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ABSTRACT

While checking containment of Datalog programs is undecidable,
checking whether a Datalog program is contained in a union of con-
junctive queries (UCQ), in the context of relational databases, or a
union of conjunctive 2-way regular path queries (UC2RPQ), in the
context of graph databases, is decidable. The complexity of these
problems is, however, prohibitive: 2EXPTIME-complete. We inves-
tigate to which extent restrictions on UCQs and UC2RPQs, which
have been known to reduce the complexity of query containment
for these classes, yield a more “manageable" single-exponential
time bound, which is the norm for several static analysis and veri-
fication tasks.

Checking containment of a UCQ Θ′ in a UCQ Θ is NP-hard, in
general, but better bounds can be obtained if Θ is restricted to be-
long to a tractable class of UCQs, e.g., a class of bounded treewidth
or hypertreewidth. Also, each Datalog program Π is equivalent to
an infinite union of CQs. This motivated us to study the question
of whether restricting Θ to belong to a tractable class also helps
alleviate the complexity of checking whether Π is contained in Θ.

We study such question in detail and show that the situation
is much more delicate than expected: First, tractability of UCQs
does not help in general, but further restricting Θ to be acyclic and
have a bounded number of shared variables between atoms yields
better complexity bounds. As corollaries, we obtain that check-
ing containment of Π in Θ is in EXPTIME if Θ is of treewidth
one, or it is acyclic and the arity of the schema is fixed. In the
case of UC2RPQs we show an EXPTIME bound when queries are
acyclic and have a bounded number of edges connecting pairs of
variables. As a corollary, we obtain that checking whether Π is
contained in UC2RPQ Γ is in EXPTIME if Γ is a strongly acyclic
UC2RPQ. Our positive results for UCQs and UC2RPQs are opti-
mal, in a sense, since slightly extending the conditions turns the
problem 2EXPTIME-complete.
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1. INTRODUCTION
Query containment is a basic static analysis task that amounts to

check whether the evaluation of a query q is necessarily contained
in the evaluation of another query q′ (often written as q ⊆ q′). Sev-
eral database tasks crucially depend on the ability to check query
containment; these include, e.g., query optimization, view-based
query answering, querying incomplete databases, integrity check-
ing, and implication of dependencies: cf. [6, 11, 20, 22, 23, 27].

Checking containment between queries is difficult computation-
ally. For instance, the containment problem is undecidable for
queries expressible in first-order logic (FO), and, thus, for any re-
lational language that contains FO (such as SQL). Decidability re-
sults can be obtained for syntactically restricted classes of FO for-
mulas. In the context of databases, the most important such re-
striction is defined by the class of conjunctive queries (CQs), or,
equivalently, the expressions defined by the select-project-join op-
erators of relational algebra. It follows from the seminal work of
Chandra and Merlin [10] that CQ containment and CQ evaluation
are polynomially equivalent problems and both are NP-complete.
The NP upper bound is not affected if we extend the language to
also consider unions of CQs (UCQs).

Extending the class of UCQs with recursion yields the important
language of Datalog, which has gained renewed attention in the
last years due to its applications in areas such as distributed com-
puting, ontological reasoning, cluster computing, graph databases,
and data exchange (cf. [19, 2] for a broad description of current
applications of Datalog in academia and industry). This extension,
however, has a crucial drawback: the containment problem for Dat-
alog is undecidable [33]. This has motivated the search for relevant
restrictions of the problem that can be effectively decided, ideally
at a reasonable computational cost.

Since containment for UCQs is decidable, a natural restriction of
the Datalog containment problem is when one of the two queries is
a UCQ. This actually yields positive results in any of the two pos-
sible cases: Checking whether a UCQ Θ is contained in a Datalog
program Π is EXPTIME-complete [16], while the opposite, decid-
ing whether the Datalog program Π is contained in the UCQ Θ, is
2EXPTIME-complete [12]. From this we obtain that the important
problem of checking whether the recursive program Π is equiva-
lent to the nonrecursive (and, thus, typically easier to evaluate and
optimize) query Θ can be solved in 2EXPTIME.

While the decidability of containment of Datalog in UCQs is
of theoretical importance, it is impractical due to the unavoidable
double exponential cost. In addition, the 2EXPTIME lower bound



holds even for UCQs of fixed arity, and, therefore, it implies “real"
intractability. This raised the interest in identifying which param-
eters of the input affect its complexity. In particular, Chaudhuri
and Vardi [13] and Benedikt et al. [5] performed a fine analysis
of the complexity of the problem for restricted classes of Datalog
programs (e.g. monadic, linear, single-rule and non-persistent pro-
grams), identifying cases that lead to better bounds.

In this paper we study the opposite question: To what extent
is it possible to obtain more practical bounds for the problem by
restricting the syntactic shape of UCQs, while retaining the full
expressive power of Datalog programs? Our goal is identifying rel-
evant restrictions on UCQs for which the double-exponential time
procedure from [12] can be replaced by a more “acceptable" single-
exponential time one, which is the norm in many static analysis and
verification questions [28, 30].

Consider first the problem of checking whether θ ⊆ θ′ for CQs θ
and θ′. This problem is NP-complete, but it follows from [10] that
it can be solved efficiently if θ′ belongs to a tractable class of CQs;
that is, a class of CQs whose evaluation problem can be solved in
polynomial time. Due to a flurry of activity in the last two decades,
we have by now a fairly complete picture of what these classes are:

1. Chekuri and Rajaraman [14] (see also [18]) proved that each
level of the hierarchy

TW(1) ⊂ TW(2) ⊂ · · · ⊂ TW(k) ⊂ · · · ,

where TW(k) is the set of CQs of treewidth at most k, is
tractable. Treewidth is a well-studied notion that provides a
measure for the tree-likeness of a CQ.

2. The treewidth of a CQ is defined in terms of its underly-

ing graph, but this is too restrictive when the schema is not
fixed. In such case, it is more convenient to measure the tree-
likeness of a CQ in terms of its underlying hypergraph. Gott-
lob et al. [24] identified an appropriate correlate of treewidth
in this context – called hypertreewidth – and proved that each
level of the hierarchy

HW(1) ⊂ HW(2) ⊂ · · · ⊂ HW(k) ⊂ · · · ,

where HW(k) corresponds to the class of CQs of hyper-

treewidth at most k, is tractable. Interestingly, the first level
of this hierarchy, HW(1), corresponds to the well-known
class AC of acyclic CQs [36]. (See [25] for some extensions
of this line of work.)

We can easily extend these two notions to UCQs: A UCQ Θ
is in TW(k) (resp. HW(k)) iff each one of the CQs in Θ is in
TW(k) (resp. HW(k)). Tractability results for query evaluation
and containment extend to these classes [31].

Returning to the problem of checking containment of a Datalog
program Π in a UCQ Θ, it is well-known that each Datalog pro-
gram Π is equivalent to an infinite union

⋃
i≥1

θi of (uniformly
generated) CQs, and, therefore, checking if Π ⊆ Θ amounts to
checking if

⋃
i≥1

θi ⊆ Θ. Restricting Θ to belong to one of the

tractable classes TW(k) and HW(k) reduces the complexity of
containment when the left-hand side of the containment problem
is a finite union of CQs. So far, however, the question of whether
such restriction also helps alleviate the cost of checking contain-
ment of the infinite union

⋃
i≥1

θi (and, thus, of Π) in Θ has not
been addressed. We study this question in depth in this paper.

Somewhat surprisingly, we prove that the situation is more deli-
cate than expected:

1. First, we show that none of the tractable restrictions of UCQs
that have been studied to date – save for TW(1) – helps to

reduce the complexity of the Datalog containment problem.
That is, checking whether Π ⊆ Θ, for Π a Datalog program
and Θ a UCQ, continues to be 2EXPTIME-complete even if
(a) Θ is of TW(2), or (b) Θ is in HW(1), and, thus, acyclic.
(This does not follow from known hardness results.)

2. Second, in order to obtain better complexity bounds we have
to unveil a finer hierarchy of queries inside the class of acyclic
UCQs. This hierarchy is

AC1 ⊂ AC2 ⊂ · · · ⊂ ACk ⊂ · · · ,

where ACk denotes the class of UCQs Θ in AC such that no
two atoms in Θ share more than k variables. We prove that
checking Π ⊆ Θ, for Θ in ACk, can be solved in EXPTIME

(being complete for this class).

As corollaries, we obtain that checking Π ⊆ Θ can be solved
in EXPTIME when Θ is an acyclic UCQ of fixed arity and
when it is of treewidth 1. These results are optimal, since we
prove that checking Π ⊆ Θ is 2EXPTIME-complete, even if
Θ is a UCQ in HW(2) or TW(2) of fixed arity.

In the second part of the paper we switch to study the contain-
ment problem over graph databases [1, 35]. The analogue of UCQs
in this context are the unions of conjunctive two-way regular path

queries, UC2RPQs [7], that extend UCQs with the ability to check
whether two nodes in a graph database are linked by a path that
satisfies a regular condition. Calvanese et al. [8] proved that con-
tainment of Datalog in UC2RPQ is still decidable in 2EXPTIME.

Evaluation of UC2RPQs is also NP-complete, but tractability
can be obtained by considering the class ACR of acyclic UC2RPQs
[3]. These are the UC2RPQs whose underlying CQs are acyclic
(or, equivalently, of treewidth one, since AC = TW(1) over graph
databases). Since containment of Datalog in UCQs in TW(1) can
be solved in EXPTIME, it is natural to study whether the restriction
to acyclic UC2RPQs also helps alleviate the complexity of the con-
tainment problem in this context. We show that, again, the situation
is more delicate than expected:

1. First, acyclicity in this case does not help to reduce the com-
plexity. That is, containment of a Datalog program Π in a
UC2RPQ Γ is 2EXPTIME-complete, even if Γ is a UC2RPQ
in ACR.

