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ABSTRACT yet incomplete information is ubiquitous in XML applica-

tions, especially in exchanging and integrating web data —
We study models of incomplete information for XML, their  the key applications XML was designed for.
computational properties, and query answering. While our )
approach is motivated by the study of relational incomplete  In the research literature, there are some papers that ad-
ness, incomplete information in XML documents may appear dress the problem of incompleteness in XML, but this typi-
not only as null values but also as missing structural infor- cally happens in some specific scenarios. For example, [3]
mation. Our goal is to provide a classification of incomplete concentrated on handling incompleteness arising in a dy-
descriptions of XML documents, and separate features - orN@mic setting in Wh]ch the structure of a tree is revealed by
groups of features - that lead to hard computational proslem @ Sequence of queries, [11, 12] looked at graph and tree data
from those that admit efficient algorithms. Our classificati ~ Models expressed as description logic theories that could
ofincomplete information is based on the combination of nul iNcorporate incompleteness, [21] dealt with incomplessne

values with partial structural descriptions of documefitse in query results bu?_ryot i_nputs, and [27, 1_3] Iqoked at in-
key computational problems we consider are consistency of Corporating probabilities into XML. In practice incompdet
partial descriptions, representability of complete doeats ~ information needs to be modeled as well, most commonly

by incomplete ones, and query answering. We show how fac- by optional attributes, or tricks such asnOccurs="0" to
tors such as schema information, the presence of node idsintroduce nulls at the level of elements.

and missing structural information affect the complexity o
these main computational problems, and find robust classes,
of incomplete XML descriptions that permit tractable query 5
evaluation.

Categories and Subject Descriptors. H.2.1 [Database

Management]: Logical Design—Data Models 1. study models of incompleteness in XML and their se-
General Terms. Theory, Languages, Algorithms mantics: and

Keywords. XML, incomplete information, query answer- 2
ing, certain answers, consistency, membership

Our goal is to provide a systematic study of incomplete
formation in XML that is independent of any particular
pplication. We would like to address the same problems as
the fundamental study of relational incompleteness, ngmel

. study the key computational tasks associated with such
models (e.g., query answering) with the main goal of
separating features that lead to good algorithmic solu-

1. Introduction tions from those that lead to intractability.

The results we obtain can be used in any application scenario

X'\'}I'E%trtan;ferband exten?olntr(])f fe'@“%”?' LOOIS to deal ‘;]V'th as they say for which classes of problems and models effi-
atahas been a centraithéme In database research OVelia + so|ytions cannot be found, and for which classes such

the past decade. One area that has not witnessed much activz ., . :
o ; - ; I solutions exist.
ity is the handling of incomplete information in XML. And
The inspiration for such a general study comes from the

study of incompleteness in relational databases. There, in
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permission and/or a fee. are the foundation of the theory of relational incompletane
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of tables as a representation mechanism for incomplete in- r (io)

formation, and looked at types of tables that are suitable fo ) A )
evaluating queries from various sublanguages of relaltiona (in) (i2)
algebra. The paper by Abiteboul, Kanellakis, and Grahne
[2] studied the complexity of computational problems asso-

ciated with incompleteness, and provided a clear separatio (ia) Gs)  (ie) (i) W (is)
between tractable and intractable cases. These results con

! ! . . title author year title author Yyear

tinue to be very mﬂgennal. For example, t.he fact that.um.on “Found. “Vianu”® = Y “Abiteboul”

of conjunctive queries can be evaluated in polynomial time of DB”

over nave tables (in which nulls can be repeated) is used

heavily in data integration and exchange [1, 17, 23]. The small change — we gave ids to all nodes, shown in

, . parentheses &$,) — makes a big impact on the semantics.
The structure of XML documents is much more compli- £or example, it is no longer possible that the document rep-
cated than that of relational databases, and missing iform ocants a single book, as before. Indeed, we know that the

tion may appear not only among attribute values, but also yyq children of the root are different, singe= i».
in the structure itself. And in addition the way we view

XML documents may lead to different representations of  But one can still have an incomplete document description
incomplete information. that is consistent with the document representing onlyrinfo

) ) mation aboutfoundations of Databases, even with unique

To see how incompleteness can be represented in XML, jg5 associated with each node. Assume that we 4ose:-

consider a document that describes books and papers, by,,..; information that the author-node is a grandchild of
giving their titles, authors, and years of publication. Ani e root, and instead we only know that it is a descendant
complete description of such a documentis presented below:of the root, as shown below. Then it is still consistent with
an incomplete description that is a child ofi; and thus
describes an author #oundations of Databases.

T

A/\\

book — r (ip)
(i1)
book sk
title author year title author year
“Found. “Vianu” x Y “Abiteboul” x i i .
of DB” (is) (is) (i7)
title author year author
The left subtree talks about tlieundations of Databases f}?%g;, Vianu” z Abiteboul

book; ittells us that one of the authorsis Vianu, but it dagts n

give us precise information about the publication date (yea . o

is null, given by a variable). The second subtree says that | hese examples start giving us an indication of the nature
there is some publication by Abiteboul (we do not know if it ©f incomplete information in XML, and how various choices
is a book or an article since wildcard is used as a label); all of parameters affect the semantics of incompleteness.-In ad
we know about it is that it was published in the same year dition to the standarq missing mfo_rmatlon - attribute eslu
We also know that the author node for Vianu is an immediate —~ W€ may have missing structure information such as labels

successor of the book title, but no other information about (replaced by wildcards) or information about edges (in the
sibling ordering is available. above examples, we miss some next-sibling information or

_ replace a precise path to a node by a single descendant edge).
This document can represent many complete trees: oneFurthermore, there is a choice of having node ids, which

example is a description dfoundations of Databases. In affects the semantics of incompleteness.
that case we assume that the root has just one child (which is ) ) )
consistent with the description, sincenatches every label), In comparison with relational databases, there are many

with one title node, a year node with the value ‘1995', and More parameters to consider when we classify incomplete
three author nodes for Abiteboul, Hull, and Vianu. We are descriptions of XML trees. They include the nature of nulls
making the open world assumption and allow addition of for attributes, the exact set of axes used in descriptidies, t
nodes; in particular the incomplete document above does notPresence of node ids. Afull classification ofthose will gige
have the knowledge that Hull is one of the authors. a large number of cases, and studying all of them is certainly
not our goal.

