Regular Languages of Nested Words: Fixed Points,
Automata, and Synchronization

Marcelo Arenas! Pablo Barceb? Leonid Libkin 3

L Pontificia Universidad Catolica de Chile
2 Universidad de Chile
3 University of Edinburgh

Abstract. Nested words are a restriction of the class of visibly pushdtan-
guages that provide a natural model of runs of programs withnsive procedure
calls. The usual connection between monadic second-arder (MSO) and au-
tomata extends from words to nested words and gives us aahattion of reg-
ular languages of nested words.

In this paper we look at some well-known aspects of regulaguages — their
characterization via fixed points, deterministic and aliing automata for them,
and synchronization for defining regular relations — anemdtthem to nested
words. We show that mu-calculus is as expressive as MSO ower éind infinite
nested words, and the equivalence holds, more generatlyndiecalculus with
past modalities evaluated in arbitrary positions in a waorat, only in the first
position. We introduce the notion of alternating automatanested words, show
that they are as expressive as the usual automata, and elsotpat Muller au-
tomata can be determinized (unlike in the case of visiblyhdos/n languages).
Finally we look at synchronization over nested words. Wenskimat the usual
letter-to-letter synchronization is completely inconiplat with nested words (in
the sense that even the weakest form of it leads to an undiéeitamalism) and
present an alternative form of synchronization that givesecidable notions of
regular relations.

1 Introduction

The class ofisibly pushdown languag€®PL) has been introduced by Alur and Mad-
husudan [5] as a restriction of the class of context-freguages that subsumes all
regular properties and some non-regular properties nelémgorogram analysis (e.g.
stack-inspection properties and pre-post conditions).s8dR many ways resemble reg-
ular languages: they have the same closure properties, agtimatural problems re-
lated to them are decidable. The intuitive idea of VPLs i¢ tha input alphabel’ is
partitioned into three parts,., X, X;, of symbols viewed as procedure calls, returns,
and internal operations. A machine model for VPLs is a specishdown automaton
that pushes a symbol onto the stack in a call, pops one symbaidturn, and does not
touch the stack when reading an internal symbol.

Nested word$6] replaced the implicit nesting structure of calls anduras by an
explicit relation that matches calls and returns. A nestecdivis thus a word extended
with a hierarchical structure on top of its linear structuka example of such a nested
structure of matching calls and returng; is given below.

C1 Cc2 c3 3 C4 T4 r2 C5 C6 6 5 cr 7 1

Such structures naturally appear, for instance, in XML doents that are string
representations of trees using opening and closing tag8]28r in software verifi-
cation of programs with stack-based control flow [4, 2]nésted word automatdi]
runs from left to right, similarly to a finite state automatbnt each time it encounters
a “return” position, the next state depends not only on threerit state but also on the
state of the matching “call”.

A nice property of nested words and their automata is that $hare logical char-
acterizations with the usual (unnested) words: the automaiodel has the same ex-
pressiveness as monadic second-order logic (MSO) [5, 63. Jilles us a natural and
robust notion ofegular language®f nested words, with the expected closure proper-
ties, decision procedures, and logical characterizations

For finite or infinite unnested words, an alternative way ofadibing regularity
logically is via the modal:-calculus (cf. [7]). That isy-calculus formulae evaluated in
the first position of a word define precisely the regular laaggs. Moreovey;-calculus
formulae with past modalities evaluated in an arbitraryifgmsof a word have precisely
the power of MSO formulae with one free first-order varial#is.our first result, we
extend these equivalences to the case of finite and infinfedevords.

We then look at automata characterizations of VPLs and degteds. Nondeter-
ministic and deterministic automata have previously bessiclered [5, 6, 18], and [5]
showed that automata can be determinized in the finite casa the infinite case this
is impossible even for automata with a Muller acceptanceaitiom (unlike in the case
of the usualv-words), if one considers VPLs. Then [18] introduced a défeé automa-
ton model and showed that it admits a determinization proeedver nested words. We
expand this in two ways. First we introduce alternation ia tase of nested word au-
tomata, and prove that alternating automata can still mskated into nondeterministic
ones. Second, we refine the determinization procedure tonsaia from [18] to show
that over infinite nested words, every regular language fimalagle by a deterministic
Muller automaton. This also gives us some corollaries albioaitstructure of regular
languages of nested-words.

We finally turn our attention to the notion of regulalations Over words, one
moves from sets to relations by using letter-to-letter yanization. That is, an au-
tomaton runs over a tuple of words viewing the tuple/tbf letters of the words as a
single letter of an expanded alphabet [15]. The same apprvarks for trees, ranked
and unranked [11]. The notion of regular relations also $eadca notion of automatic
structures [12,13,10], i.e. decidable first-order streegwover words in which all de-
finable relations are regular.

