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ABSTRACT

Many efforts have been dedicated to identifying restrictions on on-

tologies expressed as tuple-generating dependencies (tgds), a.k.a. ex-

istential rules, that lead to the decidability of answering ontology-

mediated queries (OMQs). This has given rise to three families of

formalisms: guarded, non-recursive, and sticky sets of tgds. We

study the containment problem for OMQs expressed in such for-

malisms, which is a key ingredient for solving static analysis tasks

associated with them. Our main contribution is the development

of specially tailored techniques for OMQ containment under the

classes of tgds stated above. This enables us to obtain sharp com-

plexity bounds for the problems at hand.
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1 INTRODUCTION

Motivation and goals. The novel application of knowledge rep-

resentation tools for handling incomplete and heterogeneous data

is giving rise to a new field, recently coined as knowledge-enriched
data management [1]. A crucial problem in this field is ontology-
based data access (OBDA) [32], which refers to the utilization of

ontologies (i.e., sets of logical sentences) for providing a unified

conceptual view of various data sources. Users can then pose their

queries solely in the schema provided by the ontology, abstracting

away from the specifics of the individual sources. In OBDA, one

interprets the ontology Σ and the user query q, which is typically

a union of conjunctive queries (UCQ), as two components of one

composite query Q = (S, Σ,q), known as ontology-mediated query
(OMQ); S is called the data schema, indicating that Q will be posed

on databases over S [12]. Therefore, OBDA is often realized as the

problem of answering OMQs.

While in this setting description logics (DLs) are often used for

modeling ontologies, it is widely accepted that for handling ar-

bitrary arity relations in relational databases it is convenient to
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use tuple-generating dependencies (tgds), a.k.a. existential rules or
Datalog± rules; cf. [23]. Several aspects of OMQs in which the on-

tology is a set of tgds and the actual query is a UCQ (simply called

OMQs from now on) have been studied in the data management

literature; most notably (a) query evaluation [2, 15–17], i.e., given an
OMQ Q = (S, Σ,q), a database D over S, and a tuple of constants c̄ ,
does c̄ belong to the evaluation of q over every extension of D that

satisfies Σ, or, equivalently, is c̄ a certain answer for Q over D? and
(b) relative expressiveness [12, 25, 26]: how does the expressiveness

of OMQs compare to the one of other query languages?

This work focuses on another crucial task for OMQs; namely,

containment: for two OMQs Q1 and Q2 with data schema S, does
Q1(D) ⊆ Q2(D) hold for every (finite) database D over S (where

Q(D) denotes the certain answers for Q over D)? Apart from the

traditional applications of containment, such as query optimiza-

tion or view-based query answering, it has been recently shown

that OMQ containment has applications on other important static

analysis tasks, namely, distribution over components [9], and UCQ

rewritability [10]. Despite its prominence, no work to date has

carried out an in-depth investigation of containment for OMQs

based on tgds. When considered in its full generality, the OMQ

containment problem is undecidable. In order to understand which

restrictions on the tgds lead to decidability, we recall the two main

reasons that render the general containment problem undecidable:

Undecidability of query evaluation: OMQ evaluation is, in general,

undecidable [6], and it can be reduced to OMQ containment. More

precisely, OMQ containment is undecidable whenever query evalu-

ation for at least one of the involved languages (i.e., the language

of the left-hand or the right-hand side query) is undecidable.

Undecidability of containment for Datalog: decidability of query

evaluation does not ensure decidability of query containment. A

prime example is Datalog, i.e., the OMQ language based on full tgds.
Datalog containment is undecidable [34]; thus, OMQ containment

is undecidable if the involved languages extend Datalog.

In view of the above observations, we focus on languages that

have a decidable query evaluation, and do not extend Datalog.

The main classes of tgds, which give rise to OMQ languages with

the desirable properties, can be classified into three main fami-

lies depending on the underlying restrictions: (i) (frontier-)guarded
tgds [2, 15], which contain inclusion dependencies and linear tgds,

(ii) non-recursive sets of tgds [22], and (iii) sticky sets of tgds [17].

While the decidability of containment for the above OMQ lan-

guages can be established via translations into query languages

with a decidable containment problem, such translations do not lead

to optimal complexity upper bounds (details are given below). Thus,
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Arbitrary Arity Bounded Arity

Linear

PSpace-c

PSpace-c

ΠP
2
-c

NP-c

Sticky

coNExpTime-c

ExpTime-c

ΠP
2
-c

NP-c

Non-recursive

in coNExpTime
NP

and P
NEXP

-hard

NExpTime-c

in coNExpTime
NP

and P
NEXP

-hard

NExpTime-c

Guarded

2ExpTime-c

2ExpTime-c

2ExpTime-c

ExpTime-c

Frontier-guarded

2ExpTime-c

2ExpTime-c

2ExpTime-c

2ExpTime-c

Table 1: Complexity of OMQ containment – in small fonts, we recall the complexity of OMQ evaluation.

the main goal of this work is to develop specially tailored decision

procedures for the containment problem under the OMQ languages

in question, and, ideally, obtain precise complexity bounds.

Our contributions. The complexity of OMQ containment for the

languages in question is given in Table 1. Using small fonts, we

recall the complexity of OMQ evaluation in order to stress that

containment is, in general, harder than evaluation. We structure

our contributions as follows:

Linear, non-recursive and sticky sets of tgds. The OMQ languages

based on linear, non-recursive, and sticky sets of tgds share a useful

property: they are UCQ rewritable (implicit in [23]), that is, an OMQ

can be rewritten into a UCQ. This property immediately yields

decidability for their associated containment problems, since UCQ

containment is decidable [33]. However, the obtained complexity

bounds are not optimal, since the UCQ rewritings are unavoidably

very large [23]. To obtain more precise bounds, we reduce contain-

ment to query evaluation, an idea that is often applied in query

containment; see, e.g., [18, 19, 33].

Consider a UCQ rewritable OMQ language O. If Q1 and Q2 be-

long to O, both with data schema S, then we can establish a small
witness property, which states that non-containment of Q1 in Q2

can be witnessed via a database over S whose size is bounded by

an integer k ≥ 0, the maximal size of a disjunct in a UCQ rewriting

of Q1. For linear tgds, such an integer k is polynomial, but for non-

recursive and sticky sets of tgds it is exponential (implicit in [23]).

The above small witness property allows us to devise a simple non-

deterministic algorithm, which makes use of query evaluation as

a subroutine for checking non-containment of Q1 in Q2: guess a

database D over S of size at most k , and then check if there is a

certain answer for Q1 over D that is not a certain answer for Q2

over D. This leads to an optimal upper bounds for OMQs based

on linear and sticky sets of tgds; however, the exact complexity of

OMQs based on non-recursive sets of tgds remains open:

• For OMQs based on linear tgds, the containment problem

is in PSpace, and in ΠP
2
if the arity is fixed. The PSpace-

hardness is shown by reduction from query evaluation, while

the ΠP
2
-hardness is implicit in [11].

• For OMQs based on sticky sets of tgds, the problem is in

coNExpTime, and in ΠP
2
if the arity of the schema is fixed.

The coNExpTime-hardness is shown by exploiting the stan-

dard tiling problem for the exponential grid, while the ΠP
2
-

hardness is inherited from [11].

• Finally, for OMQs based on non-recursive sets of tgds, con-

tainment is in coNExpTime
NP

and hard for P
NEXP

, even for

fixed arity. The lower bound is shown by exploiting a re-

cently introduced tiling problem [21].

We conclude that in all these cases OMQ containment is harder

than evaluation, with one exception: the OMQs based on linear

tgds over schemas of unbounded arity, where both problems are

PSpace-complete. Regarding OMQs based on non-recursive sets of

tgds, although our upper bound is not optimal, it is nearly optimal.

Indeed, NExpTime
NP

, which forms the ∆2-level of the exponential

hierarchy (EH), and P
NEXP

, which forms the ∆2-level of the strong
EH,

1
are tightly related: if the oracle access in NExpTime

NP
is

restricted too much, then it collapses to P
NEXP

[28].

Guarded tgds. The OMQ language based on guarded tgds is not

UCQ rewritable, which forces us to develop different tools to study

its containment problem. Let us remark that guarded OMQs can

be rewritten as guarded Datalog queries (by exploiting the trans-

lations devised in [3, 26]), for which containment is decidable in

2ExpTime [13]. But, again, the known rewritings are very large

[26], and the reduction of containment for guarded OMQs to con-

tainment for guarded Datalog does not yield optimal upper bounds.

To obtain optimal bounds for the problem in question, we exploit

two-way alternating parity automata on trees (2WAPA) [20, 35]. We

show that if Q1 and Q2 are guarded OMQs such that Q1 is not

contained in Q2, then this is witnessed over a class of “tree-like”

databases that can be represented as the set of trees accepted by

a 2WAPA A. We then build a 2WAPA B with exponentially many

states that recognizes those trees accepted by A that represent

witnesses to non-containment of Q1 in Q2. Hence, Q1 is contained

inQ2 iffB accepts no tree. Since the emptiness problem for 2WAPA

is feasible in exponential time in the number of states [20], we obtain

that containment for guarded OMQs is in 2ExpTime. A matching

lower bound, even for fixed arity schemas, follows from [10].

