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1 Introduction

Data exchange has been defined as the problem of taking
data structured under asourceschema and materializing an
instance of atarget schema that reflects as accurately as
possible the source data [19]. In the last years, the need
for data exchange applications has increased, particularly
due to the proliferation of web data in various formats (re-
lational, XML, RDF, etc) and the emergence of e-business
applications that need to communicate data yet remain au-
tonomous. Responding to this demand, commercial data
exchange systems have been built recently [12].

Even though data exchange is an old and common data
management problem, its most foundational aspects had not
been studied until very recently. There are two reasons for
this. First, most of the early research on databases concen-
trated on the stand-alone relational model, and much less on
interoperability, integration, and exchange. Second, there
were no solid foundation, nor even a proper formal model,
for the problem of data exchange. Such a model was finally
proposed in 2003 by Fagin, Kolaitis, Miller and Popa [19],
and was quickly adopted as the right model for data ex-
change. A survey on the topic has already appeared in the
premier conference on database theory, PODS, [30], and
two workshops on exchange and integration of data have
already been held [10, 39].

This survey is organized as follows. In Section 2, we
present the basics of data exchange. One of the goals of
data exchange is materializing a target instance that is con-
sistent both with the source data and the specification of the
relationship between the source and the target. Such a tar-
get instance is called asolution for the given source data.
The work of Fagin et al. [19] identified a class of solutions,
calleduniversalsolutions, with good properties for data ex-
change. We introduce the class of universal solutions in
Section 3. In Section 4, we study the problem of the ma-
terialization of universal solutions. In particular, we show
that there is a meaningful class of data exchange settings
for which universal solutions are guaranteed to exist, if a
solution exists at all, and, if that is the case, then a univer-
sal solution can always be constructed in polynomial time.
Also in Section 4 we study the core of the universal solu-
tions, which happens to be the smallest universal solution.
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The notion of query answering in data exchange is pre-
sented in Section 5. After defining the semantics, which
is based on the notion of certain answers (that is, those tu-
ples that appear in answers for all solutions), we show that
the problem of evaluating queries in data exchange becomes
tractable for a relevant class of queries; namely, unions of
conjunctive queries, which conform the logical core of the
SQL query language. In Section 6 we show that other se-
mantics can be meaningfully applied in data exchange. In
particular, we present a semantics based on the class of uni-
versal solutions and a semantics based on the notions of
closed-world assumption and incomplete information. Fi-
nally, we present in Section 7 a brief survey of other work
in data exchange. Concluding remarks are in Section 8.

2 Data Exchange Settings

A schemaR is a finite sequence〈R1, . . . , Rm〉 of relation
symbols, with eachRi having a fixed arityni > 0. An
instanceI of R assigns to each relation symbolRi of R a
finiteni-ary relationI(Ri). Thedomainof instanceI is the
set of all elements that occur in any of the relationsI(Ri).
It is often convenient to define instances by simply listing
the tuples attached to the corresponding relation symbols.
Sometimes we use the notationR(t̄) ∈ I instead oft̄ ∈
I(R), and callR(t̄) a fact of I. Finally, adependencyover
R is a sentence in some logical formalism, typically first-
order logic (FO), with which we assume familiarity.

Given schemasS = 〈S1, . . . , Sm〉 and T =
〈T1, . . . , Tn〉, with no relation symbols in common, we de-
note by〈S,T〉 the schema〈S1, . . . , Sm, T1, . . . , Tn〉. Fur-
ther, if I is an instance ofS and J is an instance of
T, then(I, J) denotes an instanceK of 〈S,T〉 such that
K(Si) = I(Si) andK(Tj) = J(Tj), for eachi ∈ [1,m]
andj ∈ [1, n].

Definition 2.1 (Data exchange setting)A data exchange
settingM is a triple (S,T,Σ), whereS and T are dis-
joint schemas,S is called thesourceschema,T is called
thetargetschema, andΣ is a finite set of dependencies over
〈S,T〉.

Instances ofS are calledsource instances, while in-
stances ofT are calledtarget instances. It is usual in the
data exchange literature to assume the existence of two dis-
joint and infinite set of values that populate instances. One
is the set ofconstants, denoted byConst, and the other one
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is the set ofnulls, denoted byVar. The domain of a source
instance is always contained inConst, while the domain of a
target instance is contained inConst ∪ Var. We usually de-
note constants by lowercase lettersa, b, c, . . . , while nulls
are denoted by symbols⊥,⊥1,⊥2, . . .

In data exchange, the target instances that are consistent
with both the source instance and the specificationΣ are
called solutions. Formally, given a source instanceI, we
say that the target instanceJ is asolution forI underM,
or simply a solution forI if M is clear from the context, if
(I, J) satisfies every sentence inΣ.

Admitting the full expressive power of FO as a lan-
guage for specifying dependencies in data exchange, eas-
ily yields to undecidability of some fundamental problems,
like checking for the existence of solutions [18]. Thus, it
is customary in the data exchange literature [19, 20, 30] to
restrict the study to the class of settingsM, such thatΣ can
be split into two setsΣst andΣt that satisfy the following:

1. Σst consists of a set ofsource-to-targetdependencies
(stds), i.e. dependencies of the form∀x̄ (ϕS(x̄) →
∃ȳψT(x̄, ȳ)), whereϕS(x̄) andψT(x̄, ȳ) are conjunc-
tions of atomic formulas inS andT, respectively; and

2. Σt is the set oftarget dependencies. It is the union
of a set oftuple-generatingdependencies (tgds), i.e.
dependencies of the form∀x̄ (ϕ(x̄) → ∃ȳψ(x̄, ȳ)),
whereϕ(x̄) andψ(x̄, ȳ) are conjunctions of atomic
formulas inT, and a set ofequality-generatingde-
pendencies (egds), i.e. dependencies of the form
∀x̄ (ϕ(x̄) → xi = xj), whereϕ(x̄) is a conjunction
of atomic formulas inT, andxi, xj are variables in̄x.