Here we show that, in contrast to the case of words and trieesidtion of letter-
to-letter synchronization is incompatible with nested dgrthe simplest extension of
nested word automata with such synchronization is undbl@dd/e present an alterna-
tive call-return notion of synchronization, and show thafives us a natural concept of
regular relations over nested words.

Related work VPLs were introduced in [5] and nested words in [6]. They caribwed
as special classes of trees (and we shall use this often pafier); such tree representa-
tions were introduced in [5, 6] as well. Applications in prag analysis are discussed,
e.g.,in[2, 4], and applications in processing tree-stmext data in [23, 8].

There are several related results jotcalculus and MSO, e.g. their equality over
infinite binary trees [20] or finite unranked trees [9] or eegwive-completeness pf
calculus [16]. We explain in Section 3 why we cannot derive @sult from those.
Another fixed-point logicVP,, is defined in [2] to specify properties of executions of
programs. It differs from the standard versionsietalculus we look at as its fixed
points are evaluated not over sets of nodes but over setshtress of the program;
further, its expressiveness is known to be different fromOVS].

Automata for VPLs and nested words were defined in [5, 6], &hdljserved that
Muller automata are not determinizable. Then [18] notideat this is due to VPLs
having potentially arbitrarily many unmatched calls/reg) and introduced a different
automaton model (stair automata) that can be determini¥edise them to show how
to determinize Muller automata over nestedvords. None of these papers addresses
alternating automata over nested words.

Letter-to-letter synchronization for defining regularaténs is an old notion [15],
and the concept of universal automatic structures [13,slBased on it. Although such
automatic structures exist for both words and trees [1Q Méshow here that letter-to-
letter synchronization is incompatible with nesting stue.

Organization Basic definitions are given in Section 2. We describe MSOyiqaeries
via p-calculus in Section 3. In Section 4 we study automata foteuewords, define
alternating automata, and describe determinization foleMautomata. In Section 5
we look at synchronization and regular relations for nesteds.

2 Preliminaries

Words, w-words, and automata Let X' be a finite alphabet. A finite wordy =
aj ...an in X* is represented as a logical structykg, ..., n}, (Pa)acs , <), Wwhere
< is the usual linear order ofl, ..., n}, andP, is the set of’s such that; = a. We
shall usew to refer to both the word and its logical representationnitdj orw-words,
are sequences as - - - of symbols inX’ indexed by positive natural numbers, and are
represented as structur@$t, (P,)q.cx, <). The length ofw is denoted byw|.

A (nondeterministicautomaton4 over X' is a tuple(X, @, Qo, 0, F'), whereQ is
a finite set of state€)y C Q@ is a set of initial statesl” C @ is a set of final states
ands : Q x ¥ — 29 is a transition function. For automata oveswords we shall
use either a Biichi acceptance condition (givenfbyC () or a Muller acceptance
condition (given byF C 29). A run of A over a wordw is a mapp : {1,...} — Q
such thatp(1) € Qo andp(i + 1) € §(p(i), a;), for all i. A finite run is accepting if
p(Jw| + 1) € F. We letInf(p) be the set of states that occurs infinitely often in an
infinite runp. Thenp is accepting for a Biichi conditioR if Inf(p) N F #), and itis
accepting for a Muller conditiotF if Inf(p) € F. A word is accepted iff there exists
an accepting run. Sets af{)words accepted by automata are caliegular.

A is deterministicf |Qo| = 1, and|d(g,a)| = 1 for for everya € ¥ andq € Q.
Nondeterministic automata overwords with Biichi and Muller conditions are equiv-
alent, and automata with Muller acceptance condition cageberminized, cf. [25].

Nested words A finite nested wordover X' is a pairw = (w,n), wherew € X*
andn is a binarymatching relationon {1, ..., |w|} that satisfies: (1);(¢,) implies
i < J; (2)n(i,j) andn(i, ;') imply j = 5/ andn(i,j) andn(i’, j) imply i = 4’; and
(3) if n(4,4), n(i’,4"), andi < ¢ then eitherj < ¢’ or j/ < j. A nestedw-word is
a pairw = (w,n), wherew is anw-word andn is a matching orN*. We also refer
to them as infinite nested words. We represent nested wordgjiasal structures over
the vocabulary{ (P,).cx, <,n}, i.e. words expanded with a matching relation. For a
nested wordo and two positionsg < j, we letwli, j] be the substructure @f induced
by positiong such that < ¢ < j. A position: of a nested wordb is: (1) acall position
if there isj such that)(i, j) holds; (2) areturn position if there isj such that;(j,)
holds; and (3) arfnternal position if it is neither a call nor a return. Whenevgi, ;)
holds we say thatis the call ofj, andj is the return of.

