
Logic Programs for Querying Inconsistent

Databases

Pablo Barcel�o? Leopoldo Bertossi??

P. Universidad Cat�olica de Chile Carleton University

Depto. Ciencia de Computaci�on School of Computer Science

Santiago, Chile. Ottawa, Canada.

pbarcelo@ing.puc.cl bertossi@scs.carleton.ca

Abstract. Consistent answers from a relational database that violates a

given set of integrity constraints (ICs) are characterized at the conceptual

level as ordinary answers that can be obtained from every minimally

repaired version of the database (a repair). Repairs can be speci�ed and

interpreted as the stable models of a simple disjunctive normal logic

program with database predicates extended with appropriate annotation

arguments. In consequence, consistent query answers can be obtained by

running an appropriate query program in combination with the repair

program under the cautious or skeptical stable model semantics. In this

paper we show how to write repair programs for universal and referential

ICs; we establish their correctness and show how to run them on top of

DLV.

1 Introduction

Integrity constraints (ICs) capture the semantics of a relational database, es-

tablishing its correspondence with the application domain that the database is

modeling. However, it is not unusual for a database instance to become incon-

sistent with respect to a given, intended set of ICs. This could happen due to

di�erent factors, being one of them the integration of several data sources. The

integration of consistent databases may easily lead to an inconsistent integrated

database.

A natural problem in databases consists in retrieving answers to queries that

are \consistent" with the given ICs, even when the database as a whole does

not satisfy those ICs. Very likely \most" of the data is still consistent. The

notion of consistent answer to a �rst order (FO) query was de�ned in [2], where

also a computational mechanism for obtaining consistent answers was presented.

Intuitively speaking, a ground tuple �t to a �rst order query Q(�x) is consistent

in a, possibly inconsistent, relational database instance DB if it is an (ordinary)

answer to Q(�x) in every minimal repair of DB , i.e. in every database instance

over the same schema and domain that di�ers from DB by a minimal (under set

inclusion) set of inserted or deleted tuples.

We can see then that computing consistent query answers is a natural prob-

lem in DBs. Apart from applications in data integration [10], we also foresee

? Current address: University of Toronto, Department of Computer Science, Toronto,

Canada.
?? Contact author. Fax: (613) 520 4334. Phone: (613) 520 2600 x 1627.

interesting applications in the context of intelligent information systems, where

a particular user might impose his/her particular view of the semantics of the

database by querying the database through his/her user ICs, that are not nec-

essarily maintained by the DB central administration. This user could specify

his/her own constraints as queries are posed, by means of a new, extra SQL

statement or a new option in the usual menu for interacting with the DB.

That mechanism presented in [2] for consistent query answering (CQA) has

some limitations in terms of the ICs and queries it can handle. In [4], a more

general methodology based on logic programs with a stable model semantics was

introduced. More general queries could be considered, but ICs were restricted to

be \binary", i.e. universal with at most two database literals (plus built-ins).

For CQA we need to deal with all the repairs of a database, but hope-

fully in a compact, succinct manner, without having to compute all of them

explicitly. Actually, the database repairs corresponds to just an auxiliary con-

ceptual notion used to characterize what is relevant to us, the consistent answers.

In consequence, a natural approach consists in providing a manageable logical

speci�cation of the class of database repairs, that treats them as a whole. The

speci�cation must include information about the database and the ICs.

In this paper we show how to specify the database repairs by means of sim-

ple classical disjunctive normal programs with a stable model semantics. The

database predicates in these programs contain annotations as extra arguments.

In their turn, the annotations are inspired by the theories written in annotated

predicate logic that specify database repairs as presented in [3, 8]. Nevertheless,

the programs are classical, as opposed to annotated or paraconsistent logic pro-

grams [12, 26]. The coherent stable models of the program turn out to correspond

to the database repairs.

With this approach we reach two goals. The �rst goal consists in obtaining

a computable speci�cation of all the possible minimal sets of changes required

to restore the consistency of a theory corresponding to the positive informa-

tion explicitly stored in a relational database. However, we are not interested

in computing database repairs, neither in repairing in any way the inconsistent

database. Actually, the main, second goal consists in providing a general com-

putational mechanism to obtain the consistent answers to a �rst order query.

They can be obtained by \running" the combination of the repair program and

a query program under the skeptical stable model semantics that sanctions as

true what is true of every stable model. The less a logic programming imple-

mentation explicitly computes all stable models in order to answer a query, the

better. We have experimented with DLV , an implementation of the disjunctive

stable model semantics [20].

The methodology presented here works for arbitrary �rst order queries and

arbitrary universal ICs, what considerable extends the cases that could be han-

dled in [2, 4, 3]. We also show how to apply the methodology in the presence of

referential integrity constraints [1].

2 Preliminaries

2.1 Database repairs and consistent answers

We consider a �xed relational database schema � = (D;P;B), consisting of a

�xed, possibly in�nite, database domain D = fc1; c2; :::g, a �xed set of database

predicates P = fp1; : : : ; png with �xed arities, and a �xed set of built-in predi-

cates B = fe1; : : : ; emg. This schema determines a �rst order language L(�).

A database instance over � is a �nite collection DB of facts of the form

p(c1; :::; cn), where p is a predicate in P and c1; :::; cn are constants in D. A

built-in predicate has a �xed and the same extension in every database instance,

not subject to any changes.