We now turn to a slightly different way of modeling XML, o ) )
which corresponds to the DOM interface [16]. In that case, = What we want to understand in this paper is the interplay
we can access each node in a document by its id, and apPetween features, or groups of features, that leads to effi-
ply various methods that produce its parent, left and right cientalgorithms (or intractability) for various compuitatal
siblings, first child, all children, etc. They key pointisath ~ Problems associated with incomplete information. We want
a node is uniquely identified by its id. Consider now what 0 find robust and naturally definable classes of incomplete
looks like almost the same incomplete document: descriptions that lead to efficient algorithmic solutions.



The plan of the paper is as follows. In Section 2, we re- 3. XML documents
view incompleteness in relational databases. In Section 3
we describe XML documents in a way that makes it easy to
introduce models of incompleteness, by eliminating some of
the features of complete documents. In Section 4, we intro-
duce models of incomplete information in XML documents, sibling axes, their transitive closures, labels, andlaitgs
their classification, and their relational representatiom _ so that later we introduce models of inco’mpleteness by
Section 5 we study basic computational problems aSSOCiatedremoving features of complete documents
with incomplete information, such as consistency of incom- '
plete descriptions (with and without schema information)  We assume the following disjoint countably infinite sets:
and membership in the set of complete trees represented by
an incomplete description. In Section 6 we study query an-
swering; we show that even for conjunctive queries, comput-
ing certain answers could be hard (which is different from ) )
the relational case) and find a natural class of incomplete ® Atir of attribute names; we precede them with@to
descriptions and queries for which an analog of relational distinguish them from element types;
nave evaluation finds certain answers in polynomial time. e 7 of node ids; and
In Section 7 we give an overview of restrictions thatlead to 4 p of attribute values (e.g., strings).
tractability. Future work is outlined in Section 8. '

Before introducing models of incompleteness in XML,
we define complete XML trees. We describe them in an
exhaustive way — including information about child and rext

e Labelsof possible names of element types (thatis, node
labels in trees);

We formally define trees as two-sorted relational structure
2. Incompleteness in relational databases over node ids and attribute values. For finite sets of labls a
attributes X C Labels and A C Attr, define the vocabulary

We now briefly recall the basics of incomplete infor- . — E, NS, E*,NS*, (Aaad)aaca
mation in relational databases [4, 2, 20]. Incomplete- =4 7\ (Po)ees, Root, Leaf, FC, LC
ness is represented by meanstables in which both val-
ues and variables (for nulls) can be used. For example,
T={(1,2),(y,2),(x,1)} is a table. Such a table can rep-
resent complete relations, i.e. relations without nulisitt
contain all the tuples if" under some valuation of nulls.
Formally, a relationR is represented by if for some valu-

where all relations in the first line are binary and all relas

in the second line are unary. A tree is a 2-sorted structure of
vocabularyrs, 4, i.e. (V. D, 15 4), whereV C T is a finite

set of node idsp C D is afinite set of data values, and

ationv (i.e. a mapping from nulls to constants);I") C R. e E, NS are the child and the next-sibling relations, so

The set of such relations is usually denotediay (7). This that (V, £, NS) is an ordered unranked treé}" and

definition naturally extends to databases with multipla-el NS* are their reflexive-transitive closures (descendant

tions. Note that we are making the open world assumption or self, and younger sibling or self).

here; under the closed world assumptidtep(1") would e eachAq,, assigns values of attributes, to nodes, i.e.

consist only of relations(T"). it is a subset of/ x D such that at most one p4dit c)
There are different types of tables: @odd tables, all is present for eache V;

variable occurrences are distinct; #mive tables, the same e P are labeling predicates:c V' belongs taP iff it is

variable can occur more than once (as in the tdbé&bove), labeled’; as usual, we assume that thes are pairwise

and in conditional tables one can impose more complex con- disjoint;

ditions than just equality on variables [20]. e SetsRoot, Leaf, FC, LC contain the root, the leaves,

The key computational problems related to incomplete- first (oldest) and last (youngest) children of nodes.

ness are membership and query answering (there are sev-

eral others considered, e.g., in [2] but they are variations A DTD over a set C Labels of labels andA C Attr of
on these two themes). The membership problem is to attributes is a triplel = (r, p, «), wherer € ¥, andp is a
check if a complete database is represented by an incom-mapping from to regular languages over— {r}, anda is
plete one, that is, whethét € Rep(T'). For query answer-  amapping fronk to subsets off. As usualy is the root, and
ing, typically we deal withcertain answers [20], defined  in a treeT" that conforms tal (written asT’ = d), for each
ascertain(Q,T) = [{Q(R) | R € Rep(T)}. Key re- nodes labeled’, the set of labels of its children, read left-to-
sults from [20] tell us where the tractability boundary for right, forms a string in the language pf¢), and the set of
these problems are. For example, membershipTi$ME attributes ofs is precisely«(¢). We assume, for complexity
for Codd tables buP-complete for nave tables. Queryan-  results, that regular languages are given by NFAs.
swering over néve tables is tractable for unions of conjunc-
tive queries. This is done by thaiive evaluation. Under it,
nulls are viewed as values, but only null-free tuples ard kep
in the output. For relational algebra, the complexity range
from coNP-complete under the closed world assumption to
undecidable under the open world assumption [2, 28]. t:=B(f) f=e|tf (1)