2. Again, in order to obtain better complexity bounds we need
to unveil the finer structure of the class of acyclic UC2RPQs.
In order to do that, we first identify a hierarchy

ACR
1 ⊂ ACR

2 ⊂ · · · ⊂ ACR
k ⊂ · · · ,

where ACRk is the class of UC2RPQs Γ ∈ ACR in which
each pair of variables is connected by at most k atoms, and
then prove that Π ⊆ Γ can be solved in EXPTIME if Γ be-
longs to ACRk , for k ≥ 1. Queries in ACR1 have been pre-
viously studied in the literature under the name of strongly

acyclic UC2RPQs [1].

This result is, in a sense, optimal, since containment of Dat-
alog in UC2RPQs Γ of (hyper-)treewidth two is 2EXPTIME-
complete, even if each pair of variables in Γ is connected by
at most one atom.

Organization. We present preliminaries in Section 2 and tractable
classes of UCQs in Section 3. Results on containment of Datalog in
tractable UCQs are in Section 4, while Section 5 is devoted to the
study of containment of Datalog in acyclic UC2RPQs. We finish in
Section 6 with our concluding remarks.



2. PRELIMINARIES
Conjunctive queries. We assume familiarity with relational
schemas σ and databases D. Recall that a conjunctive query (CQ)
over σ is a logical formula in the ∃,∧-fragment of FO, i.e., a for-
mula θ of the form

∃ȳ(R1(x̄1) ∧ · · · ∧ Rm(x̄m)),

where each Ri(x̄i) is an atom over σ (1 ≤ i ≤ m). We write θ(x̄)
to denote that x̄ are the free variables of θ, i.e., those that are not
mentioned in the tuple ȳ.

As usual, the semantics of CQs is defined in terms of homomor-

phisms. Formally, a homomorphism h from a CQ θ of the form
∃ȳ(R1(x̄1)∧ · · · ∧Rm(x̄m)) to a database D over σ is a mapping
from the set of variables that appear in the x̄i’s (for 1 ≤ i ≤ m) to
the elements of D, such that Ri(h(x̄i)) ∈ D for each 1 ≤ i ≤ m.
The evaluation of θ over D, denoted θ(D), consists of the set of all
tuples h(x̄), for h a homomorphism from θ toD.

A union of CQs (UCQ) Θ over σ is a set {θ1(x̄), . . . , θk(x̄)} of
CQs over σ with the same free variables. We define Θ(D) to be⋃

1≤j≤k θj(D), for each database D.

Datalog. Extending UCQs with recursion yields the Datalog lan-
guage. Formally, a Datalog program Π consists of a finite set of
rules of the form

S(x̄) ← R1(x̄1), . . . , Rm(x̄m),

where S(x̄) and Ri(x̄i) are atoms, for each 1 ≤ i ≤ m, and each
variable in x̄ appears in some of the x̄i’s (1 ≤ i ≤ m). The atom
S(x̄) is the head of this rule, while its body isR1(x̄1), . . . , Rm(x̄m).
We denote by Rels(Π) the set of relation symbols that appear in Π
and by IRels(Π) the set of intensional relation symbols of Π, i.e.,
the set of symbols S ∈ Rels(Π) such that there is an atom of the
form S(x̄) in the head of some rule in Π.

The semantics of a Datalog program Π is defined as follows.
Let D be a database over Rels(Π). Then F(D) is a database over
Rels(Π) that consists of all facts S(t̄) such that Π contains a rule
of the form S(x̄) ← R1(x̄1), . . . , Rm(x̄m) that satisfies that t̄
belongs to the evaluation of the CQ θ(x̄) := ∃ȳ(R1(x̄1) ∧ · · · ∧
Rm(x̄m)) over D. We define the result of applying Π to D to be
F∞(D) :=

⋃
i≥0
F i(D), where

F0(D) := D and F i+1(D) := F(F i(D)) ∪ F i(D),

for i ≥ 0. Clearly, for every database D we have
⋃

i≥0
F i(D) =

⋃
0≤i≤j F

i(D), for some j ≥ 0, and, thus, F∞(D) is finite.

A Datalog program Π is over the schema σ, if σ = Rels(Π) \
IRels(Π) and there is a distinguished symbol Q in IRels(Π). If D
is a database over σ, we define the evaluation Π(D) of Π overD to
be the set of tuples t̄ such that Q(t̄) ∈ F∞(D) (assuming that the
interpretation inD of each R ∈ IRels(Π) is empty).

EXAMPLE 1. This example is taken from [29]. Imagine a sce-
nario in which we have compulsive consumers that buy everything
they like, plus anything that is trendy in case they have bought
something before. The shopping carts of these consumers can be
defined by the Datalog program Πc that consists of rules

buys(x, y) ← likes(x, y)

buys(x, y) ← trendy(x), buys(z, y).

The program Πc is over the schema that consists of symbols trendy
and likes. The distinguished symbol is buys. ✷

Containment of queries. Let q1 and q2 be queries over the
same schema σ in one of the query languages we introduced be-
fore. Then q1 is contained in q2, denoted q1 ⊆ q2, if and only if
q1(D) ⊆ q2(D) for every database D over σ. Notice that q1 is
equivalent to q2 iff q1 ⊆ q2 and q2 ⊆ q1.

Let C1 and C2 be two classes of queries, e.g. CQs, UCQs, Dat-
alog, or some of the classes we introduce in the paper. We define
the containment problem of C1 in C2 as follows:

PROBLEM : CONT(C1,C2).
INPUT : Queries q1 ∈ C1 and q2 ∈ C2

over same schema σ.
QUESTION : Is q1 ⊆ q2?

We also study the complexity of this problem for schemas of
fixed arity. Formally, let c be a positive integer. We then write
CONTc(C1,C2) to denote the restriction of the problem CONT(C1,C2)
to inputs in which the arity of σ is at most c.

Containment of UCQs. It has long been known that contain-
ment and evaluation of CQs are polynomially equivalent problems.
In fact, let θ(x̄) and θ′(x̄) be CQs over σ and assume that θ is
of the form ∃ȳ(R1(x̄1), . . . , Rm(x̄m)). Let Dθ be the canonical

database of θ, i.e.,

Dθ := {Ri(x̄i) | 1 ≤ i ≤ m}.

It follows from the seminal work of Chandra and Merlin [10] that
θ ⊆ θ′ iff x̄ ∈ θ′(Dθ). Furthermore, Sagiv and Yannakakis proved
that if Θ and Θ′ are UCQs, then Θ ⊆ Θ′ iff for every CQ θ ∈
Θ there exists a CQ θ′ ∈ Θ′ such that θ ⊆ θ′ [31]. Since CQ
evaluation is NP-complete [10], we obtain the following:

THEOREM 1. [10, 31] CONT(UCQ,UCQ) is NP-complete.

Containment of Datalog in UCQ. As opposed to the case of UCQs,
checking containment for Datalog programs is undecidable [33].
This has motivated the search for relevant restrictions of the prob-
lem that can be effectively decided (ideally at a reasonable compu-
tational cost). We study in this paper one of the most important of
such decidable restrictions: containment of Datalog in UCQs [12],
CONT(Datalog,UCQ). In full generality, this is a computationally
expensive problem, even for schemas of fixed arity.

THEOREM 2. [12] CONT(Datalog,UCQ) is in 2EXPTIME. There

is c ≥ 1 such that the problem CONTc(Datalog,UCQ) is 2EXPTIME-

complete.

EXAMPLE 2. Consider the compulsive consumers program Πc

from Example 1. It can be shown to be contained (and, in fact, it is
equivalent to) the following UCQ:

{likes(x, y), ∃z(trendy(x)∧ likes(z, y))}.

3. TRACTABLE CONTAINMENT FOR UCQ
While in general UCQ containment is an NP-complete problem,

we obtain tractability by imposing that UCQs Θ′ in the right-hand
side of the containment problem belong to a tractable class; that is,
to a class C of UCQs for which there is a polynomial time algorithm
that given a UCQ Θ(x̄) in C, a databaseD, and a tuple t̄ of the same
arity than x̄, checks whether t̄ ∈ Θ(D). Formally:

PROPOSITION 1. [10, 31] Let C be a tractable class of UCQs.

Then CONT(UCQ,C) is in PTIME.



Due to a myriad of papers in the last two decades, we have
by now a very good understanding of which classes of UCQs are
tractable. These include classes of bounded treewidth [14], hyper-

treewidth [24], generalized hypertreewidth [24], fractional hyper-
treewidth [25], etc. We concentrate on the first two, which are de-
fined next.

UCQs of bounded treewidth. An important tractable class of
UCQs can be obtained by restricting the treewidth of the Gaifman

graph of queries [14]. Formally, the Gaifman graph of a CQ θ
of the form ∃ȳ(R1(x̄1), . . . , Rm(x̄m)) is the undirected graph Gθ

whose nodes are the variables of θ, and there is an edge in Gθ from
variable x to x′ iff there is 1 ≤ i ≤ m such that both x and x′

appear in the tuple x̄i.
A tree decomposition of an undirected graph G = (V, E) is a

pair (T, λ), where T is a tree and λ : T → 2V , that satisfies the
following:

1. For each v ∈ V the set {t ∈ T | v ∈ λ(t)} is a connected
subset of T .

2. Each edge of E is contained in one of the sets λ(t), for t ∈ T .

The width of (T, λ) ismax ({|λ(t)| | t ∈ T})−1. The treewidth of
G is the minimum width of its tree decompositions. Intuitively, the
treewidth of G measures its tree-likeness. Notice that G is acyclic
iff it is of treewidth one.