An integrity constraint (IC) is an implicitly quanti�ed clause of the form

n_

i=1

:pi(�ti) _
m_

j=1

qj(�sj) _ '; (1)

where, pi and qj are predicates in P , �ti; �sj are tuples containing constants and

variables, and ' is a formula containing predicates in B only.

We will assume that DB and IC , separately, are consistent theories. Nev-

ertheless, it may be the case that DB [IC is inconsistent. Equivalently, if we

associate in the natural way to DB a �rst order structure, also denoted with

DB , i.e. by applying the closed world assumption (CWA) that makes false any

ground atom not explicitly appearing in the set of atoms DB , it may happen

that DB , as a structure, does not satisfy the IC . We denote with DB j=� IC

the fact that the database satis�es IC . In this case we say that DB is consistent

wrt IC ; otherwise we say DB is inconsistent.

As in [2], we de�ne that the distance between two database instancesDB1 and

DB2 is their symmetric di�erence �(DB1;DB2) = (DB1�DB2)[(DB2�DB1).

Now, given database instances DB , possibly inconsistent wrt IC , we say that

the instance DB 0 is a repair of DB i� DB
0 j=� IC and �(DB ;DB 0) is minimal

under set inclusion in the class of instances that satisfy IC [2], that is, there is

no instance DB 00 such that DB 00 j=� IC and �(DB ;DB 00) $ �(DB ;DB 0).

Example 1. Consider the relational schema Book(author ;name; publYear) and

a database instance

DB = fBook(kafka;metamorph; 1915) ; Book(kafka ;metamorph ; 1919)g:
We also have the functional dependency [1] FD : author ;name ! publYear ,

that can be expressed by IC : :Book (x; y; z) _ :Book (x; y; w) _ z = w:

DB is inconsistent with respect to IC . The original instance has two pos-

sible repairs, namely DB1 = fBook(kafka ;metamorph; 1915)g and DB2 =

fBook(kafka;metamorph ; 1919)g. 2

Let DB be a database instance, possibly not satisfying a set IC of integrity

constraints. Given a query Q(�x) to DB , we say that a tuple of constants �t is

a consistent answer [2], denoted DB j=c Q(�t), if for every repair DB
0 of DB ,

DB
0 j=� Q(�t). If Q is a closed formula, i.e. a sentence, then true is a consistent

answer to Q, denoted DB j=c Q, if for every repair DB 0 of DB , DB 0 j=� Q.

Example 2. (example 1 continued) The query Q1 : Book(kafka;metamorph ;

1915) does not have true as a consistent answer, because it is not true in every

repair. Query Q2(y) : 9x9zBook(x ; y ; z) has y = metamorph as a consistent

answer. Query Q3(x) : 9zBook(x;metamorph ; z) has x = kafka as a consistent

answer. 2

Notice that when de�ning consistent answers, we do not specify any pref-

erence for particular kinds of repairs. They are all treated the same, and are

just used to characterize the consistent answers. The only commitment at this

point is that repairs are obtained by insertion/deletion of whole relational tuples.

Later on we make some considerations on the possibility of having more exible

repairs (see also [4, 11]).

Annotated Predicate Calculus was introduced in [25]. It constitutes a non

classical logic where classical inconsistencies may be accommodated without

trivializing reasoning. Its syntax is similar to that of classical logic, except for

the fact that atoms are annotated with values drawn from a truth-values lattice.

In [3], in order to embed the database and the ICs into a single consistent theory,

a particular lattice was introduced. It contains the truth values: t; f (classical

true and false), > (inconsistent), ? (unknown), tc, td, fd, fc, ta and fa.

The values tc, fc are used to annotate what is needed for constraint satisfac-

tion. The values td and fd represent the truth values according to the original

database. Finally, ta and fa are considered advisory truth values, to solve con-

icts between the original database and what is needed for the satisfaction of

the ICs. Here, lub(td; fc) = fa and lub(fd; tc) = ta. This says that, in case of

a conict between the constraints and the database, we should obey the con-

straints, as only the database instance can be changed to restore consistency.

An advisory value ta (resp. fa) is seen as an indication that the literal which

receives it must be inserted (resp. deleted) for repairing the database.

In [3] it was also shown that there is a one to one correspondence between

some minimal models of the annotated theory and the repairs of the inconsistent

database for universal ICs. This was extended to existential ICs in [8].

3 Logic Programming Speci�cation of Repairs

In this section we will consider ICs of the form (1). Our aim is to specify database

repairs using classical �rst order logic programs. However, those programs will

be suggested by the non classical annotated theory. In order to accommodate

annotations in this classical framework, we replace each predicate p(�x) 2 P by

a new predicate p(�x; �), with an extra argument for annotations. This de�nes a

new FO language, L(�)an , for annotated L(�).

De�nition 1. The repair logic program, �(DB ; IC), for DB and IC , is written

with predicates from L(�)an and contains the following clauses:

1. For every atom p(�a) 2 DB, �(DB ; IC) contains the fact p(�a; td).

2. For every predicate p 2 P , �(DB ; IC) contains the clauses:

p(�x; t?) p(�x; td): p(�x; t?) p(�x; ta):
p(�x; f?) p(�x; fa): p(�x; f?) not p(�x; td):,

where t?; f? are new, auxiliary elements in the domain of annotations.