We now show how to produce complete descriptions of
XML trees by means of a grammar that will guide us when
we develop incomplete descriptions of trees. Tregsuid
forests ) can be given by the following syntax:



where ranges over descriptions of nodes. In other words,
each tree3(f) is given by a description of its root noge
and the foresyf of its children, and each foregtis either
empty or a sequence of trees. Treesaikred: for the tree
B(t1 ...t,) we assume that the tree is rooted at the first
child of the node given by, the treet, at the second child,
and so on.

We describe a node whose labelis Labels, whose id
isi € Z and whose attributeQa1, ..., Qa,, have values
V1,...,0m € Dasf = L(i)[Qa; = v1,...,Qa,, = vy].

4. Models of incompleteness in XML

We start with complete tree descriptions (1) and see how
missing information can be incorporated into them. In ad-
dition to missing attribute values, the following stru@tlr
information can be missing too:

(a) node ids (they can be replaced by node variables);
(b) node labels (they can be replaced by wildcajds

(c) precise vertical relationship between nodes (we can use;

descendant edges in addition to child edges);

(d) precise horizontal relationship between nodes (using
younger-sibling edges instead of next-sibling).

In both (c) and (d), we may allow partial information to be
recovered: for example, we may know that a node is a leaf,
or that it is a first child.

Intuitively, node descriptions introduce nulls, wildcard
and markings. A tree descriptigh f){((f’)) indicates a tree
with a root node described hy so that it has a forest of
children and a foresf’ of descendants. Forests could be
empty, or forests of sibling trees (e.¢h, — t2 —* t3 says
that we have a forest consisting of three trees, so that tite ro
of ¢y is the next sibling after the root of, and the root of
ts is a younger sibling than those two roots), or unions of
forests (|| /7).

We now describe the third tree from the introduction in
our syntax. Assume that title, author, and year nodes have
attributes@t, @Qqa and@y. The 6 nodes are described by:

50 — root( )

B1 = book(i)

Bs = title(iz)[Qt = “Found of DB
Ba = author(iy)[Qa = “Vianu”]

Bs = year(is)[Qy = ]

Br = author(w)[@ = “Abiteboul”)

Then the whole tree is described by

Bo( Bi(Bs — Ba || Bs) ) (A7)

(strictly speaking, one should writes () — Ba(e) || B5(¢)
instead of8s — [, || B5, but we shall omit empty forests
for notational convenience).

Semantics As for incomplete databases, we defiRep(t)

as the set of complete trees represented by an incomplete
tree descriptiont. There are two equivalent definitions: one

is by stating what it means for a tree to witness an incom-
plete pattern (shown below), and another by an analog of
the relational definition oRep (which we present shortly,

We now represent all these types of |ncomp|eteness byaﬁer deflnlng the relational representat|0n Oflncompkﬁe
means of more expressive tree/forest descriptions thaetho descriptions).

in (1). Since we deal with two-sorted structures (over nodes
and attribute values), we shall need variables of two kinds t

represent unknown values of those. That is, we assume tha

we have disjoint sets of variablés,q. (for node variables)
andV,, (for nulls that correspond to attribute values).

Node descriptions These are of the form
8 = " (z)[Qay = 21,...,

where

@am = Zm]v

e (€ X U{_} (label or wildcard);

e 1 isamarking: asubset (possibly empty) edot,
leaf, fc, lc.

e & € Vyode UZ is anode variable or a node id.

e Qaq,...,Qaq,, are attribute names, and eaghs
a variable fromV,, or a constant fronD.

Incomplete descriptions We define incomplete tree de-
scriptions ) and incomplete forest descriptiong by

to= AU
fof O ti | FIf 2

3 | tq 91 to 92 .
where eacld; is either— or —*; eacht; is an incom-
plete tree description.

Letz be the set of all node variables used amdz the set

f all nulls used int. Given a valuation = (Vyode, Vaitr)

ith vpode : T — Z andvgy, : 2 — D, and a node of
T, we use the semantic notidff’, v, s) = ¢: intuitively, it
means that a complete trdématches at nodes, if node
variables and nulls are interpreted according torhen we
define

Rep(t) ={T | (T,v,s) |=t for some node s and v}.

We further defineRepy; 4 (t) as the restrictions dRep(t) to
Ts,a-trees, forx C Labels and A C Attr.

We now definéT, v, s) = t, aswell(T, v, S) = f (which
means thai’ matchesf at a setS of roots of subtrees iif").
We assume that,,q. andv,,,,- are the identity when applied
to node ids fron¥ and data values from.

o (T\v,s) E tH(x)[Qa; = z1,...,Qa, = z,] iff
Unode(2) = 8, N0des is labeled (if £ € Labels), all the
u-markings are correct in, and the value of each at-
tributeQa; of sisvar(2;) (i-€., (8, Var(2i)) € Aaqa,)-

o (T.v,s) = B i (T,v,5) £ 5 and there is a
setS of children ofs such tha{(T', v, S) = f and a set
S’ of descendants of such tha(T, v, S’) = f'.

o (T,v,0) Ee;



° (T, I/,{Sl,...,sk}) ': t191t292...9k,1tk iff
(siy8i+1) IS In NS wheneverf, is — and in NS*
whenevep, is —*, for eachi < k, and(T, v, s;) = t;
for all 4.