The treewidth of the UCQ Θ is the maximum treewidth of Gθ ,
for θ ∈ Θ. We denote by TW(k) the class of UCQs of treewidth at
most k, for k ≥ 1.

EXAMPLE 3. The CQ E(x1, x2) ∧ · · · ∧ E(xn−1, xn) is in
TW(1), for each n ≥ 3. In fact, its Gaifman graph is a path, and,
thus, acyclic. Adding E(x1, xn) increases the treewidth to two.
Adding all atoms of the form E(xi, xj), for 1 ≤ i < j ≤ n, yields
a CQ whose Gaifman graph is a clique of size n. The treewidth of
this CQ is n− 1. ✷

It follows from [14] (see also [18]) that each layer of the hierar-
chy TW(1) ⊂ TW(2) ⊂ · · · ⊂ TW(k) ⊂ · · · is tractable. From
Proposition 1 we thus have:

THEOREM 3. Let k ≥ 1. Then CONT(UCQ,TW(k)) can be

solved in PTIME.

UCQs of bounded hypertreewidth. The notion of treewidth is de-
fined in terms of the Gaifman graph of a CQ, but this is too restric-
tive when the arity of the schemas is not fixed in advance. In order
to overcome this limitation, Gottlob et al. [24] proposed studying
syntactic restrictions of the class of CQs based on properties of the
underlying hypergraph of queries. The analogue of treewidth in
this context is the notion of hypertreewidth, which, like the former,
leads to tractability of query evaluation. In particular, each layer
of the hierarchy HW(1) ⊂ HW(2) ⊂ · · · ⊂ HW(k) ⊂ · · · ,
where HW(k) is the class of UCQs of hypertreewidth at most k,
is tractable [24]. We skip the definition of the HW(k)’s since it
is rather technical and not crucial for our purposes (the interested
reader can find the definition in [24]).

Since the HW(k)’s are tractable, we obtain from Proposition 1
the tractability of CONT(UCQ,HW(k)):

THEOREM 4. Let k ≥ 1. Then CONT(UCQ,HW(k)) can be

solved in PTIME.

It is important for us to notice that the lowest level HW(1) of the
hierarchy coincides with the well-known class AC of acyclic UCQs
[36], which admits a simple definition. A UCQ Θ is in AC iff each
CQ θ ∈ Θ can be represented as a join tree [4]. The latter means
that there is a tree T whose nodes are the atoms of θ, such that for
each variable x in θ it is the case that the set of nodes in which x is
mentioned is a connected subset of T .

The notions of bounded treewidth and acyclicity are incompara-
ble. For instance, consider the class C = {θn | n ≥ 2}, where
θn :=

∧
1≤i<j≤n E(xi, xj) ∧ Tn(x1, . . . , xn). Each CQ θn ∈ C

is acyclic; this is witnessed by the join tree T whose root r corre-
sponds to the atom Tn(x1, . . . , xn) and there is a child of r for each
atom of the form E(xi, xj), for 1 ≤ i < j ≤ n. On the other hand,
the treewidth of the CQs in C is not bounded by a constant. Con-
sider now the class C of queries {E(x1, x2)∧· · ·∧E(xn−1, xn)∧
R(x1, xn) | n ≥ 3}. Each CQ in C is in TW(2), but no such CQ
is acyclic.

4. CONTAINMENT OF DATALOG IN

TRACTABLE CLASSES OF UCQS
It is well-known that each Datalog program Π can be expressed

as an infinite union
⋃

i≥1
θΠi of CQs. The θΠi ’s are called the ex-

pansions of Π (see, e.g., [29]). Therefore, checking containment
of Π in a UCQ Θ reduces to checking containment of the infinite
UCQ

⋃
i≥1

θΠi in Θ. Restricting Θ to belong to one of the tractable

classes TW(k) and HW(k) reduces the complexity of containment
when the left-hand side of the containment problem is a finite union
of CQs (Theorems 3 and 4). On the other hand, it is not known
whether such restriction also helps alleviate the cost of checking
containment of the infinite union

⋃
i≥1

θΠi (and, thus, of Π) in Θ.
We show in this section that the situation is much more delicate
than expected. But before doing so, it is important to explain how
expansions can be represented using expansion trees, and how con-
tainment of Datalog programs in UCQs can be checked using those
expansion trees.

Expansion trees. We quickly recall the notion of (unfolding)
expansion tree from [12]. Let Π be a Datalog program over σ with
distinguished symbol Q. Then:

1. The nodes of an expansion tree of Π are labeled with in-
stances of rules in Π.

2. The root of an expansion tree of Π is labeled with a rule
whose head is of the form Q(x̄).

3. For every node u of an expansion tree such that u is labeled ρ
and R1(x̄1), . . . , Rℓ(x̄ℓ) are the atoms of the body of ρ over
the schema IRels(Π), it is the case that u has exactly ℓ chil-
dren u1, . . . , uℓ in the expansion tree and each uj is labeled
with an instance ρj of a rule in Π whose head is Rj(x̄j), for
1 ≤ j ≤ ℓ.

Therefore, leaves of expansion trees have to be labeled with
instances of rules of Π with no intensional atoms.

4. For every node u of an expansion tree labeled ρ, it is the
case that every variable y mentioned in the body of ρ either
appears in the head of ρ or it does not appear in any node
above u in the expansion tree.

This is a technical condition that ensures that when creating
children of nodes in expansion trees in order to unify inten-
sional atoms, only “fresh" instances of rules in Π can be used.



Clearly, the number of different expansion trees of a program Π
might be infinite (in particular, when Π is recursive).

Each expansion tree τ represents a CQ θτ over σ: this is obtained
by taking the conjunction of all atoms over σ that label the nodes
of τ . Assume that the root of τ is labeled with a rule whose head is
Q(x̄). Then x̄ is the tuple of free variables of θτ . The CQs of the
form θτ , for τ an expansion tree of Π, are precisely the expansions
of Π, i.e. the CQs θΠi such that Π is equivalent to

⋃
i≥1

θΠi [12]. It
follows that Π is contained in a UCQ Θ iff for each expansion tree
τ of Π with associated CQ θτ (x̄) there is a a CQ θ′ ∈ Θ such that
θτ ⊆ θ′, or equivalently, x̄ ∈ θ′(Dθτ ).

This last condition is usually rephrased in terms of the existence
of a containment mapping from θ′ to τ [12], i.e. a mapping µ from
the variables of θ′ to the variables that label the atoms of τ , such
that (i) µ is the identity over x̄, and (ii) for each atom R(ȳ) in
θ′ it is the case that R(µ(ȳ)) appears in the label of a node of τ .
Clearly, x̄ ∈ θ′(Dθτ ) iff there is a containment mapping from θ′ to
τ . Summing up:

PROPOSITION 2. Let Π be a Datalog program and Θ a UCQ.

Then Π ⊆ Θ iff for every expansion tree τ of Π there is a CQ

θ ∈ Θ and a containment mapping from θ to τ .

Several of our proofs rely on this characterization.

4.1 Tractable UCQs are not enough
We show that tractable restrictions on UCQs do not help, in

general, to reduce the complexity of CONT(Datalog,UCQ). In par-
ticular, we prove that 2EXPTIME-hardness for checking contain-
ment of a Datalog program Π in a UCQ Θ holds even if Θ is
in HW(1) = AC, or it is in TW(2). These negative results are
quite resilient: They hold even for UCQs in TW(2) or HW(2) over
schemas of fixed arity. Formally:

THEOREM 5. The following problems are 2EXPTIME-hard:

1. CONT(Datalog,AC).

2. CONT2(Datalog,HW(2)).

3. CONT2(Datalog,TW(2)).

None of these results follows from existing hardness results for
CONT(Datalog,UCQ) in the literature [5, 12]. Instead, we have
to carefully refine the techniques in [12] to obtain these stronger
lower bounds. Next, we sketch the proof of 2EXPTIME-hardness
for CONT(Datalog,AC).

Proof (Sketch): We reduce from the following 2EXPTIME-complete
problem: Given an alternating Turing machine M and a positive in-
teger n, decide whether M accepts the empty tape using 2n space.
Recall that alternating Turing machines M have existential and uni-
versal states. We assume w.l.o.g. that (1) the initial state of M is
existential, (2) M always alternates between existential and uni-
versal states, and (3) every configuration of M has two possible
successors, a left successor and a right successor, defined by two
deterministic transitions functions δℓ and δr . An accepting compu-
tation of M is a tree of configurations, where each configuration is
a successor of its parent, a universal configuration has both of its
successors as children, and all leaves are accepting.

A configuration of M can be described as a string of length
2n. The symbols of the string are either symbols of the alpha-
bet or composite symbols. A composite symbol is a pair (q, e),
where q is a state of M and e is in the alphabet of M . Intu-
itively, a symbol (q, e) indicates that M is in state q and is scan-
ning the symbol e. It is well known that the successor relation

between configurations depends only on local constraints: we can
associate with δℓ two ternary relations Iℓ, F ℓ and a 4-ary rela-
tion Bℓ on symbols that characterize the left successor relation. If
ā = a1 · · · am and b̄ = b1, · · · , bm are two configurations, then b̄
is a left successor of ā iff (a1, a2, b1) ∈ Iℓ, (am−1, am, bm) ∈ F ℓ

and (ai−1, ai, ai+1, bi) ∈ Bℓ, for each 1 < i < m. Analogously,
we associate with δr the relations Ir, F r and Br .

We construct a Datalog program Π and a UCQ Θ in AC that en-
code accepting computations of M . The expansions of Π will cor-
respond to configuration trees, and each disjunct in Θ will detect
a particular error that prevents an expansion from being an accept-
ing computation. Thus, if an expansion τ does not correspond to
an accepting computation, we will have that τ ⊆ Θ. Therefore,
Π ⊆ Θ if and only if the machine M does not accept the empty
tape using 2n space. In our construction, we need to compare cor-
responding positions in successive configurations in order to detect
transition errors. This is achieved by identifying each position in a
configuration with an n-bit address.