Nested word automataA nested word automatoer NWA [6], A over X is defined
as a usual automaton, except thas a triple(é., 6, d,-) of transition functions., 9, :

Qx XY —29 ands, : Q xQ x ¥ — 22 Arunof Aoverw = (a;---,n)is a
mappingp : {1,...} — @ such thap(1) € Qo and for everyi € N* (ori € [1, |w|]

for finite nested words),

— if 7 is a call position, thep(i 4+ 1) € 6.(p(4), a;);
— if ¢ is an internal position, thep(i + 1) € 6,(p(i), a;);
— if i is a return position whose call jsthenp(i + 1) € 6, (p(2), p(j), ai).

Buchi and Muller acceptance conditions can then be definexactly the same way
as for the usual automata (and are easily shown to be equivaler nested words,
for nondeterministic automata). We refer to such automata-BlWAs. An NWA is
deterministic if the values of all transition functions aiegletons.

A class of nested.(-)words accepted by an{)NWA is calledregular.

Monadic second-order logic andu-calculus Monadic second-order logic (MSO) ex-
tends first-order logic with quantification over sets. Ovested words, its vocabulary
contains predicateB, (a € X)), < andn. A class of nested-)words is regular iff it is
definable by an MSO sentence [5, 6].

The p-calculusover nested words, denoted by, is defined by the grammar:

0,0 = al X | oVe | ong | mp | Op | Onp | pX.o(X)

with X occurring positively inp(X), anda € X U {call, int,ret}. Given a nested
(w-)wordw, a position; in w, and a valuatiom assigning each free variah}é a set of
positions ofw, the semantics is as follows (omitting the rules for Booleannectives):

— (w,v,1) = int iff ¢ is an internal position(w, v,) |= calliff i is a call position;
and(w,v, i) = retiff 4 is a return position.

— (w,v,1) = a,fora € X, iff ¢ is labeleda.

- (w,v,1) E X iff i € v(X).

— (w,v,1) | O iff i + 1 belongs taw and(w, v,i + 1) | ¢.

— (w,v,1) = Oy iff there is ané such thaty(z, ¢) holds andw, v, £) = ¢.

— (w,v,1) E uX.o(X) iff i is in the least fixed point of the operator definedday
in other words, ifi € (\{P | {#' | (w,v[P/X],?) E ¢} C P}, wherev[P/X]
extends the valuationwith v(X) = P.

The p-calculus over words does not mention the modatifyp.
We shall also work with théull y-calculus [28] (denoted by.['"), which is an
extension ofZ,,, with thepastmodalities® ™~ and<, ¢:

— (w,v,1) = O @liff i > 1Tand(w,v,i — 1) = .
= (w,v,1) | O piff there is ané such that)(¢, i) holds and(w, v, £) = .

Greatest fixed-points X.¢(X) are definable i, as—uX.—¢(—X). Using greatest
fixed-points andJy (defined as-<C—¢), one can push all negations to atomsLip
formulae. For resulting formulae, an important parametahe alternation-depth of
least and greatest fixed-points [7]. We refeL(pas the fragment of,, that consists of
formulae of alternation depth at mas{e.g., the alternation-free fragment[w%).

Languages and unary queries-ormulae ofL,, (without free variables) are satisfied in
positions of a nested word, and thus they give rise to claffsezary querieshat return,
for w, the set{i | (w,i) = ¢}. EveryL, formulay without free variables defines a
language{w | (w,1) = ¢}. Likewise, every MSO formule(z) with one free first-
order variable defines a unary query, and every MSO sentesfaeed a language. In
the absence of nesting, it is known [7,20] that a languagev(tis orw-words) is
definable by &, formula iff it is definable by an MSO sentence (not using iela)).

3 Mu-calculus over nested words

Since NWA generalize finite state automata, the transldtiom MSO to NWAs is

nonelementary. But just as for finite words or trees, one aah équally expressive
logical formalisms with better model-checking complexitye show that the equiva-
lenceMSO = L, extends from words and trees to nested words. It appliesmipio

sentences evaluated in the first position of a nested wotdnbte generally to unary
queries that select a set of positions. This is relevant fitefnested words viewed as
streaming XML documents: while theoretical investigatidrave mostly looked at the
case of sentences [23, 8], in practical application onecgllyi needs to evaluate unary
queries (e.g. XPath) over such streams [21]. To deal withyueaeries, we look at ,

with the past, i.eL{", and prove that it is equivalent to MSO unary queries. That is

Theorem 1. For finite nested words and nestedwords, MSO and LL““ define the
same classes of unary queries.

As a corollary to the proof, we get
Corollary 1. The languages of nested words definab®lisO and L,, are the same.

