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ABSTRACT
Conjunctive queries (CQs) fail to provide an answer when
the pattern described by the query does not exactly match
the data. CQs might thus be too restrictive as a query-
ing mechanism when data is semistructured or incomplete.
The semantic web therefore provides a formalism – known
as well-designed pattern trees (WDPTs) – that tackles this
problem: WDPTs allow us to match patterns over the data,
if available, but do not fail to give an answer otherwise. Here
we abstract away the specifics of semantic web applications
and study WDPTs over arbitrary relational schemas.

Our language properly subsumes the class of CQs. Hence,
WDPT evaluation is intractable. We identify structural
properties of WDPTs that lead to tractability of vari-
ous variants of the evaluation problem. For checking if a
WDPT is equivalent to one in our tractable class, we prove
2EXPTIME-membership. As a corollary, we obtain fixed-
parameter tractability of (variants of) the evaluation prob-
lem. Our techniques also allow us to develop a theory of
approximations for WDPTs.

Categories and Subject Descriptors
H.2.3 [Database Management]: Languages—Query Lan-
guages

General Terms
Algorithms, Theory

Keywords
RDF; well-designed pattern trees; efficient query answering;
containment; subsumption; approximations

1. INTRODUCTION
Conjunctive queries (CQs) constitute the core of the query

languages for relational databases and also the most inten-
sively studied querying mechanism in the database theory
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community. But CQs suffer from a serious drawback when
dealing with information that is semistructured or incom-
plete, or when users do not have a good understanding of
the schema that underlies the data: CQs fail to provide an
answer when the pattern described by the query does not
exactly match the data.

The semantic web therefore provides formalisms to over-
come this problem [20]. We concentrate on the simplest such
formalism, which corresponds to the {AND,OPT}-fragment
of SPARQL – the standard query language for the semantic
web data model (RDF). This fragment allows the user not
only to specify patterns by taking conjunctions of atoms (us-
ing the AND-operator) – in the same way as CQs do – but
also to match patterns over the data, if available, without
failing to give an answer otherwise. This is precisely the role
of the OPT-operator, which allows for optional matching and
essentially corresponds to the left-outer join operator in the
relational algebra.

Example 1. Consider the following {AND,OPT}-
SPARQL query that is posed over a database that
stores information about bands and records:1((

(x, recorded by, y)AND (x, published, “after 2010”)
)

OPT (x, NME rating, z)

)
OPT (y, formed in, z′). (1)

This query retrieves all pairs (b, r) such that r
is a record of band b that was published dur-
ing this decade. This is specified by the pattern
(x, recorded by, y)AND (x, published in, “after 2010”).
Furthermore, whenever possible this query also retrieves
(one or both of) the following pieces of data: the rating
t of record r as declared by the NME magazine and the
year t′ in which band b was formed. In other words,
in addition to (b, r) we also retrieve t and/or t′ if they
can be found in the database. This is specified by the
atoms (x, NME rating, z) and (y, formed in, z′) following
the respective OPT-operators.

Pérez et al. noticed that a non-constrained interaction of
the operators AND and OPT in SPARQL may lead to un-
desired behavior [18]. This motivated the definition of a
better behaved syntactic restriction of the language, known
as well-designed {AND,OPT}-SPARQL. In particular, the
query in Example 1 is well-designed. Among other things,

1Note that we are using here the more algebraic-style nota-
tion of [18] rather than the official SPARQL syntax of [20].



{(x, recorded by, y), (x, published, “after 2010”)}

{(x, NME rating, z)} {(y, formed in, z′)}

Figure 1: WDPT representing query (1) from Ex-
ample 1.

queries in this fragment are more natural than the full lan-
guage [18], allow for lower complexity of evaluation [18], and
lend themselves to optimization techniques [17, 19]. More-
over, they allow for a natural tree representation, known as
well-designed pattern trees, or WDPTs [17].

Intuitively, a WDPT p consists of a tree T rooted in a
distinguished node r and a function that labels each node
of T with a set of RDF atoms. The condition of being well-
designed imposes that appearances of the same variable in
different nodes of T must be connected. Each node of a
WDPT p represents a conjunction of atoms, while the nest-
ing of optional matching is represented by the tree structure
of p. For instance, the query in Example 1 can be repre-
sented as the WDPT in Figure 1.

The semantics of WDPT p is as follows. With each subtree
T ′ of T rooted in r we associate a CQ rT ′ defined by the
conjunction of all atoms in the nodes of T ′. The evaluation
of WDPT p over database D consists then of all “maximal”
answers to the CQs of the form rT ′ . That is, we take the
union of all answers to the CQs of the form rT ′ , for T ′ a
subtree of T rooted in r, and then remove all those answers
that are “extended” by some other answer in the set. We
revisit Example 1 to illustrate these ideas.

Example 2. Consider an RDF database D consist-
ing of triples (“Our love”, recorded by, “Caribou”),
(“Our love”, published, “after 2010”),
(“Swim”, recorded by, “Caribou”),
(“Swim”, published, “after 2010”),
(“Swim”, NME ranking, “2”). The evaluation over D of
the WDPT in Figure 1, and, therefore, of the query in (1),
consists of partial mappings µ1 and µ2 defined on variables
x, y, z, z′ such that: (1) µ1 is only defined on x and y in such
a way that µ1(x) = “Our love” and µ2(y) = “Caribou”,
and (2) µ2 is defined on x, y and z in such a way that
µ1(x) = “Swim”, µ2(y) = “Caribou”, and µ2(z) = “2”.

The expressive power of WDPTs is limited due to the ab-
sence of projection, a feature that CQs enjoy. Consequently,
WDPTs are often enhanced with projection as a way to in-
crease their expressiveness and to obtain a proper extension
of the class of CQs over RDF vocabularies [17, 19]. In this
paper we concentrate on this extended class of WDPTs.

Example 3. For the WDPT from Example 1, one might
decide to project out the variable x. This would result in
restricting the mappings µ1 and µ2 from Example 2 to µ′1
and µ′2 in such a way that: (1) µ′1 is only defined on y with
µ′1(y) = “Caribou”, and (2) µ′2 is defined on y and z and it
holds that µ′2(y) = “Caribou” and µ′2(z) = “2”.

Our view is that WDPTs are of interest not only for se-
mantic web applications, but also for every application that
needs to handle semistructured or incomplete data. This
motivates our study of WDPTs over arbitrary relational
schemas, abstracting away from the specifics of the semantic

web data model – RDF – which only allows for triples in the
nodes of WDPTs (or, in other words, relational atoms over
a single ternary relation).

Despite the importance of WDPTs, very little is known
about some fundamental problems related to them. In par-
ticular, no in-depth study has been carried out regarding
efficient evaluation of these queries, a problem that perme-
ates the literature on CQs and its extensions [21, 12, 13,
16, 5]. Likewise, restrictions on WDPTs to decrease the
complexity of basic static query analysis tasks [19] such as
testing containment are largely unexplored. Topics strongly
related to the identification of tractable fragments of query
evaluation are semantic query optimization and query ap-
proximation. There we ask if some query is equivalent to or
can at least be “approximated” by a query from a tractable
class. These questions have recently received quite some in-
terest in case of CQs and conjunctive regular path queries
over graph databases [10, 5, 4]. So far, nothing is known in
case of WDPTs.

The main goal of this work is to initiate a systematic study
of tractable fragments of WDPTs for query evaluation and
to apply these fragments to fundamental questions in the
areas of query analysis, semantic optimization, and approx-
imation.

Efficient evaluation of WDPTs. Evaluation of WDPTs
is defined in terms of CQ evaluation, which is an intractable
problem in general. Therefore, our goal of identifying
tractable classes of WDPTs naturally calls for a restriction
of the classes of CQ patterns allowed in them. In particu-
lar, there has been a flurry of activity around the topic of
determining which classes of CQs admit efficient evaluation
that could be reused in our scenario [21, 12, 13]. We con-
centrate here on two of the most fundamental classes: those
of bounded treewidth [8, 10] and hypertreewidth [13]. We
denote by TW(k) and HW(k) the CQs of treewidth and hy-
pertreewidth at most k, for k ≥ 1. Queries in these classes
even lie in the parallelizable class LogCFL [12, 13].

The restriction to tractable classes of CQ-evaluation has
already been successfully applied in the context of WDPTs
without projection. It is known, in particular, that a very
mild condition known as local tractability leads to efficient
evaluation [17]. This condition enforces each node in the
WDPT to contain a set of relational atoms from one of our
tractable classes of CQs, namely TW(k) or HW(k). Never-
theless, it is also known that this condition does not lead to
tractability for the more expressive WDPTs with projection
that we study here [17]. Then the question remains: When
is the evaluation of WDPTs tractable or, more precisely,
which natural conditions can be added to local tractability
to achieve tractable WDPT evaluation? We shall identify
such a condition – called bounded interface – that limits by a
constant the number of variables that each node in a WDPT
can share with its children. Notably, similar conditions have
been recently applied to obtain reasonable bounds for the
containment problem of Datalog into unions of CQs [6]).

Due to the nature of WDPTs, two other evaluation prob-
lems – called the partial and maximal evaluation problems
– are of importance [18, 2]. The first one refers to checking
whether a mapping µ is a partial answer to the evaluation
p(D) of a WDPT p over a database D; i.e., whether there is
a mapping µ′ ∈ p(D) that “extends”µ. The second problem
asks if µ is maximal among all answers in p(D). (In the pres-



ence of projection, it may happen that some partial mapping
and also a proper extension of this mapping are solutions of
a WDPT. E.g., in Example 3, µ′1 and also its extension µ′2
are solutions.) We shall identify tractable fragments also for
these problems by introducing the notion of global tractabil-
ity. Here, we restrict every CQ rT ′ represented by a subtree
T ′ of the WDPT T to belong to TW(k) or HW(k). We show
that global tractability suffices to ensure tractability of the
latter problems even though it is a weaker condition than
local tractability plus bounded interface.

