳ0∃z1, . . . , zm
(
κi1 (z1) ∧ · · · ∧ κim (zm ) ∧ R1 (x̄1) ∧ · · · ∧

Rn (x̄n )
)
, where z is taken from ȳ and ȳ0 is ȳwithout z1, . . . , zm .

By definition, for each j ∈ {1, . . . ,m}, the element ci j only
appears twice in D ′, namely in the facts κi j (ci j ) and η(ci j ).
Therefore, zi j cannot appear in any of the atoms Ri (x̄i ), for
1 ≤ i ≤ n. Thismeans that we can safely remove each atom of

the form κi j (zi j ) from q, as it is expressing a trivial condition;
i.e., that there is an element in the interpretation of κi j over
D ′. The resulting query q′(x ) satisfies that q′(D ′) = q(D ′),
and, therefore, q′(x ) is an L-explanation for (D, S+, S−). □

In view of Theorem 6.1 and Lemma 6.5, we obtain the

following:

Theorem 6.6. It is the case that:
• CQ-Sep[∗] is coNEXPTIME-complete.
• GHW(k )-Sep[∗] is EXPTIME-complete, for each k ≥ 1.

The lower bounds continue to hold even for the L-Sep[ℓ] prob-
lem, for any fixed ℓ ≥ 1, where L is either CQ or GHW(k ).

The lower bounds for CQ-Sep[ℓ] and GHW(k )-Sep[ℓ]
established in the previous theorem hold even for a fixed

schema. This is based on the fact that the lower bounds in

Theorem 6.1 hold over a fixed schema, and the reduction

from QBE to L-Sep[ℓ] provided in the proof of Lemma 6.5

enlarges the schema of the input database for QBE with only

ℓ extra unary symbols (for fixed ℓ ≥ 1).

Generating a statistic. Next we establish lower bounds on

the number of atoms required by feature queries under the

assumption that statistics are of a bounded dimension.

Theorem 6.7. Fix ℓ ≥ 1. For every n ≥ 1 there is a training
database (D, λ) such that:
(1) |D | is polynomial in n,
(2) (D, λ) is CQ-separable,
(3) for every statistics Π = (q1, . . . ,qℓ ) that CQ-separates

(D, λ), at least one qi has Ω(2n ) atoms.
This holds true if we restrict to the class of statistics formed by
CQs in GHW(k ), but then, at least one qi has Ω(22

n
) atoms.

In summary, while bounding the dimension of statistics

for general CQs and CQs of bounded ghw is positive from

a generalization point of view, it also creates new problems

that affect the practicality of the approach: (1) The com-

plexity of separability becomes prohibitively high, and (2)

feature queries can grow exponentially large (or even double

exponentially if we bound their ghw).

6.3 Bounded Dimension and Number of
Feature Atoms

Let us go back to the restriction on statistics introduced in

Section 4: fixing the number of atoms allowed in feature

CQs. Recall that this restriction is well-behaved in terms

of separability; in fact, the problem becomes FPT, with the

parameter being the arity of the schema (see Corollary 4.2).

In addition, this restriction prevents statistics from growing

too large in terms of the size of the data. In fact, the number

of different CQs in CQ[m]—the class of CQs with at mostm
atoms—depends exclusively onm and the underlying schema

σ (in particular, in the number r ≥ 1 of relation symbols in σ
and the maximum arity k ≥ 1 of any such a relation symbol).

Yet, the number of different CQs in CQ[m] is exponential

in the combined size ofm and k , and thus could still be quite
large for practical purposes. It might be reasonable then in

this case to also bound the number of feature queries allowed

in statistics. This calls for the study of CQ[m]-Sep[∗] and

CQ[m]-Sep[ℓ], that is, the separability problem for statistics

based on the class of CQs with at mostm atoms wherein the

number of features is bounded or corresponds to the fixed

ℓ ≥ 1, respectively.

It is not hard to see that CQ[m]-Sep[∗] is FPT, with the

parameter being the size of the schema. The proof of this fact

is constructive in the sense that it yields a pair (Π,Λw̄ ) that
CQ[m]-separates the input training database (D, λ) where Π
has at most ℓ features. Therefore, the classification problem

CQ[m]-Cls[∗] is also FPT.

Proposition 6.8. For eachm ≥ 1 both CQ[m]-Sep[∗] and
CQ[m]-Cls[∗] are FPT, with the parameter being the size of
the schema.