From now on, and unless stated otherwise, we assume all
data exchange settings to be of the formM = (S,T,Σ),
whereΣ = Σst∪Σt), for Σst a finite set of stds andΣt a fi-
nite set of tgds and egds. The intuition behind the different
components of these settings is the following: Source-to-
target dependencies inΣst are a tool for specifying which
conditions on the source imply a condition on the target.
But from a different point of view, one can also see them as
a tool for specifying how source data gets translated into tar-
get data. In addition, the translated data must satisfy usual
database constraints. This is represented by means of the
target dependencies inΣt. It is important to notice that the
data exchange settings described above are not restrictive
from a database point of view. Indeed, tuple-generating de-
pendencies together with equality generating dependencies
precisely capture the class ofembeddeddependencies [17].
And the latter class contains all relevant dependencies that
appear in relational databases, e.g. it contains functional
and inclusion dependencies, among others.

Next example shows two interesting phenomena regard-
ing solutions in data exchange. First, that solutions for a
given source instance are not necessarily unique. Second,
that there are source instances that have no solutions.

Example 2.2 Consider a data exchange settingM in
whichS consists of the binary relationsM andN , T con-
sists of the ternary relationP and the binary relationQ,
Σt = ∅ andΣst consists of the following stds (we implicitly
assume universal quantification in front of all dependen-
cies):

M(x, y) → ∃w∃z(P (x, y, z) ∧Q(w, z)),

N(x, y) → ∃uP (x, y, u).

Suppose we have a source instanceI = {M(a, b),
N(a, b)}. Since the stds inΣst do not completely specify
the target, solutions forI are not unique up to isomorphism.
For instance, one solution is:

J = {P (a, b,⊥1), P (a, b,⊥2), Q(⊥3,⊥1)},

where⊥1,⊥2,⊥3 are values inVar (nulls). Another solu-
tion, but with no nulls, isJ ′ = {P (a, b, a), Q(b, a)}. Fur-
ther, it is not hard to see that any other target instance that
containsJ or J ′ is a solution forI. Thus,I admits infinitely
many solutions.

Consider now the settingM′ that extendsM by adding
the following egd toΣt: P (x, y, z) → x = y. ThenI
has no solution underM. Indeed, if there was at least one
such solutionJ , then the first dependency inΣst implies
that there is a fact of the formP (a, b, z) in J , while the egd
implies that that the constantsa andb are equal, which is a
contradiction. �

3 Universal Solutions

In this section we introduce a certain class of solutions that
exhibit good properties for data exchange: theuniversalso-
lutions. Notice, in Example 2.2, that the solutionJ ′ seems
to be less general thanJ . This is becauseJ ′ assumes that
the values that witness the existentially quantified variables
z andu, in the first and second std ofΣst, respectively, are
the same (namely, the constanta). It also assumes that the
value that witnesses the existentially quantified variablew

is the constantb. But none of these assumptions is part of
the specification. On the other hand, solutionJ contains ex-
actly what the specification requires. Since one of the basic
problems in data exchange is materializing a target instance
given a source instance, in this case one would like to ma-
terialize a solution likeJ rather than solutionJ ′.

In order to give a precise mathematical definition of
which solutions are the most general, we first have to define
what a homomorphism between data exchange instances is.
LetJ andJ ′ be two instances over the target schemaT with
values inConst ∪ Var. A homomorphismh : J → J ′ is a
mapping from the domain ofJ into the domain ofJ ′, that is
the identity on constants, and such thatt̄ = (t1, . . . , tn) ∈
J(R) impliesh(t̄) = (h(t1), . . . , h(tn)) is in J ′(R) for all
R ∈ T.



Definition 3.1 (Universal solutions) Let J be a solution
for I. ThenJ is a universalsolution forI if for every solu-
tion J ′ for I, there exists a homomorphismh : J → J ′.

Example 3.2 SolutionJ ′ in Example 2.2 is not universal,
since there is no homomorphismh : J ′ → J . But it can be
shown thatJ is a universal solution. �

A universal solution is more general than an arbitrary so-
lution because it can be homomorphically mapped into that
solution. Furthermore, as we will see later, universal solu-
tions possess good properties that justify materializing them
(as opposed to arbitrary solutions). Unfortunately, univer-
sal solutions are not a general phenomenon. Indeed, [19]
proved that there is a settingM and a source instanceI,
such thatI has at least one solution underM but has no
universal solutions. Thus, it is necessary to impose extra
conditions on dependencies if one wants to make sure that
the existence of solutions implies the existence of universal
solutions. We study this issue in detail in the next section.

4 Materializing Solutions

One of the goals in data exchange is materializing a solu-
tion that reflects as accurately as possible the source data.
Unfortunately, even the most basic problem of checking for
the existence of solutions is undecidable:

Theorem 4.1 [31] There exists a data exchange setting
M = (S,T,Σst ∪ Σt), such that the problem of decid-
ing for a given source instanceI, whetherI has a solution
underM, is undecidable.

Thus, one would like to restrict the class of dependencies
allowed in data exchange settings, in such a way that it sat-
isfies the following: (C1) the existence of solutions implies
the existence of universal solutions; (C2) checking the ex-
istence of solutions is a decidable (ideally, tractable) prob-
lem; and (C3) for every source instance that has a solution,
at least one universal solution can be computed (hopefully,
in polynomial time).