Containment and subsumption. Containment is a cru-
cial static analysis task that amounts to checking whether
the evaluation of a query q is necessarily contained in the
evaluation of another query q′ (often written as q ⊆ q′). The
containment problem for CQs is known to be NP-complete
[7]. In contrast, it becomes undecidable for WDPTs [19]
and remains so even for our restriction to local tractability
and bounded interface. The same holds for the equivalence
problem (i.e., checking whether the evaluation of q necessar-
ily coincides with the evaluation of q′).

It is known that WDPT containment may display some
unintuitive behavior, which motivated the introduction of a
meaningful variant of it known as subsumption [3]. This is
the problem of checking whether every answer of a WDPT
p over any database D can be “extended” to an answer
of WDPT p′ over D (we denote this by p v p′). The
corresponding notion of equivalence is then subsumption-
equivalence, where we ask if both directions p v p′ and
p′ v p hold. In sharp contrast to containment, subsump-
tion for WDPTs is known to be decidable and complete for
the class ΠP

2 [17]. Subsumption-equivalence can be shown to
have the same behavior. We will investigate in this context
whether restrictions to tractable classes of WDPT evalu-
ation alleviate the complexity of checking subsumption or
subsumption-equivalence. Our main result will be that the
restriction to tractable classes of query evaluation allows us
to reduce the complexity to coNP but not any further.

Semantic optimization of WDPTs. We introduce sev-
eral syntactic restrictions on WDPTs that lead to tractabil-
ity of (variants of) evaluation. As a general method for
finding larger classes of queries with good evaluation prop-
erties, one typically explores the semantic space defined by
the syntactical restrictions that yield tractability; this space
is defined by all queries that are equivalent to one in the
well-behaved class (see, e.g., [10, 4, 5]). In this context the
following are the two most important questions:

1. Is it decidable to check whether a query is equivalent
to one in the well-behaved syntactically defined class?

2. Can the evaluation problem be solved more efficiently
for queries equivalent to one in a well-behaved class?

Positive answers to these questions have been provided in
the context of CQs [10] and conjunctive regular path queries
over graph databases [5]. For example, regarding question
(1) it is known that verifying if a CQ is equivalent to one
in TW(k) is in NP. For question (2) it can be proved that
the evaluation problem for those CQs that are equivalent to
one in TW(k) is in Ptime [10]. Here we investigate these
questions for WDPTs.

Some care is required in fixing the appropriate setting
for this investigation. For instance, since classical equiva-
lence is undecidable for WDPTs we have to content ourselves

with the relaxed notion of equivalence based on subsump-
tion introduced earlier. But subsumption-equivalence only
preserves partial and maximal answers. We shall therefore
focus on the partial and maximal evaluation problems and
choose global tractability as the corresponding tractability
criterion of WDPTs. Our main finding will be a positive
answer to both questions (1) and (2) above in this setting.

Approximations of WDPTs. When a query q is not
equivalent to one in a well-behaved class Q it might be con-
venient to compute a Q-approximation of q. This is a query
q′ ∈ Q that is maximal (with respect to ⊆) among all queries
in Q that are contained in q. Intuitively, q′ is sound with
respect to q (since q′ ⊆ q) and provides the best approxima-
tion to q among all queries in Q that are sound for Q.

The notion of approximations is by now well-understood
in the context of CQs [4]. For instance, TW(k)-approxima-
tions of CQs always exist and can be computed in single-
exponential time. These results allow us to explain the role
of approximations. In general, the evaluation of a CQ q
on a database D is of the order |D|O(|q|), which might be
prohibitively expensive for a large dataset D even if q is
small. On the other hand, the previous properties imply
that computing and running an approximation of a CQ q on
a database D takes time O(|D| ·2t(|q|)), for some polynomial

t : N → N. This is much faster than |D|O(|q|) on large
databases. Thus, if the quality of the approximation is good,
we may prefer to run this faster query instead of q.

Our techniques allow us to develop a thorough theory
of approximations for WDPTs. Again, we define approx-
imations via subsumption instead of containment. Further-
more, we look for approximations by WDPTs of the globally
tractable classes. Our main finding is that approximations
in these classes always exist, can be computed in double-
exponential time, and have at most single-exponential size.

Unions of WDPTs. We finally study unions of WDPTs
(UWDPTs) as a natural extension of WDPTs. For the
variants of query evaluation considered here, all results on
WDPTs easily carry over to UWDPTs. In contrast, for se-
mantic optimization and approximation by tractable classes
of UWDPTs, we shall reveal a huge difference between
WDPTs and UWDPTs. By establishing a close connection
between UWDPTs and unions of CQs, we can apply the the-
ory of approximations of CQs to WDPTs. This will allow
us to prove significantly better complexity bounds for the
problems studied in the context of semantic optimization
and approximation.

Organization and main results. In Section 2, we recall
some basic notions and results on CQs and WDPTs. A
conclusion and outlook to future work are given in Section 7.
Our main results are detailed in Sections 3 – 6, namely:

• The problem of finding tractable classes of WDPTs is
studied in Section 3. Our main result states that WDPTs
which enjoy local tractability and bounded interface can be
evaluated in LogCFL. Since our classes properly contain
CQs of bounded treewidth and hypertreewidth, we obtain
relevant extensions of these well-known tractable classes of
CQs. We also study two further variants of query evaluation,
namely partial evaluation and maximal evaluation. We show
that global tractability suffices to ensure tractability of these
two problems. Interestingly, it does not suffice to obtain
tractability for the exact evaluation problem. In fact, we



show that global tractability is a strictly weaker condition
than local tractability plus bounded interface.

• We dedicate Section 4 to the study of containment
and subsumption. Subsumption has already been known
to be ΠP

2 -complete [17]. We establish the same complex-
ity classification for subsumption-equivalence and show that
ΠP

2 -completeness of both subsumption and subsumption-
equivalence continues to hold even under the restriction to
local tractability. This complexity is then shown to drop
to coNP-completeness under the further restriction of the
WDPTs to global tractability. In case of testing subsump-
tion p v p′, we also identify a significant asymmetry in that
coNP-membership only depends on the restriction of p′,
while p may be an arbitrary WDPT.

• Section 5 contains our investigation of semantic opti-
mization and approximations. Our main finding in terms
of semantic optimization is that the problem of check-
ing whether a WDPT is subsumption-equivalent to one in

our tractable classes is decidable in NExptimeNP. From
this we get as immediate corollary that the partial and
maximal evaluation problems for those WDPTs which are
subsumption-equivalent to one in a tractable classes are
fixed-parameter tractable (taking the size of the WDPT as
parameter).2 As far as the approximation in the globally
tractable classes of WDPTs is concerned, we show that such
approximations always exist, can be computed in double-
exponential time, and have at most single-exponential size.
We also prove that the exponential blowup in the size of a
WDPT approximation cannot be avoided. The total time
for computing and running an approximation of a WDPT p

on a database D thus takes time O(|D| · 22t(|p|)
), for some

polynomial t : N → N. For big D, this is in general faster
than directly evaluating p over D.

• In Section 6 we study the extension of WDPTs to unions
of WDPTs. For the variants of query evaluation considered
here, all results on WDPTs easily carry over to UWDPTs.
We can thus establish for UWDPTs the analogous tractabil-
ity results as for WDPTs. For instance, unions of WDPTs
that are locally tractable and have bounded interface can be
evaluated in LogCFL. The same holds for unions of glob-
ally tractable WDPTs in the context of partial and maxi-
mal evaluation. In contrast, for semantic optimization and
approximation by tractable classes of UWDPTs, we shall
reveal a huge difference between WDPTs and UWDPTs.
More precisely, we obtain better bounds for the complex-
ity of (1) checking whether a UWDPT φ is equivalent to a
union φ′ of tractable WDPTs, and (2) checking if a union φ′

of tractable WDPTs is an approximation of a UWDPT φ. In
fact, both problems are ΠP

2 -hard. Depending on whether we
define global tractability via treewidth or hypertreewidth,
we get an upper bound of ΠP

2 or ΠP
3 , respectively. This is

in stark contrast to single WDPTs, where we essentially ob-
tained double exponential upper bounds for the analogous
problems.

Proof sketches for most results are provided in Ap-
pendix A. Full proofs will be provided in a full version.

2Recall that the evaluation problem for a class Q of queries
is fixed-parameter tractable w.r.t. the size of the query, if
there exists a computable function f : N→ N and a constant
k ≥ 1 such that evaluating a query q ∈ Q over a database
D can be done in time O(|D|k · f(|q|)).

2. PRELIMINARIES
Conjunctive queries. Let U and X be disjoint countably
infinite sets of constants and variables, respectively. Assume
that σ is a relational schema. A relational atom over σ is an
expression of the form R(v̄), where R is a relation symbol in
σ of arity n > 0 and v̄ is an n-tuple over X∪U. A database
D over σ is a set of relational atoms without variables over σ.

A conjunctive query (CQ) q over σ is a rule of the form:

Ans(x̄) ← R1(v̄1), . . . , Rm(v̄m), (2)

where each Ri(v̄i) (1 ≤ i ≤ m) is a relational atom in σ
and x̄ is a tuple of distinct variables among the ones that
appear in the v̄i’s. We often write this CQ as q(x̄) in order
to denote that x̄ is the tuple of free variables of q.

The semantics of CQs is defined in terms of homomor-
phisms. Let D be a database over σ. A homomorphism
from a CQ q(x̄) of the form (2) to D is a partial mapping
h : X → U such that Ri(h(v̄i)) ∈ D,3 for 1 ≤ i ≤ m. We
denote by hx̄ the restriction of h to the variables in x̄. The
evaluation q(D) of q(x̄) over D is the set of all mappings of
the form hx̄, such that h is a homomorphism from q to D.4

For comparing partial mappings, the notion of subsump-
tion is useful: let h, h′ : X → U be partial mappings, and
assume that X and X ′ are the subsets of X where h and h′

are defined, respectively. Then we say that h is subsumed
by h′, denoted h v h′, if X ⊆ X ′ and h(x) = h′(x), for each
x ∈ X ∩ X ′. If h v h′ but it is not the case that h′ v h,
then we write h < h′.