Similar ideas based on 2WAPA have been recently used to show

that containment for OMQs based on expressive DLs is in 2Exp-

Time [10]. In the DL context, schemas consist only of unary and

1
The strong EH collapses to its ∆2-level [28].
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binary relations. Our automata construction, however, is different

from the one in [10] for two reasons: (a) we need to deal with

higher arity relations, and (b) even for unary and binary relations,

our OMQ language allows to express properties that are not ex-

pressible by the DL-based OMQ languages studied in [10].

Frontier-guarded tgds. Frontier-guarded tgds generalize guarded

tgds, and as a matter of fact the techniques we develop for studying

OMQ containment for the latter do not extend in a straightforward

manner to the former. Instead, we provide a translation from a

frontier-guarded OMQ Q into a guarded OMQ Q ′
such that Q and

Q ′
are equivalent over acyclic databases. This allows to exploit the

machinery developed for guarded OMQs, and show that contain-

ment for frontier-guarded OMQs is in 2ExpTime. As for guarded

OMQs, a matching lower bound is inherited from [10], even for

fixed arity schema. Let us stress that the employed translation from

frontier-guarded into guarded OMQs does not preserve the query

answers over arbitrary databases, but only over acyclic databases.

This is not surprising since frontier-guarded OMQs are strictly

more expressive than guarded OMQs; see, e.g., [25].

Combining languages. The above complexity results refer to the

containment problem relative to a certain OMQ language O, i.e.,
both queries fall in O. However, it is natural to consider the version
of the problem where the involved OMQs fall in different languages.

Unsurprisingly, if the left-hand side query is expressed in a UCQ

rewritable OMQ language (based on linear, non-recursive, or sticky

sets of tgds), we can use the algorithm that relies on the small

witness property discussed above, which provides optimal upper

bounds for almost all the considered cases (the only exception is

the containment of sticky in non-recursive OMQs over schemas

of unbounded arity). Things are more interesting if the ontology

of the left-hand side query is expressed using guarded or frontier-

guarded tgds, while the ontology of the right-hand side query is

not (frontier-)guarded. By using automata techniques, we show

that containment of (frontier-)guarded in non-recursive OMQs is in

3ExpTime, while containment of (frontier-)guarded in sticky OMQs

is in 2ExpTime. We establish matching lower bounds, even over

schemas of fixed arity, by refining techniques from [19].

Organization. Preliminaries are given in Section 2. In Section 3

we introduce the OMQ containment problem. Containment for

UCQ rewritable OMQs is studied in Section 4, for guarded OMQs in

Section 5, and for frontier-guarded OMQs in Section 6. We consider

the case where the involved queries fall in different languages in

Section 7. Finally, we conclude in Section 8.

2 PRELIMINARIES

Databases and conjunctive queries. Let C, N, and V be disjoint

countably infinite sets of constants, (labeled) nulls, and (regular)

variables (used in queries and dependencies), respectively. A schema
S is a finite set of relation symbols (or predicates) with associated

arity. We write R/n to denote that R has arity n. A term is either

a constant, null, or variable. An atom over S is an expression of

the form R(v̄), where R ∈ S is of arity n ≥ 0 and v̄ is an n-tuple of
terms. A fact is an atom whose arguments consist only of constants.

An instance over S is a (possibly infinite) set of atoms over S that
contain constants and nulls, while a database over S is a finite set

of facts over S. We may call an instance and a database over S an
S-instance and S-database, respectively. The active domain of an

instance I , denoted dom(I ), is the set of all terms occurring in I .
A conjunctive query (CQ) over S is a formula of the form:

q(x̄) := ∃ȳ (
R1(v̄1) ∧ · · · ∧ Rm (v̄m )

)
, (1)

where each Ri (v̄i ) (1 ≤ i ≤ m) is an atom without nulls over S, each
variable mentioned in the v̄i ’s appears either in x̄ or ȳ, and x̄ are

the free variables of q. If x̄ is empty, then q is a Boolean CQ. As usual,
the evaluation of CQs is defined in terms of homomorphisms. Let

I be an instance and q(x̄) a CQ of the form (1). A homomorphism
from q to I is a mapping h, which is the identity on C, from the

terms that appear in q to the set of constants and nulls C ∪ N such

that Ri (h(v̄i )) ∈ I , for each 1 ≤ i ≤ m. The evaluation of q(x̄) over
I , denoted q(I ), is the set of all tuples h(x̄) of constants such that

h is a homomorphism from q to I . We denote by CQ the class of

conjunctive queries. A union of conjunctive queries (UCQ) over S is
a formula of the form q(x̄) := q1(x̄) ∨ · · · ∨qn (x̄), where each qi (x̄)
is a CQ of the form (1). The evaluation of q(x̄) over I , denoted q(I ),
is the set of tuples

⋃
1≤i≤n qi (I ). We denote by UCQ the class of

union of conjunctive queries.

Tgds and the chase procedure. A tuple-generating dependency
(tgd) is a first-order sentence of the form:

∀x̄∀ȳ (
ϕ(x̄ , ȳ) → ∃z̄ ψ (x̄ , z̄)), (2)

where ϕ andψ are conjunctions of atoms without nulls. For brevity,

we write this tgd as ϕ(x̄ , ȳ) → ∃z̄ ψ (x̄ , z̄) and use comma instead

of ∧ for conjoining atoms. Notice that ϕ can be empty, in which

case the tgd is called fact tgd and is written as ⊤ → ∃z̄ ψ (x̄ , z̄). We

assume that each variable in x̄ is mentioned in some atom ofψ . We

call ϕ andψ the body and head of the tgd, respectively. An instance

I over S satisfies the tgd in (2) if the following holds: whenever

there is a homomorphism h from ϕ to I , then h can be extended to a

homomorphism h′ fromψ to I . We say that an instance I satisfies a
set Σ of tgds, denoted I |= Σ, if I satisfies every tgd in Σ. We denote

by TGD the class of (finite) sets of tgds.

The chase is a useful algorithmic tool when reasoning with tgds

[15, 22, 29, 31]. We start by defining a single chase step. Let I be an
instance over a schema S and τ = ϕ(x̄ , ȳ) → ∃z̄ ψ (x̄ , z̄) a tgd over

S. We say that τ is applicable w.r.t. I if there exists a tuple (ā, ¯b) of
terms in I such that ϕ(ā, ¯b) ⊆ I . In this case, the result of applying τ
over I with (ā, ¯b) is the instance J that extends I with every atom in

ψ (ā, ⊥̄), where ⊥̄ is the tuple obtained by simultaneously replacing

each variable z ∈ z̄ with a fresh distinct null not occurring in I . For

such a single chase step we write I
τ ,(ā, ¯b)
−−−−−−→ J .

Let us assume now that I is an instance and Σ a finite set of tgds.

A chase sequence for I under Σ is a sequence:

I0
τ0, c̄0

−−−−→ I1
τ1, c̄1

−−−−→ I2 · · ·

of chase steps such that: (1) I0 = I ; (2) for each i ≥ 0, τi is a tgd
in Σ; and (3)

⋃
i≥0

Ii |= Σ. We call

⋃
i≥0

Ii the result of this chase
sequence, which always exists. Although the result of a chase se-

quence is not unique (up to isomorphism), each such result is equally

useful for our purposes, since it can be homomorphically embedded

into every other result. Henceforth, we denote by chase(I , Σ) the
result of an arbitrary chase sequence for I under Σ.
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Ontology-mediated queries. An ontology-mediated query (OMQ)

is a triple (S, Σ,q), where S is a schema, Σ is a set of tgds (the

ontology), and q is a (U)CQ over S ∪ sch(Σ) (and possibly other

predicates), with sch(Σ) the set of predicates occurring in Σ.2 Notice
that the set of tgds can introduce predicates not in S, which allows

us to enrich the schema of the UCQ q. Moreover, the tgds can

modify the content of a predicate R ∈ S, or, in other words, R can

appear in the head of a tgd of Σ. We have explicitly included S in the

specification of the OMQ to emphasize that it will be evaluated over

S-databases, even though Σ and q might use additional relational

symbols. We call S the data schema.
The semantics of an OMQ is given in terms of certain answers.

The certain answers to a UCQ q(x̄) w.r.t. a database D and a set Σ of

tgds is the set of tuples:

cert(q,D, Σ) =
⋂

D⊆I and I |=Σ

{c̄ ∈ dom(I ) |x̄ | | c̄ ∈ q(I )}.

Consider an OMQ Q = (S, Σ,q). The evaluation of Q over an S-
database D, denoted Q(D), is defined as cert(q,D, Σ). It is well-

known that cert(q,D, Σ) = q(chase(D, Σ)) (see, e.g., [15]), which
immediately implies that Q(D) = q(chase(D, Σ)).