We can tighten this for finite nested words. (&f"")* be the negation-free (and
thus alternation-free) fragment df* that has two additional constants “first” and
“last” with their intuitive meanings: “first” holds only ahe first position of a nested
word, and “last” holds at the last position. Likewise we defi,,)" from L.

Corollary 2. For unary queries over finite nested worddsO = L' = (L) *.
Furthermore MSO, L,, and(L,)" define the same languages of finite nested words.

From [14], we conclude that for evefy.;"')* formulay and every finite nested
wordw, the sef{i | (w,) = ¢} can be computed in tim@(|¢| - |@]).

We make a couple of remarks about the proof of Theorem 1. Negteds are natu-
rally translated into trees, and there is a closely relagsdlt in the literature, Niwinski’'s
theorem, showing that over the full infinite binary tree, M8 L,,, evaluated in the
root of the tree, are equally expressive [20]. Despite thiesse does not seem to be any
easy adaptation of proof techniques in [20] that yields apod Theorem 1. Not only
do we need a stronger result for unary queries and an extewgiothe past modalities,
but in addition translations of infinite nested words areawotplete binary trees.

Another natural attempt at a proof is to use the expresgivepteteness result of
Janin and Walukiewicz: every bisimulation-invariant MS@perty is definable irL,,
[16]. Then we could express runs of tree automata on treedémg® of nested words
by bisimulation-invariant MSO sentences, apply [16] to @etequivaleni,, formula
for trees, and translate it into af, formula over nested words. This sketch indeed
can be turned into a proof &fiSO = L,, for languages of nested words, but it breaks
already for unary queries over finite nested words, whereneeels to encode a more
complicated run of a query automaton [19], and it is evenédataladapt this argument
to infinite nested words for which we do not have an automatodehcapturing unary
queries. Thus, our proof is a direct argument based ondhgosition methad

4 Automata models for nestedwv-words

Nestedw-word automata Visibly pushdown automata (VPA), with both Biichi and
Muller acceptance conditions, were introduced in [5], ahdva to be equivalent to
MSO, but not necessarily determinizable. The example of & ¥t cannot be ac-
cepted by a deterministic automaton [5] can use arbitraxdyy calls without matching
returns, something that cannot happen in nested words. [L8¢mtroduced a notion
of stair visibly pushdown automai@tair VPA) to control such unmatched calls and
showed that stair VPAs are determinizable. These models defined for VPLs, so
we first specialize a particular class of stair VPAs [18] teted words, thereby obtain-
ing a notion of combined nested word automata, that admérdenization. We then
use such automata to show that over nested words, for evBIWA (with a Biichi or a
Muller acceptance condition), there exists an equivaleterahinistic Mullero-NWA.

A combined nested word automat@NWA puts together an-word automaton
A1 with a Muller acceptance condition and a finite NVM&. It runs.A; over all posi-
tions that are not inside a call. Every timg finds a call position, it invokes. A, to
process the finite nested word formed by the elements betinaahits matching return
j, and then it uses its final state to determine what state igrais; + 1, and continues
its run from positionj + 1. Formally, a CNWAA over X' is a pair(A;, .A2), where:

- Ay = (X,Q2,Q8, 62 = (§2,52,62)) is an NWA without accepting states;
- A = (XUQ2,Q1,QY, 81, F1) is anw-word automaton over alphabBtU Q- (we
assume, of course, thatand@- are disjoint).

Given a nested-word w andi > 1, we define the set aéxternalpositionsE(w) as
positionsi such that there are npk > 1 such thatj < ¢ < k andn(j, k) holds. Note
thatl € E(w) andE(w) is infinite. If i € E(w) is not a call, then + 1 € E(w). If

i € E(w) is a call withj being its matching return, then the next, afteelement of
E(w) is j + 1. With this, we define aun of A over a nested-wordw = (a1az--- ,7)

as a mapping : E(w) — Q; such thaip(1) € QY and for everyi € E(w):

—ifzisnotacall (and + 1 € E(w)), thenp(i + 1) € 61(p(i), ai);

— if i is a call with returrj (and the successor 6fn E(w) isj + 1), thenp(j +1) €
51(p(4), q), whereg is a state inQ, such that there exists a rgp of A, overw|i, j|
havingq as the last state.

A CNWA A acceptso if there is a rurp of A overw such thatinf (p) € F;. We say
that CNWA A = (A, A,) is deterministic if both4; and.A, are deterministic. Then
results in [18] can be restated in this terminology as:

Proposition 1 ([18]). Over nestedv-words, CNWAs and deterministic CNWAs are
equivalent.

