
Theoretical Computer Science 935 (2022) 105–127
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

On the expressiveness of Lara: A proposal for unifying linear

and relational algebra

Pablo Barceló a,b,c,∗, Nelson Higuera d, Jorge Pérez e,b, Bernardo Subercaseaux f,b

a Institute for Mathematical and Computational Engineering, PUC Chile, Chile
b IMFD Chile, Chile
c National Center for Artificial Intelligence CENIA, Chile
d Department of Informatics, Technical University of Vienna, Austria
e Department of Computer Science, University of Chile, Chile
f Computer Science Department, Carnegie Mellon University, United States of America

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 September 2021
Received in revised form 21 August 2022
Accepted 5 September 2022
Available online 8 September 2022
Communicated by W. Fan

Keywords:
Languages for linear and relational algebra
Expressive power
Relational algebra with aggregation
Query genericity
Locality of queries
Safety

We study the expressive power of the Lara language – a recently proposed unified model
for expressing relational and linear algebra operations – both in terms of traditional
database query languages and some analytic tasks often performed in machine learning
pipelines. Since Lara is parameterized by a set of user-defined functions which allow to
transform values in tables, known as extension functions, the exact expressive power of
the language depends on how these functions are defined. We start by showing Lara to
be expressive complete with respect to a syntactic fragment of relational algebra with
aggregation (under the mild assumption that extension functions in Lara can cope with
traditional relational algebra operations such as selection and renaming). We then look
further into the expressiveness of Lara based on different classes of extension functions,
and distinguish two main cases depending on the level of genericity that queries are
enforced to satisfy. Under strong genericity assumptions the language cannot express
matrix convolution, a very important operation in current machine learning pipelines.
This language is also local, and thus cannot express operations such as matrix inverse
that exhibit a recursive behavior. For expressing convolution, one can relax the genericity
requirement by adding an underlying linear order on the domain. This, however, destroys
locality and turns the expressive power of the language much more difficult to understand.
In particular, although under complexity assumptions some versions of the resulting
language can still not express matrix inverse, a proof of this fact without such assumptions
seems challenging to obtain.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Background. Many of the current systems for analytics require both relational algebra and statistical functionalities for
manipulating data. While tools based on relational algebra are often used for preparing and structuring the data, the
ones based on statistics and machine learning (ML) are applied to quantitatively reason about such data. Based on the

* Corresponding author at: Institute for Mathematical and Computational Engineering, PUC Chile, Chile.
E-mail addresses: pbarcelo@uc.cl (P. Barceló), nelson.ruiz@tuwien.ac.at (N. Higuera), jperez@dcc.uchile.cl (J. Pérez), bsuberca@andrew.cmu.edu

(B. Subercaseaux).
https://doi.org/10.1016/j.tcs.2022.09.003
0304-3975/© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.tcs.2022.09.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2022.09.003&domain=pdf
mailto:pbarcelo@uc.cl
mailto:nelson.ruiz@tuwien.ac.at
mailto:jperez@dcc.uchile.cl
mailto:bsuberca@andrew.cmu.edu
https://doi.org/10.1016/j.tcs.2022.09.003

P. Barceló, N. Higuera, J. Pérez et al. Theoretical Computer Science 935 (2022) 105–127
“impedance mismatch” that this dichotomy creates [17], the database theory community has highlighted the need of devel-
oping a standard data model and query language for such applications, meaning an extension of relational algebra with
linear algebra operators that is able to express the most common operations in ML [4,20]. Noticeably, the ML community
has also recently manifested the need for what – at least from a database perspective – can be seen as a high-level language
that manipulates tensors. Indeed, despite their wide adoption, there has been a recent interest in redesigning the way in
which tensors are used in deep learning code [12,21,22], due to some pitfalls of the current way in which tensors are
abstracted.

Hutchinson et al. [14,13] have recently proposed a data model and a query language that aims at becoming the “universal
connector” that solves the aforementioned impedance. On the one hand, the proposed data model corresponds to associative
tables, which generalize relational tables, tensors, arrays, and others. Associative tables are two-sorted, consisting of keys and
values that such keys map to. The query language, on the other hand, is called Lara, and subsumes several known languages
for the data models mentioned above. Lara is an algebraic language designed in a minimalistic way by only including three
operators; namely, join, union, and extension. In rough terms, the first one corresponds to the traditional join from relational
algebra, the second one to the operation of aggregation, and the third one to the extension defined by a function as in
a flatmap operation. It has been shown that Lara subsumes all relational algebra operations and is capable of expressing
several interesting linear algebra operations used in graph algorithms [13].

Our results. Based on the proposal of Lara as a unified language for relational and linear algebra, it is relevant to develop a
deeper understanding of its expressive power, both in terms of the logical query languages traditionally studied in database
theory, and the ML operations often performed in practical applications. We start with the former and show that Lara is
expressive complete with respect to a syntactic fragment of relational algebra with aggregation (RAAgg), a language that has
been studied as a way to abstract the expressive power of SQL without recursion; cf., [18,19]. To be more precise, under the
mild assumption that extension functions in Lara can cope with traditional relational algebra operations such as selection
and renaming, then Lara is expressive complete with respect to a suitable syntactic fragment of RAAgg under multiset
semantics that ensures that expressions get properly evaluated over associative tables. The use of the multiset semantics is
relevant for capturing some features from Lara that were originally defined to handle bags. While the basic idea behind this
proof is simple, the details are cumbersome. The process involves, in addition, several delicate design decisions about the
features included in the languages. The goal is to keep a reasonable balance between the level of generality for the result
presented, on the one hand, and the simplicity and readability of the presentation, on the other hand.

Our expressive completeness result is parameterized by the class of functions, denoted by �, allowed in the extension
operator. For each such an � we allow RAAgg to contain all built-in predicates encoding functions in �. To understand which
ML operators Lara can express, one then needs to bound the class � of extension functions allowed in the language. We
start with a tame class that can still express several relevant functions. These are the RA-expressible functions that allow to
compute arbitrary numerical predicates on values, but can only compare keys with respect to (in)equality. This restriction
makes the logic quite amenable for theoretical exploration. In fact, it is easy to show that the resulting “tame version” of
Lara satisfies a strong genericity criterion (in terms of key-permutations) and is also local, in the sense that queries in the
language can only see up to a fixed-radius neighborhood from its free variables; cf., [19]. The first property implies that this
tame version of Lara cannot express non-generic operations, such as matrix convolution, and the second one that it cannot
express inherently recursive queries, such as matrix inverse. Both operations are very relevant for ML applications; e.g.,
matrix convolution is routinely applied in dimension-reduction tasks, while matrix inverse is used for example to compute
the coefficients of a linear regression through the least-squares estimation.

We then look more carefully at the case of matrix convolution, and show that this query can be expressed if we relax
the genericity properties of the language by assuming the presence of a linear order on the domain of keys. This relaxation
implies that queries expressible in the resulting version of Lara are no longer invariant with respect to key-permutations.
This language, however, is much harder to understand in terms of its expressive power. In particular, it can express non-local
queries, and hence we cannot apply standard locality techniques to show that the matrix inversion query is not expressible
in it. To prove this result, then, one could apply techniques based on the Ehrenfeucht-Fraïssé games [19] that characterize
the expressive power of the logic. However, it is combinatorially difficult to show results based on such games when in the
presence of a linear order. In turn, it is possible to obtain that matrix inversion is not expressible in a natural restriction
of our language under computational complexity assumptions. This is because the data complexity of queries expressible in
such a restricted language is Logspace, but matrix inversion is complete for a class that is believed to be a proper extension
of the latter.

Discussion. The LARA language proposal emanates from the DB community as a way to capture, in a minimal way, the
operations used in systems that combine analytical and numerical tasks. The main objective of our paper is understanding,
then, how the expressive power of this language relates traditional database theory concepts and the arsenal of techniques
that have been developed in this area to study the expressiveness of query languages. We believe that our results shed light
on some important questions regarding the expressive power of Lara as explained next:

• The aforementioned expressive completeness result can be seen as a sanity check for Lara. In fact, this language is
specifically tailored to handle aggregation in conjunction with relational algebra operations over associative tables, and
the results in the paper show that Lara and RAAgg are in fact equivalent when expressions in the latter language are
106

P. Barceló, N. Higuera, J. Pérez et al. Theoretical Computer Science 935 (2022) 105–127
forced to be evaluated over associative tables. We observe that while Lara consists of positive algebraic operators only,
difference over associative tables can be encoded in the language by a combination of aggregate operators and extension
functions (which resembles, as expected, well-known tricks for expressing relational algebra set difference in terms of
aggregation [8]).

• The expressive power as RAAgg is tightly related to the expressiveness of SQL [18]. One might wonder then why to
use Lara instead of SQL, since after all Lara seems to be just a version of SQL geared toward associative tables. It
is difficult to give a definite answer to this question, since there seem to be arguments for both sides. On the one
hand, Lara is especially tailored to deal with ML objects, such as matrices or tensors, which are naturally modeled as
associative tables. As the proof of Theorem 2 suggests, in turn, RAAgg requires to be trimmed in order to maintain the
“key-functionality” of associative tables. On the other hand, Lara was not designed as a declarative language, and this
is evidenced by observing, for example, how difficult it is to express simple ML tasks like matrix convolution in LARA
(see Section 7).

• The expressive power of Lara is strongly influenced by the class of extension functions one is allowed to use in the
language. A weak class of extension functions keeps us in the realm of RAAgg (without extension functions!), which is
probably not what is desired. In turn, a rich class of extension functions might allow to express powerful properties but
possibly at the cost of increasing the computational complexity of evaluation and turning more difficult our capacity to
understand the expressiveness of the language.

• Recently, it has been strongly argued for the need to embed the ability to express ML operations in the foundation of
relational algebra and SQL [16]. Our results can also be seen as a contribution in this regard, as they help elucidate
which of these functionalities can be expressed in these languages, either directly or based on specific built-in relations
that could be embedded in them.

Related work. Matlang [2,6] is a pure matrix-manipulation language based on elementary linear algebra operations. It is
shown that this language is contained in the three-variable fragment of relational algebra with summation and, thus, it
is local. This implies that the core of Matlang cannot check for the presence of a four-clique in a graph (represented as
a Boolean matrix), as this query requires at least four variables to be expressed, and neither it can express the non-local
matrix inversion query. It can be shown that Matlang is strictly contained in the tame version of Lara that is mentioned
above. A recent and particularly interesting line of work proposes an extension of Matlang with recursive features [7]. This
extension subsumes the class of arithmetic circuits, which is often said to capture linear algebra. Linking the expressive
power of this language with the proposal we make here for extending Lara with a linear order on keys seems to be a
relevant, but challenging, direction for future work.