Ontology-mediated query languages. We write (C,Q) for the
OMQ language that consists of all OMQs of the form (S, Σ,q), where
Σ falls in the class C of tgds, i.e., C ⊆ TGD (concrete classes of tgds

are discussed below), and the query q falls in Q ∈ {CQ,UCQ}. A
problem that is quite important for our work is OMQ evaluation,
defined as follows:

PROBLEM : Eval(C,Q)
INPUT : An OMQ Q = (S, Σ,q(x̄)) ∈ (C,Q),

an S-database D, and c̄ ∈ dom(D) |x̄ | .
QUESTION : Is c̄ ∈ Q(D)?

It is well-known that Eval(TGD,CQ) is undecidable; implicit in [6].

This has led to a flurry of activity for identifying syntactic restric-

tions on sets of tgds that make the latter problem decidable. Such

a restriction defines a subclass C of tgds. The known decidable

classes of tgds are classified into three main decidability paradigms,

which, in turn, give rise to decidable OMQ languages:

Guardedness: A tgd is guarded (frontier-guarded) if it has a body-
atom, called guard (frontier-guard), that contains all the body-

variables (all the body-variables that appear in the head). A guarded

tgd is trivially frontier-guarded, but there are frontier-guarded

tgds that are not guarded. Although the chase under (frontier-)

guarded tgds does not necessarily terminate, the problem of de-

ciding whether a tuple of constants is a certain answer to a UCQ

w.r.t. a database and a set of (frontier-)guarded tgds is decidable.

This follows from the fact that the result of the chase has bounded
treewidth (see, e.g., [2, 15]). Let G (resp., FG) be the class of (finite)
sets of guarded (resp., frontier-guarded) tgds. Then:

Proposition 2.1. [2, 15] Eval(G, (U)CQ) is 2ExpTime-complete,
and ExpTime-complete for fixed arity. Moreover, the problem
Eval(FG, (U)CQ) is complete for 2ExpTime, even for fixed arity.3

2
OMQs can be defined for arbitrary first-order theories, not only tgds, and first-order

queries, not only UCQs [12].

3Eval(C, (U)CQ) means Eval(C, CQ) and Eval(C, UCQ).

Figure 1: Stickiness and Marking.

An important subclass of guarded tgds is the class of linear tgds
whose body consists of a single atom. We write L for the class of
(finite) sets of linear tgds. Then:

Proposition 2.2. [16, 29] Eval(L, (U)CQ) is PSpace-complete,
and NP-complete for fixed arity.

Non-recursiveness: A set Σ of tgds is non-recursive (a.k.a. acyclic [22,
30]), if its predicate graph is acyclic. Recall that the nodes of the

predicate graph of Σ are the predicates occurring in Σ, and there

is an edge from R to P iff there is a tgd σ ∈ Σ such that R occurs

in the body of σ and P occurs in the head of σ . Non-recursiveness
ensures the termination of the chase, and thus decidability of OMQ

evaluation. Let NR be the class of non-recursive (finite) sets of tgds.

Proposition 2.3. [30] Eval(NR, (U)CQ) is NExpTime-complete,
even for fixed arity.

Stickiness: This condition ensures neither termination nor bounded

treewidth of the chase. Instead, the decidability of OMQ evaluation

is obtained by exploiting query rewriting techniques (more details

on query rewriting are given in Section 4). The goal of stickiness

is to capture joins among variables that are not expressible via

guarded tgds, but without forcing the chase to terminate. The key

property underlying this condition can be described as follows:

during the chase, terms that are associated (via a homomorphism)

with variables that appear more than once in the body of a tgd (i.e.,

join variables) are always propagated (or “stick”) to the inferred

atoms. This is illustrated in Figure 1(a); the left set of tgds is sticky,

while the right set is not. The formal definition is based on an

inductive marking procedure that marks the variables that may

violate the semantic property of the chase described above [17].

Roughly, during the base step of this procedure, a variable that

appears in the body of a tgd τ but not in every head-atom of τ is

marked. Then, the marking is inductively propagated from head to

body as shown in Figure 1(b). Finally, a finite set of tgds Σ is sticky
if no tgd in Σ contains two occurrences of a marked variable. Let S
be the class of sticky (finite) sets of tgds. Then:

Proposition 2.4. [17] Eval(S, (U)CQ) is ExpTime-complete, and
NP-complete for fixed arity.
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3 OMQ CONTAINMENT: THE BASICS

The goal of this work is to study in depth the problem of checking

whether an OMQ Q1 is contained in an OMQ Q2, both over the

same data schema S, or, equivalently, whether Q1(D) ⊆ Q2(D) for
every (finite) S-database D. In this case we writeQ1 ⊆ Q2; we write

Q1 ≡ Q2 if Q1 ⊆ Q2 and Q2 ⊆ Q1. The OMQ containment problem
in question is defined as follows; O1 and O2 are OMQ languages

(C,Q), where C is a class of tgds (e.g., linear, non-recursive, sticky,

etc.), and Q ∈ {CQ,UCQ}:

PROBLEM : Cont(O1,O2)

INPUT : Two OMQs Q1 ∈ O1 and Q2 ∈ O2.

QUESTION : Is Q1 ⊆ Q2?

Whenever O1 = O2 = O, we refer to the containment problem by

simply writing Cont(O).
In what follows, we establish some simple but fundamental re-

sults, which help to better understand the nature of our problem.

We first investigate the relationship between evaluation and con-

tainment, which in turn allows us to obtain an initial boundary for

the decidability of our problem, i.e., we can obtain a positive result

only if the evaluation problem for the involved OMQ languages is

decidable (e.g., those introduced in the previous section). We then

focus on the OMQ languages introduced in Section 2 and observe

that, once we fix the class of tgds, it does not make a difference

whether we consider CQs or UCQs. In other words, we show that

an OMQ in (C,UCQ), where C ∈ {FG,G,L,NR,S}, can be rewrit-

ten as an OMQ in (C,CQ). This fact simplifies our later complexity

analysis since for establishing upper (resp., lower) bounds it suffices

to focus on CQs (resp., UCQs).

3.1 Evaluation vs. Containment

OMQ evaluation and OMQ containment are strongly connected. As

we explain below, the former can be easily reduced to the latter. But

let us first introduce some auxiliary notation. Consider a database

D and a tuple c̄ = (c1, . . . , cn ) ∈ dom(D)n , where n ≥ 0. We denote

by qD, c̄ (x̄), where x̄ = (xc1
, . . . ,xcn ), the CQ obtained from the

conjunction of atoms occurring in D after replacing each constant

c with the variable xc . Consider now an OMQ Q = (S, Σ,q(x̄)) ∈
(C,CQ), where C is some class of tgds, an S-database D, and a tuple
c̄ ∈ dom(D) |x̄ | . It is not difficult to show that:

c̄ ∈ Q(D) ⇐⇒ (sch(Σ),∅,qD, c̄ )︸               ︷︷               ︸
Q1

⊆ (sch(Σ), Σ,q)︸         ︷︷         ︸
Q2

.

Let O∅ be the OMQ language that consists of all OMQs of the form

(S,∅,q), i.e., the set of tgds is empty, where q is a CQ. It is clear that

Q1 ∈ O∅ and Q2 ∈ (C,CQ). Therefore, for every OMQ language

O = (C,CQ), where C is a class of tgds, we immediately get that:

Proposition 3.1. Eval(O) can be reduced in polynomial time into
Cont(O∅,O).

We now show that the problem of evaluation is also reducible

to the complement of containment. Let us say that for technical

reasons, which will be made clear in a while, we focus our attention

on classes C of tgds that are closed under fact tgd extension, i.e., for
every set Σ ∈ C, a set obtained from Σ by adding a (finite) set of fact

tgds is still in C. Notice that the classes introduced above enjoy this
property. Consider now an OMQ Q = (S, Σ,q(x̄)) ∈ (C,CQ), where

C is some class of tgds, an S-database D, and a tuple c̄ ∈ dom(D) |x̄ | .
It is easy to see then that:

c̄ ∈ Q(D) ⇐⇒ (S, Σ⋆D ,q
⋆
c̄ )︸       ︷︷       ︸

Q1

* (S,∅,∃x P(x))︸            ︷︷            ︸
Q2

,

where Σ⋆D is obtained from Σ by renaming each predicate R in Σ

into R⋆ < S and adding the set of fact tgds:

{⊤ → R⋆(c1, . . . , ck ) | R(c1, . . . , ck ) ∈ D},

q⋆c̄ is obtained from q(c̄) by renaming each predicate R into R⋆ < S,
and the predicate P does not occur in S. Indeed, the above equiv-
alence holds since P < S implies that Q2(D) = ∅, for every S-
databaseD. SinceC is closed under fact tgd extension,Q1 ∈ (C,CQ),
while Q2 ∈ O∅. We write coCont(O1,O2) for the complement of

Cont(O1,O2). Hence, for every OMQ languageO = (C,CQ), where
C is a class of tgds (closed under fact tgd extension), it holds that:

Proposition 3.2. Eval(O) can be reduced in polynomial time into
coCont(O,O∅).