Notice the difference with Corollary 4.2, which establishes

that CQ[m]-Sep is FPT with the parameter being the arity of
the schema only. As we show next, the extra requirement on

the parameter is necessary (under conventional complexity

assumptions).

Proposition 6.9. For eachm ≥ 1 the problem CQ[m]-Sep[∗]

is NP-complete even for fixed arity schemas.

Therefore, if for anym ≥ 1 the problem CQ[m]-Sep[∗] is

FPT with the parameter being the arity of the schema, then

P = NP. The reasonwhyCQ[m]-Sep[∗] is NP-hard is because

it involves choosing a set of at most ℓ feature CQs in CQ[m],

for a given ℓ ≥ 1, that separates the input (D, λ). An easy

reduction from Vertex Cover shows this problem to be NP-

hard even for fixed arity schemas. Notice that this establishes

an interesting differencewith the problemCQ[m]-Sep, which

we do not know whether it is NP-hard.



Interestingly, the intractability holds even if the number

of features is fixed (but the arity of the schema is not).

Theorem 6.10. The problem CQ[m]-Sep[ℓ] is NP-complete,
for each fixed ℓ ≥ 1.

We now explain the proof of the NP-hardness in Theo-

rem 6.10. Recall that Lemma 6.5 provides a general way of

obtaining lower bounds for separability with a fixed number

of features via a reduction from a restricted version of QBE.

However, unlike the case of CQ and GHW(k ), for k ≥ 1, for

which the complexity of QBE is well understood, the com-

plexity of QBE for CQ[m], form ≥ 1, has not been studied in

the literature. We show it to be NP-complete below, even in

the restricted setting required by Lemma 6.5, which is a sur-

prisingly negative result. In fact, the problem is NP-complete

even for the class CQ[1] of single-atom CQs.

Proposition 6.11. CQ[m]-QBE isNP-complete for each fixed
m ≥ 1. The lower bound holds even if the input is of the form
(D, S+, S−) and S+, S− are nonempty unary relations such that
S− = dom(D) \ S+.

The lower bound in Theorem 6.10 follows directly then

from Lemma 6.5 and Proposition 6.11.

Fixed number of variable occurrences. Recall from Propo-

sition 4.3 that we can ensure tractability of separability, for

statistics with an unbounded number of features, by fixing

both the number of atoms and the number of occurrences

of variables in feature queries; that is, CQ[m,p]-Sep is in

PTIME, for fixedm,p ≥ 1.

In the current scenario this continues to hold only if we

fix the number ℓ ≥ 1 of features allowed in statistics. In turn,

if the number ℓ is given as part of the input the problem

becomes NP-hard.

Proposition 6.12. Fixm,p ≥ 1. The following holds:
(1) The problems CQ[m,p]-Sep[ℓ] and CQ[m,p]-Cls[ℓ]

are in PTIME, for each fixed ℓ ≥ 1.
(2) The problem CQ[m,p]-Sep[∗] is NP-complete even for

fixed arity schemas.

7 APPROXIMATE SEPARABILITY
We now discuss a generalization of the separability problem,

allowing some examples to be misclassified. Hence, we han-

dle the case where a training database is inseparable due to a

small amount of noise in the data. This notion of approxima-

tion captures the common goal of minimizing the number

of misclassified examples [8, 20, 28], and corresponds to one

of the studied notions of separation errors [5, 35]. We revise

the previously obtained complexity results for the case that a

relative error ϵ , for 0 ≤ ϵ < 1, is allowed in the classification

of the training examples.

Formally, a training database (D, λ) is L-separable with
error ϵ if there is a statistic Π, with feature queries from L,

and a linear classifier Λw̄ , such that

{e ∈ η(D) | Λw̄ (Π
D (e )) , λ(e )} ≤ ϵ · |η(D) | .

We then say that (Π,Λw̄ ) L-separates (D, λ) with error ϵ . We

study the following problem.

Problem: L-ApxSep

Input: A training database (D, λ), an ϵ ∈ [0, 1)
Question: Is (D, λ) L-separable with error ϵ?

As before, we study two variants of this problem in which

the dimension is given as input or bounded by a constant

ℓ ≥ 1. These are denoted by L-ApxSep[∗] and L-ApxSep[ℓ],
respectively.