Related version of the paper. This is the full version of a paper, with a similar title, originally published at the International
Conference on Database Theory, ICDT, in 2020 [1]. In addition to providing full proofs to the theoretical results, which were
not present in the ICDT version, the current version also includes more examples and graphical explanations of the concepts
introduced. More importantly, the current version clarifies and presents in a cleaner way all the assumptions needed for the
main expressive completeness result to hold. This result is now presented in terms of named relational algebra, instead of
first-order logic as in the original ICDT paper, as suggested by the reviewers of this submission. We are very grateful to the
reviewers for this suggestion, which clearly helped us improved the readability of the result.

Organization of the paper. Basics of Lara and RAAgg are presented in Sections 2 and 3, respectively. All the assumptions
needed for our expressive completeness result to hold are stated in Section 4. The expressive completeness of Lara in
terms of RAAgg is shown in Section 5. The tame version of Lara and some inexpressibility results relating to it are given
in Section 6, while in Section 7 we present a version of Lara that can express convolution and some discussion about its
expressive power. We finalize in Section 8 with concluding remarks and future work.

2. The LARA language

In this section we introduce the data model, syntax, and semantics used by the Lara language as defined by Hutchinson
et al. [14].

2.1. Basics

For integers m ≤ n, we write [m, n] for {m, . . . , n} and [n] for {1, . . . , n}. If v̄ = (v1, . . . , vn) is a tuple of elements, we
write v̄[i] for vi . We denote multisets as { {a, b, . . . } }.

An aggregate operator over a set U is a partial function ⊕ that takes a multiset of k elements from U , for k ≤ ω, and
returns a single element from U . This notion generalizes most aggregate operators used in practical query languages; e.g.,
SUM, MIN, MAX, AVG, and COUNT. We assume that each operator ⊕ over U has a neutral value 0⊕ ∈ U . Formally, ⊕(W) =
⊕(W ′), for every multiset W of elements in U and every extension W ′ of W with an arbitrary number of occurrences of
0⊕ . As an example, for SUM the neutral value is 0, and for MIN and MAX the neutral values are −∞ and ∞, respectively.
107

P. Barceló, N. Higuera, J. Pérez et al. Theoretical Computer Science 935 (2022) 105–127
R D

K̄1 V̄ 1
K̄2 V̄ 2

R = R[K̄1, V̄ 1] M = M[K̄2, V̄ 2]

σ = {R, M}

M D

name age instrument
Mick 77 guitar
Keith 76 guitar

Charlie 79 drums
Ronnie 73 guitar

i j v
1 1 1
1 2 0
2 1 π
2 2 0

Fig. 1. Illustration of the basic elements of the Lara language. The relational schema σ contains two relation symbols: R and M . While R represents a table of
musicians, M represents a matrix with real coefficients. Both Keys and Values correspond to �∗ ∪R, where � is the English alphabet, as keys and values
can take alphanumeric values.

For operators ⊕ such as AVG and COUNT, that do not have a natural neutral value, we can simply assume that 0⊕ is a
special distinguished symbol in U \R for which the following holds for each multiset W over R ∪ {0⊕}:

⊕(W) = ⊕(W ∩R).

For simplicity, we see commutative binary operations ⊗ on U as aggregate operators ⊕ which are only defined on multisets
with two elements. In this case we write u ⊗ v instead of the more cumbersome ⊗({ {u, v} }).

2.2. Data model used by LARA

A relational schema is a finite collection σ of two-sorted relation symbols. The first sort consists of key-attributes and
the second one of value-attributes. Each relation symbol R ∈ σ is then associated with a pair (K̄ , V̄), where K̄ and V̄ are
nonempty sets of key- and value-attributes, respectively. We often write R[K̄ , V̄] to denote that (K̄ , V̄) is the sort of R .

There are two countably infinite sets of objects that populate databases: a domain of keys, which interpret key-attributes
and is denoted Keys, and a domain of values, which interpret value-attributes and is denoted Values. A Lara-tuple of sort
(K̄ , V̄) is a function t : K̄ ∪ V̄ → Keys∪Values such that t(A) ∈ Keys if A ∈ K̄ and t(A) ∈ Values if A ∈ V̄ . We naturally identify
a Lara-tuple with a regular tuple by assuming an ordering of the attributes. For example, if K̄ = {i, j} and V̄ = {v}, a possible
Lara-tuple is the mapping i → 1, j → 0, v → 7, which can be naturally identified with the tuple (1, 0, 7) by assuming the
order i, j, v. As the order of attributes is not relevant in Lara, and yet it is often convenient to refer to Lara-tuples as regular
tuples, we will simply assume an implicit ordering of the attributes.

A database D over schema σ is a mapping that assigns with each relation symbol R[K̄ , V̄] ∈ σ a finite set R D of tuples of
sort (K̄ , V̄). We often see D as a set of facts, i.e., expressions R(t) with t ∈ R D . For ease of presentation, we write R(k̄, ̄v) ∈ D
if R(t) ∈ D for some t with t(K̄) = k̄ and t(V̄) = v̄ with k̄ ∈ Keys|K̄ | and v̄ ∈ Values|V̄ | . Fig. 1 illustrates these concepts.

For a database D to be a Lara database we need D to satisfy an extra restriction: Key attributes in fact define a key
constraint over the corresponding relation symbols. That is,

R(k̄, v̄), R(k̄, v̄ ′) ∈ D =⇒ v̄ = v̄ ′,

for each R[K̄ , V̄] ∈ σ , k̄ ∈ Keys|K̄ | , and v̄, ̄v ′ ∈ Values|V̄ | . Relations of the form R D that satisfy this constraint are called
associative tables [14]. Yet, we abuse terminology and call associative table to any set A of tuples of the same sort (K̄ , V̄)

such that v̄ = v̄ ′ for each (k̄, ̄v), (k̄, ̄v ′) ∈ A. In such a case, A is of sort (K̄ , V̄). Notice that for a tuple (k̄, ̄v) in A, we can
safely denote v̄ = A(k̄).

2.3. Syntax of LARA

The Lara language makes extensive use of the class of extension functions, as defined next.

Definition 1 (Extension function). An extension function f of sort (K̄ , V̄) → (K̄ ′, V̄ ′) maps each tuple t of sort (K̄ , V̄) to a finite
associative table of sort (K̄ ′, V̄ ′), for K̄ ∩ K̄ ′ = ∅ and V̄ ∩ V̄ ′ = ∅.

As an example, an extension function might take a tuple t = (k, v1, v2) of sort (K , V 1, V 2), for v1, v2 ∈Q, and map it to
a table of sort (K ′, V ′) that contains a single tuple (k, v), where v is the average between v1 and v2.

The syntax of Lara is parameterized by a set � of user-defined extension functions. The syntax of the resulting language
is given next.
108

P. Barceló, N. Higuera, J. Pérez et al. Theoretical Computer Science 935 (2022) 105–127
i j v1 v2

0 0 1 5
0 1 2 6
1 0 3 7
1 1 4 8

j k v2 v3

0 0 1 1
0 1 1 2
1 0 1 1
1 1 2 1

Fig. 2. Associative tables A and B used as examples when defining the semantics of Lara.

Definition 2 (LARA language). We inductively define the set of expressions in Lara(�) over schema σ as follows.

• Empty associative table. There is an expression ∅ of sort (∅, ∅).
• Atomic expressions. If R[K̄ , V̄] is in σ , then R is an expression of sort (K̄ , V̄).
• Join. If e1 and e2 are expressions of sort (K̄1, V̄ 1) and (K̄2, V̄ 2), respectively, and ⊗ is a commutative binary operator

over Values, then e1 ��⊗ e2 is an expression of sort (K̄1 ∪ K̄2, V̄ 1 ∪ V̄ 2).
• Union. If e1, e2 are expressions of sort (K̄1, V̄ 1) and (K̄2, V̄ 2), respectively, and ⊕ is an aggregate operator over Values,

then e1 ��⊕ e2 is an expression of sort (K̄1 ∩ K̄2, V̄ 1 ∪ V̄ 2).
• Extend. For e an expression of sort (K̄ , V̄) and f a function in � of sort (K̄ , V̄) → (K̄ ′, V̄ ′), it is the case that Ext f e is

an expression of sort (K̄ ∪ K̄ ′, V̄ ′).

We often write e[K̄ , V̄] to denote that the expression e is of sort (K̄ , V̄).

2.4. Semantics of LARA

We introduce some important notions before we give the definition of the semantics of Lara.

Padding. Let V̄ 1 and V̄ 2 be tuples of value-attributes, and v̄ a tuple over Values of sort V̄ 1. Then padV̄ 2⊕ (v̄) is a new tuple v̄ ′
over Values of sort V̄ 1 ∪ V̄ 2 such that for each V ∈ V̄ 1 ∪ V̄ 2 we have that v ′(V) = v(V), if V ∈ V̄ 1, and v ′(V) is the neutral
value 0⊕ for ⊕, otherwise.

Compatible tuples. Consider tuples k̄1 and k̄2 over key-attributes K̄1 and K̄2, respectively. We say that k̄1 and k̄2 are
compatible, if k̄1(K) = k̄2(K) for every K ∈ K̄1 ∩ K̄2. If k̄1 and k̄2 are compatible, one can then naturally define the extended
tuple k̄1 ∪ k̄2 over key-attributes K̄1 ∪ K̄2. Also, given a tuple k̄ of sort K̄ , and a set K̄ ′ ⊆ K̄ , the restriction k̄↓K̄ ′ of k̄ to
attributes K̄ ′ is the only tuple of sort K̄ ′ that is compatible with k̄. These notions are defined analogously for tuples over
value-attributes.

Solve operator. Finally, given a multiset T of Lara-tuples (k̄, ̄u) of the same sort (K̄ , V̄), where |V̄ | = m, we define Solve⊕(T)

as

{(k̄, v̄) | there exists ū such that (k̄, ū) ∈ T and v̄[i] =
⊕

v̄ ′ : (k̄,v̄ ′)∈T

v̄ ′[i], for each 1 ≤ i ≤ m}.

That is, Solve⊕(T) turns the multiset T into an associative table T ′ by first grouping together tuples that have the same
value over K̄ , and the solving key-conflicts by aggregating with respect to ⊕ (coordinate-wise).

The evaluation of a Lara(�) expression e over a schema σ on a Lara database D , denoted eD , is inductively defined
next. For the reader’s convenience, we also summarize these definitions in Fig. 3. Since the definitions are not so easy to
grasp, we use the associative tables A and B in Fig. 2 to construct examples. Here, i, j, and k are key-attributes, while v1,
v2, and v3 are value-attributes. In the definition below we use A(k̄), for an associative table A[K̄ , V̄] and a tuple k̄ in the
projection of A over K̄ , to denote the unique tuple v̄ ∈ Values|V̄ | such that (k̄, ̄v) ∈ A.