By definition, O∅ is contained in every OMQ language (C,CQ),
where C is a class of tgds. Therefore, as a corollary of Proposi-

tions 3.1 and 3.2, we obtain an initial boundary for the decidability

of OMQ containment: we can obtain a positive result only if the

evaluation problem for the involved OMQ languages is decidable.

Corollary 3.3. Cont(O1,O2) is undecidable if Eval(O1) is unde-
cidable or Eval(O2) is undecidable.

Can we prove the converse of Corollary 3.3, i.e., Cont(O1,O2) is

decidable if both Eval(O1) and Eval(O2) are decidable? The answer

to this question is negative since containment of Datalog queries is

undecidable [34]. Indeed, Datalog queries can be directly encoded

in the OMQ language based on the class F of full tgds, i.e., tgds
without existentially quantified variables. The next result follows:

Proposition 3.4. [34] Cont((F,CQ)) is undecidable.

This result, combined with the fact that Eval(F) is decidable
(since the chase under full tgds always terminates), implies that the

converse of Corollary 3.3 does not hold. Proposition 3.4 also rules

out the OMQ languages that are based on classes of tgds that gener-

alize F; e.g., the weak versions of the ones introduced in Section 2,

called weakly frontier-guarded [2], weakly guarded [15], weakly
acyclic [22], and weakly sticky [17] that guarantee the decidability

of OMQ evaluation.
4
The question that comes up concerns the

decidability and complexity of containment for the OMQ languages

that are based on the non-weak versions of the above classes, i.e.,

frontier-guarded, guarded, non-recursive, and sticky. This will be

the subject of the next three sections.

3.2 From UCQs to CQs

Before we proceed further, let us state the following useful result:

4
The idea of those classes is the same: relax the condition of the class so that only

those positions that receive null values during the chase are taken into account.
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Proposition 3.5. Given an OMQ Q ∈ (C,UCQ), where C ∈

{FG,G,L,NR,S}, we can construct in polynomial time an OMQ
Q ′ ∈ (C,CQ) such that Q ≡ Q ′.

The proof of the above result relies on the idea of encoding

boolean operations (in our case the ‘or’ operator) using a set of

atoms; this idea has been used in several works (see, e.g., [8, 14, 24]).

Proposition 3.5 allows us to focus on OMQs that are based on CQs.

Assuming that C1,C2 ∈ {FG,G,L,NR,S} and C is a complexity

class that is closed under polynomial time reductions, then:

Cont((C1,CQ), (C2,CQ)) is C-complete ⇐⇒

Cont((C1,UCQ), (C2,UCQ)) is C-complete.

3.3 Plan of Attack

We are now ready to proceed with the complexity analysis of con-

tainment for the OMQ languages in question. Our plan of attack

can be summarized as follows:

• We consider, in Section 4, Cont((C,CQ)), for C ∈ {L,NR,S}.
These languages enjoy the key property of UCQ rewritability.

This property allows us to show the following result: if the

containment does not hold, then this is witnessed via a “small”

database, which in turn allows us to devise simple guess-

and-check algorithms.

• We then proceed, in Section 5, with Cont((G,CQ)). This
OMQ language does not enjoy UCQ rewritability, and the

task of establishing a small witness property that leads to

an optimal upper bound turned out to be challenging. How-

ever, non-containment is witnessed via a “tree-like” database,

which allows us to devise a decision procedure based on two-

way alternating parity automata on finite trees.

• Cont((FG,CQ)) is studied in Section 6. Recall that (FG,CQ)
is strictly more expressive than (G,CQ), and thus, we cannot
directly apply the machinery for Cont((G,CQ)). Neverthe-
less, after focusing on acyclic databases, frontier-guarded

OMQs can be rewritten as guarded OMQs, which essentially

provides a reduction fromCont((FG,CQ)) toCont((G,CQ)).
• In Section 7, we study the case where the OMQ containment

problem involves two different languages. If the left-hand

side language is UCQ rewritable, then we can devise a guess-

and-check algorithm based on the above small witness prop-

erty. The interesting case is when the left-hand side language

is (FG,CQ), where we employ tree automata techniques.

4 UCQ REWRITABLE LANGUAGES

We now focus on OMQ languages that enjoy the crucial property of

UCQ rewritability. Roughly, an OMQ languageO is UCQ rewritable

if every query in O can be equivalently rewritten as a UCQ. The

formal definition follows:

Definition 4.1. (UCQ Rewritability) We call an OMQ language

(C,CQ), where C ⊆ TGD, UCQ rewritable if, for each OMQ Q =
(S, Σ,q(x̄)) ∈ (C,CQ), we can construct a UCQ q′(x̄) such that

Q(D) = q′(D) for every S-database D.

We proceed to establish our desired small witness property based

on UCQ rewritability. By the definition of UCQ rewritability, for

each language O that is UCQ rewritable, there exists a computable

function fO from O to the natural numbers such that the following

holds: for every OMQ Q = (S, Σ,q(x̄)) ∈ O, and UCQ rewriting

q1(x̄)∨ · · ·∨qn (x̄) ofQ , it is the case that max1≤i≤n {|qi |} ≤ fO(Q),
where |qi | denotes the number of atoms occurring in qi . Then:

Proposition 4.2. Consider a UCQ rewritable language O, and
two OMQs Q ∈ O and Q ′ ∈ (TGD,CQ), both with data schema S. If
Q * Q ′, then there exists an S-database D, where |D | ≤ fO(Q), such
that Q(D) * Q ′(D).

Proof (sketch). We assume that q(x̄) =
∨n
i=1

qi (x̄) is a UCQ

rewriting of Q . Since, by hypothesis, Q * Q ′
, we conclude that

q * Q ′
, which in turn implies that there exists an i ∈ {1, . . . ,n}

such that qi * Q ′
. It is easy to show that c(x̄) < Q ′(Dqi ), where

c(x̄) is a tuple of constants obtained by replacing each variable x
in x̄ with the constant c(x), and Dqi is the S-database obtained

from qi after replacing each variable x in qi with the constant

c(x). Since c(x̄) ∈ q(Dqi ), we get that c(x̄) ∈ Q(Dqi ). Therefore,

Q(Dqi ) * Q ′(Dqi ), and the claim follows since |Dqi | ≤ fO(Q). �

In Proposition 4.2 we only assume that the left-hand side query

falls in a UCQ rewritable language, without any assumption on

the language of the right-hand side query. Thus, we immediately

get a decision procedure for Cont(O1,O2) if O1 is UCQ rewritable

and Eval(O2) is decidable. Given Q1 = (S, Σ1,q1(x̄)) ∈ O1 and

Q2 = (S, Σ2,q2(x̄)) ∈ O2:

(1) Guess an S-database D such that |D | ≤ fO1
(Q1), and a tuple

c̄ ∈ dom(D) |x̄ | ; and
(2) Verify that c̄ ∈ Q1(D) and c̄ < Q2(D).

We immediately get that:

Theorem 4.3. Cont(O1,O2) is decidable if O1 is UCQ rewritable
and Eval(O2) is decidable.

This generic result shows that Cont((C,CQ)) is decidable for

every class C ∈ {L,NR,S}, but it says nothing about complexity.

This will be the subject of the rest of the section.

4.1 Linearity

The problem of computing UCQ rewritings for OMQs in (L,CQ)
has been studied in [23], where a resolution-based procedure, called

XRewrite, has been proposed. This rewriting algorithm accepts a

query Q = (S, Σ,q(x̄)) ∈ (L,CQ) and constructs a UCQ rewriting

q′(x̄) over S by starting from q and exhaustively applying rewriting

steps based on resolution. Due to the fact that the set of tgds is linear,

i.e., the tgd-bodies consist of single atoms, during the execution

of XRewrite, it is not possible to obtain a CQ that has more atoms

than the original one. Therefore:

Proposition 4.4. f(L,CQ)
(
(S, Σ,q)

)
≤ |q |.

Having the above result in place, it can be shown that the algo-

rithm underlying Theorem 4.3 guesses a polynomially sized witness

to non-containment, and then calls a C-oracle for solving query

evaluation under linear OMQs, where C is PSpace in general, and

NP if the arity is fixed; these complexity classes are obtained from

Proposition 2.2. Therefore, coCont((L,CQ)) is in PSpace in general,

and in ΣP
2
in case of fixed arity. Regarding the lower bounds, Propo-

sition 3.1 allows us to inherit the PSpace-hardness of Eval(L,CQ);
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this holds even for constant-free tgds. Unfortunately, in the case of

fixed arity, we can only obtain NP-hardness, while Proposition 3.2

allows to obtain coNP-hardness. Nevertheless, it is implicit in [11]

(see the proof of Theorem 9), where the containment problem for

OMQ languages based on description logics is considered, that

Cont((L,CQ)) is ΠP
2
-hard, even for tgds of the form P(x) → R(x).

Theorem 4.5. Cont((L,CQ)) is PSpace-complete, and ΠP
2
-

complete if the arity of the schema is fixed. The lower bounds hold
even for tgds without constants.