The main algorithmic tool that the data exchange com-
munity has applied in order to check for the existence of so-
lutions is the well-knownchaseprocedure [37, 9], that was
originally designed to reason about the implication problem
for data dependencies. In data exchange, the chase is used
as a tool for constructing a universal solution for a given
source instance. The basic idea is the following. The chase
starts with the source instanceI, and then triggers every de-
pendency inΣst ∪ Σt that is being violated, as long as this
process is applicable. In doing so, the chase may fail (if fir-
ing an egd forces two constants to be equal) or it may never
terminate (for instance, in some cases when the set of tgds
is cyclic). It follows from [19], that if the chase fails then
I has no solution; and that if the chase does not fail and
terminates, then the resulting target instance is guaranteed
to be a universal solution forI. Nothing can be said in the

case when the chase does not terminate. The next example
shows an application of the chase procedure.

Example 4.2 Let M be the setting such that the source
schema consists of the binary relationE, the target schema
consists of the binary relationsG andL, andΣst consists
of the stdϕ = E(x, y) → G(x, y). Assume first thatΣt

consists of the tgdθ1 = G(x, y) → ∃zL(y, z), and letI
be the source instanceE(a, b). The chase starts by firingϕ
and, thus, by populating the target with the factG(a, b). In
a second stage, the chase realizes thatθ1 is being violated,
and thus,θ1 is triggered. The target is then extended with a
factL(b,⊥), where⊥ is a fresh null value. At this stage, no
dependency is being violated, and thus, the chase stops with
resultJ = {G(a, a), L(b,⊥)}. It is not hard to see thatJ
is a universal solution forI.

Assume now thatΣt is extended with the tgdθ2 =
L(x, y) → ∃zG(y, z). Clearly, J does not satisfyθ2 and
the chase triggers this tgd. This means that a factG(⊥,⊥1)
is added to the target, where⊥1 is a fresh null value. But
θ1 is now being violated again, and a new factL(⊥1,⊥2),
where⊥2 is a fresh null value, will have to be added. It is
clear that this process will continue indefinitely, and thus,
that the chase does not terminate.

Assume finally thatΣt consists of the egdα = G(x, y) →
x = y. Then the chase forI fails, since after populating the
target instance with the factG(a, b), the egdα forces to
equate the constantsa andb. Notice that, in this case,I has
no solution. �

As we have seen, the main problem with the applica-
tion of the chase is non-termination. Fortunately, there is
a meaningful class of data exchange settings, that is intro-
duced next, for which the chase is guaranteed to terminate;
further, it does so in at most polynomially many steps. It
will follow that this class of settings satisfies our desiderata
expressed above as conditions C1, C2 and C3.

Assume thatΣ is a set of tgds overT. We construct the
dependencygraph ofΣ as follows. The nodes (positions) of
the graph are all pairs(T,A), for T ∈ T andA an attribute
of T . We add edges as follows. For every tgd∀x̄(ϕ(x̄) →
∃ȳψ(x̄, ȳ)) in Σ, and for everyx ∈ x̄ that occurs inϕ in
position(T,A) and that also occurs inψ, do the following:

• for every occurrence ofx in ψ in position(S,B), add
an edge from(T,A) to (S,B) (if the edge does not
already exist); and

• for every existentially quantified variabley ∈ ȳ and
for every occurrence ofy in ψ in position(R,C), add
an edge labeled⋆ from (T,A) to (R,C) (if the edge
does not already exist).

Finally, we say thatΣ is weakly acyclicif the dependency
graph ofΣ does not have a cycle going through an edge
labeled⋆.



Example 4.3 Let θ1 andθ2 be as in Example 4.2. It is not
hard to see that the set{θ1} is weakly acyclic. On the other
hand, the set{θ1, θ2} is not. �

Interesting classes of weakly acyclic sets of tgds include
the following (see [30]): (1) Sets of tgds without existential
quantifiers, and (2)acyclic sets of inclusion dependencies
as defined in [13]. The notion of weak acyclicity was first
formulated by Deutsch and Popa, and later independently
used in [19] and [15]. The intuition behind this notion is as
follows. Edges labeled⋆ keep track of positions(R,C) for
which the chase will have to create a fresh null value every
time the left hand side of the corresponding tgd is triggered.
Thus, a cycle through an edge labeled⋆ implies that a fresh
null value created in a position at a certain stage of the chase
may determine the creation of another fresh null value, in
the same position, at a later stage. Therefore, sets of tgds
that are not weakly acyclic may yield non-terminating chase
sequences (e.g. the set{θ1, θ2}). On the other hand, it has
been proved in [19] that the chase always terminates for
data exchange settings with a weakly acyclic sets of tgds.
Further, in this case the chase forI terminates in at most
polynomially many stages. This good behavior also implies
the good behavior of this class of settings with respect to
data exchange, as summarized below:

Theorem 4.4 [19] Let M = (S,T,Σst ∪ Σt) be a fixed
data exchange setting, such thatΣt is the union of a set of
egds and a weakly acyclic set of tgds. Then there is a poly-
nomial time algorithm such that for every source instance
I, it first decides whether a solution forI exists, and if that
is the case, it computes a universal solution forI in polyno-
mial time.

Thus, the class of settings with a weakly acyclic set of
tgds satisfies conditions C1, C2, and C3, as defined above,
and therefore, it constitutes a good class for data exchange
according to our definition. In this case, the universal solu-
tion that can be constructed in polynomial time (if a solu-
tion exists at all) is precisely the result of the chase. Thisis
usually called thecanonicaluniversal solution [19].