® (Tvl/a S) ): f1||f2 iff S
(T, v, Sz) ): fi, fori = 1,2.

S1 U Sy such that

Remark Note that the nodein the definitionof( T, v, s) =t
is superfluous since = v,,p4.(x) fort = £(x)[. . J( YD,
but we prefer to make it explicit for notational convenience

4.1 Classification of incomplete descriptions

There are three different groups of parametersthat can var
as we define incomplete tree descriptions.

Node ids One possibility is to disregard them, as often
done in the work on tree patterns [6, 8, 9, 14], i.e.,

assume that each node has a distinct variable for node

id. In that case, we shall speakwfcomplete trees.

At the opposite end, we have a model that corresponds
to the DOM interface to XML, which assigns a constant
id to each node [16, 18]. Such incomplete descriptions
will be referred to agncomplete DOM-trees.

Structure Another parameter refers to how much of the
structure of a document can be described: that is, the
set of axes used (among |*, —, —*), whether the
union operatiorj| on forests is allowed and whether
markingsu. can be used in descriptions.

We shall precede the definition of a class of trees with
this structural information.

Data values The third parameter refers to attribute values.
Normally, we allow both constants and variables, i.e.,
an analog of nize tables. But in some cases we look
at purely structural information, with no data values.
Then we talk about treesithout attributes.

Classes of incomplete descriptions will be referred to as
tree

DOM-tree }

(possiblywithout attributes), wherestructure is a subset
Of l) J/*7 4)7 4)*7 ||7M'

(structure )-incomplete {

To reiterate, we concentrate on the following two classes of
incomplete descriptions, in combination with various stru
tural fragments, and both with and without attributes:

Incomplete trees Inthose node ids are all variables and all
distinct. In fact we may just omit them, writing, for example
r{a — b|c) instead of the more formal(z;){a(x2) —
b(xs)|le(x4)). The incomplete tree description essentially
enforces a tree structure for such incomplete descriptions
(except possibly markings conflicting with the rest of the
description).

Incomplete DOM-trees Inthose each node has a constant
node id, which must be explicitly listed. Then non-tree-
shaped descriptions are possible, e.g(io)(b(i1)(a(io)))
saying that; is a child ofiy andig is a child ofi; .

Even assuming that we always have the child axis in de-
scriptions, these parameters give ris@ t@ases. Of course
we shall not be attempting to classify them all; rather, our
goal is to understand which combinations of parameters give
us good algorithms, and which naturally lead to intractgpbil

Remark The treatment of node ids need not be limited to the
two extremes: all distinct variable ids, or all constant ids
The model in which all ids are variables but some could be
the same subsumes tree patterns of [8, 9]. Note though that
most proofs of hardness results in [8, 9] are based on the
assumption that variables can be repeated and thus do not
apply to incomplete (DOM-)trees.

Remark The model of [3], introduced in the context of active

Ydocuments, is incompatible with ours. It deals w(th ||)-

incomplete DOM-trees in our classification, in which at most
one attribute per node is permitted, but it does not allovsnul
(and, in particular, cannot modeliva features such as our
model). Butthe model of [3] handles types ofincompleteness
that we do not deal with. It assumes that a portion of the
documentis always known (and increases as more queries are
posed), and the restis coded by arestricted form of DTDs that
disregard the sibling-ordering. It can be potentially capdl

by an extension of our model by an analog of conditional
tables, but this is beyond the scope of this work.

4.2 Relational representations

Just as complete XML trees, incomplete trees have a nat-
ural relational representation. We shall present it now, an
show that the semantics of incompleteness can be described
in terms of homomorphisms between relational representa-
tions of incomplete and complete trees.

With each incomplete tree descriptionvith labels from
Y. C Labels and attributes fromd C Attr, we associate a
relational structureel(t) of vocabularyrs 4. These will
be two-sorted structures, whose active domains are subsets
of Z U Viode and of D U Vy,ytr, defined as unions of active
domains of all node descriptions. For a node descrigtien
0 (2)[Qay = z1,...,Qay, = 2], We letadomyeq.(8) =
{z} andadom g (8) = {z1,. .., Zm }-

For a tree () or forest (f) description,ref(t) or rel(f)
is a two-sorted structure over domaingom,,.q.(t) and
adomqu,(t) (or f), defined inductively (together with the
notion of root nodes) as follows:

1.1t ¢ = B(f)((f"), wheref = £4(x)[(@a; = =,)™,],
thenrel(t) includes the union afe( f) andrel( ") and
in addition it has the following: all tupleda,, (z, 2;),
all tuplesE(z, y), wherey is a root node off, all tu-
plesE*(x,y’), wherey’ is a root node off’. Further-
more,z is added taP; if ¢ # _ and to unary relations
Root, Leaf, FC, LC according to the markings. The
root node oft is x.

2.
3.

For f = ¢, all the relations are empty;

Forf =t 01 ... Ox_1 tg, Wherexy, ...,z are the
root nodes ofy, ..., t;, we letre/(f) be the union of



all ref(t;)s, and in addition we put;, z;+1) in NS or Theorem 5.1 Both CONSISTENCY and
NS*, depending on whethe; is — or —*. We call CONSISTENCY (d) are in NP. In fact, even if both t and
x;'s the root nodes of . d are given as inputs, checking whether Repy(t) # 0

4. rel(f]|f’) is the union ofref(f) andrel(f’). We also can be done in NP.

define the root nodes of|| f/ as the union of the root )
nodes off andf’. We want to understand which features lead Nd-

hardness, and which ones allow efficient algorithms.