We show, by using standard techniques, that CNWA and MSO gu&aent, from
which the main result of this section follows:

Theorem 2. Over nestedw-words, MSO, w-NWA and deterministico-NWA with
Muller acceptance condition, define precisely the regudenguages. Moreover, trans-
lations between these formalisms are effective.

Determinization ofu-NWAs is done by translating them into CNWAs, determiniz-
ing those (which involves2°("1°e™) Safra construction [22] and2?("”) determiniza-
tion procedure from [5]) and then translating back iatdl\WAs with Muller acceptance
condition. Putting these three components together, wéngét that the bound is the
same as for determinization of stair VPAs for VPLs [18]):

Corollary 3. For everyw-NWA withn states, there exists an equivalent deterministic
. - 2
w-NWA with a Muller acceptance condition and with("") states.

Itis well-known that a language af-words is regular (accepted by a Buichi or a Muller
automaton) iff it is a finite union of languages of the fothv~, wherelU, V' are regular
languages. Automata characterizations imply a similaultésr nestedv-words.

Corollary 4. Alanguage of nestaed-words is regular iff it is a finite union of languages
of the formUV“ whereU andV are regular languages of finite nested words.

A basic problem in automata theory is the nonemptiness pnobis the language ac-
cepted by an automaton nonempty? It was shown in [5], thaémg@tiness, and more
generally reachability problem for visibly pushdowrautomata, is polynomial. Com-
bining this with a NLOGSPACE algorithm for nonemptinesswivord automata, we
get polynomial nonemptiness algorithms i&fNWA and CNWA. Further, a modifica-
tion of PTIME-hardness reduction for emptiness for confes¢ grammars gives us:

Corollary 5. The nonemptiness problem forNWA and CNWA is PTIME-complete.

It is easy to code a deterministic automaton b)Lélrformula. Thus,

Corollary 6. Over nested,-words, L, collapses toL}L.

Alternating automata for nested w-words In the context of formal verification, al-
ternating automata have proved to be the key to a compreleeastomata-theoretic
framework for temporal logics [27]. With the developmenterhporal logics for nested
words [4, 2, 1], it is natural to develop alternating autoarfatr nested words, with the
hope that they can simplify the process of translating tergogics into automata.

We now define alternating automata for both finite and infingsted words, and
show that they are equivalent to NWAs. We note that this iherg contrast with the
theory of alternating automata for nested trees, wherenaltieg automata are known
to be more expressive than nondeterministic automata [3].

First recall the definition of alternating automata for fnénd infinite words. Given
a set of states), let B (Q) be the set of positive Boolean combinations of elements
fromQ. GivenX C Q andy € BT(Q), we say thafX satisfiesy if the truth assignment
ox satisfiesp, whereo y is defined agx (¢) = 1 iff ¢ € X. Then analternating (-
Jword automatond is a tuple(X, Q, Qo, 0, F'), where@, Qo and I are defined as for
the case of word automata, afid Q x X — BT(Q) is a transition function.

A run of such an automaton is a labeled treeX’Aabeled tre€l" is a pair(D, \),
where) : D — X andD is a prefix-closed subset 8f such that (1) itz - ¢ € D and
0 <j<i, thenz-j € D, and (2) for everyr € D, there exists a finite number of
strings of the forme - i in D (finite branching). For: € N*, its length is denoted bj|.
The depth of a tree isiax ¢ p |z|.

A run of an alternating word automatot = (X, Q, Qo, 9, F) overw = aq - - - ay,
is a finite Q-labeled treel” = (D, \) of depthn such that\(¢) € Qo and for every
x € D that has children: - 0, .. ., z - £ of lengthi, we have tha{A(z - 0),..., A(z - 0)}
satisfiesi(\(z), a;). An alternating word automatad accepts a wora if there is a
runT = (D, \) of Aoverw such that\(x) € F for every nodec in T of lengthn. The
run of an alternating-word automatond = (X, Q, Qo, ¢, F') over anw-word w =
aiag - - - i1s defined in exactly the same way as an infidtéabeled treel’ = (D, \).
Then A acceptsv-word w if there is an accepting ruft = (D, \) of A overw, i.e.
every infinite branchy of T" includes infinitely many labels if'.

An alternating nested word automatéor alternating NWA, or ANWA) is an NWA
that admits alternation in call, return, and internal tidoiss. Formally, an ANWAA is
atuple(X, Q,Qo, 9, F), where@, Qo and F' are defined as for the case of alternating
word automata, and is a triple (4., ,, d,-) of transition functions..,d, : Q@ x X —
BY(Q), andd, : Q x Q@ x ¥ — BT(Q). Arunof Aoverw = (aj---an,n)is a
Q-labeled finite tred” = (D, \) of depthn such that\(¢) € Qo and for everyr € D
with childrenz - 0, . . ., 2 - ¢, of lengthi < n:

— if |z| (i.e.i—1) is a call position, thegA(z-0), ..., A(z-¢)} satisfied.(\(x), a;);

— if |z| is an internal position, thep\(x - 0), ..., A(z - £)} satisfies), (A(z), a;);

— if |z| is a return position with matching callandy is the prefix ofz with |y| =
j—1,then{\(z-0),..., \(z - £)} satisfies),. (A(x), A(y), a;).