Schema. The schema of Π and Θ consists of a symbol A of arity
n+8, a unary symbol Start and a unary symbol Qs, for each pos-
sible symbol s. The intuition behind the predicate A is as follows:
(1) The first two arguments of A act as the constants 0 and 1, (2)
the third and fourth arguments of A link successive addresses, (3)
the next n arguments of A encode the address, (4) the next three
arguments of A link successive configurations, and (5) the last ar-
gument indicates whether the current configuration is existential or
universal.

Program Π. The program Π contains an intensional relation sym-
bol B of arity n+7 and a 0-ary distinguished symbol C. Expansion
trees of Π correspond to computation trees of M . In an expansion
tree, the predicate B propagates the information while it generates
atoms of the form A(x, y, z, z′, a1, . . . , an, u, v, w, t), Qs(z). In-
tuitively, this represents that, in the current configuration, the posi-
tion at address a1 · · · an contains the symbol s.

For 1 ≤ i ≤ n, the program Π contains the following rules:

B(x, y,z, a1, . . . , an, u, v, w, t)

←B(x, y, z, a1, . . . ai−1, x, ai+1 . . . , an, u, v, w, t).

B(x, y,z, a1, . . . , an, u, v, w, t)

←B(x, y, z, a1, . . . ai−1, y, ai+1 . . . , an, u, v, w, t).

Intuitively, each unfolding of these rules modifies the i-th address
bit: x encodes the bit 0, and y the bit 1.

For each symbol s, Π contains the rule:

B(x, y,z, a1, . . . , an, u, v, w, t)

←A(x, y, z, z′, a1, . . . , an, u, v, w, t),

Qs(z), B(x, y, z′, a1, . . . , an, u, v, w, t).

These rules determine the symbols in the configurations.
To encode transitions from configuration to configuration, we

have to check whether the source configuration is existential or uni-
versal. For existential configurations we have rules of the form:

B(x, y,z, a1, . . . , an, u, v, w, x)

←A(x, y, z, z′, a1, . . . , an, u, v, w, x),

Qs(z), B(x, y, z′, a1, . . . , an, u
′, u, w′, y).

B(x, y,z, a1, . . . , an, u, v, w, x)

←A(x, y, z, z′, a1, . . . , an, u, v, w, x),

Qs(z), B(x, y, z′, a1, . . . , an, u
′, v′, u, y).



Note that u moves either one or two positions to the right in the B
predicate. A one-position movement corresponds to a transition to
a left successor, while a two-position movement corresponds to a
transition to the right successor.

Equivalently, for universal configurations we have rules :

B(x, y,z, a1, . . . , an, u, v, w, y)

←A(x, y, z, z′, a1, . . . , an, u, v, w, y), Qs(z)

B(x, y, z′, a1, . . . , an, u
′, u, w′, x),

B(x, y, z′, a1, . . . , an, u
′, v′, u, x).

To encode the start of the computation we use the rule:

C ← Start(z),B(x, y, z, x, . . . , x, u, v, w, x).

To encode the end of the computation, we use rules:

B(x, y,z, a1, . . . , an, u, v, w, t)

←Qs(z),A(x, y, z, z′, a1, . . . , an, u, v, w, t),

for symbols s = (q, e) such that q is an accepting state.

The UCQ Θ. Now we show how to detect errors in the expansion
trees of Π using a Boolean acyclic UCQ Θ. Each disjunct of Θ
detects a particular type of error. There are first some simple errors
that prevent the expansion tree from being a configuration tree: (a)
the first address is not 0, . . . , 0, (b) there are two consecutive ad-
dresses ā and b̄ such that b̄ 6= ā + 1 (mod 2n), (c) a configuration
does not change when the address is 1, . . . , 1, and (d) a configu-
ration changes when the address is not 1, . . . , 1. For each one of
them we can easily adapt techniques from [12] and build an acyclic
CQ that detects it.

We have so far ensured that the expansion tree is a configuration
tree. Now we have to ensure that the tree is a valid computation
of the machine M . In order to force the first configuration to be
the initial configuration, we can again apply techniques from [12].
On the other hand, to detect errors in the transitions δℓ and δr we
cannot directly apply those techniques. This is because the CQs
constructed in [12] to detect those errors are not acyclic. We use,
instead, the following idea.

For each (a, b, c, d) /∈ Bℓ we add the CQ that is defined by the
conjunction of every atom in the set:

Φ(a, b, c, d) := {A(x, y, z1, z2, ā1, u, v, w, u1), Qa(z1),

A(x, y, z2, z3, ā2, u, v, w, u2), Qb(z2),

A(x, y, z3, z4, ā3, u, v, w, u3), Qc(z3),

A(x, y, z, z′, ā2, u
′, u, w′, u4), Qd(z)}.

The pattern of the zi’s variables and the u, v, w variables ensures
that the first three atoms are mapped in three successive positions
in the same configuration E. The pattern “u′, u, w′" ensures that
the last atom is mapped to the left successor of E. The reuse of ā2

ensures that the second and the last atom are mapped to the same
address. Note that each one of these queries is actually acyclic, as
witnessed by the join tree in which the first three A-atoms form a
path and the last A-atom is a child of the second one. We define
similar CQs in AC for each (a, b, c) /∈ Iℓ, for each (a, b, c) /∈ F ℓ,
and for detecting errors in δr .

It is not hard to prove now that Π ⊆ Θ iff M does not accept the
empty tape in space 2n. Since the construction of Π and Θ can be
carried out in polynomial time, it follows that CONT(Datalog,AC)
is 2EXPTIME-hard. ✷

4.2 Better bounds for queries in ACk

Since restricting to a tractable class of UCQs the right-hand side
of the problem CONT(Datalog,UCQ) does not help, in general, to
reduce its computational cost, we look for further restrictions on
UCQs that yield better bounds.

A big source of complexity for CONT(Datalog,AC) is the exis-
tence of pairs of atoms in CQs that share an unbounded number of
variables (in the proof of Theorem 5 this is witnessed, for instance,
in the CQs of the form Φ(a, b, c, d), for (a, b, c, d) 6∈ Bℓ). By re-
stricting this parameter we unveil a new hierarchy inside the class
of acyclic UCQs, that consists of the acyclic UCQs with a bounded

number of common variables between atoms. We prove that con-
tainment of Datalog in any of the levels of this hierarchy can be
solved in EXPTIME (and it is actually complete for this class).

Formally, let us define ACk, for k ≥ 1, to be the class of queries
Θ in AC such that no two distinct atoms in a CQ in Θ share more
than k variables. Clearly:

AC1 ⊂ AC2 ⊂ · · · ⊂ ACk ⊂ · · · ⊂ AC.

EXAMPLE 4. The CQ
∧

1≤i<n E(xi, xi+1), for n ≥ 2, is in

AC1. The CQ
∧

1≤i<j≤n E(xi, xj)∧ Tn(x1, . . . , xn), for n ≥ 2,

is in AC2. ✷

We prove next that CONT(Datalog,ACk) can be solved in single-
exponential time, for each k ≥ 1.

THEOREM 6. Let k ≥ 1. Then CONT(Datalog,ACk) is EXPTIME-

complete.

Proof (Sketch): We only sketch the upper bound. We assume fa-
miliarity with standard (one-way) nondeterministic tree automata

[32], 1NTA, and two-way alternating tree automata [34], 2ATA,
which extend 1NTA with both upward moves and alternation.

Overall idea. It is known that each expansion tree of a Datalog
program Π can be represented as a ranked tree over a finite alphabet
ΣΠ. Such representations are called the proof trees of Π. The
language of all proof trees of Π can be defined by a 1NTAAΠ over
ΣΠ, such that AΠ can be constructed in single exponential time
from Π [12]. Consider first the case when Θ is an arbitrary UCQ
(i.e., not necessarily in ACk). Then it is possible to construct in
single exponential time from Π and a UCQ Θ, a 1NTA AΘ

Π that
accepts precisely the proof trees ν of Π such that there is a CQ
θ ∈ Θ and a containment mapping from θ to the expansion tree
τ represented by ν [12]. (Both AΠ and AΘ

Π can be of exponential
size). Thus, in order to check if Π ⊆ Θ, it is sufficient to check
whether the language defined by the 1NTA AΠ is contained in the
one defined by AΘ

Π . The latter can be done in double exponential
time in the size of Π and Θ [32].

In our case, that is, when Θ belongs to ACk, we can follow a
slightly different approach and check containment of Π in Θ in sin-
gle exponential time. We start again by constructing in EXPTIME

the 1NTAAΠ over ΣΠ that defines the set of proof trees of Π. The
difference is that we now construct in exponential time from Π and
Θ a 2ATA BΘ

Π of polynomial size1, that accepts all trees T over ΣΠ

such that there exists a CQ θ ∈ Θ and a strong containment map-
ping from θ to T . Notice that, in opposition to AΘ

Π , the 2ATA BΘ
Π

may accept trees over ΣΠ that are not proof trees of Π.
Checking whether Π ⊆ Θ reduces to check if the language de-

fined by AΠ is contained in the one defined by BΘ
Π . In order to

1This means that even if |ΣΠ| is exponential, both the set of states

S of BΘ
Π and the sets of the form δ(s, a), where δ is the transition

function of BΘ
Π , s ∈ S and a ∈ ΣΠ, are of polynomial size.



do the latter, we first compute from BΘ
Π a 1NTA that defines the

complement of BΘ
Π , and then check for nonemptiness the intersec-

tion of this 1NTA with AΠ. This tells us whether Π 6⊆ Θ. The
result now follows from EXPTIME being closed under complement
and the following facts: (1) A 1NTA that defines the complement
of BΘ

Π can be constructed in single exponential time from Π and Θ
[17], and (2) checking if the language defined by the intersection of
this 1NTA withAΠ is nonempty can be solved in time exponential
in the size of Π and Θ.