Empty associative table. If e = ∅, then eD is simply an empty associative table of sort (∅, ∅).

Atomic expressions. If e = R[K̄ , V̄], for R ∈ σ , then we have that eD := R D .

Join. If e[K̄1 ∪ K̄2, V̄ 1 ∪ V̄ 2] = e1[K̄1, V̄ 1] ��⊗ e2[K̄2, V̄ 2], then

eD := {(k̄1 ∪ k̄2, v̄1 ⊗ v̄2) | k̄1 and k̄2 are compatible, v̄1 = padV̄ 2⊗ (eD
1 (k̄1)), v̄2 = padV̄ 1⊗ (eD

2 (k̄2))}.
Here, v̄1 ⊗ v̄2 abbreviates

(v̄1[1] ⊗ v̄2[1], . . . v̄1[n] ⊗ v̄2[n]),
assuming that |v̄1| = |v̄2| = n.

For example, the result of A ��× B is shown in Fig. 4, for × being the usual product on N and 0× = 1.
109

P. Barceló, N. Higuera, J. Pérez et al. Theoretical Computer Science 935 (2022) 105–127
Expression e Evaluation eD

Empty associative
table

∅ ∅

Atomic expression R[K̄ , V̄] R D

Join e1 ��⊗ e2 {(k̄1 ∪ k̄2, ̄v1 ⊗ v̄2) |
k̄1 and k̄2 are compatible, v̄1 = padV̄ 2⊗ (eD

1 (k̄1)), and

v̄2 = padV̄ 1⊗ (eD
2 (k̄2))}

Union e1 ��⊕ e2 Solve⊕{ {(k̄, ̄v) | (k̄1, ̄v1) ∈ eD
1 , k̄ = k̄1↓K̄1∩K̄2

and v̄ =
padV̄ 2⊕ (v̄1), or (k̄2, ̄v2) ∈ eD

2 , k̄ = k̄2↓K̄1∩K̄2
and v̄ = padV̄ 1⊕ (v̄2)} }

Extend Ext f e1 {(k̄ ∪ k̄′, ̄v ′) | (k̄, ̄v) ∈ eD
1 and (k̄′, ̄v ′) ∈ f (k̄, ̄v)}

Map Map f e1 {(k̄, ̄v ′) | (k̄, ̄v) ∈ eD
1 and v̄ ′ ∈ f (k̄, ̄v)}

Aggregate ��K̄⊕ e1 Solve⊕{ {(k̄, ̄v) | k̄ = k̄1↓K̄ and v̄ = eD
1 (k̄1)} }

Reduce ¯ ��K̄⊕ e1 Solve⊕{ {(k̄, ̄v) | k̄ = k̄1↓L̄\K̄ and v̄ = eD
1 (k̄1)} }, for e1 of sort (L̄, V̄)

Fig. 3. Summary of the syntax and semantics of Lara.

Union. If e[K̄1 ∩ K̄2, V̄ 1 ∪ V̄ 2] = e1[K̄1, V̄ 1] ��⊕ e2[K̄2, V̄ 2], then eD is

Solve⊕{{(k̄, v̄) | (a) (k̄1, v̄1) ∈ eD
1 , k̄ = k̄1↓K̄1∩K̄2

, and v̄ = padV̄ 2⊕ (v̄1), or

(b) (k̄2, v̄2) ∈ eD
2 , k̄ = k̄2↓K̄1∩K̄2

, and v̄ = padV̄ 1⊕ (v̄2)}}.
In more intuitive terms, eD is defined by first projecting over K̄1 ∩ K̄2 any tuple in eD

1 , resp., in eD
2 . As the resulting multiset

of tuples might no longer be an associative table (because there might be many tuples with the same keys), we have to
solve the conflicts by applying the given aggregate operator ⊕. This is what Solve⊕ does.

For example, the result of A ��+ B is shown in Fig. 4, for + being the addition on N .

Extend. If e[K̄ ∪ K̄ ′, V̄ ′] = Ext f e1[K̄ , V̄] and f is of sort (K̄ , V̄) → (K̄ ′, V̄ ′), then

eD := {(k̄ ∪ k̄′, v̄ ′) | (k̄, v̄) ∈ eD
1 and (k̄′, v̄ ′) ∈ f (k̄, v̄)}.

Notice that in this case k̄ ∪ k̄′ always exists, unless f (k̄, ̄v) is the empty associative table, as K̄ ∩ K̄ ′ = ∅. When f (k̄, ̄v) is the
empty associative table, then eD contains no tuple of the form (k̄, · · ·).

As an example, Fig. 4 shows the result of Extg A, where g is a function that does the following: If the key corresponding
to attribute i is 0, then the tuple is associated with the associative table of sort (∅, z) containing only the tuple (∅, 1).
Otherwise, the tuple is associated with the empty associative table.

Several useful operators, as described below, can be derived from the previous ones.

• Map operation. An important particular case of Ext f occurs when f is of sort (K̄ , V̄) → (∅, V̄ ′), i.e., when f does not
extend the keys in the associative table but only modifies the values. Following [14], we write this operation as Map f .

• Aggregation. This corresponds to an aggregation over some of the key-attributes of an associative table. Consider a
Lara expression e1[K̄1, V̄ 1], an aggregate operator ⊕ over Values, and a K̄ ⊆ K̄1, then e = ��K̄⊕ e1 is an expression of sort
(K̄ , V̄ 1) such that

eD := Solve⊕{{(k̄, v̄) | k̄ = k̄1↓K̄ and v̄ = eD
1 (k̄1)}}.

We note that ��K̄⊕ e1 is equivalent to the expression e1 ��⊕ Ext f (∅), where f is the function that associates an empty table
of sort (K̄ , ∅) to every possible tuple.

• Reduction. The reduction operator, denoted by ¯ �� , is just a syntactic variation of aggregation defined as ¯ ��L̄⊕ e1 ≡ ��K̄\L̄
⊕ e1,

assuming that e1 is of sort (K̄ , V̄).
110

P. Barceló, N. Higuera, J. Pérez et al. Theoretical Computer Science 935 (2022) 105–127
Table A ��× B

i j k v1 v2 v3

0 0 0 1 5 1
0 0 1 1 5 2
0 1 0 2 6 1
0 1 1 2 12 1
1 0 0 3 7 1
1 0 1 3 7 2
1 1 0 4 8 1
1 1 1 4 16 1

Table A ��+ B

j v1 v2 v3

0 4 14 3
1 8 17 2

Table Extg A

i j z
0 0 1
0 1 1

Fig. 4. The tables A ��× B , A ��+ B , and Ext f A.

Next we provide an example that applies several of these operators.

Example 1. Consider the schema

Temp[(time, sensor,object), (temp)],
which represents the measurement of the temperature of different objects, as measured by different sensors, over time.
The key attributes for this schema are time, sensor, and object, while temp is the unique value attribute. This schema is
interpreted as an associative table A, which contains tuples of the form

(
(t, s, o), m

)
indicating that m is the temperature

measured by sensor s for object o at time t .
Assume that, in order to take a decision, one wants to first obtain for every sensor the maximum temperature of every

object that has been measured by it over the time steps, and then apply a normalization function such as softmax.1 One can
specify the entire process in Lara as follows.

Max = ¯ ��(time)
max(·) Temp (1)

Exp = Mapexp(·)Max (2)

SumExp = ��(sensor)
sum(·) Exp (3)

Softmax = Exp ��÷ SumExp (4)

Expression (1) performs a reduction over the time attribute to obtain the new associative table A1 over schema
Max[(sensor, object), (temp)]. Associative table A1 contains all tuples of the form

(
(s, o), m

)
such that

m = max{m′ | ((t, s,o),m′) ∈ A}.
Expression (2) applies a point-wise exponential function over A1 to obtain an associative table A2 over schema

Exp[(sensor, object), (exptemp)], where exptemp is a fresh attribute value, such that A2 contains all tuples
(
(s, o), em

)
with (

(s, o), m
) ∈ A1.

In expression (3) we apply an aggregation to compute the sum of the exponentials of all the maximum temper-
atures reached by objects over a single sensor. In this way we obtain an associative table A3 over a new schema
SumExp[(sensor), (exptemp)], such that A3 contains all tuples of the form (s, a) with a = ∑

((s,o),em)∈A2
em .

Finally, the expression given in (4) applies point-wise division over the associative tables A2 and A3. This defines a final
associative table A4 over schema Softmax[(sensor, object), (normtemp)], where normtemp is a fresh attribute value, which
contains all tuples of the form

(
(s, o), em/a

)
such that

(
(s, o), em

) ∈ A2 and (s, a) ∈ A3. In this way we obtain our desired
result. �

1 Recall that for a vector v̄ = (v1, . . . , vn) over R, the result of applying a softmax normalization over it is the vector w̄ = (w1, . . . , wn), where wi =
evi∑ v j).
j≤n e

111

P. Barceló, N. Higuera, J. Pérez et al. Theoretical Computer Science 935 (2022) 105–127
2.5. Safety of LARA

It is easy to see that for each Lara expression e and Lara database D , the result e(D) is always an associative table.
Moreover, although the elements in the evaluation e(D) of an expression e over D are not necessarily in D (due to the
applications of the operator Solve⊕ and the extension functions in �), all Lara expressions are safe, i.e., the cardinality of
eD is finite.

Proposition 1. Let e be a Lara(�) expression. Then eD is a finite associative table, for every Lara database D.

3. Relational algebra with aggregation

In this paper, we study the relative expressive power of Lara in terms of a simple version of named RA with aggregation,
following the presentation given by Libkin [18]. As for the case of Lara, the expressions in RA with aggregation consist of
key- and value-attributes which are interpreted over Keys and Values, respectively. As before, we denote key-attributes as
K , K ′, K1, . . . and value-attributes as V , V ′, V 1,

Syntax of RA with aggregation. We consider a vocabulary σ of two-sorted relations. In order to cope with the demands of
the extension functions used by Lara (as explained later), we allow the language to be parameterized by a collection � of
user-defined built-in relations R of some sort (K̄ , V̄). For each R ∈ � we blur the distinction between the symbol R and
its interpretation over Keys|K̄ | × Values|V̄ | . These built-in relations replace the function-application features that can often be
encountered in the versions of RA with aggregation studied in the literature.