Note that ifi — 1 is an internal position and does not have children, thép(A(z), a;)
has to be a tautology, and likewise for call and return pmsgti An alternating nested

word automatond accepts a nested word if there is a runl’ = (D, \) of A overw
such that\(z) € F for every noder in T' of lengthn.

Proposition 2. For every alternating NWA, there exists an equivalent NWA.

This can be extended to nestedvords. An alternating nestecword automatond-
ANWA) Ais atuple(X, Q, Qo,d, F'), whereQ, Qo, 6 andF are defined exactly as for
ANWA. A runis defined in the same way as above, and the acceptance coratjgin
states that along each infinite branch, states ffoare seen infinitely often.

Theorem 3. For everyw-ANWA withn states, there exists (and can be effectively con-
structed) an equivalent-NWA with a RBichi acceptance condition arx® ") states.

For the proof, we introduce a notion afternating combined nested word automaton
(ACNWA) and provide a direct translation frarANWA into ACNWA. Then by using
Proposition 2 and the fact that alternatiagvord automata can be translated inte
word automata [27], we give a translation from ACNWA into CHWIheorem 3 then
follows from Proposition 1. We note that Theorem 3 providegaponential-time al-
gorithm for checking nonemptiness of ANWAs andANWAs. Since even in the finite
case the problem is as hard as universality for finite treeraata [24], we get:

Corollary 7. The nonemptiness problem for both ANWAs @NWAs is EXPTIME-
complete.

5 Synchronization of nested words

Synchronization of words leads to a concepteagfular relations It ties together (syn-
chronizes) positions in several words, and then runs ameattm over them [15]. To
be concrete, letv, . .., w; be words from¥_™*. Assume that# is a letter that is not in
Y. Letn = max; |w;|, and let](w, ..., wy)] be a word of lengtt constructed as fol-
lows. Itis over the alphabéU{#})*, and itsith letter is &-tuplea; = (ai,...,al),
where each’, is theith letter ofw; if i < |w;|, and# if i > |w;|. Thatis, we pad
words shorter than with #’s to make them all of length, and then take th&h letter
of [(w1, ..., wy)] to be the tuple of théth letters of these padded words.

Thenregular k-ary relationsover ¥ are defined as sef$ C (X*)* such that the set
{[(w1,...,wg)] | (wy,...,wg) € R} is accepted by an automaton over the alphabet
(X U {#})* [13,12]. Such automata are callkdter-to-letter automat&Regular rela-
tions are closed under Boolean combinations, product, aojggiion. This makes it
possible to find infinite structures over* with decidable first-order theories whose de-
finable sets are precisely the regular relations (theseravensalautomatic structures
cf. [13,12]). The most commonly used such structureX¥, <, (P,).cx, €l), where
< is the prefix relation P, (w) is true iff the last letter ofw is a, and e{w, w’) (the
equal-length predicate) holds |ii)| = |w’| [13,12, 10].

We now study synchronization for nested words. We show tiatsual letter-to-
letter synchronization for words is completely incomplatitvith the nesting structure
because even the simplest nested extension of lettettr-fritomata is undecidable.

We propose a different decidable synchronization schemedsted words that gives
us regular relations with all the expected properties.

Letter-to-letter nested word automakasume that we havenested words, . . . , Wy,
and we again pad the shorter words with a special sy#bsd that all of them are of
the same length. Let [(w1,. .., wy)] be such a nested word over the alphalgty
{#})*, and leta; be itsith letter. The letter-to-letter automaton runs from leftigght
on [(w1,...,w)], as an NWA. The main difference with NWAs is that each positio
i may now be a return position iseveralof the w;’s, and thus states in several call
positions determine the next state.

That is, in ak-letter-to-letter NWAover k-tuples of nested words, we have multiple
return transitiongX : Q x QX x (X U {#})* — 29, indexed by nonemptx C
{1,...,k}. Supposé is a return position inv;, , ..., w;, , wherel <y <...<l,, <
kandm > 0.If ji,..., j,, are the matching calls, i.e;, (j1,7),...,m,, (jm,?) hold,
thenp(i + 1) depends op(i), a;, and the states in positiogs, . . . , jm:

p(i+1) € i tmd(p(i), (i), - pGim), @i)-

For positions without returns, we have one transitiorQ x (X U {#})* — 2¢.