3. For every constraint of the form (1), �(DB ; IC) contains the clause:

Wn

i=1
pi(�ti; fa) _

Wm

j=1
qj(�sj ; ta) �

Vn

i=1
pi(�ti; t

?) ^
Vm

j=1
qj(�sj ; f

?) ^ �';

where �' represents the negation of '. 2

Intuitively, the clauses in 3. say that when the IC is violated (the body),

then DB has to be repaired according to one of the alternatives shown in the

head. Since there may be interactions between constraints, these single repairing

steps may not be enough to restore the consistency of DB. We have to make

sure that the repairing process continues and stabilizes in a state where all the

ICs hold. This is the role of the clauses in 2. containing the new annotations t?,

that groups together those atoms annotated with td and ta, and f?, that does

the same with fd and fa.

The following example shows the interaction of a functional dependency and

an inclusion dependency. When atoms are deleted in order to satisfy the func-

tional dependency, the inclusion dependency could be violated, and in a second

step it should be repaired. At that second step, the annotations t? and f?, com-

puted at the �rst step where the functional dependency was repaired, will detect

the violation of the inclusion dependency and trigger the corresponding repairing

process.

Example 3. (example 1 continued) We extend the schema with the table Eurbook (

author ; name ; publYear), for European books. Now, DB also contains the literal

Eurbook (kafka;metamorph; 1919)g. If in addition to the ICs we had before, we

consider the set inclusion dependency 8xyz (Eurbook(x ; y ; z) ! Book(x ; y ; z)),

we obtain the following program �(DB ; IC):

1. EurBook(kafka;metamorph; 1919 ; td): Book(kafka;metamorph; 1919 ; td):

Book(kafka;metamorph; 1915 ; td):

2. Book(x ; y ; z ; t?) Book(x ; y ; z ; td): Book(x ; y ; z ; t?) Book(x ; y ; z ; ta):

Book(x ; y ; z ; f?) Book(x ; y ; z ; fa): Book(x ; y ; z ; f?) not Book(x ; y ; z ; td):

Eurbook(x ; y ; z ; t?) Eurbook(x ; y ; z ; td):

Eurbook(x ; y ; z ; t?) Eurbook(x ; y ; z ; ta):

Eurbook(x ; y ; z ; f?) Eurbook(x ; y ; z ; fa):

Eurbook(x ; y ; z ; f?) not Eurbook(x ; y ; z ; td):

3. Book(x ; y ; z ; fa) _ Book(x ; y ;w ; fa) Book(x ; y ; z ; t?);Book(x ; y ;w ; t?);

z 6= w:

Eurbook(x ; y ; z ; fa) _ Book(x ; y ; z ; ta) Eurbook(x ; y ; z ; t?);Book(x ; y ; z ; f?).

2

For our programs, that contain negation as failure, we will consider the stable

models semantics. A modelM is a stable model of a disjunctive program P i�

it is a minimal model of PM, where PM = fA1 _ � � � _ An B1; � � � ; Bm j
A1_� � �_An B1; � � � ; Bm;not C1; � � � ;not Ck is a ground instance of a clause

in P andM 6j= Ci for 1 � i � kg [21, 22].

De�nition 2. A Herbrand model M is coherent if it does not contain both

p(�a; ta) and p(�a; fa).

Example 4. (example 3 continued) The coherent stable models of the program

presented in example 3 are:

M1 = fBook(kafka;metamorph; 1919 ; td); Book(kafka;metamorph; 1919 ; t?);

Book(kafka;metamorph; 1915 ; td); Book(kafka;metamorph; 1915 ; t?);

Book(kafka;metamorph; 1915 ; fa); Book(kafka;metamorph; 1915 ; f?);

Eurbook(kafka;metamorph; 1919 ; td); Eurbook(kafka;metamorph; 1919 ; t?)g;

M2 = fBook(kafka;metamorph; 1919 ; td); Book(kafka;metamorph; 1919 ; t?);

Book(kafka;metamorph; 1919 ; fa); Book(kafka;metamorph; 1919 ; f?);

Book(kafka;metamorph; 1915 ; td); Book(kafka;metamorph; 1915 ; t?);

Eurbook(kafka;metamorph; 1919 ; td); Eurbook(kafka;metamorph; 1919 ; t?);

Eurbook(kafka;metamorph; 1919 ; fa); Eurbook(kafka;metamorph; 1919 ; f?)g. 2

The stable models of the program will include the database contents with

its original annotations (td). Every time there is an atom in a model annotated

with td or ta, it will appear annotated with t?. From these models we should be

able to \read" database repairs. Every stable model of the logic program has to

be interpreted. In order to do this, we introduce two new annotations, t??; f??,

in the last arguments. The �rst one groups together those atoms annotated with

ta and those annotated with td, but not fa. Intuitively, they correspond to those

annotated with t in the models of T (DB ; IC). A similar role plays the other new

annotation wrt the \false" annotations. These new annotations will simplify the

expression of the queries to be posed to the program. Without them, instead of

simply asking p(�x; t??) (for the tuples in p in a repair), we would have to ask for

p(�x; ta) _ (p(�x; td) ^ :p(�x; fa)). The interpreted models can be easily obtained

by adding new rules.