Technical details of the construction. Proof trees of Π describe
expansion trees of Π using a finite number of labels. Formally, let
r be a rule of Π and nv(r) be the number of variables in r. We
define nv(Π) to be twice the maximum of nv(r), for all rules r in
Π. Let vars(Π) be a set of variables of cardinality nv(Π). A proof
tree ν of Π is simply an expansion tree that does not satisfy the last
condition of the definition (that is, variables in ν can be reused),
and all the variables used in ν come from vars(Π).

In an expansion tree, when we “unfold" a node we take a “fresh"
copy of a rule r in Π. In a proof tree, we take instead an instance
of r over vars(Π). Since the number of variables in vars(Π) is
twice the number of variables in any rule of Π, we can instantiate
the variables in the body of r that do not appear in its head by
variables different from those in the head. Notably, the set of proof
trees of Π can be described by a tree automaton AΠ. Formally, let
ΣΠ be the alphabet that consists of all instances of rules of Π that
can be formed with variables from vars(Π). Then:

LEMMA 1. [12] There exists an EXPTIME algorithm that, given

a Datalog program Π, constructs a 1NTA AΠ over ΣΠ such that

the language defined by AΠ is precisely the set of proof trees of Π.

Before following with the construction, it is necessary to under-
stand when two occurences of the same variable in a proof tree ν
denote the same element in the expansion tree represented by ν.
Let T be a tree over ΣΠ (e.g., T might be a proof tree of Π). As-
sume n1 and n2 are nodes of T with lowest common ancestor n,
and x1 and x2 are occurences of the same variable x from vars(Π)
in n1 and n2, respectively. Then x1 and x2 are connected in T , if
there is an occurrence of x in the head of the label of every node,
except perhaps for n, in the simple path from n1 to n2 in T . An
occurrence x1 of x in T is distinguished, if it is connected to an
occurrence of x in the head of the label of the root of T .

Containment of Π in Θ can be rephrased in terms of the exis-
tence of strong containment mappings from the CQs in Θ to trees
T over ΣΠ [12]. Let θ(x̄) be a CQ in Θ and T a tree over ΣΠ

such that the head of the rule that labels the root of T is Q(x̄′),
for |x̄| = |x̄′|. A strong containment mapping µ from θ(x̄) to T
maps occurrences of variables in θ to occurrences of variables in
vars(Π), in such a way that the following holds: (i) if y1 and y2
are two occurences of the same variable in θ, then µ(y1) and µ(y2)
are connected occurrences of the same variable in T , (ii) for each
occurence x of the i-th variable xi of x̄ in θ, it is the case that µ(x)
is a distinguished occurence in T of the i-th variable x′

i of x̄′, and
(iii) for each atom in θ of the form R(ȳ), we have that R(µ(ȳ))
appears in the label of some node of T .

Intuitively, a strong containment mapping from θ to a proof tree
ν enforces that different occurences of the same variable y in θ are
mapped to the same element in the expansion tree τ represented
by ν. With this idea in mind, it is not hard to prove that there is a
strong containment mapping from θ to ν iff there is a containment
mapping from θ to τ . We obtain the following from Proposition 2:

LEMMA 2. [12] Let Π be a Datalog program and Θ a UCQ.

Then Π ⊆ Θ iff for every proof tree ν of Π there is a CQ θ ∈ Θ
and a strong containment mapping from θ to ν.

In order to complete the proof of the theorem, it will be sufficient
to prove Lemma 3 below. This lemma states that, if Θ ∈ ACk, for
k ≥ 1, it is possible to construct in single exponential time a 2ATA
BΘ

Π of polynomial size, that accepts precisely the trees T over ΣΠ

for which there is a CQ θ ∈ Θ and a strong containment mapping
from θ to T . It will follow then from Lemmas 1, 2 and 3, that
checking Π ⊆ Θ reduces to checking AΠ ⊆ B

Θ
Π . As mentioned

before, this can be done in EXPTIME using known techniques.

LEMMA 3. Let k ≥ 1. There is an EXPTIME algorithm that,

given a Datalog program Π and a UCQ Θ ∈ ACk, constructs a

2ATA BΘ
Π , whose size is polynomial in the size of Π and Θ, such

that the language defined by BΘ
Π is the set of trees T over ΣΠ for

which there is a CQ θ ∈ Θ and a strong containment mapping from

θ to T .

The 2ATA BΘ
Π looks for a strong containment mapping from

some CQ in Θ to the tree T . In order to do this, it first guesses
a CQ θ ∈ Θ, and then operates in a top-down fashion over the join
tree of θ (which exists since θ is acyclic). At each point, BΘ

Π is in
a state that summarizes the following information: the atom A of
the join tree of θ that is being scanned (which is the one that BΘ

Π

is currently trying to match in T ), and an assignment M from the
variables of θ that have already been mapped to the variables of T
(which restricts the possible matchings for A in T , since some of
the variables of A may belong to the domain of M ). A transition
results in either the mapping of the current atom or a movement to
an adjacent node in T .

The 2ATA BΘ
Π is defined as

⋃
θ∈Θ
Bθ

Π. We define 2ATAs of the

form Bθ
Π below. Let J be a join tree of θ. We write J also to refer to

the set of atoms of θ. Assume that x1, . . . , xm are the distinguished
variables of θ. For an atom A of θ, we define dvar(A) to be the set
of indices in {1, . . . ,m} such that xi appears in A.

The state set S of Bθ
Π consists of two types of states: (1) atom

states in J ×Mk, whereMk consists of all partial mappings from
the variables of θ to vars(Π) whose domain has at most k ele-
ments, and (2) variable states in the set {1, . . . ,m} × vars(Π)
(recall that m is the number of distinguished variables in θ). There
is also an accepting state accept. The initial state of Bθ

Π is the atom
state (Ar, ∅), where Ar is the root of J and ∅ denotes the empty
mapping.

Since Bθ
Π is a 2ATA, the transition function of Bθ

Π maps each
pair (s, r), where s ∈ S and r ∈ ΣΠ, to a positive formula φ in
DNF over the set {−1, 0, 1, . . . , ℓ} × S , where ℓ is the maximum
number of intensional atoms in a rule of Π. Intuitively, when Bθ

Π

is in state s reading symbol r, it first chooses a conjunction in φ,
and then for each literal in this conjunction of the form 〈c, s′〉, for
c ∈ {−1, 0, 1, . . . , ℓ} and s′ ∈ S , it launches a new copy of itself
in the direction suggested by c starting in state s′.

The transition function δ of Bθ
Π is (in broad terms) defined as

follows. Consider first a pair ((A,M), R(t̄) ← ρ) ∈ S × ΣΠ,
where (A,M) is an atom state, i.e., A ∈ J and M ∈ Mk, and
R(t̄)← ρ is an instance of a rule in Π over vars(Π). Then:

1. It is the case that δ((A,M), R(t̄) ← ρ) contains an atom

mapping transition of the form:

〈0, (A1,M1)〉 ∧ · · · ∧ 〈0, (An,Mn)〉∧

〈0, (j1, x
′
j1)〉 ∧ · · · ∧ 〈0, (jp, x

′
jp)〉,

if A1, . . . , An are the children of A in J and the following
conditions hold:

(a) There is a mapping M ′ consistent with M that maps
the atom A to an atom in ρ.



(b) For each 1 ≤ i ≤ n, the mapping Mi is precisely the
restriction of M ′ to the common variables between A
and Ai.

(c) dvar(A) = {j1, . . . , jp} and x′
ji

= M ′(xji), for each
1 ≤ i ≤ p.

Intuitively, this transition maps A to the current node of T ,
and then launches new copies of Bθ

Π that check that each one
of the children Ai of A in J is matched in T (1 ≤ i ≤ n).
Since J is a join tree, the mapping Mi is the only informa-
tion the automaton needs to store in order to continue consis-
tently mapping in T the subtree Ji of J rooted in Ai. This
is represented by the atom 〈0, (Ai,Mi)〉 in the transition. In
addition, if A mentions a distinguished variable xji , we have
to ensure that it is mapped to a distinguished occurrence of
x′
ji

. This is enforced with the atom 〈0, (j1, x
′
j1
)〉 in the atom

mapping transition, as we will see below.

2. It is the case that δ((A,M), R(t̄) ← ρ) contains a moving

transition 〈j, (A,M)〉, for j ∈ {−1, 1, . . . , ℓ}, if one of the
following condition holds:

(a) j ∈ {1, . . . , ℓ} and, if Rij (t̄ij ) is the j-th intensional
atom of ρ, then for each variable appearing both in A
and the domain of M it is the case that its image under
M is in t̄ij .

(b) j = −1 and for each variable appearing both in A and
the domain of M it is the case that its image under M
appears in t̄.

This transition moves the automaton to an adjacent node in
T . It is applied when the current atom A cannot be mapped
to the current node of T . The value of M must be propagated
through the head of the rule to which the automaton moves.
This allows to ensure that M satisfies the connectedness con-
dition in the definition of strong containment mapping.

Consider now a pair ((j, x), R(t̄) ← ρ), where (j, x) is a vari-
able atom, i.e. j ∈ {1, . . . ,m} and x ∈ vars(Π), and R(t̄)← ρ is
an instance of a rule of Π over vars(Π). Then δ((j, x), R(t̄)← ρ)
contains a “variable checking" transition 〈−1, (j, x)〉 if the vari-
able x is in t̄. In addition, it contains a variable checking transition
〈0, accept〉 if the j-th variable of t̄ is x. The goal of the variable

checking transitions is to ensure that each distinguished occurence
of a variable x in θ is mapped to a distinguished occurrence of the
corresponding distinguished variable of T .