Let us mention that there are interesting classes of depen-
dencies for which the problem of checking for the existence
of solutions is trivial. For instance, by inspecting the proof
of Theorem 4.4, one notices that for settings with a weakly
acyclic set of tgds but without egds, source instances always
have (universal) solutions. In particular, for settings without
target dependencies it is the case that every source instance
has at least one universal solution.

Other extensions Due to the advent of data exchange, the
last years have seen a renewed interest on finding restric-
tions that guarantee termination of the chase. As we have
just mentioned, one such restriction is the class of settings
with a weakly acyclic set of tgds. However, both [16] and
[38] showed that there are even broader classes of settings
that preserve the good properties for data exchange. For

some of these classes, the gain in expressive power comes
at the cost of complexity: checking whether a setting be-
longs to some of these classes is in coNP, while it is clearly
polynomial to verify whether a set of tgds is weakly acyclic.

In this section, the complexity analysis of the problem of
checking the existence of solutions has been carried out as-
suming settings to be fixed. In other terms, we have studied
thedatacomplexity of the problem. While data complex-
ity makes sense in a lot of data exchange scenarios, a more
refined complexity analysis should consider both source in-
stances and settings to be the input. This corresponds to the
combinedcomplexity of the problem. Kolaitis et al. have
shown in [31] that the combined complexity of the problem
of checking for the existence of solutions for settings with
a weakly acyclic set of tgds is in EXPTIME, and can be
EXPTIME-hard even if restricted to settings without tgds.

4.1 The core

Let us recall Examples 2.2 and 3.2. We mentioned that
the instanceJ = {P (a, b,⊥1), P (a, b,⊥2), Q(⊥3,⊥1)}
is a solution for the source instance{M(a, b), N(a, b)}.
Indeed, it is not hard to see thatJ is the canonical uni-
versal solution forI. Now, consider the instanceJ∗ =
{P (a, b,⊥1), Q(⊥3,⊥1)} that is contained inJ . ThenJ∗

is also a solution forI and, moreover, there is a homomor-
phismh : J → J∗. Thus,J∗ is also a universal solution.

We can draw an interesting conclusion from this exam-
ple: among all possible universal solutions, the canonical
universal solution is not necessarily the smallest (asJ∗ is
strictly contained inJ). Moreover, in the example,J∗ is ac-
tually the smallest universal solution (up to isomorphism).

The first natural question is whether there is always a
unique smallest universal solution. This was answered pos-
itively by Fagin et al. in [20]. The authors of [20] also
argued that this smallest universal solution is the “best” uni-
versal solution, since it is the most economical one in terms
of size, and that this solution should be the preferred one at
the moment of materializing a solution. The whole issue is
then how to characterize this smallest universal solution.

One of the main contributions in [20] is showing that the
smallest universal solution always coincides with thecore
of the universal solutions. Thecore is a concept that orig-
inated in graph theory [28]; here we present it for arbitrary
instances. LetK be an instance with values inConst∪Var,
and letK ′ be a subinstance ofK. We say thatK ′ is acore
ofK if there is a homomorphism fromK toK ′ (recall that
homomorphisms have to be the identity on constants), but
there is no homomorphism fromK ′ to a proper subinstance
of itself. It is known that every instance has a core, and all
cores of an instance are isomorphic [28, 20]. Thus, we can
talk aboutthecore of an instanceK.

An instanceJ of R is a subinstanceof I if the domain ofJ is con-
tained in the domain ofI andJ(R) ⊆ I(R), for everyR in R. If one of
the inclusions is proper, we refer toJ as aproper subinstanceof I.



Example 4.5 (Example 2.2 continued) The solutionJ∗ =
{P (a, b,⊥1), Q(⊥3,⊥1)} is the core of the universal solu-
tions forI, since there is a homomorphism fromJ to J∗ but
there is no homomorphism fromJ∗ to a proper subinstance
of itself. �

The next result summarizes some of the good properties
of cores in data exchange.

Proposition 4.6 [20] Let M = (S,T,Σst ∪ Σt) be a set-
ting. If I is a source instance andJ is a universal solution
for I, then the core ofJ is also a universal solution forI
that is precisely the smallest universal solution.

Thus, the core of the universal solutions has good prop-
erties for data exchange. This naturally raises the question
about the computability of this core. As we have mentioned,
the chase yields a universal solution that is not necessarily
the core of the universal solutions, so different techniques
have to be applied in order to compute this solution.

It is well-known that computing the core of an arbitrary
graph is a computationally intractable problem. However,
in data exchange we are interested in computing the core of
a universal solution and not of an arbitrary instance, and the
intractability of the former problem does not follow from
the intractability of the latter. Indeed, it has been shown
in [26] that computing the core of the universal solutions
under the class of settings with a weakly acyclic set of tgds
is a tractable problem.

Theorem 4.7 [26] Let M = (S,T,Σst ∪ Σt) be a fixed
data exchange setting, such thatΣt consists of a set of egds
and a weakly acyclic set of tgds. There is a polynomial-time
algorithm that for every source instanceI, checks whether
a solution forI exists, and if that is the case, computes the
core of the universal solutions forI.