We show that even a much simpler automaton is undecidabfédasimplified
k-letter-to-letter NWAas ak-letter-to-letter NWA with one return transition & :
Q x Q x (X U{#}F — 29, just as in the usual NWA. The condition on the run is as
follows: if 4 is a return position in wordsy, , ..., w;,,,forl <13 < ... <1, <k,
thenp(i+1) € d,.(p(4), p(j1), @;), wherej is the call ofi in @, . In other words, we
look at the state of only one call position, correspondintihoreturn with the smallest
index. For all other positions we have a single transitiorQ x (£ U {#})* — 2.

If & =1, these are the usual NWAs. Butkif= 2, they are undecidable.

Theorem 4. The nonemptiness problem is undecidable for simplifiéetter-to-letter
NWAs (and thus fok-letter-to-letter NWAs fok > 1).

Thus, there is no hope to use even the simplest possible fbletter-to-letter syn-
chronizationin nested words. As another example of suadmnipatibility, we show that
there are no natural decidable extensions of universahzatio structures on words to
nested words. We look at structur@$ = (X, ©) (where X}, is the set of all fi-
nite nested words oveY) of a vocabulary®. We assume tha? includes some basic
relations. One is a prefix relation <,y @' iff @w = @’'[1,m] for somem < ||
(so we can refer to the linear structure of nested words). dther allows us to re-
fer to the nesting structure: we relate a prefivof @’ so that inw’, there is a call-
return edge from the last position af to the last position ofo’. That is,w =<, @’
iff @w = @'[1,m], andn(m, |@’'|) holds inw’. We say thatlt defines all regular lan-
guages of nested wordsfor each such languagg, there is a formulay, (z) such
thatL = {w € X7, | M = o(w)}. We say thatit defines all regular relations over
wordsif for each regular relatiol C (X*)*, there is a formulag(z1, . . ., z) such
thatd = Yg(wy,. .., o)} iff (wi,...,w;) € R (recall thatw; is a word fromX*
obtained by removing the nesting structure fram).

Proposition 3. There is no structur@t = (X, =nw, =y, . . .) that defines all regular
languages of nested words, all regular relations over wpaagl has a decidable theory.

Call-return synchronizationAs the usual letter-to-letter synchronization is incompat
ble with nested words, we propose a differerat|-return synchronization. Intuitively,
instead of synchronizing positions with the same indiexdifferent words, we synchro-
nize positions for which the shortest paths to them (fronfitiseposition) are the same.
To formalize this, we use a notion osammary patlintroduced recently in connection
with the study of LTL-like logics on nested-words [1]. A summary path to a position
7 in a nested wordp is the shortest path fromto ¢ that combines both successor and
matching edges. That is, it is a sequemce ig < iy < ... < i = ¢ such that, ifi; is

a call withn(i;, j) andi > j, thenn(i;, 4;+1) holds, and otherwisg; = i; + 1. We
represent this summary path as a word. . a;, over the alphabet = {i,c, m}:

1. if 4, = 4,1 + 1 andi;_; is not a call, ther; = i (path goes via an internal edge);
2. ifiy = 4,1 + 1 andi;_, is a call, theru; = ¢ (path goes via a call edge);
3. if n(i;-1, ;) holds, theru; = m (path goes via a matching edge).

If bothi; = ¢;_1 + 1 andn(i;—1,%;) hold, we leta; bem. The unique summary path to
position: will be denoted byt (i) € A*, and the set of all summary paths By (w).
The label ofr}l (i) is the label ofi in w. Note that/7”(w) is closed under prefix.

The idea of thecall-return synchronizatioris that now with each position,
we keep its summary paths’ (i), to remember how it was reached in different
nested words. That is, a call-return synchronization oftetesvordsws, ..., wy
is a pair (II"(wy, ..., w),) where II"(w.,...,w,) = |J, " (w;), and X
I (wy, ..., wx) — (X U {#})* is a labeling function that labels each summary path
with its label inw; if it occurs inw;, and with # otherwise, for eacli < k. This
synchronization can naturally be viewed as a tree.

As an example, consider two nested words betow(on the left) ando, (on the
right), with summary paths shown above positions.