It can be proved that this construction is correct, that is, that Bθ
Π

defines the set of trees T over ΣΠ for which there is a strong con-
tainment mapping from θ to T . Notice that the number of states of
Bθ

Π is O(||θ||k+1||Π||k), i.e., it is polynomial in the size of Π and
θ. Also, for each state s of Bθ

Π and symbol a ∈ ΣΠ, the size of
δ(s, a) is polynomial. This finishes our sketch. ✷

4.2.1 Results for AC and TW(1)

Theorem 5 states that both problems CONT(Datalog,AC) and
CONT(Datalog,TW(2)) are complete for 2EXPTIME, and that for
TW(2) and HW(2) this holds even for schemas of fixed arity. This
leaves the following two cases open: (1) CONT(Datalog,TW(1)),
and (2) CONTc(Datalog,AC), for c ≥ 1. We obtain that both can
be solved in EXPTIME as corollaries of Theorem 6.

COROLLARY 1. The following problems are complete for EX-
PTIME:

1. CONTc(Datalog,AC), for each c ≥ 1.

2. CONT(Datalog,TW(1)).

Proof (Sketch): We concentrate on upper bounds. Consider first
CONTc(Datalog,AC), for c ≥ 1. Each input consists of a Datalog
program Π and a UCQ Θ over σ, where the arity of σ is bounded
by c. It follows that Θ ∈ ACc, and therefore that Π ⊆ Θ can be
checked in EXPTIME (from Theorem 6).

Consider now CONT(Datalog,TW(1)). We use the following
fact, which has a simple proof: TW(1) ⊆ AC2. The result now
follows from Theorem 6. ✷

4.2.2 Results about equivalence

Checking containment of UCQ in Datalog is decidable in EXP-
TIME [16]. Together with Theorem 6 this implies that checking if
a Datalog program is equivalent to a UCQ in ACk is decidable in
EXPTIME, for each k ≥ 1.

COROLLARY 2. Let k ≥ 1. The following problem is complete

for EXPTIME: Given a Datalog program Π and a UCQ Θ in ACk,

decide if Π is equivalent to Θ.

4.2.3 Queries in ACk modulo equivalence

Tractability results for TW(k) and HW(k) are invariant modulo
equivalence, i.e., they continue to hold for the classes H(TW(k))
and H(HW(k)) of UCQs that are equivalent to one in TW(k) and
HW(k), respectively [18, 15]. Interestingly, our single-exponential
time bound for the problem CONT(Datalog,ACk) is also invariant
modulo equivalence for queries in ACk . LetH(ACk) be the set of
all UCQs that are equivalent to one in ACk, for k ≥ 1. Then:

PROPOSITION 3. Let k ≥ 1. Then CONT(Datalog,H(ACk))
can be solved in EXPTIME.

Proof: First, we introduce the notion of strong induced subqueries.
A CQ θ′ is a strong induced subquery of a CQ θ if:

1. The set Vθ′ of variables mentioned in θ′ is contained in the
set Vθ of variables mentioned in θ.

2. The atoms of θ′ are exactly the atoms of θ induced by the
variables in Vθ′ .

3. The free variables of θ′ are exactly the free variables of θ.

4. If A is an atom in θ but not in θ′ and VA are the variables in
A that belong to Vθ′ , then there exists an atom A′ in θ′ that
contains all the variables in VA.

As it turns out, the class ACk is closed under taking strong in-
duced subqueries. Indeed, let θ be a CQ in ACk and θ′ a strong
induced subquery of θ. Since each atom of θ′ is an atom of θ, it
follows that no two distinct atoms in θ′ share more than k vari-
ables. It thus suffices to prove that θ′ has a join tree.

Let T be a join tree of θ. It is convenient in this case to switch
back and forth between two different ways of viewing at T : the
traditional one in which each node of T is an atom A of θ, and
another one – based on the fact that T can also be interpreted as
a tree decomposition of θ – in which each such node is associated
with the set of variables in Vθ that are mentioned in A. Consider
now a node of T that is associated with some atom A that is not
in θ′. Assume that the set of variables mentioned in A is S (notice
that S 6⊆ Vθ′ , since θ′ is a strong induced subquery of θ). Let



Sθ′ be the restriction of S to Vθ′ , and assume for the time being
that node A is replaced in T by Sθ′ . By condition (4), there is a
node of T that is associated with some set S′ of variables such that
Sθ′ ⊆ S′ ⊆ Vθ′ . Thus, Sθ′ is subsumed by node S′, which in turn
only contains variables in θ′. Since Sθ′ is contained in S′, we can
apply standard tree decomposition techniques (see, e.g., [21]), and
transform T into a new tree T ′ by “contracting” the node Sθ′ into
the node S′ (that is, Sθ′ but not S′ is removed from T ), in such
a way that the connectivity properties of the variables in Vθ′ are
preserved in T ′. It is easy to see that by iteratively applying this
transformation to each node of T associated with an atom A in θ
but not in θ′, we will end up with a join tree for θ′.

We show next that if θ ∈ ACk, then its core [26, 10] θ′ is a strong
induced query. It follows from well-known core properties [26] that
conditions (1), (2) and (3) hold. We prove next that condition (4)
also holds. Again by well-known properties of cores [26], we have
that there is a homomorphism µ from θ toDθ′ such that µ(x) = x,
for each x ∈ Vθ′ . Let A(x1, . . . , xm) be an atom in θ but not in
θ′. Then it is the case that A(µ(x1), . . . , µ(xm)) is an atom of θ′.
Since µ is the identity in VA, we conclude that condition (4) holds.

Now, it is easy to prove the following observation: A CQ θ is
in H(ACk) iff its core θ′ is in ACk. In fact, assume first that
θ′ ∈ ACk. Since θ is equivalent to θ′, we have that θ ∈ H(ACk).
Assume, on the other hand, that θ is equivalent to a CQ θ∗ in ACk.
It is well-known that cores of equivalent CQs are isomorphic [26].
But the core of θ∗ is in ACk (since θ∗ is in ACk), and, therefore,
the core of θ′ is in ACk .

The latter can be used to prove the following: Let k ≥ 1. There
is an EXPTIME algorithm that, given a UCQ Θ ∈ H(ACk), con-
structs a UCQ Θ∗ ∈ ACk such that (i) Θ∗ is equivalent to Θ, and
(ii) the size of Θ∗ is at most the size of Θ. In fact, let Θ ∈ H(ACk).
Then there exists an equivalent Θ′ ∈ ACk. Let Θmin be a subset
of the CQs in Θ such that (1) Θmin is equivalent to Θ, and (2)
no proper subset of Θmin is equivalent to Θ. Analogously, we
define Θ′

min to be “minimally" equivalent to Θ′. By minimality,
there are no distinct CQs θ1 and θ2 in Θmin such that θ2 ⊆ θ1.
Moreover, since Θmin and Θ′

min are equivalent, it follows that, for
each θ ∈ Θmin, there is an equivalent CQ θ′ in Θ′

min. Thus, each
θ ∈ Θmin belongs to H(ACk). Let Θ∗ be the UCQ Θmin, where
each CQ is replaced by its core. By our previous observations, it
follows that Θ∗ ∈ ACk. Moreover, Θ∗ is equivalent to Θ and its
size is at most the size of Θ. The algorithm then proceeds as fol-
lows: It first computes Θmin from Θ, and then it constructs Θ∗

from Θmin. It is not hard to prove that each step of the algorithm
can be carried out in single exponential time.

This implies that in order to check if the Datalog program Π is
contained in the UCQ Θ ∈ H(ACk), we can first construct Θ∗

from Θ in EXPTIME, and then check whether Π ⊆ Θ∗. The latter
can be done in EXPTIME from Theorem 6. ✷

Is it decidable to check membership inH(ACk)? It follows from
the techniques developed in the proof of the previous proposition
that this is indeed the case. In addition, those techniques allow us
to pinpoint the precise complexity of the problem.

PROPOSITION 4. Let k ≥ 1. Then checking if an UCQ Θ is in

H(ACk) is NP-complete.

5. CONTAINMENT OF DATALOG IN

TRACTABLE CLASSES OF UC2RPQS
We now switch to study the containment problem in the context

of graph databases. We start by introducing the basic notions used
in this section.

5.1 Preliminaries
Graph databases. Let Σ be a finite alphabet. A graph database

G over Σ is a pair (V,E), where V is a finite set of nodes and E ⊆
V ×Σ×V . Thus, each edge in G is a triple (v, a, v′) ∈ V ×Σ×V ,
whose interpretation is an a-labeled edge from v to v′ in G. A path

in a graph database G = (V,E) is a sequence

η = v0a0v1a1v2 · · · vk−1ak−1vk,

for k ≥ 0, such that (vi−1, ai−1, vi) is in E, for each i with 1 ≤
i ≤ k. The label of η, denoted λ(η), is the string a0a1 · · · ak−1 ∈
Σ∗. Notice that v is a path, for each v ∈ V . The label of such path
is the empty string ǫ.

C2RPQs and Datalog. Queries over graph databases are typically
navigational, in the sense that they allow to recursively traverse
the edges of the graph while checking for the existence of paths
satisfying a regular condition (see, e.g., [1, 35]).

The basic mechanism for querying graph databases is the class
of two-way regular path queries, or 2RPQs [9]. A 2RPQ L over
Σ is a regular expression over the alphabet Σ± that extends Σ with
the inverse a− of each symbol a ∈ Σ. To define the semantics
of 2RPQs we use the notion of the completion of a graph database
G, denoted G±. This is the graph database over Σ± that is ob-
tained from G = (V,E) by adding the edge (u, a−, v), for each
(v, a, u) ∈ E. We define the evaluation L(G) of 2RPQ L over G
to be the set of pairs (v, v′) of nodes in V such that there is a path
η in G± from v to v′ whose label λ(η) satisfies L.