7.1 Intractable Cases
L-ApxSep is at least as difficult as L-Sep, since L-Sep is

precisely L-ApxSep when ϵ = 0. Thus all lower bounds ob-

tained for the latter along the paper continue to hold for the

former. The same holds for L-ApxSep[∗] and L-ApxSep[ℓ]
w.r.t. L-Sep[∗] and L-Sep[ℓ], respectively. More interest-

ingly, such lower bounds continue to hold even if ϵ is an

arbitrary fixed value with ϵ ∈ [0, 1/2).1 This is proved via

a polynomial-time reduction from L-Sep (resp., L-Sep[∗]

andL-Sep[ℓ]) to (L, ϵ )-ApxSep (resp., (L, ϵ )-ApxSep[∗] and

(L, ϵ )-ApxSep[ℓ]), the restriction of L-ApxSep (resp., L-

ApxSep[∗] andL-ApxSep[ℓ]) in which ϵ is an arbitrary fixed
value in the interval [0, 1/2). These reductions hold for any

class L of CQs.

Proposition 7.1. Fix an arbitrary ϵ ∈ [0, 1/2). There are
polynomial-time reductions:
• from L-Sep to (L, ϵ )-ApxSep;
• from L-Sep[∗] to (L, ϵ )-ApxSep[∗]; and
• from L-Sep[ℓ] to (L, ϵ )-ApxSep[ℓ] for all fixed ℓ ≥ 1.

Now, as all lower bounds for L-Sep, L-Sep[∗] and L-

Sep[ℓ] presented in the paper are for complexity classes that

are closed under polynomial-time reductions, Proposition 7.1

implies that they continue to hold for their approximate

versions, even if ϵ is an arbitrary fixed value with 0 ≤ ϵ < 1/2.
Therefore, our hardness results do not arise from the aim

of finding a “strict” classifier, but are due to the inherent

complexity of the problem.

7.2 Feasible Cases
In view of the previous discussion, we can only hope to ob-

tain a feasible complexity for approximate separability in

the cases where (perfect) separability is also feasible. As we

1
For ϵ ≥ 1/2 the problem is trivial, since then we can always find a classifier

that separates with error ϵ .



have seen, there are two such cases: statistics formed by

CQs with a bounded number of atoms, where separability is

FPT (Corollary 4.2 and Proposition 6.8), and statistics of un-

bounded dimension formed by CQs of bounded ghw, where

separability is solvable in PTIME (Theorem 5.3). We study

both cases below.

Approximate CQ[m]-separability. We first study the ap-

proximate separability problem CQ[m]-ApxSep for statistics

formed by CQs with a fixed number of atoms. It is not hard

to see that this problem is FPT, if we assume the parameter

to be the size of the schema. Notice again the difference with

Corollary 4.2, which establishes that the exact separability

problem CQ[m]-Sep is FPT with the parameter being the

arity of the schema only. As in Proposition 6.9, the extra

requirement on the parameter is necessary (under conven-

tional complexity assumptions).

Proposition 7.2. The following holds for eachm ≥ 1:
(1) The problem CQ[m]-ApxSep is FPT with the parameter

being the size of the schema.
(2) The problem CQ[m]-ApxSep is NP-complete even for

fixed arity schemas.

From (2), if for any m ≥ 1 the problem CQ[m]-ApxSep

is FPT with the parameter being the arity of the schema,

then P = NP. The difference in complexity between CQ[m]-

Sep and CQ[m]-ApxSep stems from the nature of their un-

derlying classification task: CQ[m]-Sep calls for exact lin-
ear separability, which is in PTIME [19, 21], while CQ[m]-

ApxSep calls for approximate linear separability, which is

NP-complete [17]. This yields item (2) in Proposition 7.2.

A similar situation holds for CQ[m]-ApxSep[∗], the re-

striction of CQ[m]-ApxSep to statistics with at most ℓ fea-
tures, where ℓ is given as part of the input. On the other

hand, if ℓ is fixed, then we can again ensure fixed-parameter

tractability by using only the arity of the schema as the

parameter.

Proposition 7.3. For all fixedm ≥ 1, the following hold:
(1) The problem CQ[m]-ApxSep[∗] is FPT with the param-

eter being the schema.
(2) The problemCQ[m]-ApxSep[∗] isNP-complete even for

fixed arity schemas.
(3) For every fixed ℓ ≥ 1, the problem CQ[m]-ApxSep[ℓ] is

FPT with the parameter being the arity of the schema.