Definition 3 (RA with aggregation). Let � be a set of relations R as defined above. The set of expressions in the language
RAAgg(�) over schema σ is inductively defined as follows:

• (Atomic expressions). Atomic expressions of RAAgg(�) are ⊥, which is of sort ∅, and R , for R ∈ σ ∪ � of sort (K̄ , V̄).
• (Renaming). If φ is an expression of sort (K̄1, V̄ 1), K̄ ⊆ K̄1, and V̄ ⊆ V̄ 1, then ρK̄→K̄ ′,V̄ →V̄ ′ (φ) is an expression of sort

(K̄1 \ K̄ , K̄ ′, V̄ 1 \ V̄ , V̄ ′), assuming that K̄1 ∩ K̄ ′ = V̄ 1 ∩ V̄ ′ = ∅, |K̄ | = |K̄ ′|, and |V̄ | = |V̄ ′|.
• (Join). If φ, φ′ are expressions of sort (K̄1, V̄ 1) and (K̄2, V̄ 2), respectively, then φ �� φ′ is an expression of sort (K̄1 ∪

K̄2, V̄ 1 ∪ V̄ 2).
• (Selection). If φ is an expression of sort (K̄ , V̄), then σK1θ K2φ and σV 1θ V 2φ are expressions of sort (K̄ , V̄), assuming

that K1, K2 ∈ K̄ , V 1, V 2 ∈ V̄ , and θ ∈ {=, �=}.
• (Difference and sum). If φ, φ′ are expressions of sort (K̄ , V̄), then φ \ φ′ and φ + φ′ are expressions of sort (K̄ , V̄).
• (Projection). If φ is an expression of sort (K̄ , V̄), then πK̄ ′,V̄ ′φ is an expression of sort (K̄ ′, V̄ ′), assuming K̄ ′ ⊆ K̄ and

V̄ ′ ⊆ V̄ .
• (Grouping). If φ is an expression of sort (K̄ , V̄) and ⊕ is an aggregate operator over Values, then Group⊕φ is an

expression of sort (K̄ , V̄).

We write φ(K̄ , V̄) to denote that φ is of sort (K̄ , V̄).

Semantics of RA with aggregation. As mentioned before, for the results in the paper to hold we need the semantics of
RAAgg(�) to be based on multisets. In the following, if T is a multiset of tuples of sort (K̄ , V̄) and t a tuple of sort (K̄ , V̄),
we write #(T , t) for the number of times the tuple t appears in T .

To evaluate a RAAgg(�) expression, we are given a database D which interprets each symbol R(K̄ , V̄) ∈ σ ∪ � as a
multiset R D of facts of sort (K̄ , V̄). The evaluation of an RAAgg(�) expression φ over D , denoted φD , is then a multiset of
facts which is inductively defined as follows:

• If φ = ⊥, then φD := ∅. If φ = R(K̄ , V̄), then φD := R D .
• If φ = ρK̄→K̄ ′,V̄ →V̄ ′ (φ1), then φD is the same as φD

1 but with the sort changed by renaming key attributes in K̄ to K̄ ′
and value-attributes in V̄ to V̄ ′ .

• If φ(K̄1 ∪ K̄2, V̄ 1 ∪ V̄ 2) = φ1(K̄1, V̄ 1) �� φ2(K̄2, V̄ 2), then φD is the multiset that contains precisely the tuples t of the
form (k̄1 ∪ k̄2, ̄v1 ∪ v̄2) for which (k̄1, ̄v1) ∈ φD

1 , (k̄2, ̄v2) ∈ φD
2 , k̄1 and k̄2 are compatible over K̄1 ∪ K̄2, and v̄1 and v̄2 are

compatible over V̄ 1 ∪ V̄ 2. Moreover, for a tuple t ∈ φD of the form (k̄1 ∪ k̄2, ̄v1 ∪ v̄2) we have that

#(φD , t) = #(φD
1 , (k̄1, v̄1)) · #(φ2, (k̄2, v̄2)).

• If φ(K̄ , V̄) = σK1θ K2φ1, then φD is the multiset that satisfies the following for each tuple t of sort (K̄ , V̄): #(φD , t) =
#(φD

1 , t), if t(K1) θ t(K2), and #(φD , t) = 0 otherwise. The evaluation of σV 1θ V 2φ1 is defined analogously.
• If φ(K̄ , V̄) = φ1(K̄ , V̄) \ φ2(K̄ , V̄), then φD is the multiset of facts that satisfies

#(φD , t) = max (#(φD
1 , t) − #(φD , t),0),
2

112

P. Barceló, N. Higuera, J. Pérez et al. Theoretical Computer Science 935 (2022) 105–127
for each tuple t of sort (K̄ , V̄).
• If φ(K̄ , V̄) = φ1(K̄ , V̄) + φ2(K̄ , V̄), then φD is the multiset of facts that satisfies

#(φD , t) = #(φD
1 , t) + #(φD

2 , t),

for each tuple t of sort (K̄ , V̄).
• If φ(K̄ , V̄) = πK̄ ,V̄ φ1(K̄1, V̄ 1), then φD is the multiset of facts that is obtained by projecting each tuple t ∈ φD

1 over
attributes K̄ and V̄ . More formally, for each tuple t of sort (K̄ , V̄) it is the case that

#(φD , t) =
∑

{t′∈φD
1 | t′(K̄ ,V̄)=t̄}

#(φD
1 , t′).

• If φ(K̄ , V̄) = Group⊕φ1(K̄ , V̄), then φD = Solve⊕(φD
1).

4. Assumptions for the expressive completeness result

As mentioned earlier, we want to use RA with aggregation as a yardstick for understanding the expressive power of Lara.
However, there are important mismatches between the semantics of both languages that we need to solve before proceeding
further. First, the evaluation of an RAAgg(�) formula does not need to be an associative table, which is a property that Lara

expressions enjoy by design. Second, the definition of Lara is very general and does not necessarily include some basic
extension functions that are required for capturing standard operations expressible in relational algebra. We tackle these
issues in this section, by first defining a modified syntax for expressions in RAAgg(�) that ensures they always evaluate
to an associative table, and, then, providing a minimal list of basic extension functions that suffice to capture relational
algebra; namely, projecting over value-attributes, copying and renaming attributes, and selecting rows based on (in)equality.

4.1. Semantics based on associative tables

We define a syntactic restriction on the class of RAAgg(�) expressions that ensures that the evaluation of any such an
expression on a Lara database is an associative table. Notice that there are only two operations of RAAgg(�) that do not
satisfy this property. These two operations are the sum and the projection, as exemplified next.

Example 2. Suppose that we have two relations R and S of sort (K1, K2, V) and a Lara database D over this schema such
that

R D = S D = {(k1,k, v), (k2,k, v ′)}.
Then (R + S)D = {(k1, k, v), (k1, k, v), (k2, k, v ′), (k2, k, v ′)}, which is not an associative table. Analogously, (πK2,V R)D =
{(k, v), (k, v ′)}, which is neither an associative table. �

To overcome this difficulty, we define a syntactic fragment of RAAgg(�) which we call the class of constrained expressions.
These expressions have the property that their evaluation over a Lara database D always yields an associative table. The
way we achieve this is by restricting sums and projection to always appear under the scope of a grouping operation. In this
way we ensure that the final result satisfies the “key-functionality” constraint of associative tables by definition.

Definition 4 (Constrained expressions). We denote by RAc
Agg(�) the set of constrained expressions over σ , which is defined as

follows:

• Expressions ⊥ and R , for R ∈ σ ∪ �, are atomic constrained expressions.
• Constrained expressions are closed under renaming, join, selection, and difference.
• If φ1(K̄1, V̄ 1), φ2(K̄2, V̄ 2) are constrained expressions, then

Group⊕(πK̄ ,V̄ φ1 + πK̄ ,V̄ φ2)

is also a constrained expression, assuming that K̄ ⊆ K̄1 ∩ K̄2 and V̄ ⊆ V̄ 1 ∩ V̄ 2.

The following proposition asserts the self-evident fact that constrained expressions always yield associative tables when
evaluated on Lara databases.

Proposition 2. Let φ(K̄ , V̄) be a constrained expression in RAc
Agg(�) and D a Lara database. Then φD is an associative table of sort

(K̄ , V̄).
113

P. Barceló, N. Higuera, J. Pérez et al. Theoretical Computer Science 935 (2022) 105–127
Before continuing, we make some observations regarding which derived expressions are also constrained.

• Group⊕(φ1 + φ2), for φ1, φ2 constrained expressions of the same sort (K̄ ′, V̄ ′), is also a constrained expression. In fact,
this expression is obtained as a particular case of Group⊕(πK̄ ,V̄ φ1 + πK̄ ,V̄ φ2) when K̄1 = K̄2 = K̄ = K̄ ′ and V̄ 1 = V̄ 2 =
V̄ = V̄ ′ .

• For any tuples K̄ of key-attributes and V̄ of value-attributes, there is a constrained expression ⊥(K̄ , V̄) of sort (K̄ , V̄)

that is interpreted as the empty relation over any database D . In fact, take any relation symbol R(K̄ , V̄) in σ . By defini-
tion, K̄ and V̄ are nonempty, and hence there is a key-attribute K ∈ K̄ and a value-attribute V ∈ V̄ . With πK ,V (R �� ⊥)

we obtain then the expression ⊥(K , V). Now ⊥(K̄ , V̄) can be obtained by taking the cartesian product of sufficiently
many suitable renamings of this expression.

• Group⊕(πK̄ ,V̄ φ1), for φ1 of sort (K̄1, V̄ 1). Again, this expression is obtained as a particular case of Group⊕(πK̄ ,V̄ φ1 +
πK̄ ,V̄ φ2) when φ2 = ⊥(K̄ , V̄).

• πK̄ ,V̄ φ1, for φ1 a constrained expression of sort (K̄ , V̄ ′), is a constrained expression. In fact, this expression can be
obtained from Group⊕(πK̄ ,V̄ φ1) by setting ⊕ to be an aggregate operator that acts as the identity on any singleton. The
reason is that when φ1 is of sort (K̄ , V̄ ′), then πK̄ ,V̄ φ1 does not remove any key attribute from the evaluation eD

1 of e1

on a Lara database D , which implies that (πK̄ ,V̄ φ1)
D is an associative table.

In our proofs we thus assume that these expressions are in fact constrained expressions from RAc
Agg(�).

4.2. Availability of extension functions

As explained before, we require some natural assumptions on the extension functions that Lara is allowed to use. In
particular, we need these functions to be able to express traditional relational algebra operations that are not included in
the core of Lara; namely, projecting over value-attributes, renaming attributes, and selecting rows based on (in)equality. We
then assume that Lara(�) contains the following families of extension functions and derived expressions. (In the following
we abuse notation and write f (e), for f an extension function and e a Lara expression, instead of Ext f e.)