The analogue of CQs in the context of graph databases is the
class of conjunctive 2RPQs, or C2RPQs [7], that closes 2RPQs
under joins and projection. Formally, a C2RPQ γ over Σ is an
expression of the form

∃z̄(L1(x1, y1) ∧ · · · ∧ Lm(xm, ym)),

where each Li is a 2RPQ over Σ, for 1 ≤ i ≤ m, the xi’s and yi’s
are variables, and z̄ is a tuple of variables among the xi’s and yi’s.
Again, γ(x̄) denotes that x̄ is the tuple of free variables of γ.

A homomorphism from a C2RPQ γ = ∃z̄(L1(x1, y1) ∧ · · · ∧
Lm(xm, ym)) to a graph database G = (V,E) is a mapping h
from the set of variables used in γ to V , such that (h(xi), h(yi)) ∈
Li(G), for each 1 ≤ i ≤ m. The evaluation γ(G) of γ(x̄) over G
is the set of tuples h(x̄), for h a homomorphism from γ to G.

A UC2RPQ Γ is a finite set {γ1(x̄), . . . , γk(x̄)} of C2RPQs over
Σ with the same free variables. In addition, we define Γ(G) to be⋃

1≤i≤k γi(G), for each graph database G.

It is clear that each graph database G = (V,E) over Σ can be
represented as a relational database D(G) over the schema σ(Σ)
that consists of one binary relation symbol Ea, for each symbol a ∈
Σ: The database D(G) consists of all facts of the form Ea(v, v

′)
such that (v, a, v′) ∈ E (where v, v′ ∈ V and a ∈ Σ). We identify
Datalog programs Π over Σ with Datalog programs over σ(Σ), and
define Π(G) to be Π(D(G)), for each graph database G. Notice that
while each symbol in σ(Σ) is binary, the intensional symbols used
in Π can be of arbitrary arity. It is a well-known fact that Datalog
subsume UC2RPQs over graph databases.

Containment of Datalog in UC2RPQs. In this section we study
the containment problem of Datalog in classes C of UC2RPQs,
which (by slightly abusing notation) we denote by CONT(Datalog,C).
Formally, CONT(Datalog,C) is defined as follows: Given a Datalog
program Π and a UC2RPQ Γ ∈ C over the same finite alphabet Σ,
is it the case that Π ⊆ Γ (that is, Π(G) ⊆ Γ(G) for every graph
database G)?



Calvanese et al. proved that CONT(Datalog,UC2RPQ) is in gen-
eral not only decidable, but also not more expensive than the prob-
lem CONT(Datalog,UCQ).

THEOREM 7. [8] The problem CONT(Datalog,UC2RPQ) is com-

plete for 2EXPTIME.

5.2 Containment of Datalog in
Acyclic UC2RPQs

In general, evaluation of C2RPQs is NP-complete [1], but a
tractable class can be obtained by restricting the syntactic shape
of queries to be acyclic [3]. This notion is typically defined in
terms of the acyclicity of its underlying conjunctive query. Let
γ = ∃ȳ

∧
1≤i≤m Li(xi, yi) be a C2RPQ. Its underlying CQ is the

query over the schema of binary relation symbols T1, . . . , Tm de-
fined as: ∃ȳ

∧
1≤i≤m Ti(xi, yi). Intuitively, this underlying con-

junctive query represents the structure of γ when the regular lan-
guages that label the atoms of γ are turned into relation symbols. A
C2RPQ is acyclic if its underlying CQ is acyclic (or, equivalently,
if it belongs to TW(1), since AC = TW(1) for binary schemas).
A UC2RPQ is acyclic if each one of its C2RPQs is acyclic. We
denote by ACR the class of acyclic UC2RPQs.

EXAMPLE 5. Let L1, L2 and L3 be regular expressions over
Σ. The C2RPQ L1(x, x) ∧ L2(x, y) ∧ L3(y, x) is acyclic. The
C2RPQ L1(x, y) ∧ L2(y, z) ∧ L3(z, x) is not acyclic. ✷

We proved in Theorem 6 that containment of Datalog in UCQs
in TW(1) is in EXPTIME. Since acyclic UC2RPQs are those that
contain only C2RPQs whose underlying CQ is of treewidth one, it
is natural to study whether the restriction to queries in ACR also
helps alleviate the complexity of CONT(Datalog,UC2RPQs). We
prove that this is not the case, by showing that the 2EXPTIME-
hardness proof for CONT(Datalog,UC2RPQ) in [8] can be carried
out even with UC2RPQs in ACR.

THEOREM 8. The problem CONT(Datalog,ACR) is complete

for 2EXPTIME.

5.3 Better bounds for queries in ACRk

In the case of CONT(Datalog,AC), a big source of complexity
was the presence of pairs of atoms in queries in AC that share an un-
bounded number of variables. In the case of CONT(Datalog,ACR)
we identify a different source of complexity, which is the existence
of queries in ACR with an unbounded number of atoms connecting
the same variables. By restricting this parameter we again obtain a
hierarchy inside the class of acyclic queries, which in this case is
defined by queries in ACR with a bounded number of atoms con-

necting pairs of distinct variables. We prove that containment of
Datalog in any of the levels of this hierarchy is in EXPTIME (and it
is actually complete for this class).

Formally, let us define ACRk, for k ≥ 1, to be the class of
queries Γ in ACR such that for each C2RPQ γ ∈ Γ and pair (x, x′)
of distinct variables in γ, there are at most k atoms of the form
L(x, x′) or L(x′, x) in γ. Clearly:

ACR
1 ⊂ ACR

2 ⊂ · · · ⊂ ACR
k ⊂ · · · ⊂ ACR.

Interestingly, queries in ACR1 have been previously studied under
the name of strongly acyclic UC2RPQs [1].

EXAMPLE 6. The C2RPQ L1(x, x)∧L2(x, y)∧L3(y, x) is in
ACR2. ✷

We prove next that CONT(Datalog,ACRk) can be solved in single-
exponential time, for each k ≥ 1.

THEOREM 9. Let k ≥ 1. Then CONT(Datalog,ACRk) is com-

plete for EXPTIME.

Proof (Sketch): Containment of a Datalog program Π in a UC2RPQ
Γ can be stated in terms of the existence of strong containment
mappings from the expansions of the C2RPQs in Γ to the proof
trees of Π. An expansion of a C2RPQ γ = ∃z̄

∧
1≤i≤m Li(xi, yi)

over Σ is a CQ over σ(Σ±) of the form φ = ∃z̄
∧

1≤i≤m θi(xi, yi),

where for each i with 1 ≤ i ≤ m it is the case that θi(xi, yi) is of
the form:

∃u1 · · ·un−1(Ea1
(xi, u1)∧Ea2

(u1, u2)∧· · ·∧Ean(un−1, yi)),

for a1a2 · · · an a word over Σ± that satisfies Li. We assume no
two distinct θi’s share an existentially quantified variable. Strong
containment mappings µ from the expansion φ to the proof tree ν
of Π are defined as in the proof of Theorem 6, save for condition
(iii) that is restated as follows: for each atom A in θ we have that
if A is of the form Ea(x, y), for a ∈ Σ, then Ea(µ(x), µ(y))
appears in ν, and if A is of the form Ea−(x, y), for a ∈ Σ, then
Ea(µ(y), µ(x)) appears in ν. Then:

LEMMA 4. [8] It is the case that Π ⊆ Γ iff for every proof tree

ν of Π there is a C2RPQ γ ∈ Γ, an expansion φ of γ, and a strong

containment mapping from φ to ν.

Consider the 1NTAAΠ over ΣΠ constructed in the proof of The-
orem 6. Assume that Γ ∈ ACRk, for k ≥ 1. We construct in EX-
PTIME a 2ATA BΓ

Π :=
⋃

γ∈Γ
Bγ

Π
, whose size is polynomial in the

size of Π and Γ, such that Bγ
Π

satisfies the following: Given a proof
tree ν over ΣΠ, the 2ATA Bγ

Π
accepts ν iff there is an expansion

φ of γ and a strong containment mapping from φ to ν. It follows
from Lemmas 1 and 4 that Π ⊆ Γ iff AΠ ⊆ B

Γ
Π. It is known that

the latter can be checked in EXPTIME from Π and Γ [34].
We explain now how to construct Bγ

Π. For each pair (x, x′) of
variables in γ, we denote by γ(x, x′) the set of atoms of the form
L(x, x′) or L(x′, x) in γ. Consider the undirected graph Gγ whose
vertices are the variables of γ, and there is an undirected edge be-
tween x and x′ in Gγ iff γ(x, x′) is nonempty. Since γ is acyclic,
the graph Gγ is a tree. We assume for the sake of this sketch that
Gγ is connected and contains no loops, but both cases can be han-
dled at the cost of a more cumbersome construction.

The 2ATA Bγ
Π

reads Gγ in a top-down fashion, looking for the
existence of an expansion φ of γ and a strong containment mapping
µ from φ to ν. After scanning node x in Gγ , the automaton stores
the value of µ(x), and then makes a universal transition to check
that for each child y of x in Gγ the mapping µ can be extended to
a strong containment mapping from some expansion of the atoms
in γ(x, y) to ν.