We conclude this part by observing that all our feasi-

bility results are via constructive proofs that result in the

proper statistic; hence, in the cases of tractable separabil-

ity (and variants), both approximate feature generation and

approximate classification, namely CQ[m]-ApxCls, CQ[m]-

ApxCls[ℓ], and CQ[m]-ApxCls[∗], are FPT. The problem L-

ApxCls takes as input a number ϵ ∈ [0, 1), a training database

(D, λ) that is L-separable with error ϵ , and an evaluation

database D ′. The goal is to construct a labeling λ′ of D ′ such
that there exists (Π,Λw̄ ) that L-separates (D

′, λ′), and at the
same time, L-separates (D, λ) with error ϵ . The problems

L-ApxCls[ℓ] and L-ApxCls[∗] are defined analogously.

Approximate GHW(k )-separability. Now we look at ap-

proximate separability for statistics formed by CQs of

bounded generalized hypertreewidth. Our main result is as

follows.

Theorem 7.4. Fix k ≥ 1. There is a polynomial time al-
gorithm that takes as input a training database (D, λ) and
computes a labeling λ′ : η(D) → {1,−1} such that:

(1) (D, λ′) is GHW(k )-separable; and
(2) for every λ′′ : η(D) → {1,−1} such that (D, λ′′) is

GHW(k )-separable, we have that |{e ∈ η(D) | λ(e ) ,
λ′(e )}| ≤ |{e ∈ η(D) | λ(e ) , λ′′(e )}|.

Proof. Let (D, λ) be a given training database. For each

e ∈ η(D), we define [e] to be the set of elements e ′ ∈ η(D)
such that (D, e ′) →k (D, e ) and (D, e ) →k (D, e ′). It is easy
to see that the classes of the form [e], for e ∈ η(D), define a
partition of η(D). Define a new labeling λ′ : η(D) → {1,−1}

as follows:

λ′(e ) :=

{
1 if

∑
e ′∈[e]

λ(e ′) ≥ 0,

−1 otherwise.

Due to Theorem 5.3, there is a polynomial-time algorithm

that computes every [e]; therefore, λ′ can be constructed in

polynomial time. By its definition, each equivalence class

[e] is consistent with λ′, that is, λ′ maps all elements of [e]

to the same value. Hence, due to Lemma 5.4, it is the case

that(D, λ′) is GHW(k )-separable.
We will show that λ′ is a best approximation of λ, in terms

of the cardinality of the “disagreement,” among the labelings

λ′′ of η(D) such that (D, λ′′) isGHW(k )-separable. Formally,

this means that for every λ′′ : η(D) → {1,−1} such that

(D, λ′′) is GHW(k )-separable, we have that |{e ∈ η(D) |
λ(e ) , λ′(e )}| ≤ |{e ∈ η(D) | λ(e ) , λ′′(e )}|, or, equiva-
lently, that

∑
e ∈η (D ) |λ

′(e ) − λ(e ) | ≤
∑

e ∈η (D ) |λ
′′(e ) − λ(e ) |.

We will show that this inequality holds, for all such λ′′, al-
ready in each equivalence class [e]; that is,

∑
e ′∈[e]

|λ′(e ′) −
λ(e ′) | ≤

∑
e ′∈[e]

|λ′′(e ′) − λ(e ′) |.
So, let λ′′ : η(D) → {1,−1} be such that (D, λ′′) is

GHW(k )-separable, and let e ∈ η(D). Since λ′ is consistent
on [e], either all λ′(e ′) are +1 or all λ′(e ′) are −1. Hence,

either all λ′(e ′) − λ(e ′) are nonnegative or all λ′(e ′) − λ(e ′)
are nonpositive. It follows that

∑
e ′∈[e]

|λ′(e ′) − λ(e ′) | = ���
∑
e ′∈[e]

(λ′(e ′) − λ(e ′))��� .



Analogously,∑
e ′∈[e]

|λ′′(e ′) − λ(e ′) | = ���
∑
e ′∈[e]

(λ′′(e ′) − λ(e ′))��� .

So, we need to prove that

���
∑
e ′∈[e]

(λ′(e ′) − λ(e ′)) ��� ≤
���
∑
e ′∈[e]

(λ′′(e ′) − λ(e ′)) ���

or, equivalently, that

���
∑
e ′∈[e]

λ′(e ′) −
∑
e ′∈[e]

λ(e ′)��� ≤
���
∑
e ′∈[e]

λ′′(e ′) −
∑
e ′∈[e]

λ(e ′) ��� .