A simple greedy algorithm that computes the core in
polynomial time can be defined in the case whenΣt consists
of a set of egds [20, 5]. Unfortunately, this algorithm cannot
be easily adapted to more complex settings, and much more
sophisticated techniques have to be developed if one wants
to prove that computation of cores of universal solutions
continues to be a tractable problem in the presence of tgds.
These techniques are based on theblocksmethod, that was
also introduced in [20]. Gottlob in [25] developed a refined
version of the blocks method, and proved with it that com-
puting cores of universal solutions for settings whose set of
target dependencies consist of egds and a set of tgds with-
out existential quantifiers can be done in polynomial time.
Later, in [26], Gottlob and Nash developed an even more
sophisticated version of this method, and proved Theorem
4.7 with it.

5 Query Answering

Another big issue in data exchange is the semantics of query
answering. Assume that a user poses a queryQ over the tar-

get schemaT, andI is a given source instance. Then, what
does it mean to answerQ with respect toI? Clearly, there
is an ambiguity here, since there may be many solutions for
I, and the evaluation ofQ over different solutions may give
different answers. The fact that one materializes only a sin-
gle solution does not mean that others should not be taken
into account when defining the semantics of the query.

There is a general agreement in the database community
that in the context of data exchange and other related sce-
narios, like databases with incomplete information and data
integration [32, 33], the right semantics is that ofcertain
answers. Intuitively, an answer iscertain if it occurs in the
result of evaluation of queryQ over every possible solution
J . Notice that the semantics of a query is independent of a
particular solution that is materialized.

Formally, letM be a data exchange setting, letQ be
a query in some query language (typically FO), and let
I be a source instance. We definecertainM(Q, I), the
set ofcertain answers ofQ with respect toI underM, as⋂
{Q(J) | J is a solution forI}. We omitM if it is clear

from the context. IfQ is a query of arity 0 (aBoolean
query), thencertainM(Q, I) = true iff Q is true in every
solutionJ for I; otherwise,certainM(Q, I) = false.

Example 5.1 (Example 2.2 continued) The certain an-
swers of the queryQ = P (x, y, z) with respect toI is the
empty set. On the other hand, it is not hard to see that
certainM(Q′, I) = {(a, b)}, forQ′ = ∃zP (x, y, z). �

Given a settingM and a queryQ, the problem of
computing certain answers forQ underM is, given a
source instanceI and a tuplet̄, determine whether̄t ∈
certainM(Q, I). We deal with data complexity, i.e., as-
sume that bothM andQ are fixed. Finding certain answers
involves computing the intersection of a (potentially) infi-
nite number of sets. This strongly suggests that comput-
ing certain answers for arbitrary FO queries is an undecid-
able problem. Indeed, this is a rather straightforward con-
sequence of Theorem 4.1. This does not preclude, however,
the existence of interesting classes of queries for which the
problem of computing certain answers is decidable, and
even tractable. Indeed, next theorem shows that this is the
case for the class of unions of conjunctive queries. Re-
call that aconjunctivequery is an FO formula of the form
∃x̄ϕ(x̄, ȳ), whereϕ(x̄, ȳ) is a conjunction of atoms.

Theorem 5.2 [19] Let M = (S,T,Σst ∪ Σt) be a data
exchange setting, such thatΣt consists of a set of egds and
a weakly acyclic set of tgds, and letQ be a union of con-
junctive queries. Then the problem of computing certain
answers forQ underM can be solved in polynomial time.

This is a very positive result, since unions of conjunc-
tive queries are very common database queries: they cor-
respond to theselect-project-join-unionfragment of rela-
tional algebra, and to the core of the standard query lan-
guage for database systems, SQL. Theorem 5.2 can be eas-
ily proved when we put together the following three facts:



(1) Unions of conjunctive queries are preserved under ho-
momorphisms, (2) every universal solution can be homo-
morphically mapped into any other solution, and (3) FO
queries, and in particular, unions of conjunctive queries,
have polynomial time data complexity.

Thus, in order to compute the certain answers to a union
of conjunctive queriesQ with respect to a source instance
I it is sufficient to do the following. First, check whether
a solution forI exists. If there is no solution, simply de-
clare the setting to be inconsistent with respect to the given
source instance. Otherwise, compute an arbitrary universal
solutionJ for I. Finally, compute the setground(Q(J)) of
all those tuples inQ(J) that do not contains nulls. From all
the previous observations, and from the fact that tuples in
the certain answers can only consist of constants, we derive
that ground(Q(J)) = certainM(Q, I). Notice that for
the class of settings with a weakly acyclic set of tgds this
algorithm runs in polynomial time. Finally, the algorithm
also shows another desirable property of unions of conjunc-
tive queries for data exchange; namely, their certain answers
can be computed using a materialized target instance alone
(e.g. the canonical universal solution or the core).

A mild, but interesting extension of the class of conjunc-
tive queries is the class of conjunctive queries with inequal-
ities. Unfortunately, this extension not only destroys preser-
vation under homomorphisms but also leads to intractability
of the problem of computing certain answers (first shown in
[1] and then sharpened in [36]):

Theorem 5.3 [36] There is a single Boolean conjunctive
queryQ with two inequalities and a settingM without tar-
get dependencies, such that the problem of computing cer-
tain answers forQ underM is coNP-complete.

In particular, under widely believed complexity-theoretic
assumptions, there is no polynomial-time algorithm that
computes certain answers to conjunctive queries with in-
equalities using the canonical universal solution or the core,
even in settings without target dependencies. On the other
hand, by using techniques based on the chase procedure,
Fagin et al. proved in [19] that the problem of computing
certain answers to unions of conjunctive queries, with at
most one inequality per disjunct, can be solved in polyno-
mial time using an arbitrary universal solution.