Let 1 : Viode UZ — Viode UZ @andhy : Vager UD — The consistency problem appears related to several well-
Vatr U D be mappings that are constantbandD. Then  studied problems — chase-based tools, constraint satisfac
h = (ha, ha) is ahomomorphismof two relational structures  automata on trees — but techniques from those areas do not
T andT; of vocabulariess, 4, andrs, a,, with 3 C X seem to provide us with a way of getting efficient algo-
andA; C A, if for every tuplez in arelationk of 7, 4, in rithms. For example, some of the algorithmic techniques
T, the tupleh(z) is in the relationR in T, (which must be  for checking consistency have a feel of a chase procedure
presentinl; sincers, 4, C 7x,,4,). Of courseh(x) refers that completes the relational representatiof{t). But we
to hy(x) if & € Vnode UZ and tohz(z) if © € Vager UD. cannot apply chase ‘as is’. The main constraint — that the
resulting structure be a tree — is not even first-order espres
ible. Also, some constraints are disjunctive in nature:,e.g
for two childrens ands’ of the same node, either—* s’ or
s’ —* s holds. While chase with disjunctive constraints has
5. Basic computational problems been considered [15], it generally yields intractable uppe

bounds, which we already have from Theorem 5.1.

Proposition 4.1 T € Rep(t) iff there is a homomor-
phism h: rel(t) — T.

The standard computational problems studied in connec- By Proposition 4.1, consistency can be viewed as the ex-
tion with incomplete information in relational databases a  istence of a homomorphism frome/(t) into some struc-
membership (whether a complete database can be repretureT’. This suggests applicability of constraint satisfaction
sented by an incomplete description) and query answer-tools, since tractable restrictions are very well undergto
ing. Others are variations of these two (e.g., containment (cf. [22]). But Theorem 5.1 only provides an upper bound
Rep(R) C Rep(R') can be viewed as a special case of on the size ofl". In particular, it is possible fof" to have
query answering). In the case of XML we have an ad- both long branches and high branching degree, and hence
ditional problem that needs to be addressed — consistency.Theorem 5.1 does not give a construction for a polygize
Due to complicated descriptions of XML documents, it is reduce consistency to constraint satisfaction. The proble
possible to provide inconsistent specifications. This is a With using automata is that data values come from an infinite
well-recognized phenomenon, and there are many resultsdomain. While some automata models have been developed
on consistency and satisfiability for XML schemas, con- forthem [25, 26], they do not lead to efficient algorithms for
straints, patterns, and queries [5, 7, 8, 9]. We already expressive problems such as those we consider here.
saw some examples of inconsistent descriptions: for ex-
ample, under the DOM model, we can say that nodes with
ids iy andi, are connected by the child edge in both di-
rections, which is inconsistent with any tree description.
With markings too inconsistency is possible, eq4™")
saying that a child node is markedot. Presence of
DTDs also may lead to inconsistency. Consider a DTD Theorem 5.2 Each ([, ]*,—,—",||)-incomplete tree
r — bb; b — &, whereb has an attribut@a, and a descrip- (i.e., an incomplete tree without markings) is consis-

We start our investigation with incomplete trees. The first
result is about the consistency problem without DTDs. For
incomplete trees, only markings can lead to inconsistency.
For descriptions with markings we provide a full classifica-
tion of tractable cases.

tion r(b[Qa = ¢1] —b[Qa = ¢o] || b[@Qa = z] — b[@Qa = z]), tent.
wherec; # co are two constants froM. This isinconsistent With markings, CONSISTENCY s
with the DTD.

o NP-complete for the fragments (|, —,*, fc,lc) and
(1, 1%, %, fe,lc, leaf), where x is —* or ||;

5.1 Consistency of incomplete descriptions o PTIME for dll other fragments containing |.

We consider the following problem: With DTDs, we have intractability already for simple de-
scriptions of incomplete trees:
PROBLEM:  CONSISTENCY

INPUT: an incomplete description Theorem 5.3 There exist DTDs dq,ds, ds such that:

QUESTION: is Rep(t) # 00? e CONSISTENCY (dy) is NP-complete for (l,])-
incomplete trees.

e CONSISTENCY (d2) is NP-complete for (|,—,|)-
incomplete trees, even without attributes.

e CONSISTENCY (d3) is NP-complete for (|, ]*,]])-
First, we get an upper bound on the complexity. incomplete trees, even without attributes.

We also look at a variation with a fixed DT the prob-
lem CoNSISTENCY (d) asks whetheRep,(t) = Rep(t) N
{T'| T |= d} is nonempty.