Projection on values: We assume that � contains all extension functions of the form ��K̄ ,V̄
Values , which take as input a tuple

(k̄, ̄v) of sort (K̄ , V̄ 1), for V̄ ⊆ V̄ 1, and output the tuple (∅, ̄v ′) of sort (∅, V̄ ′) such that v̄ = v̄ ′↓V̄ . That is, the evaluation
of ��K̄ ,V̄

Values (e) is obtained from the evaluation of e by discarding the attributes in V̄ 1 \ V̄ . Notice that ��K̄ ,V̄
Values (e) is of sort

(K̄ , V̄ ′) by definition, but we can rename back V̄ ′ into V̄ by performing another projection over (K̄ , V̄ ′). By slightly abusing
terminology, we assume then that the result of ��K̄ ,V̄

Values (e) is of sort (K̄ , V̄).

Renaming attributes: All extension functions of the form copyK̄ ,K̄ ′ are in �, where K̄ , K̄ ′ are tuples of key-attributes of
the same arity. The function copyK̄ ,K̄ ′ takes as input a tuple t = (k̄, ̄v) of sort (K̄1, V̄), for K̄ ⊆ K̄1, and produces a tuple
t′ = (k̄′, ̄v) of sort (K̄ ′, V̄ ′) such that t′(K̄ ′) = t(K̄), i.e., copyK̄ ,K̄ ′ copies the value of attributes K̄ in the new attributes K̄ ′ .
Notice that copyK̄ ,K̄ ′ (e) is of sort (K̄1, K̄ ′, V̄ ′) by definition, but as before we can rename back V̄ ′ into V̄ by performing a
projection over (K̄ , K̄1, V̄ ′). By slightly abusing terminology, we can assume then that the result of copyK̄ ,K̄ ′ (e) is of sort
(K̄1, K̄ ′, V̄).

With this extension function we can also define the renaming expression

renameK̄→K̄ ′ e := ¯ ��K̄ (copyK̄ ,K̄ ′(e)),

where ¯ �� has no subscript ⊕ as no aggregation is necessary in this case. Recall that if e is of sort (K̄1, V̄), for K̄ , K̄ ′ ⊆ K̄1, then
¯ ��K̄ e computes the projection of e over all attributes except for K̄ , and hence renameK̄→K̄ ′ e simply renames the attributes
in K̄ to K̄ ′ over the evaluation of e.

Also, � contains all extension functions copyV̄ ,V̄ ′ , where V̄ , V̄ ′ are tuples of value-attributes of the same arity. This
extension function takes as input a tuple t = (k̄, ̄v) of sort (K̄ , V̄ 1), where V̄ ⊆ V̄ 1, and produces a tuple t′ = (∅, ̄v ′) of sort
(∅, V̄ ′

1, V̄
′) such that t′(V̄ ′

1) = t(V̄ 1) and t′(V̄ ′) = t(V̄), i.e., copyV̄ ,V̄ ′ copies the attributes in V̄ to V̄ ′ . Although copyV̄ ,V̄ ′ (e)

is of sort (K̄ , V̄ ′
1, V̄

′) by definition, we can turn it into one an equivalent one of sort (K̄ , V̄ 1, V̄ ′) by performing a projection
on value-attributes. Thus, we can safely assume that copyV̄ ,V̄ ′ (e) is of sort (K̄ , V̄ 1, V̄ ′).

With this extension function we can also define the renaming expression

renameV̄ →V̄ ′ e := ��K̄ ,V̄ 1\V̄ ,V̄ ′
Values (copyV̄ ,V̄ ′(e)).

It is easy to see that renameV̄ →V̄ ′ e simply renames the attributes in V̄ to V̄ ′ over the evaluation of e.

Filtering: All extension functions of the form eqK̄ ,K̄ ′ and neqK̄ ,K̄ ′ , where K̄ , K̄ ′ are tuples of key-attributes of the same arity,
are in �. The function eq ¯ ¯ ′ takes as input a tuple t = (k̄, ̄v) of sort (K̄1, V̄), for K̄ , K̄ ′ ⊆ K̄1, and produces as output
K ,K

114

P. Barceló, N. Higuera, J. Pérez et al. Theoretical Computer Science 935 (2022) 105–127
Table φD
e1

K K ′ V V ′

k1 k′
1 3 5

k2 k′
2 1 3

k3 k′
3 2 4

k3 k′′
3 0 1

Table φD
e2

K K ′′ V V ′′

k1 k′′
1 3 7

k2 k′′
2 2 0

k5 k′′
5 7 0

Fig. 5. The tables eD
1 and eD

2 from the proof of Theorem 1.

the tuple t′ = (∅, ̄v) of sort (∅, V̄ ′), if t(K̄) = t(K̄ ′), and the empty associative table otherwise. Hence, this function acts
as a filter over an associative table of sort (K̄1, V̄), keeping only those tuples t such that t(K̄) = t(K̄ ′). The definition of
extension functions neqK̄ ,K̄ ′ is exactly the same, only that we now keep only those tuples t such that t(K̄) �= t(K̄ ′). Although
the evaluation of these functions is of sort (K̄1, V̄ ′) by definition, we can make it of sort (K̄1, V̄) by performing a projection
on value-attributes. Thus, we can safely assume that eq K̄ ,K̄ ′ (e) and neqK̄ ,K̄ ′ (e) are of sort (K̄1, V̄).

Analogously, we have extension functions eqV̄ ,V̄ ′ and neqV̄ ,V̄ ′ , where V̄ , V̄ ′ are tuples of key-attributes of the same arity.
The function eqV̄ ,V̄ ′ takes as input a tuple t = (k̄, ̄v) of sort (K̄ , V̄ 1), for V̄ , V̄ ′ ⊆ V̄ 1, and produces as output the tuple
t′ = (∅, ̄v) of sort (∅, V̄ ′

1), if t(V̄) = t(V̄ ′), and the empty associative table otherwise. Hence, this function acts as a filter
over an associative table of sort (K̄ , V̄ 1), keeping only those tuples t such that t(V̄) = t(V̄ ′). The definition of extension
functions neqV̄ ,V̄ ′ is exactly the same, only that we now keep only those tuples t such that t(V̄) �= t(V̄ ′). As before, we can
safely assume that eqV̄ ,V̄ ′ (e) and neqV̄ ,V̄ ′ (e) are of sort (K̄ , V̄ 1).

In addition, for each aggregate operator ⊕ and tuple V̄ of value-attributes, we have that � contains extension functions
eqV̄ =(0⊕,...,0⊕) and neqV̄ =(0⊕,...,0⊕) . The first one takes as input a tuple t = (k̄, ̄v) of sort (K̄ , V̄ 1), for V̄ ⊆ V̄ 1, and produces
as output the tuple t = (∅, ̄v) of sort (∅, V̄ ′

1), if t(V̄) = (0⊕, . . . , 0⊕), and the empty associative table otherwise. Hence, this
function acts as a filter over an associative table of sort (K̄ , V̄ 1), keeping only those tuples t for which t(V̄) = (0⊕, . . . , 0⊕).
In the same way we define neqV̄ =(0⊕,...,0⊕) , which in this case retains only those tuples t for which t(V̄) �= (0⊕, . . . , 0⊕). As
before, we can safely assume that eqV̄ =(0⊕,...,0⊕)(e) and neqV̄ =(0⊕,...,0⊕)(e) are of sort (K̄ , V̄ 1).

5. Expressive completeness of LARA with respect to RAAgg

We prove that Lara(�) has the same expressive power as the constrained fragment of RAAgg(��), where �� is a set
that contains relations that represent the extension functions in �, assuming that � contains all distinguished extension
functions defined in the previous section. By definition, for every extension function f ∈ � of sort (K̄ , V̄) → (K̄ ′, V̄ ′), there
is a relation R f ⊆ Keys|K̄ |+|K̄ ′ | × Values|V̄ |+|V̄ ′| in �� such that

R f = {(k̄, k̄′, v̄, v̄ ′) | (k̄, v̄) ∈ Keys|K̄ | × Values|V̄ | and (k̄′, v̄ ′) ∈ f (k̄, v̄)}.

5.1. From LARA to RA with aggregation

We show first that the expressive power of Lara(�) is bounded by that of RAc
Agg(��).

Theorem 1. For every expression e[K̄ , V̄] of Lara(�) there is a constrained expression φe(K̄ , V̄) of RAc
Agg(��) with eD = φD

e , for
each Lara database D.

Proof of Theorem 1. The proof is by induction on e. We start with the base cases. If e = ∅, then φe = ⊥. If e = R[K̄ , V̄],
for R ∈ σ , then φe(K̄ , V̄) = R(K̄ , V̄). We now handle the inductive cases. We use a running example to illustrate the main
ideas. We assume that we have two constrained expressions φe1 (K , K ′, V , V ′) and φe2 (K , K ′′, V , V ′′) of RAc

Agg(��), and a
Lara database D , and it holds that

φD
e1

= {(k1,k′
1,3,5), (k2,k′

2,1,3), (k3,k′
3,2,4), (k3,k′′

3,0,1)} and

φD
e2

= {(k1,k′′
1,3,7), (k2,k′′

2,2,0), (k5,k′′
5,7,0))}.

This is shown in Fig. 5 in the form of associative tables.

Join. Consider the expression e[K̄1 ∪ K̄2, V̄ 1 ∪ V̄ 2] = e1[K̄1, V̄ 1] ��⊗ e2[K̄2, V̄ 2], and assume that φe1 (K̄1, V̄ 1) and φe2 (K̄2, V̄ 2)

are the constrained expressions in RAc
Agg(��) obtained for e1[K̄1, V̄ 1] and e2[K̄2, V̄ 2], respectively, by induction hypothesis.

We define the following auxiliary constrained expressions in RAc (��):
Agg

115

P. Barceló, N. Higuera, J. Pérez et al. Theoretical Computer Science 935 (2022) 105–127
• α1(K̄1 ∪ K̄2, V̄ 1 \ V̄ 2) := (πK̄1,V̄ 1\V̄ 2
φe1) �� (πK̄2

φe2), which computes over a Lara database D all tuples (k̄1 ∪
k̄2, ̄v1↓V̄ 1\V̄ 2

), such that there are (k̄1, ̄v1) ∈ φD
e1

and (k̄2, ̄v2) ∈ φD
e2

for which k̄1 and k̄2 are compatible with respect
to K̄1 ∩ K̄2. Following our running example, the result of evaluating α1 on D is the set {(k1, k′

1, k
′′
1, 5), (k2, k′

2, k
′′
2, 3)}.

• α2(K̄1 ∪ K̄2, V̄ 2 \ V̄ 1) := (πK̄1
φe1) �� (πK̄2,V̄ 2\V̄ 1

φe2), which computes over a Lara database D all tuples (k̄1 ∪
k̄2, ̄v2↓V̄ 2\V̄ 1

), such that there are (k̄1, ̄v1) ∈ φD
e1

and (k̄2, ̄v2) ∈ φD
e2

for which k̄1 and k̄2 are compatible with respect
to K̄1 ∩ K̄2. Following our running example, the result of evaluating α2 on D is the set {(k1, k′

1, k
′′
1, 7), (k2, k′

2, k
′′
2, 0)}.