Query rewriting In [4], Arenas et al. studied the follow-
ing problem. LetQ be a FO query. Is it possible to find
an FO queryQ′ such that for every source instanceI, the
certain answers ofQ with respect toI correspond exactly
to the evaluation ofQ′ over either the canonical universal
solution or the core of the universal solutions forI? If that
is the case, the queryQ′ is called arewriting of Q over the
corresponding universal solution. In particular, in [4] the
authors developed techniques that helps to determine when
a query admits a rewriting. This work also compared the
canonical universal solution and its core in terms of the ex-
pressive power for allowing rewritings. It was shown that

every query that admits a rewriting over the core of the uni-
versal solutions also admits a rewriting over the canonical
universal solution, but not vice versa.

Extensions More expressive query languages, that allow
for the presence of recursion and a restricted form of nega-
tion, and that preserve the good properties of unions of
conjunctive queries for data exchange, were recently intro-
duced by Arenas et al. [8]. Translations into this query
language provide an alternative proof that computing cer-
tain answers for unions of conjunctive queries, with at most
one inequality per disjunct, can be done in polynomial time.
That paper also studied the combined complexity of com-
puting certain answers in data exchange.

6 Alternative Semantics

The certain answers semantics is by no means unique, al-
though it had been predominant in the early stages of data
exchange research. In fact, the certain answers semantics
has its problems, and a question “What is so sacred about
the certain answers semantics?” was posed in [10]. Several
attempts to address it were made; we survey them below.

6.1 Universal solutions semantics

Since [19], the seminal paper in data exchange, made a
compelling case that the preferred solutions in data ex-
change should be the universal solutions, it seems natural
to think of an alternative semantics that is completely based
on those solutions. Formally, letM be a data exchange set-
ting, letQ be a query, and letI be a source instance. The
set ofuniversal certain answers toQ with respect toI un-
derM [20], denoted bycertainu

M
(Q, I), is defined as the

set
⋂
{Q(J) | J is a universal solution forI}. The problem

of computing the universal certain answers toQ underM
is defined analogously to the case of the standard semantics.

Since computing certain answers for a union of con-
junctive queries can be done by posing the query over
an arbitrary universal solution, it easily follows that for
each queryQ of that form and every source instanceI,
certainM(Q, I) = certainu

M
(Q, I). But this is no

longer the case if we allow inequalities.

Example 6.1 (Example 2.2 continued) The universal cer-
tain answers toQ = ∃x∃y∃z(P (x, y, z) ∧ x 6= z) with
respect toI is true, since every universal solutionJ for I
must contain a fact of the formP (a, b,⊥), for ⊥ a value in
Var. On the other hand,certainM(Q, I) = false since
J = {P (a, b, a), Q(b, a)} is a solution forI.

We show next that the universal certain answers seman-
tics presents some computational advantages over the usual
semantics. AnexistentialFO formula is a formula of the
form ∃x̄ϕ(x̄, ȳ), whereϕ(x̄, ȳ) is a quantifier-free formula



in disjunctive normal form. Existential formulas are known
to have the following property: IfK1 is an induced subin-
stance ofK2 and t̄ belongs to the evaluation ofθ overK1,
whereθ is an existential FO formula, then̄t belongs to the
evaluation ofθ overK2. Since every universal solution con-
tains an isomorphic copy of the core as an induced subin-
stance, it easily follows that the problem of computing the
universal certain answers for an existential FO queryθ boils
down to evaluatingθ over the core of the universal solu-
tions, discarding all tuples that do not consist only of con-
stants. Putting this together with Theorem 4.7 it is possible
to obtain the following:

Theorem 6.2 [20] Let M = (S,T,Σst ∪Σt) be a setting,
such thatΣt consists of a set egds and a weakly acyclic set
of tgds, and letQ be a (domain-independent)existentialFO
formula. Then the problem of computing universal certain
answers ofQ underM can be solved in polynomial time.

Notice that this is in deep contrast with Theorem 5.3 that
shows that for very simple existential FO formulas (namely,
conjunctive queries with two inequalities) the problem of
computing certain answers becomes intractable.

6.2 Semantics based on the closed-world as-
sumption and incomplete information

Both the certain answers and the universal certain answers
semantics are based on anopen-world assumption(OWA),
i.e. solutions included in those semantics are open to adding
new facts. This assumption, however, leads to some anoma-
lies with respect to query answering, as described next.
Let M = (S,T,Σst) be a data exchange setting with-
out target dependencies. We say thatM is copying if
S = 〈R1, . . . , Rm〉, T = 〈R′

1, . . . , R
′
m〉, andΣst consists

of the stds∀x̄(Ri(x̄) → R′
i(x̄)) (that is,Ri andR′

i have
the same arity). It is pointed out in [4] that there is a copy-
ing data exchange settingM and an FO queryQ over the
target schema, such thatQ is not FO rewritable over the
canonical universal solution underM. That is, there is no
FO queryQ′ such that for every source instanceI, the eval-
uation ofQ′ over the canonical universal solutionJ for I
coincides with the certain answers ofQ with respect toI.
This behavior is strange, as intuitively copying settings only
change relation names and canonical universal solutions are
just copies of source instances. As such, one would expect
every FO query to be rewritable by itself over the canonical
universal solution.

The previous anomaly arises because OWA assumes the
canonical universal solution to be open to adding new facts
– both under the certain answers and the universal certain
answers semantics – while intuitively we would expect the
canonical universal solution to be the only solution under
copying settings. Because of that, Libkin proposed in [34]
that the right assumption in data exchange should not be the
OWA but its usual competitor, theclosed-world assumption

(CWA), in which solutions are closed to adding new facts.
The reason behind this is that if data exchange is about
transferring data from source to target, then the semantics
for the data exchange problem should be based on the ex-
changed data only, and not on data that can be later added
to the instances. Or in other terms, the semantics should be
based on those solutions that contain no more than what is
needed to satisfy the specification.