De�nition 3. The interpretation program �?(DB ; IC) extends �(DB ; IC) with

the following rules:

p(�a; f??) p(�a; fa): p(�a; f??) not p(�a; td); not p(�a; ta):

p(�a; t??) p(�a; ta): p(�a; t??) p(�a; td); not p(�a; fa): 2

Example 5. (example 4 continued) The coherent stable models of the interpre-

tation program extend

M1 with fEurbook(kafka;metamorph; 1919 ; t??);

Book(kafka;metamorph ; 1919 ; t??);Book(kafka;metamorph; 1915 ; f??)g;

M2 with fEurbook(kafka;metamorph; 1919 ; f??);

Book(kafka;metamorph ; 1919 ; f??);Book(kafka;metamorph; 1915 ; t??)g:2

From an interpretation model we can obtain a database instance.

De�nition 4. LetM be a coherent stable model of program �?(DB ; IC). The

database associated toM is DBM = fp(�a) j p(�a; t??) 2Mg. 2

The following theorem establishes the one-to-one correspondence between

coherent stable models of the program and the repairs of the original instance.

Theorem 1. If M is a coherent stable model of �?(DB ; IC), and DBM is

�nite, then DBM is a repair of DB with respect to IC . Furthermore, the repairs

obtained in this way are all the repairs of DB. 2

Example 6. (example 5 continued) The following database instances obtained

from de�nition 4 are the repairs of DB :

DBM1
= fEurbook(kafka;metamorph; 1919); Book(kafka;metamorph ; 1919)g;

DBM2
= fBook(kafka;metamorph; 1915)g: 2

3.1 The query program

Given a �rst order query Q, we want the consistent answers from DB . In conse-

quence, we need those atoms that are simultaneously true of Q in every stable

model of the program �(DB ; IC). They are obtained through the query Q??,

obtained from Q by replacing, for p 2 P , every positive literal p(�s) by p(�s; t??)

and every negative literal :p(�s) by p(�s; f??). Now Q?? can be transformed into a

query program�(Q??) by a standard transformation [28, 1]. This query program

will be run in combination with �?(DB ; IC).

Example 7. For the query Q(y) : 9zBook(kafka; y ; z), we generate Q??(y) :

9zBook(kafka ; y; z; t??), that is transformed into the query program clause

Answer(y) Book(kafka; y ; z ; t??): 2

4 Computing from the Program

The database repairs could be computed using an implementation of the disjunc-

tive stable models semantics like DLV [20], that also supports denial constraints

as studied in [13]. In this way we are able to prune out the models that are not

coherent, imposing for every predicate p the constraint p(�x; ta); p(�x; fa).

Example 8. Consider the database instance fp(a)g that is inconsistent wrt the
set inclusion dependency 8x (p(x) ! q(x)). The program �?(DB ; IC) contains

the following clauses:

1. Database contents: p(a; td).

2. Rules for the closed world assumption:

p(x; f?) not p(x; td): q(x; f?) not q(x; td):

3. Annotation rules:

p(x; f?) p(x; fa): p(x; t?) p(x; ta): p(x; t?) p(x; td):
q(x; f?) q(x; fa): q(x; t?) q(x; ta): q(x; t?) q(x; td):

4. Rule for the IC: p(x; fa) _ q(x; ta) p(x; t?); q(x; f?).

5. Denial constraints for coherence

 p(�x; ta); p(�x; fa): q(�x; ta); q(�x; fa):

6. Interpretation rules:

p(x; t??) p(x; ta): p(x; t??) p(x; td); not p(x; fa):
p(x; f??) p(x; fa): p(x; f??) not p(x; td); not p(x; ta):

q(x; t??) q(x; ta): q(x; t??) q(x; td); not q(x; fa):
q(x; f??) q(x; fa): q(x; f??) not q(x; td); not q(x; ta):

Running program �?(DB ; IC) with DLV we obtain two stable models:

M1 = fp(a; td); p(a; t
?); q(a; f?); q(a; ta); p(a; t

??); q(a; t?); q(a; t??)g,

M2 = fp(a; td); p(a; t
?); p(a; f?)); q(a; f?); p(a; f??); q(a; f??); p(a; fa)g.

The �rst model says, through its atom q(a; t??), that q(a) has to be inserted

in the database. The second one, through its atom p(a; f??), that p(a) has to be

deleted. 2

The coherence denial constraints did not play any role in the previous exam-

ple, we obtain exactly the same model with or without them. The reason is that

we have only one IC; in consequence, only one step is needed to obtain a repair

of the database. There is no way to obtain an incoherent stable model due to

the application of the rules 1. and 2. in example 8 in a second repair step.

Example 9. (example 8 continued) Let us now add an extra set inclusion depen-

dency, 8x (q(x) ! r(x)), keeping the same instance. One repair is obtained by

inserting q(a), what causes the insertion of r(a). The program is as before, but

with the additional rules

r(x; f?) not r(x; td): r(x; f?) r(x; fa): r(x; t?) r(x; ta):

r(X; t?) r(X; td): r(x; t??) r(x; ta): r(x; t??) r(x; td);not r(x; fa):

r(x; f??) r(x; fa): r(x; f??) not r(x; td);not r(x; ta):

q(x; fa) _ r(x; ta) q(x; t?); r(x; f?): r(x; ta); r(x; fa):

If we run the program we obtain the expected models, one that deletes p(a),

and a second one that inserts both q(a) and r(a). However, if we omit the co-

herence denial constraints, more precisely the one for table q, we obtain a third

model, namely fp(a; td); p(a; t
?); q(a; f?); r(a; f?); q(a; fa); q(a; ta); p(a; t

??);

q(a; t?); q(a; t??); q(a; f??); r(a; f??), that is not coherent, because it contains

both q(a; fa) and q(a; ta), and cannot be interpreted as a repair of the origi-

nal database. 2

Notice that the programs with annotations obtained are very simple in terms

of their dependency on the ICs. As mentioned before, consistent answers can be

obtained \running" a query program together with the repair program �?(DB;

IC), under the skeptical stable model semantics, that sanctions as true what is

true of all stable models.