• β1(K̄1 ∪ K̄2, V̄ 1 ∩ V̄ 2) := (πK̄1,V̄ 1∩V̄ 2
φe1) �� (πK̄2

φe2), which computes over a Lara database D all tuples (k̄1 ∪
k̄2, ̄v1↓V̄ 1∩V̄ 2

), such that there are (k̄1, ̄v1) ∈ φD
e1

and (k̄2, ̄v2) ∈ φD
e2

for which k̄1 and k̄2 are compatible with respect
to K̄1 ∩ K̄2. Following our running example, the result of evaluating β1 on D is the set {(k1, k′

1, k
′′
1, 3), (k2, k′

2, k
′′
2, 1)}.

• β2(K̄1 ∪ K̄2, V̄ 1 ∩ V̄ 2) := (πK̄1
φe1) �� (πK̄2,V̄ 1∩V̄ 2

φe2), which computes over a Lara database D all tuples (k̄1 ∪
k̄2, ̄v2↓V̄ 1∩V̄ 2

), such that there are (k̄1, ̄v1) ∈ φD
e1

and (k̄2, ̄v2) ∈ φD
e2

for which k̄1 and k̄2 are compatible with respect
to K̄1 ∩ K̄2. Following our running example, the result of evaluating β2 on D is the set {(k1, k′

1, k
′′
1, 3), (k2, k′

2, k
′′
2, 2)}.

Next, we define a constrained expression

β(K̄1 ∪ K̄2, V̄ 1 ∩ V̄ 2) = Group⊗(β1 + β2).

Over a Lara database D , this expression computes all tuples (k̄1 ∪ k̄2, ̄u) such that (k̄1 ∪ k̄2, ̄u1) ∈ βD
1 , (k̄1 ∪ k̄2, ̄u2) ∈ βD

2 , and
ū1 ⊗ ū2 = ū. Notice that the use of the multiset semantics for RAAgg is essential for this step, as otherwise when ū1 = ū2

we would have that β1 + β2 reduces to β1 ∪ β2, and the latter only contains one tuple of the form (k̄1 ∪ k̄2, ·), namely,
(k̄1 ∪ k̄2, ̄u1). The evaluation of GroupK̄1∪K̄2⊗ (β1 + β2) might not necessarily yield the tuple (k̄1 ∪ k̄2, ̄u1 ⊗ ū1) then, which is
what the semantics of Lara demands.

Following with our running example, the result of evaluating β on D , with respect to the aggregate operator ⊗ of
multiplication on N , is the set

Group⊗{{(k1,k′
1,k′′

1,3), (k1,k′
1,k′′

1,3), (k2,k′
2,k′′

2,1), (k2,k′
2,k′′

2,2)}} = {(k1,k′
1,k′′

1,9), (k2,k′
2,k′′

2,2)}.
It should be clear, then, that

φe := (α1 �� α2) �� β.

In fact, by definition and inductive hypothesis we have that the evaluation of e1[K̄1, V̄ 1] ��⊗ e2[K̄2, V̄ 2] on a Lara database
D contains the tuples (k̄1 ∪ k̄2, ̄v) such that (k̄1, ̄v1) ∈ eD

φ1
, (k̄2, ̄v2) ∈ eD

φ2
, the tuples k̄1 and k̄2 are compatible, and v̄ =

padV̄ 2⊗ (v̄1) ⊗ padV̄ 1⊗ (v̄2). But then, by definition,

v̄ = (
v̄1↓V̄ 1\V̄ 2

, (v̄1↓V̄ 1∩V̄ 2
⊗ v̄2↓V̄ 1∩V̄ 2

) , v̄2↓V̄ 2\V̄ 1

)
.

The tuples of the form (k̄1 ∪ k̄2, ̄v1↓V̄ 1\V̄ 2
) are obtained as the result of α1; those of the form (k̄1 ∪ k̄2, ̄v2↓V̄ 1\V̄ 2

) as the
result of α2; and those of the form (k̄1 ∪ k̄2, ̄v1↓V̄ 1∩V̄ 2

⊗ v̄2↓V̄ 1∩V̄ 2
) as the result of β . The join builds the final result.

Following with our running example, the result of evaluating φe on D is the set

{(k1,k′
1,k′′

1,5,9,7), (k2,k′
2,k′′

2,3,2,0)}.
This is, as expected, equivalent to the evaluation of e on D .

Union. Consider the expression e[K̄1 ∩ K̄2, V̄ 1 ∪ V̄ 2] = e1[K̄1, V̄ 1] ��⊕ e2[K̄2, V̄ 2], and assume that φe1 (K̄1, V̄ 1) and φe2 (K̄2, V̄ 2)

are the constrained expressions in RAc
Agg(��) obtained for e1[K̄1, V̄ 1] and e2[K̄2, V̄ 2], respectively, by induction hypothesis.

Before giving the translation, we explain how it is possible to construct in RAc
Agg(��) an expression Neutral⊕(V̄), where

V̄ is an arbitrary set of value-attributes, whose interpretation over D is the single tuple (0⊕, . . . , 0⊕) of sort V̄ . Take an
arbitrary relation symbol R ∈ σ and suppose that its sort is (K̄ , V̄ ′). By definition of schema, V̄ ′ is nonempty, and by
definition of database, R D �= ∅. Suppose that V is some attribute in V̄ ′ . We define a constrained expression Neutral⊕(V) :=
GroupZero(⊕)(πV R), where Zero(⊕) denotes the aggregate operator that on any nonempty multiset of elements from Values
it returns the neutral value 0⊕ for ⊕. Then the evaluation of Neutral⊕(V) on D consists of the single tuple (0⊕) of sort
V . It is easy to see that, by performing this operation |V̄ | times and taking the join of suitable renamings of the obtained
expressions, we obtain an expression Neutral⊕(V̄) whose interpretation over D is the tuple (0⊕, . . . , 0⊕) of sort V̄ .

We now explain how to define φe . We make use of the auxiliary constrained expressions defined below:

• α1(K̄1, V̄ 1 ∪ V̄ 2) := φe1(K̄1, V̄ 1) �� Neutral⊕(V̄ 2 \ V̄ 1). Notice that, by definition, α1 computes over a Lara database D the
set of tuples (k̄1, padV̄ 2⊕ (v̄1)), for (k̄1, ̄v1) ∈ φD

e1
. For our running example, assuming that ⊕ is the sum operation on N ,

the result of evaluating α1 on D is the set of tuples of sort (K , K ′, V , V ′, V ′′):
116

P. Barceló, N. Higuera, J. Pérez et al. Theoretical Computer Science 935 (2022) 105–127
{(k1,k′
1,3,5,0), (k2,k′

2,1,3,0), (k3,k′
3,2,4,0), (k3,k′′

3,0,1,0)}.
• α2(K̄2, V̄ 1 ∪ V̄ 2) := φe2(K̄2, V̄ 2) �� Neutral⊕(V̄ 1 \ V̄ 2). Notice that, by definition, α2 computes over a Lara database D the

set of tuples (k̄2, padV̄ 1⊕ (v̄2)), for (k̄2, ̄v2) ∈ φD
e2

. For our running example, assuming that ⊕ is the sum operation on N ,
the result of evaluating α2 on D is the set of sort (K , K ′′, V , V ′, V ′′):

{(k1,k′′
1,3,0,7), (k2,k′′

2,2,0,0), (k5,k′′
5,7,0,0)}.

It should be clear, then, that φe can be defined as the constrained expression

Group⊕
(
πK̄1∩K̄2,V̄ 1∪V̄ 2

α1 + πK̄1∩K̄2,V̄ 1∪V̄ 2
α2

)
.

In fact, by definition we have that when φe is evaluated on a Lara database D it yields the set

Solve⊕{{(k̄, v̄) | (k̄1, v̄) ∈ αD
1 and k̄ = k̄1↓K̄1∩K̄2

, or (k̄2, v̄) ∈ αD
2 and k̄ = k̄2↓K̄1∩K̄2

}},
which is equivalent to the set

Solve⊕{{(k̄, v̄) | (k̄1, v̄1) ∈ φD
e1

, k̄ = k̄1↓K̄1∩K̄2
, and v̄ = padV̄ 2⊕ (v̄1), or

(k̄2, v̄2) ∈ φD
e2

, k̄ = k̄2↓K̄1∩K̄2
, and v̄ = padV̄ 1⊕ (v̄2)}}.

By induction hypothesis, this is equivalent to

Solve⊕{{(k̄, v̄) | (k̄1, v̄1) ∈ eD
1 , k̄ = k̄1↓K̄1∩K̄2

, and v̄ = padV̄ 2⊕ (v̄1), or

(k̄2, v̄2) ∈ eD
2 , k̄ = k̄2↓K̄1∩K̄2

, and v̄ = padV̄ 1⊕ (v̄2)}},
which corresponds to the evaluation of e = e1 ��⊕ e2 on D by definition.

For our running example, assuming that ⊕ is the sum operation on N , the result of evaluating φe on D is the set of sort
(K , V , V ′, V ′′):

Group⊗{{(k1,3,5,0), (k2,1,3,0), (k3,2,4,0), (k3,0,1,0),

(k1,3,0,7), (k2,2,0,0), (k5,7,0,0)}} =
{(k1,6,5,7), (k2,3,3,0), (k3,2,5,0), (k5,7,0,0)}.

As expected, this coincides with the evaluation of e on D .

Extend. Consider the expression e[K̄ ∪ K̄ ′, V̄ ′] = Ext f e1[K̄ , V̄], where f is of sort (K̄ , V̄) → (K̄ ′, V̄ ′), and assume that
φe1(K̄ , V̄) is the constrained expression obtained for e1[K̄ , V̄] by induction hypothesis. Recall that by definition of ex-
tension function we have K̄ ∩ K̄ ′ = ∅ and V̄ ∩ V̄ ′ = ∅. It should be clear then that φe(K̄ , K̄ ′, V̄ ′) := πK̄ ,K̄ ′,V̄ ′ (φe1 (K̄ , V̄) ��
R f (K̄ , K̄ ′, V̄ , V̄ ′)). �

The translation from Lara to RAAgg given in the proof of Theorem 1 does not require the use of the difference operator.
This is in line with our results in the next section, where we show that this operator can be encoded in Lara by a suitable
combination of aggregate operators and extension functions.

5.2. From RA with aggregation to LARA

We now prove the other direction of the expressive completeness result.

Theorem 2. For each constrained expression φ(K̄ , V̄) of RAc
Agg(��), there is a Lara(�) expression eφ[K̄ , V̄] with eD

φ = φD , for each
Lara database D.