Pattern trees. When data is inherently incomplete, it is
convenient to work with a proper extension of the class of
CQs known as pattern trees. Intuitively, a pattern tree allows
the user to specify patterns over the data that should be
recovered, if available, but do not force the query to fail to
give an answer otherwise.

We concentrate here on the class of well-designed pat-
tern trees (WDPTs), which has received considerable at-
tention in the semantic web literature. As shown in [17],
WDPTs provide an intuitive representation of well-designed
{AND,OPT}-SPARQL [18]. WDPTs have been used exten-
sively in analyzing query evaluation and in static query anal-
ysis of SPARQL [17, 18, 19].

Intuitively, the nodes of a WDPT represent CQs (called
“basic graph patterns” in the semantic web context) while
the tree structure of a WDPT represents the nesting of op-
tional matching. We formalize the class of WDPTs below.

Definition 1. (WDPTs) A well-designed pattern tree
(WDPT) over a relational schema σ is a tuple (T, λ, x̄), such
that the following holds:

1. T is a tree rooted in a distinguished node r and λ maps
each node t in T to a set of relational atoms over σ.

2. For every variable y that appears in T , the set of nodes
of T where y is mentioned is connected.

3. We have that x̄ is a tuple of distinct variables men-
tioned in T , which correspond to the free variables of
the WDPT.

3As usual, we write h(v1, . . . , vn) for (h(v1), . . . , h(vn)), and
define h(u) = u for each constant u ∈ U.
4Our definition of q(D) slightly departs from the traditional
one in which q(D) is the set of all tuples of the form h(x̄),
for h a homomorphism from q to D.



We say that (T, λ, x̄) is projection-free, if x̄ contains all vari-
ables mentioned in T .

Pairs (T, λ) that satisfy condition (1) correspond to the
natural extension of pattern trees studied in the semantic
web context to arbitrary schemas. Condition (2) is the one
that defines well-designedness [18]. Projection-free WDPTs
are of importance in the semantic web context [17, 18].

Assume p = (T, λ, x̄) is a WDPT over σ. We write r to
denote the root of T . Given a subtree T ′ of T rooted in r,
we define qT ′ to be the CQ Ans(ȳ) ← R1(v̄1), . . . , Rm(v̄m),
where the Ri(v̄i)’s are the relational atoms that label the
nodes of T ′, i.e.,

{R1(v̄1), . . . , Rm(v̄m)} =
⋃
t∈T ′

λ(t),

and ȳ are all the variables that are mentioned in T ′.
We write |p| to denote the size of p in standard relational

notation – which corresponds to the size of CQ qT . By
slight abuse of notation, we often identify nodes and subtrees
in p with their labels. For example, we shall speak of a
homomorphism from subtree T ′ to subtree T ′′ to refer to a
mapping between the atoms occurring in the labels of the
nodes in these subtrees.

Semantics of WDPTs. We define the semantics of
WDPTs by naturally extending their interpretation under
semantic web vocabularies [17, 19]. The intuition behind
the semantics of a WDPT (T, λ, x̄) is as follows. Each sub-
tree T ′ of T rooted in r describes a pattern, namely CQ qT ′ .
A mapping h satisfies (T, λ) over a database D, if it is “max-
imal” among the mappings that satisfy the patterns defined
by the subtrees of T . This means, h satisfies the pattern
defined by some subtree T ′ of T , and there is no way to “ex-
tend” h to satisfy the pattern of a bigger subtree T ′′ of T .
The evaluation of WDPT (T, λ, x̄) over D corresponds then
to the projection over the variables in x̄ of the mappings h
that satisfy (T, λ) over D. We formalize this next.

Definition 2. (Semantics of WDPTs) Let us consider a
WDPT p = (T, λ, x̄) and a database D over σ.

• A homomorphism from p to D is a partial mapping
h : X → U, for which it is the case that there is a
subtree T ′ of T rooted in r (the distinguished root
node of T ) such that h ∈ qT ′(D).

• The homomorphism h is maximal if there is no homo-
morphism h′ from p to D such that h < h′.

The evaluation of WDPT p = (T, λ, x̄) over D, denoted
p(D), corresponds to all mappings of the form hx̄, such that
h is a maximal homomorphism from p to D.

Notice that WDPTs properly extend CQs. In fact, assume
q(x̄) is a CQ of the form Ans(x̄) ← R1(v̄1), . . . , Rm(v̄m).
Then q(x̄) is equivalent to WDPT p = (T, λ, x̄),
where T consists of a single node r and λ(r) =
{R1(v̄1), . . . , Rm(v̄m)}. In other words, q(D) = p(D), for
each database D. We typically do not distinguish between
a CQ and the single node WDPT that represents it. On the
other hand, as illustrated in Example 1, WDPTs express
interesting properties that cannot be expressed as CQs.

RDF well-designed pattern trees. By the nature of se-
mantic web vocabularies, WDPTs are defined in such con-
text over a schema that consists of a single ternary re-
lation. We call these RDF WDPTs. As recalled above,

RDF WDPTs are equal in expressive power to well-designed
SPARQL restricted to the AND and OPT operators [17, 18].
All lower bounds obtained in our paper can be proven to
hold even for RDF WDPTs. Hence, all our results continue
to hold in the RDF scenario.

3. EFFICIENT EVALUATION OF WDPTS
In this section we study the complexity of the evaluation

problem for different classes C of WDPTs. This problem is
formally defined as follows:

PROBLEM : Eval(C).
INPUT : A database D and a WDPT p ∈ C over σ,

and a partial mapping h : X→ U.
QUESTION : Is h ∈ p(D)?

The complexity of Eval(C) has been studied for the case
when C is the class Call of all WDPTs or the class Cpf of
projection-free WDPTs. This is summarized next:

Theorem 1. The following hold:

1. Eval(Call) is ΣP2 -complete [17].

2. Eval(Cpf) is coNP-complete [18].

That is, the evaluation problem is intractable (coNP-
hard) even for the simple class of projection-free WDPTs.
For the class of all WDPTs the complexity jumps to the
second-level of the polynomial hierarchy. This raises the
need for understanding which classes of WDPTs can be eval-
uated in polynomial time.

Evaluation of WDPTs is defined in terms of CQ evalua-
tion, which is an intractable problem in general. Therefore,
our goal of identifying tractable classes of WDPTs naturally
calls for a restriction of the classes of CQ patterns allowed
in them. This idea has already been successfully applied for
obtaining tractable classes of projection-free WDPTs [17].
Extending this to the class of WDPTs with projection re-
quires new conditions, which we develop in this section. It
is important first, however, to review some of the classes of
CQs that can be evaluated efficiently.

3.1 Tractable evaluation for CQs
The evaluation problem for a class C of CQs, denoted CQ-

Eval(C), is defined analogously to the case of WDPTs. That
is, CQ-Eval(C) is the problem of checking if h ∈ q(D), given
a database D, a CQ q ∈ C and a partial mapping h : X→ U.

It is known that, without further restrictions, the eval-
uation problem for CQs is intractable; in particular, CQ-
Eval(C) is NP-complete when C is the class of all CQs [7].
Due to a myriad of papers in the last two decades, we have
by now a very good understanding of which classes of CQs
admit tractable evaluation. In this work, we concentrate
on two of the most fundamental tractable classes of CQs:
the class of CQs of bounded treewidth [8] and of bounded
hypertreewidth [13], respectively, which are defined next.

CQs of bounded treewidth. A tractable class of CQs can
be obtained by restricting the treewidth of the hypergraph of
queries [8]. A hypergraph H is a pair (V,E), where V is a
finite set of nodes and E is a finite set of hyperedges, i.e.,
subsets of V .

A tree decomposition of a hypergraph H = (V,E) is a pair
(S, ν), where S is a tree and ν : S → 2V , that satisfies the



following: (1) For each u ∈ V the set {s ∈ S | u ∈ ν(s)}
is a connected subset of S, and (2) each hyperedge of E is
contained in one of the sets ν(s), for s ∈ S. The width of
(S, ν) is (max {|ν(s)| | s ∈ S}) − 1. The treewidth of H is
the minimum width of its tree decompositions. Intuitively,
the treewidth of H measures its tree-likeness. If H is an
undirected graph, then H is acyclic iff it is of treewidth one.

Let q be the CQ Ans(x̄) ← R1(v̄1), . . . , Rm(v̄m). Its un-
derlying hypergraph Hq is the pair (V,E), where V is the set
of variables mentioned in q and E consists precisely of the
sets of variables in the atoms Ri(v̄i), for 1 ≤ i ≤ m. For ex-
ample, for the CQ Ans()← R(x, y, z), R(x, v, v), E(v, z), the
hyperedges are {x, y, z}, {x, v}, and {v, z}. The treewidth
of CQ q is the treewidth of Hq. We denote by TW(k) the
class of CQs of treewidth at most k, for k ≥ 1.

Example 4. Consider the CQ Ans() ← E(x1, x2),
. . . ,E(xn−1, xn) for n ≥ 3. This CQ is in TW(1), since its
hypergraph is a path, and, thus, acyclic. Adding the atom
E(x1, xn) increases the treewidth to two. Adding all atoms
of the form E(xi, xj), for 1 ≤ i, j ≤ n, yields a CQ whose
hypergraph is a clique of size n. Its treewidth is n− 1.

It follows from [8] (see also [10]) that evaluating CQs in
TW(k), for k ≥ 1, is a tractable problem:

Theorem 2. Let k ≥ 1. Then CQ-Eval(TW(k)) can be
solved in Ptime.

CQs of bounded hypertreewidth. The notion of
treewidth is too restrictive when the arity of the schemas is
not fixed in advance. In order to overcome this limitation,
Gottlob et al. [13] proposed studying syntactic restrictions of
the class of CQs based on hypertree decompositions of their
hypergraphs. The analogue of treewidth in this context is
the notion of hypertreewidth, which, like the former, leads
to tractability of query evaluation.

A hypertree decomposition of a hypergraph H = (V,E) is
a triple (S, ν, κ), where S is a tree, ν is a map from S to 2V ,
and κ is a map from S to 2E , such that:

1. (S, ν) is a tree decomposition of H.

2. ν(s) ⊆
⋃
κ(s) holds for every s ∈ S.