5 Programs with Referential ICs

So far the repair programs have been for universal ICs. Now we also want to

consider referential ICs (RICs) of the form p(�x) ! 9y(q(�x0; y)), where �x0 � �x.

It is assumed that the variables range over an underlying database domain D,

that does not include the value null , nevertheless, a RIC can be repaired by

insertion of the null value, say q(�a;null), or by cascaded deletion. If the repair

is by introduction of null, it is expected that this change will not propagate

through other ICs, e.g. a set inclusion dependency like 8�x(q(�x0; y) ! r(�x0; y)).

The program should not detect such inconsistency wrt this IC. This can be easily

avoided at the program level by appropriately qualifying the values of variables

in the disjunctive repair clause for the other ICs, like the set inclusion IC above.

The program �?(DB ; IC) is then extended with the following formulas:

p(�x; fa) _ q(�x
0;null ; ta) p(�x; t?); not aux(�x0); not q(�x0;null ; td): (2)

aux(�x0) q(�x0; y; td); not q(�x
0; y; fa): (3)

aux(�x0) q(�x0; y; ta): (4)

Intuitively, clauses (3) and (4) detect if the formula 9y(q(�a0; y):t_q(�a0; y):ta))
is satis�ed by the model. If this is not the case, and p(�a; t?) belongs to the model,

and q(�a0; null) is not in the original instance, i.e. there is a violation of the RIC,

then, according to rule (2), the repair is done either by deleting p(�a) or inserting

q(�a0; null).

Example 10. Consider the database instance fp(�a)g and the following set of

ICs: p(x) ! 9yq(x; y); q(x; y) ! r(x; y). The program �?(DB ; IC) is written

in DLV as follows (ts, tss, ta, etc. stand for t?; t??; ta, etc.):

Database contents
domd(a). d(a,td). p(X,td) :- d(X,td), domd(X).

Rules for CWA
p(X,fs) :- domd(X), not p(X,td).

q(X,Y,fs) :- domd(X), domd(Y), not q(X,Y,td).

r(X,Y,fs) :- not r(X,Y,td), domd(X), domd(Y).

Annotation rules
p(X,fs) :- p(X,fa), domd(X). p(X,ts) :- p(X,ta), domd(X).

p(X,ts):- p(X,td), domd(X).

q(X,Y,fs) :- q(X,Y,fa), domd(X), domd(Y).

q(X,Y,ts) :- q(X,Y,ta), domd(X), domd(Y).

q(X,Y,ts) :- q(X,Y,td), domd(X), domd(Y).

r(X,Y,fs) :- r(X,Y,fa), domd(X), domd(Y).

r(X,Y,ts) :- r(X,Y,ta), domd(X), domd(Y).

r(X,Y,ts) :- r(X,Y,td), domd(X), domd(Y).

Rules for the ICs

aux(X) :- q(X,Y,td), not q(X,Y,fa), domd(X), domd(Y).

aux(X) :- q(X,Y,ta), domd(X), domd(Y).

p(X,fa) v q(X,null,ta) :- p(X,ts), not aux(x), not q(X,null,td), domd(X).

q(X,Y,fa) v r(X,Y,ta) :- q(X,Y,ts), r(X,Y,fs), domd(X), domd(Y).

Interpretation rules

p(X,tss) :- p(X,ta), domd(X). p(X,tss) :- p(X,td), not p(X,fa), domd(X).

p(X,fss) :- p(X,fa), domd(X). p(X,fss) :- domd(X), not p(X,td), not p(X,ta).

q(X,Y,tss) :- q(X,Y,ta), domd(X),domd(Y).

q(X,Y,tss) :- q(X,Y,td), not q(X,Y,fa), domd(X), domd(Y).

q(X,Y,fss) :- q(X,Y,fa), domd(X), domd(Y).

q(X,Y,fss) :- not q(X,Y,td), not q(X,Y,ta), domd(X), domd(Y).

r(X,Y,tss) :- r(X,Y,ta), domd(X),domd(Y).

r(X,Y,tss) :- r(X,Y,td), not q(X,Y,fa), domd(X), domd(Y).

r(X,Y,fss) :- r(X,Y,fa), domd(X), domd(Y).

r(X,Y,fss) :- not r(X,Y,td), not r(X,Y,ta), domd(X), domd(Y).

Rules for interpreting null values

q(X,null,tss) :- q(X,null,ta).

q(X,null,tss) :- q(X,null,td), not q(X,null,fa).

r(X,null,tss) :- r(X,null,ta).

r(X,null,tss) :- r(X,null,td), not r(X,null,fa).

Denial constraints

:- p(X,ta), p(X,fa). :- q(X,Y,ta), q(X,Y,fa). :-r(X,Y,ta),r(X,Y,fa).