We sketch the proof of the firstitem, to indicate how DTDs ~ Recall what is known in the relational case. The problem
and null values of attributes combine to lead to hardness. Th of checking whetheR’ is in Rep(R) is NP-complete ifR is
DTD d; hasthreerules: — CCC; C — DD; D — ewith a ndve table, and i TIME if R is a Codd table, i.e. each

C andD having one attribut@c (color). For a grapld: with variable occurs exactly once in it. We shall prove an analog
n nodes andn edges;, . .., e,,, definen variablesr; and of this result. We say thatis an incompleteCodd tree if
m treest, for each edge between théth and thejth node: every variable fromV,, occurs at most once in

te = Cl@c = 2;[(D[Qc = x;]). We then fix three colors  Thegrem 5.7 o MEMBERSHIP for (|, ||)-incomplete
r, g, b, and for each colat definet,, = C[Qc = ¢'|(D[Qc = trees is NP-complete.
a]| D[@c - ca]) wherecy, c; are the two colors dlﬁer-em e For incomplete Codd trees, MEMBERSHIP is solv-
from ¢’. Finally lettq = 7{t[[tglltsllte, |l - - - |te,.). Itis be in PTIME ’
easy to see that; andd; are consistent ify is 3-colorable. avie ’

e For incomplete DOM-trees, MEMBERSHIP is solv-

The key feature in the above sketch is that in incomplete able in PTIME.
treest, different subformulae can represent the same subtree
of a tree inRep(t). In particular, in the proof we need The proof for the Codd case is quite different from the
to collapse multiple subtrees, to those describing their  relational technique [2], which is based on bipartite graph
colorings, i.e.f,, tg, ty. matching; instead we use atechnique inspired by CTL model-

This is impossible to do in the case of DOM-trees, where checkingto see if” € Rep(t).

unigue ids associated with node descriptions make such ‘col
lapse’ impossible. We now turn to incomplete DOM-trees, 6. Query answering
and show that the presence of unique ids lowers the complex-
ity of consistency, even in the presence of DTDs. However,

it makes the proofs significantly harder. First, we show: For relational databases, we know that unions of conjunc-

tive queries can be efficiently evaluated over databasés wit
Theorem 5.4 CONSISTENCY can be solved in PTIME nulls. One just uses the iva evaluation, which treats nulls
for incomplete DOM-trees. as if they were simply different elements of the domain, and
then discards tuples that contain nulls from the outpuivéla
evaluation correctly computes certain answers [20] and has
the same complexity as the usual conjunctive query evalua-
tion. Once negation is added to queries, or the representati
mechanism changes, the complexity quickly rises [2].

We can even get tractability for consistency with DTDs if
we restrict to] *-free incomplete DOM-trees that do not use
the descendantrelation (i.¢.)) cannotbe usedinincomplete
tree descriptions).

We wantto find classes of queries and incomplete represen-
tations that admit tractable query evaluation for comptin
certain answers. The first obstacle is that for XML queries
that produce trees as outputs, the notion of certain anssvers
However, the combined complexity (when the DTD is not far from clear. So for now, since our goal is to broadly out-

Theorem 5.5 For each fized DTD d, CONSISTENCY (d)
is solvable in PTIME for | *-free incomplete DOM-trees.

fixed) is intractable: line the tractability boundary, we look at XML queries that
. ) produce tuples of values (this, of course, includes Boolean
Proposition 5.6 The problem of checking, for a DTD queries). Once we define a query language, we present a few
d and an incomplete DOM-tree t, whether Repy(t) is results that rule out several features as immediately tepdi
nonempty, is NP-complete. to intractability. Then we define a class@fid incomplete
trees and show that a natural analog of unions of conjunctive
In fact, to getNP-hardness, it suffices to look &t, ||)- queries admits tractableiva evaluation over them. We con-
incomplete DOM-trees without attributes and DTDs in which clude by showing that over DOM-trees, the picture is rather
every regular expression defines a finite language. different.
5.2 Membership test 6.1 Asimple query language

We now consider the next basic computational problem We shall use queries whose free variables range over the
related to incomplete information: domain of attribute values, and thus their results are usual

lations. We start with conjunctive queries over trees. €hes
are essentially standard (see, e.g., [8, 19]). We express th

PROBLEM:  MEMBERSHIP in our syntax for incomplete trees, and add existential guan
INPUT: an incomplete tree, tification over variables fromV,:;,. That is, conjunctive

a complete tred”’ queriesCQ are of the formy(z) = 3y t,(z, §), wheret, is
QUESTION: iST' € Rep(t)? an incomplete tree, ang 7 list variables fromV,.. Their

semantics on complete tre@ss defined as
(T,v,s) E t, for some node s }

To test whethef” € Rep(t) one just guesses a homomor- (T) = v ()
q = Pt and valuation v = (Vnode, Vatir)

phismh : ref(t) — T'; henceM EMBERSHIP is in NP.




Recall that in incomplete trees we omit node variables for Corollary 6.2. e There exists a DTD d and a query

notational convenience; the semantics;@f) of course as- q € CO(l) such that QUERYANSWERING (q,d) is
sumes existential quantification over all node variables. coNP-complete over (|, ||)-incomplete trees.
As our languagd/CQ we take unions of conjunctive o For the classes of (1, —,%,p)- and (L 1%, p)-
queries: incomplete trees (where % is either || or —*),
there exist queries q that use markings such that
@ (Z) U ... U qr(Z) QUERYANSWERING (q) is coNP-complete.

For (unions of) conjunctive queries, we use the notation  Thus, having DTDs, or markings in trees and queries, im-
UCQ(structure) or CQ(structure), wherestructurerefersto  mediately gives usoNP-hardness of query answering. But
the structural information used in incomplete trégs For  coNP-hardness can occur even without DTDs and markings.
example 3y r{l1[Qa = 2] — £,[@b = y]) is aCQ(], —)- '
query that returns values of tieq attribute of¢,-children ~ Theorem 6.3 There is a query q € CQ(], —) such that
of r that have arf»-labeled next sibling with &b attribute. ~ QUERYANSWERING (q) is coNP-complete over ([, ||)-

incomplete trees.