The width of (S, ν, κ) is defined as maxs∈S |κ(s)|. The
hypertreewidth of a hypergraph is the minimum width over
all its hypertree decompositions.

The hypertreewidth of q is the hypertreewidth of Hq. We
denote by HW(k) the class of all CQs with hypertreewidth
at most k. Notably, HW(1) corresponds to the well-studied
class AC of acyclic CQs [21]. Moreover, bounded treewidth
is subsumed by bounded hypertreewidth; in particular,
TW(k) ⊆ HW(k + 1), for every k ≥ 1 [1]. On the other
hand, as the next example shows, even HW(1) = AC is not
subsumed by any of the TW(k)’s.

Example 5. Consider a class C = {θn | n ≥ 2} of CQs,
where θn := Ans() ←

∧
1≤i<j≤nE(xi, xj), Tn(x1, . . . , xn).

It is easy to show that every CQ θn ∈ C is in AC. On the
other hand, the treewidth of the CQs in C is not bounded
by any constant.

Evaluation of CQs of bounded hypertreewidth is not only
polynomial but can be solved in the parallelizable complex-
ity class LogCFL, that lies in between NL and AC1. For-
mally, this corresponds to the class of languages that can be
reduced in logarithmic space to a context free language.

Theorem 3. [13] The problem CQ-Eval(HW(k)) is
complete for LogCFL under logspace reductions, for every
k ≥ 1.

Notice that this improves over the bound in Theorem 2
for the classes of CQs of bounded treewidth.

Remark. For historical reasons, hypertree decompositions
are called generalized hypertree decompositions in the lit-
erature, and, correspondingly, hypertreewidth is known as
generalized hypertreewidth [14]. Hypertreewidth is then ob-
tained by imposing an extra condition on generalized hyper-
tree decompositions. This condition ensures the tractability
of the recognizability problem, i.e., determining if a hyper-
graph is of hypertreewidth k, for a fixed k ≥ 1. For us, it
is convenient to work with the more general and intuitive
notion of hypertreewidth defined above.

3.2 Tractable evaluation of WDPTs
We now return to the main question of this section: When

is the evaluation of WDPTs tractable? A condition that has
been shown to help identifying relevant tractable fragments
of WDPTs is local tractability [17]. This refers to restricting
the CQ defined by each node in a WDPT to belong to a
tractable class.

• Local tractability: Let C be a class of CQs for
which CQ-Eval(C) is tractable. A WDPT (T, λ, x̄)
is locally in C, if for each node t ∈ T such
that λ(t) = {R1(v̄1), . . . , Rm(v̄m)} the CQ Ans() ←
R1(v̄1), . . . , Rm(v̄m) is in C.
We write `-C for the set of all WDPTs that are locally
in C.

It is known that local tractability leads to tractability of
evaluation for projection-free WDPTs:

Theorem 4. [17] Let C be a class of CQs such that
CQ-Eval(C) is in Ptime, and assume C′ is the class of
projection-free WDPTs in `-C. Then Eval(C′) is in Ptime.

On the other hand, this result does not hold in the pres-
ence of projection, even when C is of bounded treewidth:

Theorem 5. [17] Eval(`-TW(k)) and Eval(`-HW(k))
are NP-complete for every k ≥ 1.

This raises the question of which further restrictions on
WDPTs are needed to achieve tractability. Here we identify
a natural such restriction, called bounded interface. Intu-
itively, this restricts the number of variables shared between
a node in a WDPT and its children.

• Bounded interface: Let c ≥ 1. A WDPT (T, λ, x̄)
has c-bounded interface, if for each node t ∈ T with
children t1, . . . , tk it is the case that the number of
variables that appear both in a relational atom in λ(t)
and in a relational atom in λ(ti), for some 1 ≤ i ≤ k,
is at most c.

We denote BI(c) the set of WDPTs of c-bounded in-
terface.

Example 6. Let p be the WDPT from Figure 1. Then
p ∈ `-TW(1) and p ∈ BI(2): Since each node contains ex-
actly two variables, the treewidth of each node is trivially



1. Concerning the number of shared variables, observe that
x occurs in both the root node and its first child, while y
occurs in the root node and its second child. WDPT p thus
has a 2-bounded interface.

Notice that the effect of bounding the interface of each
node in a WDPT (T, λ, x̄) is a restriction on the shape of
the CQs of the form qT ′ (for every subtree T ′ of T rooted
in r) that define the semantics of (T, λ, x̄). In particular,
c-bounded interface implies that the number of variables
shared between two atoms R(v̄) and R′(v̄′) in qT ′ that come
from different nodes of T ′ is at most c. Interestingly, similar
restrictions on the number of variables shared by different
atoms of CQs have been recently applied for obtaining rea-
sonable bounds for the problem of containment of Datalog
into unions of CQs [6].

Our main result of the section states that local tractability
and bounded interface yield tractability of WDPT evalua-
tion:

Theorem 6. Let C be a class of CQs for which CQ-
Eval(C) is in Ptime and c ≥ 1 a positive integer. Then
Eval(`-C ∩ BI(c)) is also in Ptime.

Recall that the evaluation problem for the CQ classes
TW(k) and HW(k), for k ≥ 1, is not only tractable but
can be solved in the parallelizable class LogCFL. In fact,
the Ptime-algorithm for WDPT-evaluation in the proof of
Theorem 6 can be refined to a LogCFL-algorithm, pro-
vided that the corresponding CQ-evaluation problem is in
LogCFL. We thus obtain the following:

Theorem 7. Let C be a class of CQs for which CQ-
Eval(C) is in LogCFL and c ≥ 1 a positive integer. Then
Eval(`-C∩BI(c)) is also in LogCFL. In particular, Eval(`-
TW(k)∩BI(c)) and Eval(`-HW(k)∩BI(c)) are in LogCFL
for each k, c ≥ 1.

Notice that CQs can be considered as special case of
WDPTs consisting of the root node only. Hence, TW(k) ⊆ `-
TW(k) ∩ BI(c) and HW(k) ⊆ `-HW(k) ∩ BI(c) hold for each
c ≥ 1. Therefore, Theorem 7 tells us that `-TW(k) ∩ BI(c)
and `-HW(k) ∩ BI(c) define relevant extensions of TW(k)
and HW(k), respectively, that do not increase the complex-
ity of evaluation. It follows from [12] that both Eval(`-
TW(k) ∩ BI(c)) and Eval(`-HW(k) ∩ BI(c)) are LogCFL-
hard under logspace reductions.

3.3 Partial evaluation of WDPTs
Given the nature of WDPTs, it is also interesting to check

whether a mapping h is a partial answer to the WDPT p over
D [18], i.e., whether h can be “extended” to some answer h′

to p over D. This gives rise to the partial evaluation problem
for C defined as follows.

PROBLEM : Partial-Eval(C).
INPUT : A database D and a WDPT p ∈ C over σ,

and a partial mapping h : X→ U.
QUESTION : Is there h′ ∈ p(D) such that h v h′?

Partial evaluation is tractable for the class of projection-
free WDPTs [18]. In contrast, if projection is allowed, then
partial evaluation is intractable even under local tractability:

Proposition 1. [17] Partial-Eval(`-TW(k)) is NP-
complete for every k ≥ 1.

Recall from Theorem 7 that the conjunction of local
tractability and bounded interface leads to efficient (exact)
evaluation of WDPTs. It is easy to modify the proof of The-
orem 7 to show that also Partial-Eval(`-TW(k) ∩ BI(c))
and Partial-Eval(`-HW(k)∩BI(c)) are in LogCFL. How-
ever, partial evaluation is seemingly easier than exact eval-
uation. Hence, the question naturally arises if tractabil-
ity of partial evaluation of WDPTs can be ensured by a
weaker condition. Indeed, we give a positive answer to this
question below. This condition will be referred to as global
tractability. Intuitively, it states that there is a bound on
the treewidth (resp., hypertreewidth) of the CQs defined by
the different subtrees of a WDPT (T, λ, x̄) rooted in r.

• Global tractability: Let C be TW(k) or HW(k), for
k ≥ 1. A WDPT (T, λ, x̄) is globally in C, if for each
subtree T ′ of T rooted in r it is the case that the CQ
qT ′ is in C.
We denote with g-C the set of all WDPTs that are
globally in C.

The following proposition formally states that global
tractability is a strictly weaker condition than the conjunc-
tion of local tractability and bounded interface. The first
part of the proposition shows that local tractability plus
bounded interface imply global tractability, while the sec-
ond part shows that the opposite is not the case:

Proposition 2. The following hold:

1. Let k, c ≥ 1. Then:

• `-TW(k) ∩ BI(c) ⊆ g-TW(k + 2c).

• `-HW(k) ∩ BI(c) ⊆ g-HW(k + 2c).

2. For every k ≥ 1 there is a family Ck of WDPTs in g-
TW(k) (resp., in g-HW(k)) such that Ck 6⊆ BI(c), for
each c ≥ 1.

We now formally prove that global tractability leads to
tractability of the partial evaluation problem for WDPTs:

Theorem 8. Partial-Eval(g-TW(k)) and Partial-
Eval(g-HW(k)) are in LogCFL for every k ≥ 1.

It remains to answer the question if global tractability
also suffices to ensure tractability of (exact) evaluation for
WDPTs. Below we show that this is not the case.

Proposition 3. Eval(g-TW(k)) and Eval(g-HW(k))
are NP-complete for every k ≥ 1.

3.4 Semantics based on maximal mappings
The semantics of projection-free WDPTs is only based on

maximal mappings, i.e., mappings that are not subsumed by
any other mapping in the answer. This is no longer the case
in the presence of projection as it has already been shown
in Example 2 in the introduction.

Recent work on query answering for SPARQL under en-
tailment regimes has established the need for a semantics
for WDPTs that is uniquely based on maximal mappings
[2]. This semantics is formalized as follows. Assume D is a



database and p is a WDPT over σ. The evaluation of p over
D under maximal mappings, denoted pm(D), corresponds to
the restriction of p(D) to those mappings h ∈ p(D) that are
maximal with respect to v.