The models obtained are:

{domd(a), d(a,td), p(a,td), p(a,ts), p(a,fs), p(a,fss), p(a,fa),

q(a,a,fs), r(a,a,fs), q(a,a,fss), r(a,a,fss)}

{domd(a), d(a,td), p(a,td), p(a,ts), p(a,tss), q(a,null,ta),

q(a,a,fs), r(a,a,fs), q(a,a,fss), r(a,a,fss), q(a,null,tss)},

corresponding to the database instances ; and fp(a); q(a; null)g. The program
does not consider the inclusion dependency q(x; y) ! r(x; y) to be violated by
the insertion of the tuple q(a; null). If the fact q(a; null) is added to the instance.
Then, the clauses e(a,null,td). q(X,null,td) :- e(X,null,td), domd(X). are
part of the program. In this case, the program considers that the instance
fp(a); q(a; null)g does not violate the RIC, what is reected through its only
model

{domd(a), d(a,td), e(a,null,td), p(a,td), p(a,ts), q(a,null,td), p(a,tss),

q(a,a,fs), r(a,a,fs), q(a,a,fss), r(a,a,fss), q(a,null,tss)}.
2

If we want to impose the policy of repairing the violation of a RIC just by

deleting tuples, then, rule (2) should be changed by

p(�x; fa) p(�x; t?); not aux(�x0); not q(�x0;null ; td);

saying that if the RIC is violated, then the fact p(�a) that produces such violation

must be deleted.

Notice that in this section we have been departing from the de�nition of

repair given in section 2, in the sense that repairs now are obtained by deletion

of tuples or insertion of null values only, the usual ways to maintain RICs.

However, if the instance is fp(�a)g and IC contains only p(�x) ! 9yq(�x; y), then
fp(�a); q(�a; b)g, with b 2 D, will not be obtained as a repair, because it will not

be captured by the program.

If we insist in keeping the original de�nition of repair, i.e. allowing fp(�a);
q(�a; b)g to be a repair for every element b 2 D, clause (2) could be replaced by:

p(�x; fa) _ q(�x
0; y; ta) p(�x; t?); not aux(�x0); not q(�x0;null ; td); choice(�x

0; y):

(5)

where choice(�X; �Y) is the static non-deterministic choice operator [23] that se-

lects one value for attribute tuple �Y for each value of the attribute tuple �X.

In equation (5), choice(�x0; y) selects one value from the domain. Then, this rule

forces the one to one correspondence between stable models and repairs.

6 Conclusions

We have presented a general treatment of consistent query answering for �rst

order queries and ICs. In doing so, we have also shown how to specify database

repairs by means of classical disjunctive logic programs with stable model se-

mantics. Those programs have annotations as new arguments. In consequence,

consistent query answers can be obtained by \running" a query program together

with the speci�cation program. Finally, we showed how to run the programs us-

ing the DLV system. Our treatment of referential ICs considerably extends what

has been sketched in [4, 24].

The problem of consistent query answering was explicitly presented in [2],

where also the notions of repair and consistent answer were formally de�ned.

In addition, a methodology for consistent query answering based on a rewriting

of the original query was developed (and further investigated and implemented

in [14]). Basically, if we want the consistent answers to a FO query expressed

in, say SQL2, a new query in SQL2 can be computed, such that its usual an-

swers from the database are the consistent answers to the original query. That

methodology has a polynomial data complexity, and that is the reason why it

works for some restricted classes of FO ICs and queries, basically for non ex-

istentially quanti�ed conjunctive queries [1]. Actually, in [15] it is shown that

the problem of CQA is coNP-complete for simple functional dependencies and

existential queries. Furthermore, in [8], the problem of CQA is formulated as

a problem of non-monotonic reasoning, more precisely of minimal entailment,

whose complexity, even in the propositional case, can be �P
2
-complete [18].

Under those circumstances, it makes sense to apply techniques from logic

programming, given its success in formalizing and implementing complex nom-

monotonic reasoning tasks [7]. The problem then is to come up with the best

logic programming speci�cation and the best way to use them, so that the com-

putational complexity involved does not go beyond the theoretical lower bound.

Consistent query answering from relational databases is a new and natural ap-

plication domain for logic programs, and answer set programming, in particular.

6.1 Implementation issues

Real implementation and application are important directions of research. In

general, the logic programming environment will be interacting with a DBMS,

where the tables of the inconsistent DB will be stored. As much of the compu-

tation as possible should be pushed into the DBMS instead of doing it in the

logic programming environment. We should also avoid materializing as much as

possible negative data (absent data) at the logic program level.

An important problem that requires much more research by the logic pro-

gramming and database communities has to do with developing mechanisms for

query evaluation from disjunctive logic programs that are guided by a query that

contains free variables and expects an answer set of tuples, like magic sets [1].

The current alternative relies on �nding those ground query atoms that belong

to all the stable models once they have been computed via a ground instantia-

tion of the original program. In [19] intelligent grounding strategies for pruning

in advance the instantiated program have been explored and incorporated into

DLV. It would be interesting to explore how much the program can be pruned

from rules and subgoals using information obtained by querying the database.

As shown in [6], there are classes of ICs for which the intersection of the

stable models of the repair program coincides with the well-founded semantics,

which can be computed more eÆciently than the stable model semantics. It could

be possible to take advantage of this eÆcient \core" computation for consistent

query answering if ways of modularizing or splitting the whole computation into

a core part and a query speci�c part are found. Such cases were identi�ed in [5]

for FDs and aggregation queries.

Furthermore, the logic programs could be optimized in several senses. In

some cases, the resulting programs turn out to be \head cycle free" (HCF) [9].