For UCQ queries we can define the notion of certain an-
swers since these queries produce relations: We can also getoNP-hardness fof |, | *, ||, u)-incomplete

. _ trees without attributes and a fixé€d(|) query. But so far
certain(g,t) = ﬂ{Q(T) | T € Rep(t)} these results do not say much about the transitive-closure

The main computational problem we consider here is: axes in incomplete trees. We now show that withor —*,
answering unions of conjunctive queriesisNP-hard.

fROBIfEM: QnUiiRYﬁNISV;/EﬁINGéq) rintio Theorem 6.4 e There is a query q€UCQ(L,])

NPUT: an incompliete free description such that QUERYANSWERING (q) over (|,—, |*)-

atuplea

QUESTION: isa € certain(g, ¢)? incomplete trees is coNP-complete.

o There is a query q € UCQ(l,—,—*) such

We also defineertaing(q, t) as(\{q(T) | T = dand T € that QUERYANSWERING(q) over (l,—,—")-
Rep(t)}, and a problenQUERY ANSWERING(q, d) (query incomplete trees is coNP-complete.
answering with DTDs) where the question is whethes e Both results hold for incomplete DOM-trees as
certaing(q,t). well.

A fragment of the language, nameWQ(|, |*,||), was
considered in the study of query answering in XML data
exchange [6]. We first provide an upper bound on the com-
plexity of query answering. We show that a counterexample
toa € certain(q,t),i.e., a complete tre€ so thata ¢ q(7') Proposition 6.5 There exists a DTD d and a query q €
can be chosen to be of polynomial sizetianda. Thus, CQ(l,]) such that QUERYANSWERING (q,d) is coNP-
complete for (|, [*,||)-incomplete DOM-trees.

In the presence of DTDs, we have cases@fNP-hard
query answering for very simple queries over incomplete
DOM-trees, as the following result shows.

Theorem 6.1 Both QUERYANSWERING (q) and
QUERYANSWERING (q,d) are in coNP for all ¢ € UCQ
and all d. 6.3 Tractable case: rigid incomplete trees

6.2 Intractable cases of query answering So far, we have seen that the following features quickly
lead to the intractability of query answering for (union} of

We now show that query answering could be intractable, conjunctive queries:

even for unions of conjunctive queries. This contrastsghar _
with the relational case, where all unions of conjunctive 1. DTDs; and
queries can be evaluatedRTIME. 2. structural information: transitive-closure axgsand

. . - . *; union; and markings.
We can obtain several intractability results by using hard- - 9

ness results for consistency. Note that if we have a class
of incomplete trees over whioghONSISTENCY is NP-hard,
and a class of queries that includes a query false in al
trees, then over these classes of incomplete trees an@égueri
QUERYANSWERING is coNP-hard. This follows from the

We now exclude these features and obtain a tractable class
| with respect to query answering. That is, we restrict our-
selves to incomplete trees that have neither the transitive
closures of axes nor uniohnor markings. We call them

fact thatcertain(false, t) = trueiff Rep(t) = 0. rigid incomplete trees; they are defined by the grammar:
With both DTDs and markings, it is easy to write unsat- Jf z g??ﬂ 7 (3)

isfiable queries (e.gr{a), wherea cannot appear under the '

root according to the DTD, ar(_'¢ — _/¢) without DTDs). where node ids are all distinct variables, and markingsetre n

Hence, we have allowed in node descriptions. This definition mimics (1)



except that node descriptions use variables instead of node We have seenin Section 6.2 that the tractability of query an-
ids, and may have nulls as values of attributes and wildcard swering over the class of rigid trees does not withstanddhe a
as labels. Note that each rigid incomplete tresconsistent. ditions of union, descendant, younger-sibling, or marking

It is also easy to construct examples showing that thieena

Our goal is to show thatan ana_log ofl'mev_aluat_ion will . evaluation fails with these structural additions. For eplen
compute certain answers for unions of conjunctive queries .4 cider — r(a|lb) andg = r{a —* b) Ur(b —* a). We

?VIFr such _incomplﬁte trees. We defin@ve-cvaluation 8S  ynow thatcertain(q, t) = true butnaive_eval(q, t) produces
follows. First, each conjunctive qu_eq,(:z:) = 39 t4(z,7) . false. To see why Theorem 6.6 restricts to queries without
is turned into a usual relational conjunctive query by tgkin markings, consider a Boolean query./*) andt = r(a).

rel(t,) and viewing it as a tableau for a query, where  pqain na luati d Ise but th is t
are distinguished variables. We shall denote this query bywﬁﬁlzer;gﬁt)e/_va uation producefisc but the query s true

rel(q)z. We then consider the inputand transformrel(t)

into ref* (¢) by adding transitive closures & and NS. , i )
6.4 Query answering: node ids make a difference

Thennaive_eval(q, t) is the result of evaluating the rela-
tional conjunctive queryel(q)z on the relational database
rel*(t) naively, and then dropping tuples with nulls. We re-
fer to the result asaive_eval(q, t). This extendsto unions of
conjunctive queries, simply by taking, naive_eval(g;, t).