Example 7. Let p be the WDPT from Figure 1, but as-
sume the answers to be projected to x̄ = {y, z}, and D
the database from Example 2. Then p(D) = {µ1, µ2}
with µ1(y) = µ2(y) = “Caribou” and µ2(z) = “2”, while
pm(D) = {µ2}.

This naturally leads to the following decision problem:

PROBLEM : Max-Eval(C).
INPUT : A database D and a WDPT p ∈ C over σ,

and a partial mapping h : X→ U.
QUESTION : Is h ∈ pm(D)?

It follows from [2] that Max-Eval(C) is intractable when
C is the class of all WDPTs (more precisely, this problem is
complete for the class DP, i.e., the class of languages that
correspond to the intersection of a language in NP and one
in coNP). To obtain tractability in this case it is sufficient to
impose global tractability, which is exactly the same condi-
tion that yields tractability of partial evaluation for WDPTs
(as stated in Theorem 8):

Theorem 9. Max-Eval(g-TW(k)) and Max-Eval(g-
HW(k)) are in LogCFL for every k ≥ 1.

Analogously to Partial-Eval, local tractability is not
sufficient to ensure tractability of Max-Eval:

Proposition 4. For every k ≥ 1 the problems
Max-Eval(`-TW(k)) and Max-Eval(`-HW(k)) are DP-
complete.

4. CONTAINMENT AND SUBSUMPTION
Query containment and query equivalence are among the

most fundamental problems in static query analysis, i.e.,
given two queries q1 and q2, one wants to test if – for any
database D – the condition q1(D) ⊆ q2(D) or q1(D) = q2(D),
respectively, holds. If this is the case, we write q1 ⊆ q2 or
q1 ≡ q2, respectively. For CQs, these problems are NP-
complete in the general case [7] and LogCFL-complete if
we restrict the CQs to one of the classes TW(k) or HW(k)
[8, 13].

A detailed study of containment and equivalence of RDF
WDPTs was carried out in [19]. In sharp contrast to the
case of CQs, it was shown that both problems are undecid-
able. Now the question remains if the restriction to tractable
fragments of WDPT evaluation can help. An inspection of
the undecidability proofs in [19] shows that this is not the
case. We thus get:

Theorem 10 (implicit in [19]). The containment
and equivalence problems of WDPTs are undecidable.
The undecidability holds even if both WDPTs are from
`-TW(k) ∩ BI(c) for arbitrary k ≥ 1 and appropriately
chosen constant c.

In [3], it was observed that query containment of WDPTs
may display an unintuitive behavior. Consequently, sub-
sumption is proposed as a variant of containment: a WDPT

p1 is subsumed by p2 (written as p1 v p2) if, for every
database D, every answer h ∈ p1(D) is subsumed by an
answer h′ ∈ p2(D) [3]. Additionally, we define subsumption-
equivalence (denoted as p1 ≡s p2) if both p1 v p2 and
p2 v p1 hold. We thus study the following problems.

PROBLEM : Subsumption(C1, C2).
INPUT : Two WDPTs p1 ∈ C1 and p2 ∈ C2 over σ.
QUESTION : Does p1 v p2 hold?

PROBLEM : v-Equivalence(C1, C2).
INPUT : Two WDPTs p1 ∈ C1 and p2 ∈ C2 over σ.
QUESTION : Does p1 ≡s p2 hold?

In [17], the ΠP
2 -completeness of Subsumption(C1, C2)

was proved where C1 and C2 denote the class of arbitrary
WDPTs. It was also shown that ΠP

2 -hardness holds even if
we restrict both C1 and C2 to projection-free WDPTs.

The problem v-Equivalence(C1, C2) has not been stud-
ied so far. However, in [2] a closely related problem based
on the “‘maximal mappings” semantics from Section 3.4 was
studied – the so-called MaxEquivalence(C1, C2)-problem:
Given two WDPTs p ∈ C1, p′ ∈ C2, does pm(D) = p′m(D)
hold for every database D? In other words, we check if two
WDPTs p and p′ have the same maximal solutions over any
database D. If this is the case, we write p ≡max p′. This
problem was shown to be ΠP

2 -complete in [2]. An inspec-
tion of the proof in [2] shows that ΠP

2 -hardness holds even
if one of the classes Ci is restricted to `-TW(k) ∩ BI(c) with
k = c = 2. Below, we show that v-Equivalence(C1, C2)
and MaxEquivalence(C1, C2) are equivalent problems. In
this way, we establish ΠP

2 -completeness also for v-Equi-
valence(C1, C2).

Proposition 5. For any classes C1, C2 of WDPTs,
the problems MaxEquivalence(C1, C2) and v-Equi-
valence(C1, C2) are equivalent, i.e., for all p ∈ C1 and
p′ ∈ C2 , we have

p ≡s p′ ⇔ p ≡max p
′.

We then immediately obtain the following:

Corollary 1. Let C1, C2 be the class of arbitrary
WDPTs. Then the problem v-Equivalence(C1, C2) is ΠP

2 -
complete. It remains ΠP

2 -hard even if one of the classes Ci
is restricted to `-HW(k)∩BI(c) (or to `-TW(k)∩BI(c)) with
k = c = 2.

Now the natural question is if the restriction of C1, C2
to tractable classes of WDPT evaluation also leads to
a lower complexity of Subsumption(C1, C2) and v-Equi-
valence(C1, C2). This question is answered below.

Theorem 11. Subsumption(C1, C2) is coNP-complete
for the following classes C1, C2 of WDPTs:

1. coNP-membership holds even if C1 is the class of ar-
bitrary WDPTs and C2 ⊆ g-HW(k) for any k ≥ 1.

2. coNP-hardness holds even if C1, C2 ⊆ `-HW(k)∩BI(c)
(or, likewise, if C1, C2 ⊆ `-TW(k)∩BI(c)) holds for any
k ≥ 1 and c = 1.



Membership is proved using techniques from [17]. Hardness
uses a straightforward reduction from VALIDITY. We next
give a similar complexity classification for v-Equivalence.

Theorem 12. v-Equivalence(C1, C2) is coNP-comple-
te for the following classes C1, C2 of WDPTs:

1. coNP-membership holds even if C1, C2 ⊆ g-HW(k) for
any k ≥ 1.

2. coNP-hardness holds even if C1, C2 ⊆ `-HW(k)∩BI(c)
(or, likewise, if C1, C2 ⊆ `-TW(k)∩BI(c)) holds for any
k ≥ 1 and c = 2.

Proof sketch. Membership follows from the coNP-
membership of Subsumption(C) in Theorem 11. Hard-
ness is proved by a reduction from VALIDITY. To ensure
p1 ≡s p2 in case of a valid formula φ, we need an involved
construction. In particular, the selection of a particular
truth assignment for the variables in X is encoded by the
selection of 2m (with m = |X|) descendants of the root of
p2 from a collection of 3m possible descendants, which are
arranged in a subtree of depth m.

Theorems 11 and 12 together with the ΠP
2 -completeness

results of [17] and Corollary 1 have left a small gap: What
if both C1 and C2 are locally tractable classes? We close this
gap below.

Proposition 6. The problems Subsumption(C1, C2)
and v-Equivalence(C1, C2) remain ΠP

2 -complete even if
both C1 and C2 are restricted to `-HW(k) or to `-TW(k)
with k ≥ 2.

5. SEMANTIC OPTIMIZATION OF
WDPTS

In Section 3, we developed conditions that lead to
tractability for several variants of the WDPT evaluation
problem. In this section, we study the semantic space de-
fined by these conditions; that is, the space of WDPTs that
are equivalent to a WDPT in a class syntactically defined
via treewidth or hypertreewidth.

First we have to fix the right notion of equivalence. By
Theorem 10 we know that strict equivalence (“≡”) is unde-
cidable even for the most restricted fragments of WDPTs
considered here. Hence, we have to be contented with a re-
laxed notion of equivalence – subsumption equivalence (“≡s”)
introduced above.

But then we also have to choose the appropriate variant
of WDPT evaluation: subsumption equivalence preserves
partial and maximal solutions. Hence, we shall focus on
the Partial-Eval(C) and Max-Eval(C) problems here. It
should be noted that the Max-Eval, Partial-Eval and
Eval problems coincide for CQs, i.e., WDPTs consisting of
the root node only.

Finally, we determine the right syntactical restriction on
WDPTs to ensure tractability of these problems. By The-
orems 8 and 9, the restriction to g-TW(k) or g-HW(k) for
constant k is sufficient. At this point, the discussion of a sig-
nificant difference between treewidth and hypertreewidth is
in order: It will turn out convenient to choose our fragment
of CQs in such a way that it is closed under taking arbi-
trary subqueries. While TW(k) enjoys this property, HW(k)
does not. We therefore restrict HW(k) to the class HW′(k)
consisting of all CQs q such that each subquery q′ of q has

hypertreewidth at most k. In [15], this restricted notion of
hypertreewidth was called β-hypertreewidth in analogy with
β-acyclicity introduced in [11]. We thus define the class

WB(k) = g-C(k), for k ≥ 1,

with either C(k) = TW(k) or C(k) = HW′(k). The acronym
WB stands for well-behaved. Most results presented be-
low hold for both choices of C(k). These results will thus
simply be stated for WB(k) without distinguishing between
g-TW(k) and g-HW′(k). However, there are also some re-
sults (in particular upper bounds) where the concrete choice
of C(k) does make a difference in that an additional NP-
oracle is needed in case of C(k) = g-HW′(k). The oracle is
used to verify that some WDPT indeed is in g-HW′(k). The
problem here is that it is not known if, for given k, it can
be can be tested efficiently if β-hypertreewidth ≤ k holds.

The semantic space defined by classes of the form WB(k)
is formally defined below.

Definition 3. (M(WB(k))) Let k ≥ 1. We denote by
M(WB(k)) the class of WDPTs p for which there is a
WDPT p′ ∈WB(k) such that p ≡s p′.