4.2 Non-Recursiveness

Although the OMQ language (NR,CQ) is not explicitly consid-

ered in [23], where the algorithm XRewrite is defined, the same

algorithm can deal with (NR,CQ). By analyzing the UCQ rewrit-

ings constructed by XRewrite, whenever the input query falls in

(NR,CQ), we can establish the following result; here, body(τ ) de-
notes the body of the tgd τ :

Proposition 4.6. It holds that:

f(NR,CQ)
(
(S, Σ,q)

)
≤ |q | ·

(
max

τ ∈Σ
{|body(τ )|}

) |sch(Σ) |
.

Proposition 4.6 implies that non-containment for queries that

fall in (NR,CQ) is witnessed via a database of at most exponential

size. We show next that this bound is optimal:

Proposition 4.7. There are sets of (NR,CQ) OMQs

{Qn
1
= (S, Σn

1
,q1)}n>0 and {Qn

2
= (S, Σn

2
,q2)}n>0,

where |sch(Σn
1
)| = |sch(Σn

2
)| = n + 2, such that for every S-database

D, if Qn
1
(D) * Qn

2
(D) then |D | ≥ 2

n−1.

Let us now focus on the complexity of Cont((NR,CQ)). By
naively combining the algorithm underlying Theorem 4.3 and

the exponential bound provided by Proposition 4.6, we get that

coCont((NR,CQ)) is feasible in non-deterministic exponential time

with access to a NExpTime oracle; the oracle is needed for solving

Eval(NR,CQ). Nevertheless, this rough upper bound can be signifi-

cantly improved; in fact, it can be decreased to NExpTime
NP

, which

is nearly optimal (more details are given below), by employing a

refined version of the algorithm underlying Theorem 4.3. Recall

that NExpTime
NP

forms the second level of the exponential hierar-

chy, a.k.a. ΣEXP
2

, and it collects all the decision problems that can

be solved via an alternating exponential time algorithm with two

alternations that starts from an existential state, i.e., it can perform

a series of existential steps followed by a series of universal steps.

The refined version of the algorithm underlying Theorem 4.3 is

such an algorithm.

Before giving this algorithm, let us recall a crucial property of

non-recursive OMQs. Given a database D, an OMQ (S, Σ,q(x̄)) ∈
(NR,CQ), and a tuple c̄ ∈ dom(D) |x̄ | , if c̄ ∈ Q(D) then there exists

a finite chase sequence:

D = I0
τ0, c̄0

−−−−→ I1
τ1, c̄1

−−−−→ I2 · · · In−1

τn−1, c̄n−1

−−−−−−−−→ Iд(D,Σ)

for D under Σ, where:

д(D, Σ) = |D | ·

(
max

τ ∈Σ
{|body(τ )|}

) |sch(Σ) |

such that c̄ ∈ q(Iд(D,Σ)); implicit in [30]. Having this property

in place, we can now present our alternating algorithm. Given

Q1 = (S, Σ1,q1(x̄)) and Q2 = (S, Σ2,q2(x̄)):

(1) Guess an S-database D of size at most f(NR,CQ)(Q1), and a

tuple c̄ ∈ dom(D) |x̄ | .
(2) Guess a chase sequence

D
τ0, c̄0

−−−−→ I1
τ1, c̄1

−−−−→ I2 · · · In−1

τn−1, c̄n−1

−−−−−−−−→ Iд(D,Σ1)

for D under Σ1.

(3) Guess a mapping h, which is the identity on C, from the

variables in q1 to dom(Iд(D,Σ1)).

(4) Ifh is a homomorphism fromq1 to Iд(D,Σ1) such thath(x̄) = c̄ ,
then proceed; otherwise, reject.

(5) Universally select each chase sequence

D
τ0, c̄0

−−−−→ I1
τ1, c̄1

−−−−→ I2 · · · In−1

τn−1, c̄n−1

−−−−−−−−→ Iд(D,Σ2)

for D under Σ2.

(6) Universally select each mapping h, which is the identity on

C, from the variables in q2 to dom(Iд(D,Σ2)).

(7) Ifh is a homomorphism fromq2 to Iд(D,Σ2) such thath(x̄) = c̄ ,
then reject; otherwise, accept.

The above algorithm is an alternating exponential time algorithm

with two alternations that starts from an existential state. Moreover,

it accepts iff Q1 * Q2, and the desired upper bound follows.

It is not knownwhether our problem is coNExpTime
NP

-complete.

Nevertheless, we provide a nearly matching lower bound; in fact,

P
NEXP

-hardness. More details on how the above complexity classes

are related are discussed below. Let us now explain how P
NEXP

-

hardness is obtained. To this end, we exploit a tiling problem that

has been recently introduced in [21]. Roughly speaking, an instance

of this tiling problem is a triple (m,T1,T2), wherem is an integer

in unary representation, and T1,T2 are standard tiling problems

for the (2n × 2
n )-grid. The question is whether, for every initial

conditionw of lengthm, T1 has no solution withw or T2 has some

solution withw . The initial conditionw simply fixes the firstm tiles

of the first row of the grid. We construct in polynomial time two

(NR,CQ) queries Q1 and Q2 such that (m,T1,T2) has a solution iff

Q1 ⊆ Q2. The idea is to force every input database to store an initial

conditionw of lengthm, and then encode the problem whether Ti
has a solution withw into Qi , for each i ∈ {1, 2}. Then:

Theorem 4.8. Cont((NR,CQ)) is in coNExpTimeNP, and PNEXP-
hard. The lower bound holds even if the arity of the schema is fixed
and the tgds are without constants.

NExpTime
NP

vs. P
NEXP

. It is known that NExpTime
NP

is a deli-

cate class: if we restrict its oracle access too much, it collapses to

P
NEXP

[28]. For example, following the notation of [28], P
NEXP

coin-

cides with NExpTime
NP[poly]tree

, where only polynomially many or-

acle calls are allowed throughout the computation tree of the Turing

machine. Also, P
NEXP

coincides with NExpTime
NP[poly]path[exp]yes, tree

,

where only polynomially many oracle calls are allowed on each

path of the computation tree, and exponentially many calls with

a “yes” answer throughout the computation tree of the Turing ma-

chine. The above results support our claim that P
NEXP

is a nearly

matching lower bound for Cont((NR,CQ)).
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4.3 Stickiness

We now focus on OMQs that fall in (S,CQ). As shown in [23],

given a query (S, Σ,q), there exists an execution of XRewrite that
constructs a UCQ rewriting q1(x̄) ∨ · · · ∨ qn (x̄) over S with the

following property: for each i ∈ {1, . . . ,n}, if a variable v occurs in

qi in more than one atom, thenv already occurs in q. This property
has been used in [23] to bound the number of atoms that can appear

in a single CQ qi . We write T (q) for the set of terms (constants and

variables) occurring in q; C(Σ) for the set of constants occurring in

Σ; and ar(S) for the maximum arity over all predicates of S.

Proposition 4.9. It holds that

f(S,CQ)((S, Σ,q)) ≤ |S| · (|T (q)| + |C(Σ)| + 1)ar(S) .

Proposition 4.9 implies that non-containment for (S,CQ) queries
is witnessed via a database of at most exponential size. As for

(NR,CQ) queries, we can show that this bound is optimal; for a set

Σ of tgds, we write ∥Σ∥ for the number of symbols occurring in Σ.

Proposition 4.10. There exists a set of (S,CQ) OMQs:

{Qn = ({S/n}, Σn ,q(x̄))}n>0, where ∥Σ
n ∥ ∈ O(n2),

such that for every Q = ({S}, Σ′,q′(x̄)) ∈ (TGD,CQ) and {S}-
database D, if Qn (D) * Q(D) then |D | ≥ 2

n−2.

We now study the complexity of Cont((S,CQ)). Let us first look
at schemas of unbounded arity. Proposition 4.9 implies that the al-

gorithm underlying Theorem 4.3 runs in exponential time assuming

access to a C-oracle, where C is a complexity class powerful enough

for solving Eval(S,CQ) and its complement. But, since Eval(S,CQ)
is in ExpTime (see Proposition 2.4), both Eval(S,CQ) and its com-

plement are in NExpTime, and thus, the oracle call is not really

needed. From this discussion, we conclude that coCont((C,CQ)) is
in NExpTime. A matching lower bound is obtained by a reduction

from the standard tiling problem for the (2n × 2
n )-grid. In fact, the

same lower bound has been recently established in [9]; however,

our result is stronger as it shows that the problem remains hard

even if the right-hand side query is a linear OMQ of a simple form –

this is also discussed in Section 7, where containment of queries that

fall in different OMQ languages is studied. Regarding schemas of

fixed arity, Proposition 4.9 provides a witness for non-containment

of polynomial size, which implies that the algorithm underlying

Theorem 4.3 runs in polynomial time with access to an NP-oracle.

Therefore, coEval(S,CQ) is in ΣP
2
, while a matching lower bound

is implicit in [11].

Theorem 4.11. Cont((S,CQ)) is coNExpTime-compl., even if the
set of tgds uses only two constants. In the case of fixed arity, it is
ΠP

2
-complete, even for constant-free tgds.