Basically, a program is HCF if there are no cycles in the associated graph that

shows an arrow from a predicate p to a predicate q if there is a rule where q

appears in the disjunction in the head and p appears positive in the body. The

example 8 shows a HCF program.

HCF programs can be transformed into non disjunctive normal programs,

that have better complexity properties [27]. Such transformations can be justi�ed

or discarded on the basis of a careful analysis of the intrinsic complexity of

consistent query answering [15]. If the original program can be transformed into

a normal program, then also other eÆcient implementations could be used for

query evaluation, e.g. XSB [30], that has been already successfully applied in

the context of consistent query answering via query transformation, with non-

existentially quanti�ed conjunctive queries [14].

6.2 Related work

In [24], a general methodology based on disjunctive logic programs with stable

model semantics is used for specifying database repairs wrt universal ICs. In

their approach, preferences between repairs can be speci�ed. The program is

given through a schema for rule generation.

Independently, in [4] a direct speci�cation of database repairs by means of

disjunctive logic programs with a stable model semantics was presented. Those

programs contained both \triggering" rules and \stabilizing" rules. The former

trigger local changes and the latter stabilize the chain of local changes in a state

where all the ICs hold. The same rules, among others, are generated by the

schema in [24]. The programs in [4] capture the repairs for binary universal ICs.

The programs presented here also work for the whole class of universal ICs,

but they are much simpler and shorter than those presented in [24, 4]. Actually,

the schema presented in [24] and the extended methodology sketched in [4],

both generate an exponential number of rules in terms of the number of ICs

and literals in them. Instead, in the present work, due to the simplicity of the

program, that takes full advantage of the relationship between the annotations,

a linear number of rules is generated.

There are several similarities between our approach to consistency handling

and those followed by the belief revision/update community. Database repairs

coincide with revised models de�ned by Winslett in [31]. The treatment in [31] is

mainly propositional, but a preliminary extension to �rst order knowledge bases

can be found in [16]. Those papers concentrate on the computation of the models

of the revised theory, i.e., the repairs in our case, but not on query answering.

Comparing our framework with that of belief revision, we have an empty domain

theory, one model: the database instance, and a revision by a set of ICs. The

revision of a database instance by the ICs produces new database instances, the

repairs of the original database.

Nevertheless, our motivation and starting point are quite di�erent from those

of belief revision. We are not interested in computing the repairs per se, but

in answering queries, hopefully using the original database as much as possible,

possibly posing a modi�ed query. If this is not possible, we look for methodologies

for representing and querying simultaneously and implicitly all the repairs of the

database. Furthermore, we work in a fully �rst-order framework.

Another approach to database repairs based on logic programming semantics

consists of the revision programs [29]. The rules in those programs explicitly de-

clare how to enforce the satisfaction of an integrity constraint, rather than explic-

itly stating the ICs, e.g. in(a) in(a1); : : : ; in(ak); out(b1); : : : ; out(bm) has

the intended procedural meaning of inserting the database atom a whenever

a1; : : : ; ak are in the database, but not b1; : : : ; bm. Also a declarative, stable

model semantics is given to revision programs. Preferences for certain kinds of

repair actions can be captured by declaring the corresponding rules in program

and omitting rules that could lead to other forms of repairs.

In [12, 26] paraconsistent and annotated logic programs are introduced. They

have a non classical semantics. However, in [17] some transformation method-

ologies for paraconsistent logic programs [12] are shown that allow assigning to

them extensions of classical semantics. The programs presented in this paper

have a classical, stable model semantics.

Acknowledgments: Work supported by DIPUC, FONDECYT Grant 1000593, Car-

leton University Start-Up Grant 9364-01, and NSERCGrant 250279-02. We are grateful

to Alberto Mendelzon, Marcelo Arenas, and Nicola Leone for stimulating and useful

conversations, and comments.

References

1. Abiteboul, S.; Hull, R. and Vianu, V. \Foundations of Databases". Addison-Wesley,

1995.

2. Arenas, M.; Bertossi, L. and Chomicki, J. \Consistent Query Answers in Incon-

sistent Databases". In Proc. ACM Symposium on Principles of Database Systems

(ACM PODS'99), 1999, pp. 68{79.

3. Arenas, M.; Bertossi, L. and Kifer, M. \Applications of Annotated Predi-

cate Calculus to Querying Inconsistent Databases". In `Computational Logic -

CL2000' Stream: 6th International Conference on Rules and Objects in Databases

(DOOD'2000). Springer Lecture Notes in Arti�cial Intelligence 1861, 2000, pp.

926{941.

4. Arenas, M.; Bertossi, L. and Chomicki, J. \Specifying and Querying Database Re-

pairs using Logic Programs with Exceptions". In Flexible Query Answering Sys-

tems. Recent Developments, H.L. Larsen, J. Kacprzyk, S. Zadrozny, H. Christiansen

(eds.), Springer, 2000, pp. 27{41.

5. Arenas, M.; Bertossi, L. and Chomicki, J. Scalar Aggregation in FD-Inconsistent

Databases. In Database Theory - ICDT 2001, Springer, LNCS 1973, 2001, pp. 39

{ 53.

6. Arenas, M.; Bertossi, L. and Chomicki, J. Answer Sets for Consistent Query An-

swers. Submitted in 2001. (CoRR paper cs.DB/0207094)

7. Baral, Ch. Knowledge Representation, Reasoning and Declarative Problem Solving

with Answer Sets. Cambridge University Press. To appear.