We show that these classes are decidable. We then ap-
ply this result to show that the partial and maximal evalua-
tion problems for WDPTs inM(WB(k)) are fixed-parameter
tractable (when taking the size of the WDPT as the pa-
rameter). This is an improvement with respect to the cor-
responding evaluation problems for arbitrary WDPTs and
even for CQs. For the latter, no fixed-parameter tractable
algorithm is believed to exist. Finally, we study the notion
of WB(k)-approximation for WDPTs.

5.1 Decidability of WB(k) modulo equivalence
We start by stating the decidability of our notion:

Theorem 13. Let k ≥ 1. There is a NExptimeNP algo-
rithm that, given a WDPT p, decides if p is in M(WB(k)),
and, if this is the case, constructs a WDPT p′ in WB(k) of at
most exponential size in p such that p ≡s p′. The NP-oracle
is omitted if WB(k) = g-TW(k).

The proof of this result follows from the next lemma:

Lemma 1. Let p and p′ be WDPTs such that p′ v p and
p′ ∈ WB(k). Then there exists p′′ ∈ WB(k) such that (1)
p′ v p′′ v p, and (2) the size of p′′ is at most exponential in
the size of p.

We now explain how Theorem 13 follows from Lemma 1.
Assume p is in M(WB(k)), i.e., there is a WDPT p′ in
WB(k) such that p ≡s p′. Since p′ v p and p′ ∈ WB(k),
we have from Lemma 1 that there is a WDPT p′′ ∈ WB(k)
such that (1) p′ v p′′ v p, and (2) the size of p′′ is at most
exponential in the size of p. We conclude that p ≡s p′′ since
p v p′ v p′′ v p. Hence, if p is inM(WB(k)), then there is a
WDPT p′ in WB(k) with p ≡s p′ and the size of p′ is at most

exponential in the size of p. Then the NExptimeNP algo-
rithm in Theorem 13 simply guesses such p′ and checks (1)
if p′ ∈ WB(k) and (2) if it is subsumption-equivalent to p.
Condition (1) requires an NP-oracle if WB(k) = g-HW′(k).
Condition (2) is satisfied if certain (exponentially many) ho-
momorphisms exist [17]: they can be guessed alongside p′

itself and do not increase the complexity.



While the upper bound in Theorem 13 might not be opti-
mal, we can prove that the problem is at least on the second-
level of the polynomial hierarchy:

Proposition 7. Let k > 1. The problem of checking
whether a WDPT p belongs to M(WB(k)) is ΠP

2 -hard.

Notice that this establishes a difference with the analogous
problem of checking whether a CQ is equivalent to one in a
tractable class: For each k ≥ 1, checking whether a CQ q is
equivalent to some CQ q′ in TW(k) or HW′(k) is in NP [10].

Evaluation for WDPTs in M(WB(k)). An important
corollary of Theorem 13 is the following fixed-parameter
tractability result:

Corollary 2. Let k ≥ 1. Then the problems Partial-
Eval(M(WB(k))) and Max-Eval(M(WB(k))) are fixed-
parameter tractable (when taking the size of the WDPT as
the parameter).

5.2 WB(k)-Approximations of WDPTs
When a query q is not equivalent to one in a well-behaved

class Q, it might be useful to compute an approximation
of q in Q [4]. Recall that this is a query q′ ∈ Q that is
maximally contained in q with respect to all queries in Q.
In other words, q′ ⊆ q, and there is no q′′ ∈ Q such that
q′ ⊂ q′′ ⊆ q. For the reasons given before, we define approx-
imations in the WDPT context not in terms of containment,
but subsumption. Throughout this section we assume that
WDPTs do not contain constants. The reason is that the
notion of approximations with constants is problematic and
not even well understood in the CQ context [4].

We now define approximations in the WDPT context. We
write p < p′ to denote that p v p′ but p 6≡s p′.

Definition 4. (WB(k)-approximations) Let k ≥ 1. As-
sume p and p′ are WDPTs such that p′ ∈ WB(k). Then p′

is a WB(k)-approximation of p if (1) p′ v p, and (2) there is
no p′′ ∈WB(k) such that p′ < p′′ v p.

Existence of approximations. The most important ques-
tion in the context of approximations is whether approxi-
mations always exist [4, 5]. The techniques developed in
Lemma 1 allow us to prove that this is indeed the case in
the WDPT scenario. Furthermore, for each WDPT, an ex-
ponential size approximation can be constructed in double-
exponential time:

Theorem 14. Let k ≥ 1. There is a double-exponential
time algorithm that, given a WDPT p, constructs an expo-
nential size WB(k)-approximation p′ of p.

Complexity. In order to better understand the complexity
of computing approximations, we study the following deci-
sion problem: Given WDPTs p and p′ such that p′ ∈WB(k),
for k ≥ 1, is p′ a WB(k)-approximation of p? We call this
problem WB(k)-Approximation. The next proposition es-
tablishes some upper and lower bounds for the problem.

Proposition 8. The following hold:

1. WB(k)-Approximation is in coNExptimeNP for
each k ≥ 1. The NP-oracle is omitted if WB(k) =
g-TW(k).

p1 :

{a(x)} ∪ {bi(αi) | 0 ≤ i ≤ k} ∪ {ci(α0) | i ∈ [n]} ∪
{ci(zi) | i ∈ [n]} ∪ {d(α0, α0), d(α1, α1)} ∪

{d(a, b) | a, b ∈ {αi | 0 ≤ i ≤ k} ∪ {zi | i ∈ [n]}, a 6= b}

{a0(x0),
e(z1, . . . , zn)}

{a1(x1),
b1(z1), c1(α1)}

. . . {an(xn),
bn(zn), cn(α1)}

p2 :

{a(x)} ∪ {bi(αi) | 0 ≤ i ≤ k} ∪ {ci(α0) | i ∈ [n]} ∪
{d(a, b) | a, b ∈ {αi | 0 ≤ i ≤ k}, a 6= b} ∪

{d(α0, α0), d(α1, α1)}

{a0(x0),
e(ᾱ) | ᾱ ∈ {α0, α1}n}

{a1(x1),
c1(α1)} . . .

{an(xn),
cn(α1)}

Figure 2: Exponential blow-up from p1 to p2.

2. WB(k)-Approximation is ΠP
2 -hard for each k > 1.

3. If the input of the problem includes the promise that
p′ v p, then WB(k)-Approximation is ΣP2 -hard for
each k > 1.

Again, this shows that our problem is harder than an
analogous problem for CQs: For each k ≥ 1, the problem
of checking whether a CQ q is a TW(k)-approximation of
CQ q′ is DP-complete. If, in addition, the input includes
the promise that q ⊆ q′, then the problem becomes coNP-
complete [4].

Size of approximations. We have seen above that ap-
proximations always exist even though Lemma 1 only al-
lowed us to give an exponential upper bound on their size.
The proof of that lemma centered around the properties of
subsumption – without making use of the specific proper-
ties of approximations. One may thus ask if exponential
size is indeed attainable by approximations. We give an af-
firmative answer to this question. This establishes another
sharp contrast with CQs, where every TW(k)-approximation
is equivalent to one of polynomial size [4].

Theorem 15. For every k ≥ 2, there exists a sequence of

pairs of WDPTs (p
(n)
1 , p

(n)
2 ), such that (1) p

(n)
2 is a WB(k)-

approximation of p
(n)
1 , and (2) p

(n)
2 is necessarily exponen-

tially bigger than p
(n)
1 . More precisely, we have

|p(n)
1 | = O(n2) and |p(n)

2 | = Ω(2n),

and, for every WDPT p
(n)
3 ∈WB(k) with p

(n)
2 v p(n)

3 v p(n)
1 ,

we have |p(n)
3 | ≥ |p

(n)
2 |.

Proof sketch. Let k ≥ 1 and n ≥ 1. Consider the
WDPTs p

(n)
1 and p

(n)
2 in Figure 2 with free variables X =

{x, x0, . . . , xn}. For the sake of readability, we omit super-
script (n) from now on. Clearly, p2 is exponentially bigger
than p1 and p2 v p1 hold. Actually, we do not insist that p2

is indeed a WB(k)-approximation of p1. It suffices to show
that for every WDPT p3 ∈ WB(k) with p2 v p3 v p1, we
have |p3| ≥ |p2|.

We briefly discuss the main ideas of this construction. The
WDPT p1 is outside WB(k) due to a big clique of size k+1+n



(i.e., the d-atoms) in the root. The WDPT p2 is obtained
by instantiating all variables zi to one of the two values α0

or α1. This is enforced by the fact that (by the condition
p2 ∈WB(k)) the big clique has to be shrunk to at most k+1
vertices and (by the condition p2 v p1) there must exist a
homomorphism from the root of p1 to the root of p2.

The variables zi in the atom e(z1, . . . , zn) in the first leaf
node of p1 have to be instantiated in the same way. Again
consider the condition p2 v p1. As in the proof sketch of
Lemma 1, this requires the existence of certain homomor-
phisms from subtrees of p1 to subtrees of p2. We thus con-
sider every subtree p′2 of p2 consisting of the root, the first
leaf and an arbitrary subset of the remaining leaf nodes. We
have to find a homomorphism from the corresponding sub-
tree p′1 of p1 (i.e., p′1 has the same free variables as p′2) into
p′2. It turns out that those variables zi such that the leaf
with atom b1(zi) is contained in p′2 have to be mapped to α1

while the other zi’s have to be mapped to α0. Therefore, the
first leaf of p2 indeed has to contain all 2n possible instan-
tiations of atom e(z1, . . . , zn), resulting in an exponential
blow-up.

6. UNIONS OF WDPTS
Closing WDPTs under union constitutes one of the ba-

sic extensions of the language [18, 19]. Formally, a union of
WDPTs (UWDPT) is an expression φ of the form

⋃
1≤i≤n pi,

where each pi is a WDPT over σ. (Notice that we do not
require different pi’s to have the same set of free variables).
The evaluation of φ over database D, denoted φ(D), corre-
sponds to the set

⋃
1≤i≤n pi(D).

As before, we write φ v φ′, for UWDPTs φ and φ′, if for
every database D and partial mapping h ∈ φ(D) it is the
case that there is h′ ∈ φ′(D) such that h v h′. Similarly, we
write φ ≡s φ′ whenever φ v φ′ and φ′ v φ, and φ < φ′ if
φ v φ′ but φ 6≡s φ′.