5 GUARDEDNESS

We proceed with the problem of containment for guarded OMQs,

and we establish the following result:

Theorem 5.1. Cont((G,CQ)) is 2ExpTime-complete. The lower
bound holds even if the arity of the schema is fixed, and the tgds are
without constants.

The lower bound is immediately inherited from [10], where it is

shown that containment for OMQs based on the description logic

ELI is 2ExpTime-hard. Recall that a set of ELI axioms can be

equivalently rewritten as a constant-free set of guarded tgds using

only unary and binary predicates, which implies the lower bound

stated in Theorem 5.1. However, we cannot immediately inherit

the desired upper bound since the DL-based OMQ languages con-

sidered in [10] are either weaker than or incomparable to (G,CQ).
Nevertheless, the technique developed in [10] was extremely useful

for our analysis. Actually, our automata-based procedure exploits

a combination of ideas from [10, 27]. The rest of this section is

devoted to providing a high-level explanation of this procedure.

For clarity, we focus on constant-free tgds and CQs, but all the

results can be extended to the general case at the price of more

involved definitions and proofs. Moreover, for simplicity, we focus

on Boolean CQs. In other words, we study the problem for (G,BCQ),
where BCQ denotes the class of Boolean CQs. This does not affect

the generality of our proof since it is known that Cont((G,CQ))
can be reduced in polynomial time to Cont((G,BCQ)) [10].

A first glimpse. As said, (G,CQ) is not UCQ rewritable and, there-

fore, we cannot employ Proposition 4.2 in order to establish a small

witness property as in Section 4. We have tried, by following a

different route, to establish a small witness property for (G,CQ),
which can then be used for obtaining an optimal upper bound

for Cont((G,CQ)), but it turned out to be a difficult task. Never-

theless, we can show a tree witness property, which states that

non-containment for (G,CQ) is witnessed via a tree-like database.

This allows us to devise a procedure based on alternating tree au-

tomata. Summing up, the proof for the 2ExpTime membership of

(G,CQ) proceeds in three steps:

(1) Establish a tree witness property;

(2) Encode the tree-like witnesses as trees that can be accepted

by an alternating tree automaton; and

(3) Construct an automaton that decides Cont((G,CQ)); in fact,

we reduce Cont((G,CQ)) into emptiness for two-way alter-

nating parity automata on finite trees.

Each one of the above three steps is discussed in more detail in

the following three sections. Let us say that our automata-based

approach provides a small witness property for (G,CQ). We ob-

tain that non-containment is witnessed via a triple-exponentially-

sized database; details are given below. However, we do not know

whether this is optimal.

5.1 Tree Witness Property

From the above informal discussion, it is clear that tree-like

databases are crucial for our analysis. Let us make this notion

more precise using guarded tree decompositions. A tree decompo-
sition of a database D is a labeled rooted tree T = (V ,E, λ), where
λ : V → 2

dom(D)
, such that: (i) for each atom R(t1, . . . , tn ) ∈ D,

there exists v ∈ V such that λ(v) ⊇ {t1, . . . , tn }, and (ii) for ev-

ery term t ∈ dom(D), the set {v ∈ V | t ∈ λ(v)} induces a con-

nected subtree ofT . The tree decompositionT is called [U ]-guarded,
where U ⊆ V , if, for every node v ∈ V \U , there exists an atom

R(t1, . . . , tn ) ∈ D such that λ(v) ⊆ {t1, . . . , tn }. We write root(T )
for the root node ofT , and DT (v), where v ∈ V , for the subset of D
induced by λ(v). We are now ready to formalize the notion of the

tree-like database:
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Definition 5.2. An S-database D is aC-tree, whereC ⊆ D, if there
is a tree decomposition T of D such that:

(1) DT (root(T )) = C and

(2) T is [{root(T )}]-guarded.

Roughly, whenever a database D is a C-tree, C is the cyclic part

ofD, while the rest ofD is tree-like. For deciding Cont((G,BCQ)) it
suffices to focus on databases that areC-trees and |dom(C)| depends
only on the left-hand side OMQ. Recall that for a schema Swe write
ar(S) for the maximum arity over all predicates of S. Then:

Proposition 5.3. Let Qi = (S, Σi ,qi ) ∈ (G,BCQ), for i ∈ {1, 2}.
The following are equivalent:

(1) Q1 ⊆ Q2.
(2) Q1(D) ⊆ Q2(D), for every C-tree S-database D such that

|dom(C)| ≤ (ar(S ∪ sch(Σ1)) · |q1 |).

The fact that (1) ⇒ (2) holds trivially, while (2) ⇒ (1) is shown

by using a variant of the notion of guarded unravelling and com-

pactness. Let us clarify that the above result does not provide

a decision procedure for Cont((G,BCQ)), since we have to con-

sider infinitely many databases that are C-trees with |dom(C)| ≤
(ar(S ∪ sch(Σ1)) · |q1 |).

5.2 Encoding Tree-like Databases

The treewidth of a database D is the minimum width among all

the tree decompositions T = (V ,E, λ) of D, while the width of T is

defined as maxv ∈V {|λ(v)|}−1. It is generally known that a database

D whose treewidth is bounded by an integer k can be encoded into

a tree over a finite alphabet of double-exponential size in k that can

be accepted by an alternating tree automaton; see, e.g., [7].

Consider an alphabet Γ, and let N∗ be the set of finite sequences
of natural numbers, including the empty sequence. A Γ-labeled tree
is a pair L = (N , λ), where N ⊆ N∗ is closed under prefixes, and

λ : N → Γ is the labeling function. The elements of N identify the

nodes of L. It can be shown that D and a tree decompositionT of D
with width k can be encoded as a Γ-labeled tree L, where Γ is an

alphabet of double-exponential size in k , such that each node of T
corresponds to exactly one node of L and vice versa.

Consider now a C-tree S-database D, and let T be the tree de-

composition that witnesses that D is a C-tree. The width of T is

at most k = (|dom(C)| + ar(S) − 1), and thus, the treewidth of D is

bounded by k . Hence, from the above discussion, D and T can be

encoded as a Γ-labeled tree, where Γ is of double-exponential size in
k . In general, given an S-database D that is a C-tree due to the tree

decomposition T , we show that D and T can be encoded as a ΓS,l -
labeled tree, with |dom(C)| ≤ l and |ΓS,l | being double-exponential

in ar(S) and exponential in |S| and l .
Although every C-tree S-database D can be encoded as a ΓS,l -

labeled tree, the other direction does not hold. In other words, it

is not true that every ΓS,l -labeled tree encodes a C-tree S-database
D and its corresponding tree decomposition. In view of this fact,

we need the additional notion of consistency. A ΓS,l -labeled tree is

called consistent if it satisfies certain syntactic properties – we do

not give these properties here since they are not vital in order to

understand the high-level idea of the proof. Now, given a consistent

ΓS,l -labeled tree L, we can show that L can be decoded into an

S-database JLK that is a C-tree with |dom(C)| ≤ l . From the above

discussion and Proposition 5.3, we obtain:

Lemma 5.4. Let Qi = (S, Σi ,qi ) ∈ (G,BCQ), for i ∈ {1, 2}. The
following are equivalent:

(1) Q1 ⊆ Q2.
(2) Q1(JLK) ⊆ Q2(JLK), for every consistent ΓS,l -labeled tree L,

where l = (ar(S ∪ sch(Σ1)) · |q1 |).

5.3 Constructing Tree Automata

Having the above result in place, we can now proceed with our

automata-based procedure. We use two-way alternating parity au-

tomata (2WAPA) that run on finite labeled trees. Two-way alternat-

ing automata process the input tree while branching in an alternat-

ing fashion to successor states, and thereby moving either down or

up the input tree. Our goal is to reduceCont((G,BCQ)) to the empti-

ness problem for 2WAPA. As usual, given a 2WAPAA, we denote by

L(A) the language of A, i.e., the set of labeled trees it accepts. The

emptiness problem is defined as follows: given a 2WAPA A, does

L(A) = ∅? Thus, given Q1,Q2 ∈ (G,BCQ), we need to construct

a 2WAPA A such that Q1 ⊆ Q2 iff L(A) = ∅. Deciding whether

L(A) is empty is feasible in exponential time in the number of

states, and in polynomial time in the size of the input alphabet [20].

Therefore, we should construct A in double-exponential time, while

the number of states must be at most exponential.

We first need a way to check consistency of labeled trees. It is

not difficult to devise an automaton for this task.

Lemma 5.5. Consider a schema S and an integer l > 0. There is a
2WAPA CS,l that accepts a ΓS,l -labeled tree L iff L is consistent. The
number of states of CS,l is logarithmic in the size of ΓS,l . Furthermore,
CS,l can be constructed in polynomial time in the size of ΓS,l .

Now, the crucial task is, given an OMQ Q ∈ (G,BCQ), to de-

vise an automaton that accepts labeled trees which correspond to

databases that make Q true.

Lemma 5.6. Let Q = (S, Σ,q) ∈ (G,BCQ). There is a 2WAPA
AQ,l , where l > 0, that accepts a consistent ΓS,l -labeled tree L iff
Q(JLK) , ∅. AQ,l has exponentially many states in ∥Q ∥ and l , and
it can be constructed in double-exponential time in ∥Q ∥ and l .