Let us define x ′ =
∑

e ′∈[e]
λ′(e ′), define x ′′ =

∑
e ′∈[e]

λ′′(e ′),
and definey =

∑
e ′∈[e]

λ(e ′). We need to prove that |x ′−y | ≤
|x ′′ − y |. Since both λ′ and λ′′ are constant (either always
1 or always −1) on [e], we have that x ′ = x ′′ or x ′ = −x ′′.
In the first case, we are done. In the second one, we need to

show that |x ′ − y | ≤ | − x ′ − y |, i.e., |x ′ − y | ≤ |x ′ + y |. But
this is true for λ′, as either both x ′ and y are nonnegative,

or both x ′ and y are nonpositive. The pseudo-code of the

procedure is given in Algorithm 2. □

Theorem 7.4 implies that GHW(k )-ApxSep and GHW(k )-
ApxCls are tractable.

Corollary 7.5. For all fixed k ≥ 1, the problems GHW(k )-
ApxSep and GHW(k )-ApxCls can be solved in polynomial
time.

Proof. Given a training database (D, λ), we apply The-

orem 7.4 to compute in polynomial time a labeling λ′ :

η(D) → {1,−1} such that (D, λ′) is GHW(k )-separable and
λ′ minimizes the disagreement with respect to λ, among

those labelings λ′′ such that (D, λ′′) is GHW(k )-separable.
Thus, the minimal error δ , for 0 ≤ δ ≤ 1, with which a

statistic GHW(k )-separates (D, λ) is ({e ∈ η(D) | λ′(e ) ,
λ(e )})/|η(D) |. Then in order to determine whether (D, λ) is
separable with error ϵ , we simply check whether δ ≥ ϵ .
To solve GHW(k )-ApxCls on an evaluation database D ′,

we solve in polynomial time the problem GHW(k )-Cls on
input given by training database (D, λ′) and evaluation data-

base D ′. This generates a labeling λ∗ of η(D ′) such that there

is a pair (Π,Λw̄ ) that GHW(k )-separates both (D, λ′) and
(D ′, λ∗). Therefore, the pair (Π,Λw̄ ) alsoGHW(k )-separates
(D, λ) with error δ , and thus with error ϵ , and GHW(k )-
separates (D ′, λ∗) with no error. □

8 MORE EXPRESSIVE FEATURE QUERIES
In this section, we embark on a preliminary exploration of the

separability problem for more expressive feature languages,

in particular First-Order Logic (FO) and some fragments

thereof. While the problems have been discussed over CQs,

they naturally extend to any query language L, and we

Algorithm 2 Approx-separability algorithm GHW(k )-
ApxSep.

Require: A training database (D, λ)
1: ([e1], . . . , [em]) := equivalence classes with respect to

→k over η(D)
2: for each e ∈ η(D) do
3: if

∑
e ′∈[e]

λ(e ′) ≥ 0 then
4: λ′(e ) = 1

5: else
6: λ′(e ) = −1

7: end if
8: end for
9: return λ′ : η(D) → {1,−1}

can talk about L-separability and about L-Sep for arbitrary

fragments L of FO. We write FO when L is the class of

all FO formulas. We start by observing that FO-separability
collapses to single-feature FO-separability.

Proposition 8.1. A training database is FO-separable iff it
is FO-separable by a statistics Π with a single FO formula.

Hence, the complexity of separability for FO is the same re-

gardless of whether the dimension of the statistic is bounded

or not. That is, the complexity of the problems FO-Sep, FO-
Sep[∗], and FO-Sep[ℓ], for any ℓ ≥ 1, is the same. It can

be proved, on the other hand, that the complexity of FO-
Sep[1] coincides with that of QBE for FO (FO-QBE), as one
can reduce in polynomial time from FO-Sep[1] to FO-QBE
and, on the other hand, use FO-QBE as a subroutine to solve

FO-Sep[1] in polynomial time. Arenas and Díaz [4] have

shown that FO-QBE is GI-complete, where GI is the class

of problems with a polynomial-time reduction to the graph-

isomorphism problem. Therefore:

Corollary 8.2. The problems FO-Sep, FO-Sep[∗], and FO-
Sep[ℓ], for any ℓ ≥ 1, are GI-complete.

What about separability for fragments of FO? As we state

next, FO-separability collapses to separability for statistics

based on a simple class of formulas, namely, existential FO
formulas, denoted ∃FO. Recall that these are the FO formu-

las of the form ∃x̄ψ , whereψ is quantifier-free (but allows

negation). On the other hand, for the restriction on ∃FO that

disallows negation onψ (the so-called class of existential pos-
itive FO formulas, written ∃FO+), we have that separability
collapses to CQ-separability. In summary:

Proposition 8.3. The following statement hold for all train-
ing databases (D, λ):
(1) (D, λ) is FO-separable iff it is ∃FO-separable.
(2) (D, λ) is CQ-separable iff it is ∃FO+-separable.