If C is a class of WDPTs, we denote by
⋃
-Eval(C) the

problem of determining if h ∈ φ(D), for φ a union of WDPTs
in C, D a database, and h : X→ U a partial mapping. Sim-
ilarly, we define

⋃
-Partial-Eval(C) and

⋃
-Max-Eval(C).

It is immediate that unions of WDPTs from a well-behaved
class C in terms of (variants of) evaluation preserve the good
properties of C:

Theorem 16. The following hold for each k ≥ 1 assum-
ing C(k) = TW(k) or HW(k):

1. The problem
⋃
-Eval(`-C(k)∩BI(c)) is in LogCFL for

each c ≥ 1.

2.
⋃
-Partial-Eval(g-C(k)) and

⋃
-Max-Eval(g-C(k))

are in LogCFL.

In other words, the additional expressive power of UWDPTs
compared with WDPTs has no effect on our variants of the
evaluation problem. We look next at semantic optimization
into well-behaved classes of UWDPTs. It will turn out that
there the extension from WDPTs to UWDPTs makes a huge
difference.

Semantic optimization of UWDPTs. Following Section
5, we concentrate on unions of WDPTs from WB(k) = g-
C(k), where C(k) is either TW(k) or HW′(k). We thus define:

UWB(k) = {
⋃

1≤i≤n

pi | pi ∈WB(k), for each 1 ≤ i ≤ n}.

Analogously, we define the classesM(UWB(k)) of UWDPTs
that are ≡s-equivalent to queries in UWB(k):

M(UWB(k)) = {φ | φ ≡s φ′, for some φ′ in UWB(k)}.

We prove below that the classM(UWB(k)) is not only decid-
able but allows for a nice characterization. To present this
characterization, we introduce some useful notation first.

Given a WDPT p = (T, λ, x̄) and a subtree T ′ of
T rooted in r, we denote by rT ′ the CQ Ans(x̄′) ←
R1(v̄1), . . . , Rm(v̄m), where {R1(v̄1), . . . , Rm(v̄m)} is the set
of all relational atoms in T ′ and x̄′ is the set of variables that
appear in x̄ and in some v̄i, for 1 ≤ i ≤ m. In other words,
rT ′ is exactly as qT ′ , only that we now take the projection
over those variables from the Ri(v̄i)’s that appear free in p.
Let us then define:

φcq =
⋃

p=(T,λ,x̄)∈φ

⋃
T ′ a subtree of T rooted in r

rT ′ .

It is not hard to see that φ ≡s φcq holds.

Example 8. Consider the RDF WDPT p introduced in
Example 1, and the projection onto the variables {y, z, z′}
introduced in Example 3. When replacing the triple patterns
by binary atoms, we get pcq as the union of the following
CQs:

• Ans(y)← rec by(x, y), publ(x, “after 2010”).

• Ans(y, z)← rec by(x, y), publ(x, “after 2010”),
NME ranking(x, z).

• Ans(y, z′)← rec by(x, y), publ(x, “after 2010”),
formed in(y, z′).

• Ans(y, z, z′)← rec by(x, y), publ(x, “after 2010”),
NME rating(x, z), formed in(y, z′).

Here we use rec by and publ as abbreviation for
recorded by and published, respectively.

With φcq we have a useful tool for our further analysis of
the class M(UWB(k)). In particular, this allows us to give
the following characterization of M(UWB(k)).

Proposition 9. Let k ≥ 1. A UWDPT φ is in
M(UWB(k)) iff φcq is v-equivalent to a union of CQs in
C(k).

Applying Proposition 9 we obtain the following:

Theorem 17. The following hold for each k ≥ 1:

1. The problem of checking if a UWDPT φ is in
M(UWB(k)) is in ΠP

2 if C(k) = TW(k), and in ΠP
3 if

C(k) = HW′(k) For k > 1 either problem is ΠP
2 -hard.

2. There is an Exptime algorithm that, given φ in
M(UWB(k)), constructs a union φ′ of (possibly expo-
nentially many) WDPTs in WB(k) such that (1) each
WDPT in φ′ is of polynomial size, and (2) φ ≡s φ′.

Notice the stark contrast of this result with the problem
of checking whether a WDPT p is in M(WB(k)), for which

we could only obtain a NExptimeNP upper bound in The-
orem 13.

Evaluation for UWDPTs in M(UWB(k)). Analogously
to the case of Corollary 2, it follows from Theorem 17 that
the maximal and partial evaluation problems for queries in
M(UWB(k)) are fixed-parameter tractable:



Corollary 3. Let k ≥ 1. Then
⋃
-Partial-

Eval(M(UWB(k))) and
⋃
-Max-Eval(M(UWB(k))) are

fixed-parameter tractable (when considering the size of the
UWDPT as parameter).

UWB(k)-approximations. As in the case of Section 5.2,
we study approximations for UWDPTs without constants.
Fix k ≥ 1. Let φ, φ′ be UWDPTs such that φ′ ∈ UWB(k).
Analogously to Definition 4, we have that φ′ is a UWB(k)-
approximation of φ if (1) φ′ v φ, and (2) there is no UWDPT
φ′′ ∈ UWB(k) such that φ′ < φ′′ v φ.

The previous machinery allows us to develop a theory of
approximations for UWDPTs. First of all, we can prove
that approximations always exist and can be computed in
exponential time. Second, approximations are unique up to
≡s-equivalence and consist of (possibly exponentially many)
WDPTs of polynomial size (actually, these WDPTs are even
CQs).

Theorem 18. There is an Exptime algorithm that,
given a UWDPT φ, constructs a union φ′ of (possibly ex-
ponentially many) WDPTs in WB(k) such that (1) each
WDPT in φ′ is of polynomial size, and (2) φ′ is the unique
(up to ≡s-equivalence) UWB(k)-approximation of φ.

These techniques also allow us to find reasonable bounds
for the problem of checking if φ′ is a UWB(k)-approximation
of φ. This problem is called UWB(k)-Approximation.

Proposition 10. The problem UWB(k)-
Approximation is in ΠP

2 if C(k) = TW(k), and in
ΠP

3 if C(k) = HW′(k). For k ≥ 1 either problem is ΠP
2 -hard.

This is again in stark contrast with the problem of check-
ing if a WDPT φ′ is a WB(k)-approximation of φ, for which
we could only obtain a coNExptime upper bound in Propo-
sition 8.

7. CONCLUSION
In this work we have studied well-designed pattern trees

(WDPTs) as a natural extension of conjunctive queries
(CQs) by optional matching. We have considered WDPTs
over arbitrary relational schemas here. However, all our re-
sults also apply to the corresponding fragment of the seman-
tic web query language SPARQL by restricting the schema
to a single ternary relation.

We have extended the search for tractable query evalua-
tion and tractable query analysis from CQs to WDPTs. It
has turned out that additional restrictions are required to
ensure tractability of query evaluation of WDPTs. In Ta-
ble 1, we give an overview of the complexities. The five
rows refer to the five problems Eval, Partial-Eval, Max-
Eval, subsumption (v), and subsumption-equivalence (≡s).
Completeness results are abbreviated with “c”. The results
marked with references are (at least implicitly) proved in
previous work. Arrows indicate that the non-trivial part of
these results carries over from the more special case (←) or
from the more general case (→), respectively.

We have then applied our tractable classes of query eval-
uation to study semantic optimization and to initiate a the-
ory of approximation of WDPTs. To this end, we have de-
fined the classes WB(k) and UWB(k) of (unions) of “well-
behaved” queries. Above all, we have managed to prove

general l-C(k) g-C(k) l-C(k) ∩ BI(k)

Eval ΣP2 [17] NP [17] NP LogCFL

P-Eval ← NP [17] LogCFL →
M-Eval ← DP LogCFL →
v ← ΠP

2 coNP coNP

≡s ← ΠP
2 coNP coNP

Table 1: Complexity of WDPT evaluation and query
analysis (all entries denote completeness).

lower b. upper bound

WB(k)-Membership ΠP
2 NExptimeNP

WB(k)-Approximation ΠP
2 coNExptimeNP

UWB(k)-Membership ΠP
2 ΠP

3

UWB(k)-Approximation ΠP
2 ΠP

3

Table 2: Semantic Optimization of WDPTs: lower-
and upper bounds of the complexity.

fixed-parameter tractability of query evaluation for (unions
of) WDPTs that are ≡s-equivalent to a query in WB(k) or
UWB(k), respectively. Further problems studied in this con-
text are WB(k) /UWB(k)-Membership (is a WDPT resp.
a union of WDPTs ≡s-equivalent to a well-behaved one?)
and WB(k) /UWB(k)-Approximation (is a WDPT resp. a
union of WDPTs an approximation of the other?). Pre-
liminary complexity results for these tasks are displayed in
Table 2. The upper bounds refer to the case WB(k) =
g-HW′(k). For WB(k) = g-TW(k), the NP-oracle can be
omitted and ΠP

3 drops to ΠP
2 , respectively.

Several lines of future work should be pursued. As far as
query evaluation and query analysis are concerned, we yet
have to identify a natural fragment of WDPTs that guar-
antees tractable subsumption and subsumption-equivalence.
Towards a theory of semantic optimization of WDPTs, we
have only made the first steps here. A better understand-
ing of the nature of WB(k)- and UWB(k)-approximations is
needed to close the gaps in Table 2. For instance, we conjec-
ture that there always exists some approximation of polyno-
mial size and that the complexity of WB(k)-Approximation
drops to the polynomial hierarchy. The situation of WDPTs
is much more involved than for CQs, where the analogous
problems come down to simple containment tests.
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APPENDIX
A. ADDITIONAL PROOF DETAILS

A.1 Proof (sketches) for Section 3
Proof sketch of Theorem 6. Given a WDPT p ∈ `-

C ∩ BI(c)), a database D and a partial mapping h, the
main idea of the polynomial time algorithm is to construct
a Boolean acyclic CQ q on a new database D′ such that
q(D′) = true iff h ∈ p(D).