Proof of Theorem 2. We prove the theorem by induction on φ. We start with the base cases. If φ = ⊥, then eφ = ∅. If
φ = R(K̄ , V̄), for R ∈ σ , then eφ(K̄ , V̄) = R[K̄ , V̄]. We now consider the inductive cases. We use a running example to
illustrate the main ideas. We assume that we have two Lara(�) expressions eφ1 [K , V] and eφ2 [K , V] and a Lara database
D , and it holds that

eD
φ = {(k1,0), (k2,1), (k3,2), (k4,0)} and eD

φ = {(k1,0), (k2,2), (k5,7))}.

1 2

117

P. Barceló, N. Higuera, J. Pérez et al. Theoretical Computer Science 935 (2022) 105–127
Renaming. Assume that φ = ρK̄→K̄ ′,V̄ →V̄ ′ (φ1(K̄1, V̄ 1)). Then

eφ := renameK̄→K̄ ′ renameV̄ →V̄ ′(eφ1 [K̄1, V̄ 1]),
where eφ1 is the Lara(�) expression obtained for φ1 by induction hypothesis.

Join. Assume that φ = φ1(K̄1, V̄ 1) �� φ2(K̄2, V̄ 2), where φ1, φ2 are constrained expressions. Let eφ1 [K̄1, V̄ 1] and eφ2 [K̄2, V̄ 2]
be the Lara(�) expressions obtained for φ1 and φ2, respectively, by induction hypothesis. By definition, the evaluation of φ
on a Lara database D is the set that contains the tuples (k̄1 ∪ k̄2, ̄v1 ∪ v̄2) such that (k̄1, ̄v1) ∈ eD

φ1
, (k̄2, ̄v2) ∈ eD

φ2
, the tuples

k̄1 and k̄2 are compatible over K̄1 ∩ K̄2, and so are v̄1 and v̄2 over V̄ 1 ∩ V̄ 2. It is not hard to see that we can then define φ
in Lara with the following expression:

eφ := ��K̄1∪K̄2,V̄ 1,V̄ 2\V̄ 1
Values

[
eqV̄ 1∩V̄ 2,V̄ ′

(
eφ1 �� (renameV̄ 1∩V̄ 2→V̄ ′(eφ2))

)]
,

where there is no need to specify an aggregate operator for the join �� as the two expressions involved share no value-
attributes. In fact, the expression eφ1 �� (renameV̄ 1∩V̄ 2→V̄ ′ (eφ2)), which is of sort (K̄1 ∪ K̄2, V̄ 1, V̄ 2 \ V̄ 1, V̄ ′), computes the set
of tuples

(k̄1 ∪ k̄2, v̄1, v̄2↓V̄ 2\V̄ 1
, v̄2↓V̄ 1∩V̄ 2

)

such that (k̄1, ̄v1) ∈ φD
1 , (k̄2, ̄v2) ∈ φD

2 , and the tuples k̄1 and k̄2 are compatible over K̄1 ∩ K̄2. The application of eqV̄ 1∩V̄ 2,V̄ ′
on top of this expression filters precisely those tuples of the above form that satisfy v̄2↓V̄ 1∩V̄ 2

= v̄1↓V̄ 1∩V̄ 2
, i.e., v̄1 and v̄2

are compatible over V̄ 1 ∩ V̄ 2. By discarding the attributes in V̄ ′ with ��K̄1∪K̄2,V̄ 1,V̄ 2\V̄ 1
Values we then obtain the desired result.

Following our running example, we have that the evaluation of

eφ1 �� (renameV →V ′(eφ2))

is the set {(k1, 0, 0), (k2, 1, 2)}, and hence the evaluation of

eqV ,V ′
(
eφ1 �� (renameV̄ →V ′(eφ2))

is {(k1, 0, 0)}. To finalize, eD
φ = {(k1, 0)}, which is equivalent to φD .

Selection. Assume that φ is of the form σK1=K2φ
′(K̄ , V̄), where K1, K2 ∈ K̄ . All other cases are analogous, so we only handle

this one. We can then define φ in Lara with the following expression:

eφ = eqK1,K2
(eφ′),

where eφ′ [K̄ , V̄] is the Lara(�) expression obtained for φ′ by induction hypothesis.

Difference. This is an interesting case, as Lara does not include any kind of complementation feature explicitly. Neverthe-
less, and as we show below, difference over associative tables can be encoded in Lara by using the appropriate extension
functions.

Assume that φ = φ1(K̄ , V̄) \ φ2(K̄ , V̄), where φ1, φ2 are constrained expressions. Let eφ1 [K̄ , V̄] and eφ2 [K̄ , V̄] be the
Lara(�) expressions obtained for φ1 and φ2, respectively, by induction hypothesis. Recall that eφ1 and eφ2 evaluate to
associative tables by definition, and hence the evaluation φD of φ on a Lara database D is the set that contains (a) the
tuples (k̄, ̄v) ∈ eD

φ1
such that there is a tuple of the form (k̄, w̄) ∈ eD

φ2
for which v̄ �= w̄ , and (b) the tuples (k̄, ̄v) ∈ eD

φ1
for

which there is no tuple of the form (k̄, w̄) ∈ eD
φ2

.
Following our running example, we have that

φD = eD
φ1

\ eD
φ2

= {(k2,1), (k3,2), (k4,0)}.
In fact, the tuple (k2, 1) appears in the result because even though eD

φ2
contains a tuple of the form (k2, v), it is the case

that v �= 1; the tuples (k3, 2) and (k4, 0) appear in the result because eD
φ2

contains neither a tuple of the form (k3, v) nor
one of the form (k4, v); and the tuple (k1, 0) does not appear in the result because it appears in both eD

φ1
and eD

φ2
.

For the proof, we partition φD into three sets:

(P1) The tuples (k̄, ̄v) ∈ eD
φ1

such that there is a tuple of the form (k̄, w̄) ∈ eD
φ2

for which v̄ �= w̄ .

(P2) The tuples (k̄, ̄v) ∈ eD
φ1

such that (a) v̄ �= (0⊕, . . . , 0⊕), and (b) there is no tuple of the form (k̄, ̄v ′) ∈ eD
φ2

.

(P3) The tuples (k̄, 0⊕, . . . , 0⊕) ∈ eD such that there is no tuple of the form (k̄, ̄v) ∈ eD .
φ1 φ2

118

P. Barceló, N. Higuera, J. Pérez et al. Theoretical Computer Science 935 (2022) 105–127
We show that each one of these sets can be expressed as an expression in Lara(�), and thus that φ itself can be expressed
in Lara(�).

First, we take the Lara expression

eα[K̄ , V̄] := ��K̄ ,V̄
Values

[
neqV̄ ,V̄ ′

(
eφ1 �� renameV̄ →V̄ ′(eφ2)

)]
,

where there is no need to specify an aggregate operator for �� as V̄ and V̄ ′ have no attributes in common. It can be seen
that when evaluating the Lara expression on a Lara database D , we obtain precisely the tuples (k̄, ̄v) ∈ eD

φ1
such that there

is a tuple of the form (k̄, w̄) ∈ eD
φ2

for which v̄ �= w̄ . This means that eD
α is precisely the set (P1), which by definition is

included in eD
φ . It is easy to see that, for our example above, the output of the expression

eα[K , V] := ��K ,V
Values

[
neqV ,V ′

(
eφ1 �� renameV →V ′(eφ2)

)]
,

is precisely {(k2, 1)}, i.e., the set of tuples (k, v) ∈ eD
φ1

such that there is a tuple of the form (k, w) ∈ eD
φ2

for which v �= w .
Second, we consider the expression

e1[K̄ , V̄] := (��K̄ ,∅
Values eφ1) �� (eφ1 ��func⊕ eφ2),

which takes the union of eφ1 and eφ2 , resolving conflicts with an aggregate operator func⊕ that signals for which tuples of
keys it requires to restore “key-functionality” after performing the union, and then takes a join with the set of keys that
appear in eφ1 . The aggregate operator func⊕ takes as input a multiset of values: if it contains more than one element, it
returns the neutral value 0⊕; otherwise it returns the only element in the multiset. For instance, func({ {a, a} }) = 0⊕ and
func({ {a} }) = a. Notice that eD

1 , for D a Lara database, contains the tuples (k̄, ̄v) ∈ eD
φ1

such that there is no tuple of the form
(k̄, ̄v ′) ∈ eD

φ2
, plus the tuples of the form (k̄, 0⊕, . . . , 0⊕) such that there are tuples of the form (k̄, ̄v1) ∈ eD

φ1
and (k̄, ̄v2) ∈ eD

φ2
.

In other words, by evaluating e1 on D we have marked with (0⊕, . . . , 0⊕) those tuples k̄ of keys for which we need to
restore “key-functionality” after performing the union. Then we take the expression

eβ := neqV̄ =(0⊕,...,0⊕)(e1),

which retrieves all tuples of the form (k̄, ̄v) ∈ eD
φ1

such that (a) v̄ �= (0⊕, . . . , 0⊕), and (b) there is no tuple of the form
(k̄, ̄v ′) ∈ eD

φ2
. This means that eD

β is precisely the set (P2), which by definition is included in eD
φ .

For our example above, the output of the expression (eφ1 ��func⊕ eφ2) is

{(k1,0), (k2,0), (k3,2), (k4,0), (k5,7)},
and that of e1 is {(k1, 0), (k2, 0), (k3, 2), (k4, 0)}. Hence, the output of eβ is {(k3, 2)}, i.e., the set of tuples (k, v) ∈ eD

φ1
such

that v �= 0 and there is no tuple of the form (k, w) ∈ eD
φ2

.

We now perform our last step. As mentioned, the evaluation of eφ on D must contain both eD
α and eD

β . There is, however,
a set of tuples that are still missing from eD

φ ; namely, those in (P3), i.e., those of the form (k̄, 0⊕, . . . , 0⊕) ∈ eD
φ1

for which
there is no tuple of the form (k̄, ̄v) ∈ eD

φ2
. Let us define an expression

e2[K̄ , V̄] := (��K̄ ,∅
Values eφ1) �� (eφ1 ��func′⊕ eφ2),

where func′⊕ is an aggregate operator that takes as input a multiset of values: if it contains more than one element, it returns
some value 1⊕ with 1⊕ �= 0⊕; otherwise it returns the neutral value 0⊕ . For instance, func({ {a, a} }) = 1⊕ and func({ {a} }) = 0⊕ .
Notice that the evaluation of e2 on D , for D a Lara database, contains the tuples (k̄, ̄v) ∈ eD

φ1
such that there is no tuple

of the form (k̄, ̄v ′) ∈ eD
φ2

, plus the tuples of the form (k̄, 1⊕, . . . , 1⊕) such that there are tuples of the form (k̄, ̄v) ∈ eD
φ1

and
(k̄, ̄v ′) ∈ eD

φ2
. Then we take the expression

eγ := eqV̄ =(0⊕,...,0⊕)(e1),

which retrieves exactly what we wanted: all tuples of the form (k̄, 0⊕, . . . , 0⊕) ∈ eD
φ1

such that there is no tuple of the form
(k̄, ̄v) ∈ eD

φ2
.