The intuition underlying AQ,l can be described as follows. AQ,l
tries to identify all the possible ways the CQ q can be mapped to

chase(D, Σ), for any C-tree S-database D such that |dom(C)| ≤ l .
It then arrives at possible ways how the input tree can satisfy Q .
These “possible ways” correspond to squid decompositions, a notion
introduced in [15] that indicates which part of the query is mapped

to the cyclic part C of D, and which to the tree-like part of D. The
automaton exhaustively checks all squid decompositions by travers-

ing the input tree and, at the same time, explores possible ways

how to match the single parts of the squid decomposition at hand.

The automaton finally accepts if it finds a squid decomposition that

can be mapped to chase(D, Σ).
Having the above automata in place, we can proceed with our

main technical result, which shows that Cont(G,BCQ) can be re-

duced to the emptiness problem for 2WAPA. But let us first recall

some key results about 2WAPA, which are essential for our final

construction. It is well-known that languages accepted by 2WAPAs
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are closed under intersection and complement. Given two 2WAPAs

A1 andA2, we writeA1∩A2 for a 2WAPA, which can be constructed

in polynomial time, that accepts the languageL(A1)∩L(A2). More-

over, for a 2WAPA A, we write A for a 2WAPA, which is also con-

structible in polynomial time, that accepts the complement of L(A).

We can now show the following:

Proposition 5.7. Consider Q1,Q2 ∈ (G,BCQ). We can construct
in double-exponential time a 2WAPA A, which has exponentially
many states, such that

Q1 ⊆ Q2 ⇐⇒ L(A) = ∅.

Proof (sketch). Let Qi = (S, Σi ,qi ), for i ∈ {1, 2}, and l =
(ar(S ∪ sch(Σ1)) · |q1 |). Then A is defined as

(CS,l ∩ AQ1,l ) ∩ AQ2,l .

Since ΓS,l has double-exponential size, Lemmas 5.5 and 5.6 imply

that A can be constructed in double-exponential time, while it has

exponentially many states. Lemma 5.4 implies that Q1 ⊆ Q2 iff

L(A) = ∅, and the claim follows. �

Proposition 5.7 implies that Cont((G,BCQ)) is in 2ExpTime, and

Theorem 5.1 follows. The above proposition provides a small wit-

ness property for Cont((G,BCQ)). In particular, if Q1 * Q2, then

this is witnessed via a database JLK, where L is a tree accepted by the
automaton A in Proposition 5.7. Since A has exponentially many

states, we can conclude that the trees accepted by A have size at

most triple-exponential. This is becauseA can be transformed into a

non-deterministic tree automaton with double-exponentially many

states, which in turn accepts trees of size at most triple-exponential.

Therefore, JLK is a triple-exponentially-sized database. It is open

whether this is an optimal upper bound.

6 FRONTIER-GUARDEDNESS

We proceed to show that Theorem 5.1 can be extended to OMQs

based on frontier-guarded tgds:

Theorem 6.1. Cont((FG,CQ)) is complete for 2ExpTime. The
lower bound holds even if the arity of the schema is fixed, and the
tgds are without constants.

As for Cont((G,CQ)), the lower bound is inherited from [10].

The rest of this section is devoted to establish the desired upper

bound. As in Section 5, we focus on constant-free tgds and constant-

free BCQs, but the result can be extended to the general case. In fact,

in order to simplify our analysis even more, let us observe that for

containment purposes under OMQs based on frontier-guarded tgds,

it suffices to focus on Boolean atomic queries, i.e., BCQs consisting

of a single atom; we refer to this class of queries as BAQ. The
reason for this is because a BCQ can be seen as frontier-guarded tgd.

More precisely, an OMQ (S, Σ,q) ∈ (FG,BCQ) can be equivalently

rewritten as the OMQ (S, Σ ∪ {q → Ans},Ans) ∈ (FG,BAQ),
where each variable in q → Ans is interpreted as a universally

quantified variable. From the above discussion, it suffices to show

that Cont((FG,BAQ)) is in 2ExpTime.

Our goal is to provide a reduction from Cont((FG,BAQ)) to
Cont((G,BAQ)), and then apply Theorem 5.1. Themain ingredients

of our reduction are the following:

(1) A query Q ∈ (FG,BAQ) can be rewritten as a query Q ′ ∈

(G,BAQ) in such a way that Q and Q ′
are equivalent over

acyclic databases, i.e., databases that have a [∅]-guarded tree

decomposition.

(2) We observe that for (G,BAQ) we can characterize satisfia-

bility via acyclic databases. In other words, if there exists a

database that satisfies a (G,BAQ) queryQ , thenQ is satisfied

by an acyclic database.

Let us make the above statements more formal. The translation

of (FG,BAQ) into a (G,BAQ) relies on the notion of treeification
(see, e.g., [4, 5]), and is inspired by a construction given in [5] that

translates guarded negation fixed point sentences into guarded

fixed point sentences. Our goal is to transform a frontier-guarded

tgd into a set of guarded tgds by treeifying the body of the former.

In fact, the treefication procedure will first transform a tgd-body,

which is essentially a CQ, to a set of strictly acyclic CQs, i.e., CQs
that are acyclic and have an atom that contains its free variables.

Then each strictly acyclic query will give rise to linearly many

guarded tgds. Let us now recall treefications.

Consider a CQ q(x̄) over a schema S. The T-treefication of q(x̄),

where T ⊇ S, is the set ΛT
q of all strictly acyclic CQs q′(x̄) over

T of size at most 3|q | such that (i) q′ ⊆ q, and (ii) is minimal, i.e.,

by removing an atom would render into a CQ that is not strictly

acyclic or q′ * q. The set ΛT
q can be seen as the UCQ ΛT

q (x̄) defined

as the disjunction of all CQs contained in ΛT
q . Notice that the query

q(x̄) is in general not equivalent to its T-treeification. However,
q(x̄) and ΛT

q (x̄) are equivalent over acyclic T-databases [4, 5].
We are now ready to explain how a frontier-guarded OMQ is

transformed into a guarded OMQ. Consider a frontier-guarded tgd

τ : ϕ(x̄ , ȳ) → ∃z̄ ψ (x̄ , z̄) and a schema T. Let f TC (τ ), where C is a

predicate not in T, be the set of tgds{
q(x̄) → ∃z̄ ψ (x̄ , z̄) | q(x̄) ∈ Λ

T∪{C }

∃ȳ ϕ(x̄,ȳ)
}
.

Notice that the tgds in f TC (τ ) may not be guarded. However, by

construction, their bodies are strictly acyclic CQs, and this allows us

to rewrite each tgd in f TC (τ ) into linearly many guarded tgds, which

we denote by дTC (τ ). Given an OMQ Q = (S, Σ,q) ∈ (FG,BAQ), let

дC (Q) =

(
S ∪ {C},

⋃
τ ∈Σ

д
S∪sch(Σ)
C (τ ),q

)
∈ (G,BAQ),

where C is an auxiliary predicate not in S ∪ sch(Σ). This completes

the translation from frontier-guarded to guarded OMQs. We can

show the following crucial lemma, which actually formalizes the

first intuitive statement given above. Given a schema S and a pred-

icate C/n < S, for brevity, we write SC for S ∪ {C}. Given an S-
database D, let DC be the SC -database D ∪ {C(t̄) | t̄ ∈ dom(D)n }.
By the width of an OMQ Q , written width(Q), we mean the maxi-

mum number of variables in the body of a tgd of Q .

Lemma 6.2. Let Q = (S, Σ,q) ∈ (FG,BAQ), and Q ′ = дC (Q),
where C < S has arity at least width(Q). Then:

(1) For each acyclic SC -database D, Q(D) = Q ′(D).
(2) For each S-database D, Q(D) , ∅ ⇒ Q ′(DC ) , ∅.

Let us now formalize the second intuitive statement given above.

Actually, the next result is implicit in the proof of Proposition 5.3,
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which establishes that non-containment for (G,CQ) is witnessed
via a tree-like database. We write I → D for the fact that the

instance I can be mapped via a homomorphism to the database D.

Lemma 6.3. Consider an S-database D, and an OMQ Q =

(S, Σ,q) ∈ (G,BAQ). If Q(D) , ∅, then there is a finite acyclic
S-instance I such that Q(I ) , ∅ and I → D.

Having the above lemmas in place, it is easy to show that дC (·)
provides a reduction from Cont((FG,BAQ)) to Cont((G,BAQ)), if
the arity of C is sufficiently large.

Proposition 6.4. Let Qi = (S, Σi ,qi ) ∈ (G,BAQ), for i ∈ {1, 2},
and consider a predicate C < (S ∪ sch(Σ1) ∪ sch(Σ2)) that has arity
maxi ∈{1,2}{width(Qi )}. Then,

Q1 ⊆ Q2 ⇐⇒ дC (Q1) ⊆ дC (Q2).