The CQ q is constructed from p = (T, λ, x̄) as follows: Let
x̄′ be the subset of variables from x̄ on which h is defined,
and let T ′ be the minimal subtree of T that contains x̄′ (and
no more variables from x̄). Moreover, let T ′′ be the maximal
subtree of T that contains x̄′ but no additional variable from
x̄. By the well-designedness of p, these subtrees are uniquely
defined. For every node t ∈ T ′, let ȳt be the set of existen-
tially quantified variables that appear both in λ(t) and in
λ(ti), for some child node ti of t. We invent a new relation
symbolRt or arity |ȳt| and define q = Ans()←

∧
t∈T ′ Rt(ȳt).

Database D′ is defined in two steps: First, for every node
t ∈ T ′, we compute all mappings g on the variables ȳt, such
that g ∪ h can be extended to a homomorphism from λ(t)
into D, i.e., g contains all instantiations of the (existentially
quantified)“interface”variables consistent with solution can-
didate h. We define an intermediate database D′′ as the set
of all atoms Rt(g(ȳ)). One can check that D′′ fulfills the
following property: q(D′′) = true iff h can be extended to a
solution in p(D).

In the second step, we make sure that h can be combined
with some mapping on the existentially quantified variables
in T ′, such that no extension to further free variables is
possible. To this end, we compute analogous relations Rt
also for each node t ∈ T ′′ \T ′. These relations are filled in a
bottom-up manner from the leaves of T ′′ until the leaves of
T ′ are reached. But now we store the additional information
for every tuple in Rt indicating if the instantiation of the
variables ȳ necessarily leads to an extension to some free
variable occurring below T ′′. By deleting from D′′ all atoms
Rt(g(ȳ)) with this property, we guarantee that condition
q(D′) = true implies that h ∈ p(D).

Proof of Theorem 8. Observe that for deciding if h
can be extended to some answer h′ ∈ p(D), it suffices to

identify some homomorphism ĥ from p to D s.t. ĥz̄ = h
(where z̄ are the variables on which h is defined), i.e., ĥ
does not need not to be maximal. The problem can thus
be solved by (1) identifying the minimal subtree T ′ of T
that contains (at least) all variables from z̄; and (2) decid-
ing if q̂T ′(D) 6= ∅ where q̂T ′ is derived from qT ′ by replacing
each variable z ∈ z̄ with h(z). Clearly, q̂T ′ ∈ TW(k) (or
HW(k), respectively). Step (1) can be done in LOGSPACE
[9], while step (2) fits into LogCFL [13].

Proof sketch of Proposition 3. We only sketch the
lower bound and concentrate on the case k = 1. We
use a reduction from 3-colorability. Assume G = (V,E)
is an undirected graph such that V = {v1, . . . , vn} and
E = {e1, . . . , em}. Let D = {c(1, 1), c(2, 2), c(3, 3)} be a
database. We define a WDPT p = (T, λ, x̄) such that:

• T consists of a root r with children n1
j , n

2
j and n3

j , for
each 1 ≤ j ≤ m.

• λ(r) = {c(ui, ui) | 1 ≤ i ≤ n} ∪ {c(x, x)}, where x and
the ui’s are variables.



• λ(nkj ) = {c(uj1 , k), c(uj2 , k), c(xkj , x
k
j )}, for each 1 ≤

j ≤ m such that ej = {vj1 , vj2} and 1 ≤ k ≤ 3, where
the xkj ’s are variables.

• The free variables in x̄ are x and all variables of the
form xkj , for 1 ≤ j ≤ m and 1 ≤ k ≤ 3.

We also define a partial mapping h : X → U that satisfies
h(x) = 1 and is undefined elsewhere.

Clearly, D, p and h can be constructed in polynomial time
from G. Furthermore, p belongs to g-TW(1) and g-HW(1).
We claim that G is 3-colorable iff h ∈ p(D). This follows
directly from the following observation. For every mapping λ
from the ui’s to {1, 2, 3}, it is the case that h∪λ is a maximal
homomorphism from p to D iff λ is a valid 3-coloring of G.
The reason why the latter holds is simple. Assume first
that λ does not encode a valid 3-coloring of G. Then for
some ej = {vj1 , vj2} it is the case that λ(uj1) = λ(uj2).
Assume without loss of generality that λ(uj1) = λ(uj2) = 1
(the other two cases are analogous). Then h ∪ λ ∪ h′ is a
homomorphism from p to D, where h′ maps x1

j to 1. On
the other hand, if λ is a valid 3-coloring then clearly no such
extension exists.

A.2 Proof (sketches) for Section 5
Proof of Lemma 1. Let p = (T, λ, x̄) and p′ =

(T1, λ1, x̄1) be WDPTs such that p′ v p and p′ ∈ WB(k).
We can transform p′ into a WDPT p′′ = (T2, λ2, x̄1) with
the desired properties:

First, we restrict the number of nodes in T1. To this end,
we determine the set N of those nodes in T1 which introduce
at least one free variable, i.e., a variable from x̄1 that occurs
in this node but not in its parent. Then we delete all nodes
that are not on a path from the root to some node in N .
Moreover, we may merge every node n with its child node
n′ if n contains no free variable and n′ is the only child of
n. We thus end up with a tree T2 whose number of nodes is
linearly bounded in the size of p. Note that it is precisely this
merging of nodes where the closure under taking subgraphs
of the class WB(k) is needed.

We then restrict the number of atoms in the labeling λ1.
Recall from [17] that the subsumption test p′ v p requires
the existence of certain homomorphisms from certain sub-
trees of p to subtrees of p′. The number of homomorphisms
needed corresponds to the number of subtrees of T2. La-
belling λ2 is then essentially obtained from λ1 by deleting
all atoms that do not occur in the image of any of these
homomorphisms. Here we get an exponential blow-up due
to the number of subtrees (and, hence, of homomorphisms)
that have to be considered.

Proof of Corollary 2. From Theorem 13, there is

a NExptimeNP algorithm that, given a WDPT p in
M(WB(k)), constructs an exponential size p′ in WB(k) such
that p ≡s p′. Therefore, in order to check whether a partial
mapping h : X→ U is a partial answer to p over D, for p a
WDPT inM(WB(k)) and D a database, we can construct p′

using the previous algorithm and then check whether h is a
partial answer to p′ over D (since this is equivalent with the
fact that h is a partial answer to p over D). The latter can be
solved in polynomial time in the size of D and p′ from The-
orem 9. We conclude that Partial-Eval(M(WB(k))) can

be solved in time O(f(|p|) + |D|c · 2t(|p|)), where f : N→ N
is a double-exponential function, t : N→ N is a polynomial,

and c ≥ 1 is a constant. A similar argument shows that
Max-Eval(M(WB(k))) is fixed-parameter tractable.

Proof sketch of Theorem 14. It follows from the
proof of Lemma 1 that there is a polynomial t : N → N,
such that the WB(k)-approximations of a WDPT p are pre-
cisely the maximal elements (with respect to v) of the set of
WDPTs in WB(k) that are subsumed by p and whose size is

at most 2t(|p|). It follows from [4] that this set is nonempty,
and therefore it contains at least one maximal element. Fur-
thermore, each such maximal element can be computed in
double-exponential time from p.

A.3 Proof (sketches) for Section 6
Proof sketch of Proposition 9. For the right-to-left

direction observe that φcq is ≡s-equivalent to a union of CQs
in C(k), i.e., a union of single-node WDPTs in WB(k).

For the left-to-right direction assume that φ is ≡s-
equivalent to a UWDPT φ∗ in UWB(k). Then φ ≡s φ∗ ≡s
φcq ≡s φ∗cq. But for unions of CQs we have that ≡s is
the same as ≡, and hence φcq ≡ φ∗cq. Moreover, since each
WDPT in φ∗ is in WB(k), it follows that φ∗cq is indeed a
union of CQs in C(k).

Proof of Theorem 17. Let φrcq be the union of CQs
that is obtained by removing from φcq every CQ q that is
contained in another CQ q′ in φcq. By Proposition 9, query
φ is in M(UWB(k)) iff φcq is equivalent to a union of CQs
in C(k). It is easy to prove that this is the case iff each CQ
in φrcq is equivalent to a CQ in C(k) [5].

This gives us the following non-deterministic algorithm to
check if φ 6∈ M(UWB(k)):

Guess a CQ q ∈ φcq (all of them are of polynomial size);
check that (1) q 6⊆ q′ for every other CQ q′ in φcq, and

(2) q is not equivalent to a CQ in C(k).

Clearly, (1) can be checked in coNP, and the same holds
for (2) in case of C(k) = TW(k) (see, e.g., [4]). For C(k) =
HW′(k), step (2) can be checked in ΠP

2 , thus giving us the
desired ΠP

2 - and ΠP
3 -algorithms, respectively.

The proof of the second part of the theorem is similar.

Proof sketch of Theorem 18. By φ ≡s φcq, we can
apply results on approximations of unions of CQs from [4].
Let φcq−app denote the union of all C(k)-approximations of
the CQs in φcq. A crucial result in [4] is that the C(k)-
approximation of a union of CQs can be obtained as the
union of the approximations. Moreover, it follows from fur-
ther results in [4] that φcq−app is nonempty and contains
at most a single-exponential number of CQs. Furthermore,
each CQ in φcq−app can be assumed to be of polynomial size.
Hence, φcq−app is the desired UWDPT φ′.

Proof of Proposition 10. Hardness follows from the
ΠP

2 -hardness of Subsumption, which holds as long as the
restriction to WB(k) only applies to the WDPT on the
left-hand side. Now look at the membership: Given two
UWDPTs φ′, φ, to test if φ′ is a UWB(k)-approximation
of φ, we first check that φ′ v φ holds, which can be
done in ΠP

2 [19]. If this is the case, the proof of Theo-
rem 18 tells us that φ′ is a UWB(k)-approximation of φ iff
φcq−app v φ′, where φcq−app again denotes the union of all
C(k)-approximations of the CQs in φcq. Checking if the lat-
ter is the case can be done in ΠP

2 for C(k) = TW(k) and in
ΠP

3 for C(k) = HW(k).