Therefore, from Proposition 8.3 and Corollary 8.2 we ob-

tain that L-Sep is GI-complete for any fragment L of FO



that contains ∃FO, and from Theorem 3.2 that ∃FO+-Sep is
coNP-complete.

As we have seen, there is an important difference between

FO-separability and CQ-separability: While the former col-

lapses to single-feature FO-separability from Proposition 8.3,

for the latter there is no bound on the number of features

which are required for separating training databases (recall

that the same holds for GHW(k ), for k ≥ 1, from Theorem

5.7). This motivates the two questions we study next about

feature languages L:

(1) When does L have the dimension-collapse property,
i.e., every training database (D, λ) that is L-separable
is also separable by a single-feature statistic in L?

(2) In turn, when does L have the unbounded-dimension
property, that is, for all n ≥ 1 there is a training data-

base (D, λ) that is L-separable only by statistics with

at least n features?

The dimension-collapse property. We have seen in Propo-

sition 8.1 that FO has the dimension-collapse property. In

contrast, we can show that none of CQ, GHW(k ) and ∃FO+

have this property. Next, we present a general explanation

of this fact by providing a characterization of when a query

language L has the dimension-collapse property in terms of

a certain definability condition.

Theorem 8.4. L has the dimension-collapse property if and
only if for every database D, the set

⋃
q∈L {q(D),η(D) \q(D)}

of entity sets is closed under intersection.

Applying this characterization, one can readily see that

not only FO, but also FOk , the fragment of formulas with

at most k variables, has the dimension-collapse property. It

is possible to prove, on the other hand, that the dimension-

collapse property also holds for every class Σk , for k ≥ 1,

that consists of all FO queries of the form ∃x̄1∀x̄2 . . .Qxnψ ,
whereψ is quantifier-free and Q = ∃ if n is odd and Q = ∀

otherwise. Notice that Σ1 is precisely ∃FO.

Corollary 8.5. The languages FO, FOk , and Σk , for any k ≥
1, have the dimension-collapse property.

In contrast, neither CQ nor GHW(k ), for any k ≥ 1, sat-

isfy the condition of Theorem 8.4. This is also the case for

Σ+k , the restriction of Σk where no negation is allowed in

the quantifier-free formulaψ . We actually prove a stronger

statement below: All of these languages have the unbounded-

dimension property.

The unbounded-dimension property. We provide a simple

condition that ensures the unbounded-dimension property

for a language L. A family S of sets is linear if A ⊆ B or

B ⊆ A, for every A,B ∈ S.

Proposition 8.6. Assume that for each n ≥ 1 there is a data-
base D such that {q(D) | q ∈ L} is linear and has cardinality
at least n. Then L has the unbounded-dimension property.

We can show that all of the above languages satisfy the con-

dition expressed in Proposition 8.6. Correspondingly, they

all have the unbounded-dimension property.

Theorem 8.7. The languages CQ, GHW(k ) and Σ+k , for any
k ≥ 1, have the unbounded-dimension property.

9 FINAL REMARKS
We studied the separability problem for CQ features under

various regularizations by posing upper bounds on the num-

ber of atoms per CQ, the ghw of CQs, and the dimension of

(i.e., number of features in) the statistic. When the tractability

proofs are constructive, tractability extends to the problems

of feature generation and classification of an evaluation data-

base. This is not the case for the class of CQs of a bounded

ghw where the feature CQs might be overly large to materi-

alize; yet, we showed that classification is then tractable even

without materializing the feature CQs. We also proved that

our complexity results extend to approximate separability,

though some of our proofs require nontrivial adjustments.

Finally, we gave preliminary results on separability with

more expressive languages of feature queries, such as FO,

and particularly, about when separability collapses to re-

stricted fragments and a bounded number of feature queries

(and even a single one).

An immediate open problem is the complexity of separa-

bility for a bounded number of CQ atoms, that is, CQ[m]-Sep

for any fixed m ≥ 1, when the schema is given as part of

the input with no restrictions. Finally, an important direc-

tion is the treatment of feature generation over databases

through the lens of PAC learning, for instance, by adopting

the concepts of Grohe et al. [14, 15].
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