€ i ic ici im imi € i ic im imiimii

1 2 3 4 5 6 1 2 3 4 5 6

The synchronization occurs in the first and the second posiand we recursively
synchronize the calls (from and what follows their returns (froim). Intuitively, this
results in adding a dummy internal noideinside the call foroy, and adding a dummy
last internal positiofimii for w,. Note that position 4 (i.€ci) in w; is in no way related
to position 4 {m) in w2, as it would have been in letter-to-letter synchronization

We now say thalz C (X7,)" is aregular k-ary relation of nested wordf there
is a tree automaton on ternary trees that accepts predigBlya, ..., o), A), for
(w1, ...,w) € R. The following is an immediate consequence of coding trpeere
sentations in MSO, and of the work on automatic structures trees [11]:

Proposition 4. — Regular relations of nested words are closed under unidarsec-
tion, complementation, product, and projection.
— Regularl-ary relations of nested words are precisely the regulate@tanguages.
— There is a finite collectio® of unary and binary predicates o}, such that
(Xx,, ©) is a universal automatic structure for nested words, idifinable rela-
tions are precisely the regular relations of nested wordas] &s theory is decidable.

Acknowledgmentg/e thank Rajeev Alur, Kousha Etessami, and Neil Immerman for
helpful discussions. Arenas was supported by FONDECYTtgra@50701, 7060172
and 1070732; Arenas and Barceld by grant P04-067-F fronMiilennium Nucleus
Centre for Web Research; Libkin by the EC grant MEXC-CT-20Q8502, EPSRC
grant E005039, and by an NSERC grant while on leave from Woritor.

References

1. R. Alur, M. Arenas, P. Barceld, K. Etessami, N. ImmermanLibkin. First-order and
temporal logics for nested words. IHCS 2007
2. R. Alur, S. Chaudhuri, P. Madhusudan. A fixpoint calculaslbcal and global program
flows. INnPOPL 2006 pages 153-165.
. R. Alur, S. Chaudhuri, P. Madhusudan. Languages of nésted. INCAV 2006 329-342.
. R. Alur, K. Etessami and P. Madhusudan. A temporal loginesfted calls and returns. In
TACAS'04467-481.
. R. Alur and P. Madhusudan. Visibly pushdown languageST®C’'04 202-211.
. R. Alur and P. Madhusudan. Adding nesting structure tad&anDLT'06, pages 1-13.
. A. Arnold and D. NiwinskiRudiments ofi-calculus North-Holland, 2001.
. V. Barany, C. Loding, O. Serre. Regularity problems ¥@sibly pushdown languages.
STACS’06420-431.
. P. Barcel6 and L. Libkin. Temporal logics over unrankess. InLICS’05 31-40.
. M. Benedikt, L. Libkin, T. Schwentick, L. Segoufin. Defilarelations and first-order query
languages over stringd. ACM50(5): 694—751, 2003.
11. M. Benedikt, L. Libkin, F. Neven. Logical definability dguery languages over ranked and
unranked treesACM TOCL, 8(2), 2007. Extended abstract in LICS’02 and LICS’03.
12. A. Blumensath and E. Gradel. Automatic structured.I@S’00, pages 51-62.
13. V. Bruyere, G. Hansel, C. Michaux, R. Villemaire. Logitdp-recognizable sets of integers.
Bull. Belg. Math. Socl (1994), 191-238.
14. R. Cleaveland, B. Steffen. A linear-time model-chegkatgorithm for the alternation-free
modal mu-calculusCAV’'91, pages 48-58.
15. C. Elgot and J. Mezei. On relations defined by generafinité automatalBM J. Res. De-
velop.9 (1965), 47—-68.
16. D. Janin, |I. Walukiewicz. On the expressive completerméshe propositional mu-calculus
with respect to monadic second order logBONCUR 1996pages 263-277.
17. C. Lautemann, T. Schwentick, D. Thérien. Logics fortegtifree languagesCSL'94 205-
216.
18. C. Ldding, P. Madhusudan, O. Serre. Visibly pushdowmem INFSTTCS 2004408—420.
19. F. Neven, Th. Schwentick. Query automata over finitestr€€S275 (2002), 633-674.
20. D. Niwinski. Fixed points vs. infinite generation. LLICS 1988 pages 402-409.
21. F.Peng and S. Chawathe. Xpath queries on streamingld@EGMOD’'03 pages 431-442.
22. S. Safra. On the complexity of omega-automat&E@TS 1988pages 319-327.
23. L. Segoufin, V. Vianu. Validating streaming XML documenin PODS’02 pages 53-64.
24. H. Seidl. Deciding equivalence of finite tree autom&OMP19(3): 424-437 (1990).
25. W. Thomas. Languages, automata, and ldgandbook of Formal Languages, Vol.1097.
26. W. Thomas. Infinite trees and automaton-definable oglatbverv-words. TCS103 (1992),
143-159.
27. M. Y. Vardi. An automata-theoretic approach to lineanperal logic. Banff Higher Order
Workshop 1995, pages 238-266.
28. M. Y. Vardi. Reasoning about the past with two-way aut@mén ICALP 1998 628—641.

0 ~N o Ol AW

o ©