8. Barcelo, P. and Bertossi, L. Repairing Databases with Annotated Predicate

Logic. In Proc. Nineth International Workshop on Non-Monotonic Reasoning

(NMR'2002), Special session: Changing and Integrating Information: From Theory

to Practice, S. Benferhat and E. Giunchiglia (eds.), 2002, pp. 160{170.

9. Ben-Eliyahu, R. and Dechter, R. \Propositional Semantics for Disjunctive Logic

Programs". Annals of Mathematics in Arti�cial Intelligence, 1994, 12:53-87.

10. Bertossi, L., Chomicki, J., Cortes, A. and Gutierrez, C. \Consistent Answers from

Integrated Data Sources". In Proc. Fifth International Conference on Flexible

Query Answering Systems (FQAS'02). Springer LNAI. To appear.

11. Bertossi, L. and Chomicki, J. \Query Answering in Inconsistent Databases". To ap-

pear as a chapter in `Logics for Emerging Applications of Databases', J. Chomicki,

G. Saake and R. van der Meyden (eds.).

12. Blair, H.A. and Subrahmanian, V.S. \Paraconsistent Logic Programming". Theo-

retical Computer Science, 1989, 68:135-154.

13. Buccafurri, F.; Leone, N. and Rullo, P. \Enhancing Disjunctive Datalog by

Constraints". IEEE Transactions on Knowledge and Data Engineering, 2000,

12(5):845-860.

14. Celle, A. and Bertossi, L. \Querying Inconsistent Databases: Algorithms and Im-

plementation". In `Computational Logic - CL 2000', J. Lloyd et al. (eds.). Stream:

6th International Conference on Rules and Objects in Databases (DOOD'2000).

Springer Lecture Notes in Arti�cial Intelligence 1861, 2000, pp. 942{956.
15. Chomicki, J. and Marcinkowski, J. \On the Computational Complexity of Consis-

tent Query Answers". Submitted in 2002 (CoRR paper cs.DB/0204010).
16. Chou, T. and Winslett, M. A Model-Based Belief Revision System. Journal of

Automated Reasoning, 1994, 12:157{208.
17. Damasio, C. V. and Pereira, L.M. \A Survey on Paraconsistent Semantics for Ex-

tended Logic Programas". In Handbook of Defeasible Reasoning and Uncertainty

Management Systems, Vol. 2, D.M. Gabbay and Ph. Smets (eds.), Kluwer Aca-

demic Publishers, 1998, pp. 241{320.
18. Eiter, T. and Gottlob, G. Propositional Circumscription and Extended Closed

World Assumption are �p

2
-complete. Theoretical Computer Science, 1993, 114,

pp. 231-245.
19. Eiter, T., Leone, N., Mateis, C., Pfeifer, G. and Scarcello, F. \A Deductive System

for Non-Monotonic Reasoning". Proc. LPNMR'97, Springer LNAI 1265, 1997, pp.

364{375.
20. Eiter, T.; Faber, W.; Leone, N. and Pfeifer, G. \Declarative Problem-Solving in

DLV". In Logic-Based Arti�cial Intelligence, J. Minker (ed.), Kluwer, 2000, pp.

79{103.
21. Gelfond, M. and Lifschitz, V. \The Stable Model Semantics for Logic Program-

ming". In Logic Programming, Proceedings of the Fifth International Conference

and Symposium, R. A. Kowalski and K. A. Bowen (eds.), MIT Press, 1988, pp.

1070{1080.
22. Gelfond, M. and Lifschitz, V. \Classical Negation in Logic Programs and Disjunc-

tive Databases". New Generation Computing, 1991, 9:365{385.
23. Giannotti, F.; Greco, S.; Sacca, D. and Zaniolo, C. Programming with Non-

determinism in Deductive Databases. Annals of Mathematics and Arti�cial In-

telligence, 1997, 19(3-4).
24. Greco, G.; Greco, S. and Zumpano, E. \A Logic Programming Approach to the

Integration, Repairing and Querying of Inconsistent Databases". In Proc. 17th

International Conference on Logic Programming, ICLP'01, Ph. Codognet (ed.),

LNCS 2237, Springer, 2001, pp. 348{364.
25. Kifer, M. and Lozinskii, E.L. \A Logic for Reasoning with Inconsistency". Journal

of Automated reasoning, 1992, 9(2):179-215.
26. Kifer, M. and Subrahmanian, V.S. \Theory of Generalized Annotated Logic Pro-

gramming and its Applications". Journal of Logic Programming, 1992, 12(4):335-

368.
27. Leone, N.; Rullo, P. and Scarcello, F. Disjunctive Stable Models: Unfounded

Sets, Fixpoint Semantics, and Computation. Information and Computation, 1997,

135(2):69-112.
28. Lloyd, J.W. \Foundations of Logic Programming". Springer Verlag, 1987.
29. Marek, V.W. and Truszczynski, M. \Revision Programming". Theoretical Com-

puter Science, 1998, 190(2):241{277.
30. Sagonas, K.F.; Swift, T. and Warren, D.S. XSB as an EÆcient Deductive Database

Engine. In Proc. of the 1994 ACM SIGMOD International Conference on Man-

agement of Data, ACM Press, 1994, pp. 442-453.
31. Winslett, M. Reasoning about Action using a Possible Models Approach. In Proc.

Seventh National Conference on Arti�cial Intelligence (AAAI'88), 1988, pp. 89{93.