Unfortunately, defining CWA-solutions in data exchange
is not so easy as defining the OWA solutions. Here we avoid
the rather elaborate operational definition of CWA-solutions
given in [34], and provide a more elegant semantic descrip-
tion of this class (which appears as a characterization of
such solutions in [34]). As usual,K ′ is ahomomorphic im-
ageof K if there is a homomorphismh : K → K ′ such
thath(K), the instance obtained fromK by replacing each
null ⊥ by h(⊥), is exactlyK ′.

Definition 6.3 LetM be a setting without target dependen-
cies,I a source instance andJ a solution forI. ThenJ is
a CWA-solutionfor I if (1) J is a universal solution forI,
and (2)J is a homomorphic image of the canonical univer-
sal solution forI.

Thus, ifM is a copying setting andI is a source instance,
then the unique CWA-solution forI underM is its canon-
ical universal solutionJ (since any other universal solution
is not a homomorphic image ofJ). Next we show a slightly
more interesting example.

Example 6.4 (Example 2.2 continued) Recall
that I = {M(a, b), N(a, b)}. Then, with re-
spect to I, both its canonical universal solution
J = {P (a, b,⊥1), P (a, b,⊥2), Q(⊥3,⊥1)} and the core
of its universal solutionsJ∗ = {P (a, b,⊥1), Q(⊥3,⊥1)}
are CWA-solutions. On the other hand, the solutionJ1 =
{P (a, b,⊥1), Q(⊥1,⊥1)} is not a CWA-solution, simply
because it is not a universal solution forI. The solution
J2 = {P (a, b,⊥1), P (a, b,⊥2), P (a, b,⊥4), Q(⊥3,⊥1)}
is a universal solution forI that it is not a homomorphic
image ofJ . Therefore,J2 is not aCWA-solution. �

Notice the following properties of the class of CWA-
solutions. The core of the universal solutions is a “min-
imal” element of the class, in the sense that every other
CWA-solution contains an isomorphic copy of the core as
a subinstance. Also, the canonical universal solution is ina
way the “maximal” element of the class, as any other CWA-
solution is a homomorphic image of it. This observation
will be relevant later once we study the properties of query
answering.

In addition to defining the class of CWA-solutions, [34]
also points out that while target instances in data exchange
are tables with nulls, techniques for handling incomplete
information over target instances had been completely ig-
nored in previous data exchange literature. Indeed, the
usual semantics of data exchange (e.g. certain answers or



universal certain answers) are defined over sets of solutions
as if each one were a table without nulls.

But already 25 years ago, Imielinski and Lipski [32]
showed that answering queries over databases with nulls
must be done with care, and that treating nulls in the same
way as constants yields semantically incorrect answers. The
basic idea in [32] is that a databaseT with nulls represents a
setRep(T ) of “complete” databases. i.e., a set of databases
without nulls. We formally define this as follows. Avalu-
ation is a mappingν : Var → Const. If T is an instance
with elements inConst∪ Var, thenν(T ) represents the in-
stance obtained fromT by replacing each null⊥ with ν(⊥).
Notice that all the elements inν(T ) are constants. Then we
defineRep(T ) = {ν(T ) | ν is a valuation}.

In order to evaluate a queryQ over an incomplete
databaseT , the standard approach is to compute the set
�Q(T ) =

⋂
{Q(D) | D ∈ Rep(T )}. This set is usu-

ally called the certain answers ofQ with respect toT in
the incomplete information literature, but we prefer to rep-
resent it by�Q(T ) here, in order to avoid confusion with
the certain answers as defined for data exchange.

Although [34] proposes four different semantics for data
exchange, here we concentrate on one that seems to be the
most relevant for data exchange and that is, at the same
time, the closest to the semantics we have seen so far.
Let M be a setting without target dependencies,Q an FO
query, andI a source instance. Then we define thecertain
answers underCWA and incomplete informationofQ with
respect toI (underM), denoted bycertainCWA

M
(Q, I),

as the set of tuples that would be inQ(D) for every CWA-
solutionJ and everyD ∈ Rep(J), that is,

⋂
{�Q(J) |

J is a CWA-solution forI underM}.
Notice that for each source instanceI with canonical uni-

versal solutionJ , and for every CWA-solutionJ ′ for I, it
must be the case thatRep(J ′) ⊆ Rep(J). Thus, we have
that�Q(J) ⊆ �Q(J ′), for every FO queryQ. Hence:

Theorem 6.5 [34] Let M be a setting without tar-
get dependencies andQ an arbitrary query. Then
certainCWA

M
(Q, I) = �Q(J), for every source instance

I with canonical universal solutionJ .

That is, in this case the problem of evaluating cer-
tain answers under CWA and incomplete information boils
down to the problem of evaluating queries over incomplete
databases (canonical universal solutions).