Suppose first that γ belongs to ACR1. Then there is exactly one
atom in γ(x, y), for each child y of x in Gγ . Assume without loss
of generality that γ(x, y) = {L(x, y)}. Thus, in order to check that
µ can be extended to a strong containment mapping µL from an ex-
pansion of L(x, y) to ν, the automaton Bγ

Π
proceeds as follows: (1)

It first guesses an expansion Ea1
(u0, u1) ∧ · · · ∧ Ean(un−1, un)

of the C2RPQ L(x, y), where u0 = x and un = y, and then (2)
checks, iteratively from i = 1 to i = n, that Eai

(ui−1, ui) can be
mapped to ν. If 1 ≤ i ≤ n, the invariant in each iteration is that
µL(ui−1) is already known and the automaton looks for a value
µL(ui) that satisfies Eai

(ui−1, ui). If such a value does not exist
in the rule r, where r labels the node in ν currently being scanned
by the automaton, then it moves to an adjacent node while check-
ing that µL(ui−1) can be propagated through the head of the rule to
which the automaton moves. This ensures that the two occurrences



of ui−1 in Eai−1
(ui−2, ui−1) and Eai

(ui−1, ui) are actually con-
nected.

Suppose now that γ belongs to ACRk, for k ≥ 2, and, in partic-
ular, that γ(x, y) contains more than just a single atom. Assume for
the sake of the argument that γ(x, y) consists only of two different
atoms, L1(x, y) and L2(x, y). This case is more difficult than the
previous one, since we now have to check that µL1

(y) and µL2
(y)

are connected occurrences of the same variable in ν. We explain
next how to do this without incurring in an exponential blowup in
the construction of Bγ

Π
(recall that Bγ

Π
must be of polynomial size).

The 2ATA Bγ
Π

processes the atoms L1(x, y) and L2(x, y) simul-
taneously; this allows to check that µL1

(y) and µL2
(y) correspond

to connected occurrences of the same variable in ν. This idea is
implemented in Bγ

Π
using multiedge states and transitions, which

interact with atom states. We only provide an idea of how these
states and transitions are used, since the actual construction of Bγ

Π

is intricate (and left to the full version of the paper).
We assume that L1 and L2 are given as nondeterministic finite

automata (NFA). For states s and s′ in L1, we denote by (L1)s the
NFA that is obtained from L1 by setting s to be the initial state,
and by (L1)s,s′ the NFA obtained from L1 by setting s and s′ to
be the initial and final state, respectively. Similarly for L2. For
i ∈ [1, 2], the atom states associated with Li in Bγ

Π
are of the

form (Li)s,s′(u, v) or (Li)s(u, v), where s and s′ are states in Li,
and u and v are variables mentioned in ν (i.e., u, v ∈ vars(Π)).
When the automaton is in state (Li)s,s′(u, v) (the case (Li)s(u, v)
is analogous), then u and v are variables in the rule r that la-
bels the node currently being scanned by Bγ

Π
. The 2ATA Bγ

Π
then

looks for an expansion θ = ∃u1 . . .∃un−1(Ea1
(x′, u1) ∧ · · · ∧

Ean(un−1, y
′)) of the C2RPQ (Li)s,s′(x

′, y′), where x′ and y′

are fresh variables, and a strong containment mapping µθ from θ
to ν such that µθ(x

′) corresponds to an occurence of u in ν that
is connected to the occurrence of u in r, and similarly for µθ(y

′)
and v. Although the implementation of atom states requires some
work, we can adapt techniques from [8] in order to construct the
modules of Bγ

Π
that implement them.

Now we explain how to process the atoms L1(x, y) and L2(x, y)
in γ(x, y) simultaneously. The multiedge states associated with
γ(x, y) in Bγ

Π
are of the form γx,y(s1, s2;u1, u2), where s1 and

s2 are states of L1 and L2, respectively, and u1 and u2 are vari-
ables mentioned in ν. When processing γ(x, y), the automaton
looks for expansions θ1 and θ2 of L1(x, y) and L2(x, y), respec-
tively, and a strong containment mapping µL1,L2

from these ex-
pansions to ν. The mapping µL1,L2

must be consistent: the two
occurrences of y in θ1 and θ2 must be mapped to connected oc-
currences of the same variable in ν. Intuitively, a multiedge state
indicates the “suffixes" of the expansions θ1 and θ2 that remain to
be mapped to ν. When processing γ(x, y), the automaton starts in
state γx,y(i1, i2;ux, ux), where i1 and i2 are the initial states of
L1 and L2, respectively, and ux is a variable in the rule r that is
currently being scanned by Bγ

Π
, such that the strong containment

mapping constructed so far from the expansion φ of Gγ to ν maps
x to ux (formally, each image via this mapping of an occurrence of
x in γ is connected to the occurrence of ux in r).

When Bγ
Π

is in state γx,y(s1, s2;u1, u2), for u1 and u2 variables
that appear in the rule r currently being scanned, the automaton
looks for expansions θ′1 of (L1)s1(z1, y) and θ′2 of (L2)s2(z2, y),
where z1, z2 are fresh variables, and strong containment mappings
µ′
L1

and µ′
L2

from θ′1 and θ′2 to ν, respectively, such that (1) µ′
L1

(z1)
is an occurence of u1 that is connected to the occurence of u1 in
r, and similarly for µ′

L2
(z2) and v2, and (2) µ′

L1
(y) and µ′

L2
(y)

are connected occurrences of the same variable w in ν. We explain
next how this is done.

We consider two cases:

1. The rule r currently being scanned contains an occurence
of w that is connected to µ′

L1
(y) and µ′

L2
(y). This case is

simple since we can continue processing θ′1 and θ′2 indepen-
dently from the current node. This is done by performing a
universal transition 〈0, (L1)s1(u1, w)〉∧〈0, (L2)s2(u2, w)〉.

2. Otherwise, it is easy to prove that there is j ∈ {−1, 1, . . . ℓ},
where ℓ is the number of intensional predicates in the rule
r, such that both µ′

L1
(y) and µ′

L2
(y) belong to the subtree

νj of ν rooted at the j-th child of the node currently being
scanned, if j ≥ 1, and to the subtree ν−1 of ν induced by
all descendants of the proper ancestors of the current node, if
j = −1.

One might be tempted to apply a “moving” transition (see
the proof of Theorem 6) in direction j, and check that u1

and u2 are propagated through the head of the rule in such
direction. Nevertheless, it could be the case that νj does not
contain any occurrence of a variable connected to u1 or u2.
Indeed, some “prefixes" of the expansions θ′1 and θ′2 could be
mapped outside νj . Therefore, before moving in direction j,
we have to update the state γx,y(s1, s2;u1, u2). Intuitively,
the automaton Bγ

Π
guesses “prefixes" of the expansions θ′1

and θ′2 that are mapped outside νj via µ′
L1

and µ′
L2

, and
continues processing the corresponding “suffixes".

More formally, let A be the first atom in the expansion θ′1
that is mapped via µ′

L1
inside νj . If A is the first atom in

the expansion θ′1, then we let u′
1 to be u1. Otherwise, let A′

be the atom that precedes A in θ′1 (notice that A′ must be
mapped via µ′

L1
outside νj). In this case, we let u′

1 to be the
one variable A′ and A have in common. Analogously, we
define u′

2 with respect to θ′2 and µ′
L2

. Notice that rule r must
contain occurrences of u′

1 and u′
2. Moreover, the subtree νj

must contain occurrences of u′
1 and u′

2 that are connected
to the occurrences of u′

1 and u′
2 in r, respectively. Now the

automaton Bγ
Π

is ready to move in direction j. This is done
by performing the following universal transitions:

• 〈0, (L1)s1,s′1(u1, u
′
1)〉 and 〈0, (L2)s2,s′2(u2, u

′
2)〉, for

s′1 and s′2 suitable states in L1 and L2, respectively.

• 〈j, γx,y(s
′
1, s

′
2;u

′
1, u

′
2)〉. This corresponds to guessing

the “suffixes" of the expansions that will be processed
in future transitions.

Note that case (1) can only apply a finite number of times. After
this, case (2) applies, and the expansions θ1 and θ2 of L1(x, y) and
L2(x, y) have been correctly mapped to ν.

In general, the number of multiedges states is O(||γ||k+1||Π||k),
and the number of atoms states is O(||γ||2||Π||2). Therefore, the
number of states in Bγ

Π
is polynomial in the size of Π and γ. In

addition, there is a polynomial that bounds the size of δ(t, a), for
each state t of Bγ

Π
and symbol a ∈ ΣΠ. This finishes the sketch of

the proof . ✷

Notice that containment in the opposite direction, that is, check-
ing if a query in ACR is contained in a Datalog program, is unde-
cidable [8] (same for equivalence).

5.3.1 Queries of larger treewidth

We prove here that it is not possible to extend this positive result
to classes of UC2RPQs of larger treewidth. Formally, let TWR(2)
be the class of UC2RPQs Γ such that for each C2RPQ γ ∈ Γ we



have that (1) the underlying CQ of γ is of treewidth at most two,
and (2) there is at most one atom of the form L(x, x′) or L(x′, x)
in γ for each pair (x, x′) of distinct variables. Then:

PROPOSITION 5. The problem CONT(Datalog,TWR(2)) is com-

plete for 2EXPTIME.

6. CONCLUSIONS
Our results convey two messages: (1) Traditional restrictions on

UCQs and UC2RPQs that have been used for reducing the com-
plexity of the UCQ and UC2RPQ evaluation problem are not ad-
equate for reducing the complexity of CONT(Datalog,UCQ) and
CONT(Datalog,UC2RPQ). (2) Adequate restrictions can be identi-
fied by unveiling new hierarchies of acyclic UCQs and UC2RPQs.

We are currently investigating what is the impact of applying the
traditional notion of bounded (hyper-)treewidth in restricted ver-
sions of our problem. For instance, it has recently been proved that
checking containment of the Datalog program Π in the UCQ Θ is
2EXPTIME-complete even if Π is monadic, i.e., it contains only
monadic intensional symbols [5]. It is by no means clear whether
better complexity bounds for this problem can be obtained by re-
stricting Θ to be in TW(k) or HW(k), for k ≥ 1.
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