Proof (sketch). Let Q ′
i = дC (Qi ), for i ∈ {1, 2}. Assume that

Q1 * Q2. This implies that there exists an S-database D such that

Q1(D) , ∅ and Q2(D) = ∅. By Lemma 6.2, Q ′
1
(DC ) , ∅, and

thus, by Lemma 6.3, there exists a finite acyclic SC -instance I such
that Q ′

1
(I ) , ∅ and I → DC . Since Q2(DC ) = Q2(D) = ∅, and Q2

is closed under homomorphisms, Q2(I ) = ∅. Consequently, by

Lemma 6.2, Q ′
2
(I ) = ∅, which implies that Q ′

1
* Q ′

2
. The other

direction can be shown analogously. �

The above proposition provides the desired reduction from

Cont((FG,BAQ)) to Cont((G,BAQ)), which allows us to apply

the algorithm for Cont((G,CQ)), devised in Section 5. However,

it should not be overlooked that this reduction takes exponen-

tial time due to the treefication procedure. In fact, for a CQ q,

|ΛT
q | ≤ |T|O ( |q |)(|q |w)O ( |q |w )

, wherew is the maximum arity over

all predicates of T [4, 5]. Nevertheless, since the reduction pro-

vided by Proposition 6.4 increases the arity of the schema only

polynomially, while the algorithm for Cont((G,BAQ)) provided
by Theorem 5.1 is double-exponential only on the arity of the un-

derlying schema, we obtain that Cont((FG,BAQ)) is feasible in

double-exponential time, as needed.

We conclude this section by noticing that, as for guarded OMQs,

we get a small witness property for Cont((FG,CQ)), which states

that non-containment is witnessed via a triple-exponentially-sized

database. More precisely, Q1 * Q2 implies дC (Q1) * дC (Q2), and

we can show that the latter non-containment is witnessed via a

triple-exponentially-sized acyclic database D. Since, by Lemma 6.2,

Qi and дC (Qi ), for i ∈ {1, 2}, are equivalent over acyclic databases,

D is a witness for Q1 * Q2.

7 COMBINING LANGUAGES

In the previous three sections, we studied the containment problem

relative to a language O, i.e., both OMQs fall in O. However, it is
natural to consider the version of the problem where the involved

OMQs fall in different languages. This is the goal of this section.

Our analysis proceeds by considering the two cases where the left-

hand side (LHS) query falls in a UCQ rewritable OMQ language,

or it is guarded. Notice that the two cases where the LHS query

is guarded or frontier-guarded behave in the same way. Thus, for

brevity, we only focus on the former case.

7.1 The LHS Query is UCQ Rewritable

As an immediate corollary of Theorem 4.3 we obtain the following

result: Cont((C1,CQ), (C2,CQ)), for C1 , C2, C1 ∈ {L,NR,S}
and C2 ∈ {L,NR,S,FG,G}, is decidable. By exploiting the al-

gorithm underlying Theorem 4.3, we establish optimal upper

bounds for all the problems at hand with the only exception of

Cont((S,CQ), (NR,CQ)). For the latter, we obtain a coNExpTime
np

upper bound, by providing a similar analysis as forCont((NR,CQ)),
while a NExpTime lower bound is inherited from query evaluation

by exploiting Proposition 3.1. It is rather tedious to go through all

the containment problems in question and explain in details how

the exact upper bounds are obtained.
5

Regarding the matching lower bounds, in most of the cases they

are inherited from query evaluation by exploiting Propositions 3.1

and 3.2. There are, however, some exceptions:

• Cont((S,CQ), (L,CQ)) in the case of unbounded arity, where
the problem is coNExpTime-hard, even for sets of tgds that

use only two constants. This is shown by a reduction from

the standard tiling problem for the exponential grid 2
n × 2

n
.

• Cont((L,CQ), (S,CQ)) and Cont((S,CQ), (L,CQ)) in the

case of bounded arity, where both problems are ΠP
2
-hard

even for constant-free tgds; implicit in [11].

7.2 The LHS Query is Guarded

We proceed with the case where the LHS query is guarded, and we

show the following result:

Theorem 7.1. The problem Cont((G,CQ), (C,CQ)) is C-
complete, where:

C =

{
2ExpTime, if C ∈ {L,S},

3ExpTime, if C = NR.

The lower bounds hold even if the arity of the schema is fixed. Moreover,
forC = L (resp.,C ∈ {NR,S}) it holds even for tgds with one constant
(resp., without constants).

Upper bounds. The 2ExpTime membership when C = L is an

immediate corollary of Theorem 5.1. This is not true when C ∈

{NR,S} since the right-hand side query is not guarded. But in

this case, since (NR,CQ) and (S,CQ) are UCQ rewritable, one can

rewrite the right-hand side query as a UCQ, and then apply the

machinery developed in Section 5 for solving Cont((G,CQ)). More

precisely, given OMQs Q1 ∈ (G,CQ) and Q2 ∈ (C,CQ), where
C ∈ {NR,S}, Q1 ⊆ Q2 iff Q1 ⊆ q, where q is a UCQ rewriting

of Q2. Thus, an immediate decision procedure, which exploits the

algorithm XRewrite, is the following:

(1) Let q = XRewrite(Q2);

(2) For each q′ ∈ q: if Q1 ⊆ q′, then proceed; otherwise, reject;

and

(3) Accept.

The above procedure runs in triple-exponential time. The first step

is feasible in double-exponential time [23]. Now, for a single CQ

q′ ∈ q (which is a guarded OMQ with an empty set of tgds) the

5
There are twenty-four different cases obtained by considering all the possible pairs

(O1, O2) of OMQ languages, where O1 , O2 and O1 is UCQ rewritable, and the two

cases whether the arity of the schema is fixed or not.
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check whether Q1 ⊆ q′ can be done by using the machinery devel-

oped in Section 5, which reduces our problem to checking whether

the language of a 2WAPA A is empty. However, it should not be

forgotten that q′ is of exponential size, and thus, the automaton

A has double-exponentially many states. This in turn implies that

checking whether L(A) = ∅ is in 3ExpTime, as claimed.

Although the above algorithm establishes an optimal upper

bound for non-recursive OMQs, a more refined analysis is needed

for sticky OMQs. In fact, we need a more refined complexity analy-

sis for the problem Cont((G,CQ),UCQ), that is, to decide whether

a guarded OMQ is contained in a UCQ. To this end, we provide

an automata construction different from the one employed in Sec-

tion 5, which allows us to establish a refined complexity upper

bound for the problem in question. Consider a (G,CQ) query Q ,
and a UCQ q = q1 ∨ · · · ∨ qn . As usual, we write ∥Q ∥ and ∥qi ∥ for
the number of symbols that occur inQ and qi , respectively, and we
write var≥2(qi ) for the set of variables that appear in more than

one atom of qi . By exploiting our new automata-based procedure,

we show that the problem of checking ifQ ⊆ q is feasible in double-

exponential time in (∥Q ∥ +max1≤i≤n {|var≥2(qi )|}), exponential
time in max1≤i≤n {∥qi ∥}, and polynomial time in n.

This result allows us to show that the above procedure establishes

2ExpTime-membership when the right-hand side OMQ is sticky.

But first we need to recall the following key properties of the UCQ

rewriting q = XRewrite(Q2), constructed during the first step of

the algorithm:

(1) q consists of double-exponentially many CQs,

(2) each CQ of q is of exponential size, and

(3) for each q′ ∈ q, var≥2(q
′) is a subset of the variables of the

original CQ that appears in Q2.

By combining these key properties with the complexity anal-

ysis performed above, it is now straightforward to show that

Cont((G,CQ), (S,CQ)) is in 2ExpTime.

Lower Bounds. We establish matching lower bounds by refining

techniques from [19], where it is shown that containment of Data-

log in UCQ is 2ExpTime-complete, while containment of Datalog

in non-recursive Datalog is 3ExpTime-complete; the lower bounds

hold for fixed-arity predicates, and constant-free rules. Interest-

ingly, the LHS query can be transformed into a Datalog query such

that each rule has a body-atom that contains all the variables, i.e., is

guarded. This is achieved by increasing the arity of some predicates

in order to have enough positions for all the body-variables. How-

ever, for each rule, the number of unguarded variables that we need

to guard is constant, and thus, the arity of the schema remains con-

stant. We conclude thatCont((G,CQ), (NR,CQ)) is 3ExpTime-hard.
Moreover, containment of guarded OMQs in UCQs is 2ExpTime-

hard, which in turn allows us to show, by exploiting the con-

struction underlying Proposition 3.5, that Cont((G,CQ), (L,CQ))
is 2ExpTime-hard, even if the set of linear tgds uses only one con-

stant, whileCont((G,CQ), (S,CQ)) is 2ExpTime-hard, even for tgds
without constants.

8 CONCLUSIONS

We have concentrated on the fundamental problem of containment

for OMQ languages based on the main decidable classes of tgds,

and we have developed specially tailored techniques that allow us

to obtain a relatively complete picture for the complexity of the

problem at hand. Our main conclusion is that for most of the OMQ

languages in question, the containment problem is harder (under

widely accepted complexity assumptions) than query evaluation.
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