Example 6.6 (Example 2.2 continued) ConsiderQ1 be
a query asking whether the interpretation of relation
Q has exactly one tuple. It can be shown that
certainCWA

M
(Q1, I) = true. Indeed, everyCWA-

solution must contain at least one tuple in the in-
terpretation of Q, but it cannot contain two tuples:
this is because everyCWA-solution is a homomor-
phic image of the canonical universal solutionJ =
{P (a, b,⊥1), P (a, b,⊥2), Q(⊥3,⊥1)} for I. On the other
hand,certainM(Q, I) = certainu

M
(Q, I) = false. �

The previous example shows that there is a setting
M and a FO queryQ such thatcertainCWA

M
(Q, I) 6=

certainM(Q, I) for some source instanceI. On the other
hand, there is an interesting class of queries for which the
semantics based on CWA and incomplete information coin-
cides with the usual semantics. This is the class ofmono-
toneFO queries. It follows that the problem of computing
certain answers under CWA and incomplete information for
conjunctive queries with inequalities is coNP-complete, and
that for unions of conjunctive queries it becomes tractable.
For arbitrary FO queries the problem is always in coNP,
which contrasts sharply with the case of the usual seman-
tics where the problem of computing certain answers may
be undecidable.

Extensions Recently, Hernich and Schweikardt extended
the notion of CWA-solutions and semantics based on in-
complete information to data exchange settings with target
dependencies [29]. Further, Libkin and Sirangelo [35] have
recently proposed a mixed approach to data exchange that
combines the closed- and the open-world assumption.

7 Related Work and Extensions

Data exchange is closely related to the problem of data in-
tegration [33]. A data integration system consists of alocal
schema, aglobal schema, and a specification of the rela-
tionship between the local and the global schema. The data
resides at the local level, but the user can only query the
data at the global level. Thus, a data integration system can
be seen as a data exchange setting where the source schema
corresponds to the local schema, and the target schema cor-
responds to the global schema. Furthermore, the goal in
both data integration and data exchange is to compute the
certain answers to a query that is posed over the target
(global) schema.

The main difference between data exchange andvirtual
data integration is that in the latter, the data is never actually
exchanged, as the global database corresponds only to a vir-
tual representation of the local database. As such, the goal
in data integration is to compute the certain answers to a
query based on the local data, as opposed to data exchange
where the goal is to do the same but using a materialized
target instance. But there are many commonalities, and the
formal study of the relationship between data exchange and
data integration deserves further study (see, e.g., [14]).

An area of study that has evolved from data exchange,
but that by now has become a prominent topic on its own, is
schema management. The fundamental idea is that schema
mappings correspond to metadata, and that it is important
to have a conceptual framework in which this metadata is
combined by applying some predefined operators [11]. The
formal study of two of these operators, thecompositionand
theinverse, has recently been started [18, 21, 22, 7]. The in-
teresting part of this story for data exchange is that, in many
cases, in order to completely understand the schema man-



agement operator under scope, it is necessary to use more
expressive source-to-target dependencies than the ones used
in this article. This defines a completely new data exchange
problem.

Several extensions of the data exchange problem, as stud-
ied here, have been proposed in the recent years. For in-
stance, Fuxman et al. proposed in [24] an extension of
the class of data exchange settings in which dependencies
from target-to-source are also allowed. The motivation for
studying this class of settings comes from the area of peer
data management systems [27], which model the case when
different databases (peers) interact with each other, sharing
and exchanging data. The source peer is the “authoritative”
peer that contributes with data. On the other hand, the tar-
get peer restricts the data it is willing to accept by means of
target-to-source dependencies, but has no right to modify
the source data.

Other extensions include the class of queries that data ex-
change systems can support and the class of values allowed
in source instances. With respect to the first one, Afrati and
Kolaitis recently studied the topic of answering aggregate
queries in data exchange [2]. In order to do so, they had
to define a new semantics for query answering, based on
the class of endomorphic images of the canonical universal
solutions. This is because all the semantics we have seen
so far yield rather trivial semantics for aggregate queriesin
data exchange. With respect to the latter, Fagin et al. [23]
proposed an extension of data exchange that allows for null
values also to appear in source instances. This represents
the fact that incomplete information can also arise in the
source; e.g. when the materialized target instance of one
data exchange setting is used as the source instance of an-
other setting.

Finally, in this article we studied the logical foundations
of relation data exchange. However, semistructured mod-
els, and in particular, XML, have been specially designed
for exchanging data on the web. Thus, it seems natural to
develop a notion of XML data exchange. The foundational
study of this problem was initiated by Arenas and Libkin
[6], which unveiled many of the fundamental problems that
appear in this new scenario; schema mappings for XML
were studied in Amano et al. [3].

8 Concluding Remarks

Data exchange is nowadays one of the most active areas
of database theory. In this paper we tried to give a brief
introduction to the main lines of research involved in this
problem, with a special emphasis on the topics of materi-
alizing solutions, query answering, and the notions of the
semantics for data exchange.

Some of these topics are already quite mature, while oth-
ers need further exploration. For instance, we have men-
tioned that doing proper query answering is one of the
main goals of data exchange systems, but nevertheless, the

knowledge we have about this topic is rather limited and
several interesting questions remain open. One of the most
challenging is finding bigger classes of database queries
for which the problem of computing certain answers is de-
cidable. Also, we believe that the time is ripe for having
a fruitful discussion that compares the different semantics
proposed for query answering in data exchange, and devel-
oping criteria that help determine when a semantics is ap-
propriate. A natural question, for instance, is whether we
should have an overall data exchange semantics that works
for every query, or whether it would be better to take a more
pragmatic view that takes into account the class of queries
at hand, and permits a lower quality of the answer in favor
of the performance of the system.

As we have mentioned, developing a systematic study of
XML data exchange is crucial for understanding the trans-
fer of data on the web. However, there are very few papers
that have dealt with this issue up till now. Relevant, but un-
explored topics related to XML data exchange include, for
example, the problems of existence of solutions, materializ-
ing solutions, query answering beyond conjunctive queries,
and notions of CWA and incomplete information.
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