Theorem 6.6 applies ta.complete rigid DOM-trees (de-
fined just as rigid incomplete trees, except that node ids are
now all constants). This is because the rigid structurer@ssu
that every homomorphism: ref(t) — T is one-to-one. We

We illustrate this by an example. Suppose we have a querySaw that by adding union or descendant to rigid incomplete
trees, we getoNP-hardness of query answering. But, simi-

q(z) = Fy r(no)(t(n)[@a = z] =" (n2)[@b = y]) larly to the cases of consistency and membership, we can find
asking for values of thé@g-attributes of/-children of r- classes of incomplete DOM-trees that have tractable query
nodes that have a younger sibling with thé-attribute. In evaluation while for the corresponding class of incomplete
the tableau, we shall have tuples, n, ) and(ng, n2) for E, trees, it_iSCONP—hard. We do it by adding union to the class
one tuple(n, ny) for NS*, nodeny is in P, andn; isin P, of rigid incomplete trees.

and pairs(ny, ), (n2, y) are in Aa, and Ay, résp. SiNC€  Thegrem 6.7 There is a class Q C COl,—,]|) of
x is the only distinguished variable, this tableau generates - ) -
X ; : queries so that:
relational conjunctive query (x):
e For every query q € Q, QUERYANSWERING (q)

Ing, 1, na,y E(no,mi) A E(no,n2) A NS*(n1,m2) A over (|, —,||)-incomplete DOM-trees can be solved
Pr(no) A Py(n1) A Aaa(ni, z) A Aap(na, y). in PTIME.
Now suppose we have an incomplete tree e There is a query q € Q such that

QUERYANSWERING (q) over (|,—,|)-incomplete

t = r{f{Qa=1] - ([Qa = u] — 6/[@b =) trees is coNP-hard.

By introducing node variables| for the root andh}, n}, n’,

for three children of the root, we create/(t), which has Note that the® TIME algorithm is not based on theiva
pairs (ny,n5) and(ns, n3) in NS. By computingrel” (t) evaluation (in fact it is much more complicated, even fogver
we put those pairs, as well &s;, n;) and(ny, nj) in NS™. simple queries). To see why, consider an incomplete DOM-
Evaluating;’ navely overret* (t) yields{1, «}. Eliminating treet = r(ip)(a(i1)|a(iz)) and a query = r(_ — _). Since
null u, we conclude thataive_eval(g,t) = {1}. Inthiscase, i, £ i,, we know thatr has at least two children, and thus
it is easy to see thgfl } is the set of certain answers. This  certain(q,t) =true, but the nave evaluation returns false.
correspondence works for all rigid incomplete trees. Similarly, if #' = r(io)((a(i1) — b(i2))||(a(is) — b(is))),
Theorem 6.6 Let t be a rigid incomplete tree, and q a thenforthe query’ = r(b — _ — _), the certain answers are

true, but the nize evaluation returns false. Note that this is
caused by node ids, and the knowledge that nodes are distinct
certain(q,t) = naive_eval(q,t). if we replace node ids frothandt’ with variables, then both
certain(q, t) andcertain(q’, t') would become false.

query from UCQ that does not use markings. Then

In particular, evaluating no-marking queries over rigid
incomplete trees has DLOGSPACE data complezity.
Proof sketch. This follows from the observation that by 7. Overview of tractability restrictions
rigidity, node variables can be replaced by distinct node id
without changing the semantics &€Q queries. This re- We now summarize what we have learned about various
placement ensures thBep(rel(t)), under the closed world ~ models ofincompletenessin XML. The key parameters were:
assumption, only contains representation of trees. This re
duces the problem of findingertain(q, t) to the problem of
finding certain answers to relational unions of conjunctive
gueries under the closed world assumption. This problem,
by [20], is solvable by the rige relational evaluation, which
could be seen to coincide wittnive_eval(q, t).

. the presence of schema information;

. the presence of markings in node descriptions;

. structural information (i.e|,, |*, —, —* and||); and
. the presence of node ids.

A W NP



We have seen that the presence of DTDs, and the presence d.
markings, makes everything significantly more complicated
Even the simplest cases of consistency and query answering 0
become intractable with DTDs and with markings. So it
is natural to suggest that key computational problems for [2)
XML with incomplete information be considered without

restriction to specific schema information. .
3

The lack of complete structural information is another big
obstacle to tractability. Introducing structural uncertga
such as transitive-closure axes and union quickly leads to
intractability of both consistency and query answeringg-Th 5]
orems 5.2, 6.3, and 6.4). This happens even for unions of
conjunctive queries — the class that is well-behaved with re
spect to incomplete relational databases. 6]

[4]

To achieve tractable query answering over documents with [7]
nulls, one needs to restrict not only the class of queries to
unions of conjunctive queries but also the class of strattur (8]
document descriptions so that a portion of a tree is fully
described with the child and next-sibling relations. These
are rigid incomplete trees: incompleteness only occurs in
attribute values and labelings. Then an analog of relationa 10
nave evaluation finds certain answers.

[11]
8. Future work

[12]

There are several possible directions. First, we have only

looked at models based on the open world assumption. In 13]
the relational case, both open and closed world assumptioné
(OWA and CWA) are considered, and in many cases the [14]
behavior under the CWA is quite different [28]. Many results
presented here work for both OWA and CWA but not all. [15]
And some existing models (e.g., [3]), fall between CWA
and OWA. We also would like to look at analogs of more (16
expressive representations, such as conditional table®]4 (17]
or relational representation techniques such as thosetin [2
to overcome intractability.

. . - 18
Our understanding of models with node ids is not as com- (18]

plete as our understanding of models without ids. And yet [19)
this is a fascinating class, because we saw that tractabilit
boundaries can be pushed much further for it. [20]

We would like to address a number of traditional issues re- [21]
lated to incomplete information in the context. One example
is constraints over documents with incomplete information
It is expected that in the most general form query answering [22]
and consistency analysis will be undecidable (cf. [5, 10}) b
one should expect to find reasonable restrictions for decid- 23]
ability and tractability. Another example is using incoeiel
information in data integration and exchange tasks. [24]
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