For our example above, the output of the expression (eφ1 ��func′⊕ eφ2) is

{(k1,1), (k2,1), (k3,2), (k4,0), (k5,7)},
and that of e2 is {(k1, 1), (k2, 1), (k3, 2), (k4, 0)}. Hence, the output of eγ is {(k4, 0)}, i.e., the set of tuples (k, v) ∈ eD

φ1
such

that v = 0 and there is no tuple of the form (k, w) ∈ eD .
φ2

119

P. Barceló, N. Higuera, J. Pérez et al. Theoretical Computer Science 935 (2022) 105–127
Summing up, we can define eφ := (eα �� eβ) �� eγ . There is no need to specify an aggregation operation in this case for

��, since by definition the union of the three tables contains no conflicts on keys.

Sum and projection. In this case φ is of the form Group⊕(πK̄ ,V̄ φ1 + πK̄ ,V̄ φ2), where φ1, φ2 are constrained expressions. Let
us assume that eφ1 [K̄1, V̄ 1] and eφ2 [K̄2, V̄ 2] are the Lara expressions for φ1 and φ2, respectively, where K̄ ⊆ K̄1 ∩ K̄2 and
V̄ ⊆ V̄ 1 ∩ V̄ 2. Then we can define a Lara expression for φ as follows:

eφ := ��K̄ ,V̄
Values

(
renameK̄1∩K̄2\K̄→K̄ ′(eφ1) ��⊕ eφ2

)
.

In fact, by definition the evaluation of the expression
(
renameK̄1∩K̄2\K̄→K̄ ′ (eφ1) ��⊕ eφ2

)
over a Lara database D is

Solve⊕{{(k̄, v̄) | (k̄1, v̄1) ∈ eD
φ1

, k̄ = k̄1↓K̄ , and v̄ = padV̄ 2⊕ (v̄1), or (k̄2, v̄2) ∈ eD
φ2

, k̄ = k̄2↓K̄ , and v̄ = padV̄ 1⊕ (v̄2)}}.
Hence, the evaluation of eφ on D corresponds to the associative table

Solve⊕{{(k̄, v̄) | (k̄1, v̄1) ∈ eD
φ1

, k̄ = k̄1↓K̄ , and v̄ = v̄1↓V̄ , or (k̄2, v̄2) ∈ eD
φ2

, k̄ = k̄2↓K̄ , and v̄ = v̄2↓V̄ }}.
By inductive hypothesis, the latter is equivalent to

Solve⊕{{(k̄, v̄) | (k̄1, v̄1) ∈ φD
1 , k̄ = k̄1↓K̄ , and v̄ = v̄1↓V̄ , or (k̄2, v̄2) ∈ φD

2 , k̄ = k̄2↓K̄ , and v̄ = v̄2↓V̄ }},
which in turn is equivalent to

Solve⊕{{(k̄, v̄) | (k̄, v̄) ∈ (πK̄ ,V̄ φ1)
D or (k̄, v̄) ∈ (πK̄ ,V̄ φ2)

D}}.
By definition, the latter is precisely φD .

For our example above, the output of the expression eφ1 ��⊕ eφ2 , assuming ⊕ to be the standard sum operation on N , is
{(k1, 0), (k2, 3), (k3, 2), (k4, 0), (k5, 7)}. In this case, this is the same as the evaluation of eφ as neither the rename nor the
aggregation operation performed afterwards have an effect on the result. This coincides with our desired result with respect
to φ, i.e., this set is precisely the one obtained by applying Group⊕ over the sum of eD

φ1
and eD

φ2
. �

6. Expressiveness of LARA in terms of ML operators

In this section we initiate our study of how the class of extension functions allowed to be used in Lara affects the
expressiveness of the language. As our main conceptual contribution, we show that a large and relevant class of extension
functions can be expressed directly in a well-studied extension of RAAgg which is amenable for theoretical exploration.
In particular, this language can express all the extension functions defined in Section 4.2 that are used in our expressive
completeness result presented before. Moreover, by using well-known properties of this language, we can show that it
cannot express some relevant ML operations such as matrix convolution and inverse.

6.1. Discussion on numerical operations over the domain

In the rest of the section we assume that Values = Q. Since extension functions in � can a priori be arbitrary, to
understand what Lara can express we first need to specify which classes of functions are allowed in �. In rough terms, this
is determined by the operations that one can perform when comparing keys and values, respectively, as explained next.

• Extensions of relational algebra with aggregate operators over a numerical sort N often permit to perform arbitrary
numerical comparisons over N (in our case N = Values =Q). It has been noted that this extends the expressive power
of the language, but at the same time preserves some properties of the language that allow to carry out an analysis of
its expressiveness based on well-established techniques (see, e.g., [19]).

• In some cases in which the expressive power of the language needs to be further extended, one can also define a linear
order on the non-numerical sort (which in our case is the set Keys) and then perform suitable arithmetic comparisons
in terms of such a linear order. A well-known application of this idea is in the area of descriptive complexity [15].

In this section we study the first possibility only. That is, we allow comparing elements of Values (i.e., Q) in terms of
arbitrary numerical operations. Elements of Keys, in turn, can only be compared with respect to equality. As we explain
below, this class of extension functions is amenable for theoretical exploration – in particular, in terms of its expressive
power – and at the same time is able to express many extension functions of practical interest (e.g., several of the functions
used in examples in [13,14]).
120

P. Barceló, N. Higuera, J. Pérez et al. Theoretical Computer Science 935 (2022) 105–127
6.2. A language for expressing extension functions

We design a simple language EFAll= for expressing extension functions based on the previous idea. Intuitively, the name
of this language states that it can only compare keys with respect to equality = but it can compare values in terms of
arbitrary (all) numerical predicates. The expressions in the language are defined as follows, by distinguishing between key-
and value-expressions and then allowing for the combination of both in a controlled fashion:

• The expressions K1 = K2 and K1 �= K2, for K1, K2 different key-attributes, are the key-expressions of EFAll= . These expres-
sions are of sort (K1, K2).

• The value-expressions of EFAll= are constructed by using standard relational algebra operations over all possible expres-
sions P (V 1, . . . , Vk), for P ⊆ Qk a numerical relation of arity k and V 1, . . . , Vk pairwise different value-attributes. The
expressions of the form P (V 1, . . . , Vk) are of sort (V 1, . . . , Vk).

• Key- and value-expressions of EFAll= form the set of atomic expressions of EFAll= .
• If φ, φ′ are expressions of sort (K̄1, V̄ 1) and (K̄2, V̄ 2) in EFAll= , respectively, then φ �� φ′ is an expression of sort (K̄1 ∪

K̄2, V̄ 1 ∪ V̄ 2) in EFAll= .
• If φ, φ′ are expressions of sort (K̄ , V̄) in EFAll= , then φ ∪ φ′ is an expression of sort (K̄ , V̄) in EFAll= .

We write φ(K̄ , V̄) to denote that the expression φ in EFAll= is of sort (K̄ , V̄). Given a tuple t of the same sort as φ, we say
that t satisfies φ if the following hold (omitting the rules for value-expressions formed by using relational algebra operations
on top of the numerical predicates):

• φ is K1 = K2 and t(K1) = t(K2), or φ is K1 �= K2 and t(K1) �= t(K2).
• φ is P (V 1, . . . , Vk), for P ⊆Qk a numerical relation of arity k, and t belongs to the interpretation of P over Q k .
• φ is φ1 �� φ2, for φ1 and φ2 of sort (K̄1, V̄ 1) and (K̄2, V̄ 2), respectively, and t = (k̄1 ∪ k̄2, ̄v1 ∪ v̄2) for (k̄1, ̄v1) and (k̄2, ̄v2)

tuples that satisfy φ1 and φ2, respectively.
• φ is φ1 ∪ φ2, for φ1 and φ2 of sort (K̄ , V̄), and t satisfies φ1 or φ2.

Definition 5 (Definability of extension functions). An extension function f of sort (K̄ , V̄) → (K̄ ′, V̄ ′) is definable in the language
EFAll= , if there is an expression φ f (K̄ , K̄ ′, V̄ , V̄ ′) of EFAll= such that for every tuple (k̄, ̄v) of sort (K̄ , V̄):

f (k̄, v̄) = {(k̄′, v̄ ′) | (k̄, k̄′, v̄, v̄ ′) satisfies φ f }.

This gives rise to the definition of the following class of extension functions:

�All= = { f | f is an extension function definable in EFAll= }.
Recall that extension functions only produce finite associative tables by definition, and hence only some expressions in

EFAll= define extension functions.
It is relatively easy to see that all the extension functions defined in Section 4.2, and used in the expressive completeness

result, are in �All= . Next we provide more examples.

Example 3. We use i + j = k and (i + j)/2 = k as a shorthand notation for the ternary numerical predicates of addition and
average, respectively. Consider first an extension function f that takes a tuple t of sort (K1, K2, V) and computes a tuple t′
of sort (K ′

1, K
′
2, V

′) such that t(K1, K2) = t′(K ′
1, K

′
2) and t′(V ′) = 1 − t(V). Then f is definable in EFAll= as

φ f (K1, K2, K ′
1, K ′

2, V , V ′) := (K1 = K ′
1) �� (K2 = K ′

2) �� (V + V ′ = 1).

This function can be used, e.g., to interchange 0s and 1s in a Boolean matrix.
Consider now an extension function g that takes a tuple t of sort (K , V 1, V 2) and computes a tuple t′ of sort (K ′, V ′)

such that t(K) = t′(K ′) and t′(V) is the average between t(V 1) and t(V 2). Then g is definable in EFAll= as

φg(K , K ′, V 1, V 2, V ′) := (K = K ′) �� ((V 1 + V 2)/2 = V ′). �
As an immediate corollary to Theorem 1 we obtain the following result, which formalizes the fact that for translating

Lara(�All=) expressions into RAAgg it is not necessary to extend the expressive power of RAAgg with the relations in ��All= ;
in fact, it suffices in this case to grant access to all numerical predicates over Q. Formally, let us denote by RAAgg(All) the
extension of RAAgg with all expressions of the form P (V 1, . . . , Vk), for P ⊆ Qk and V 1, . . . , Vk pairwise different value-
attributes, with the expected semantics. Then one can prove the following result.

Corollary 1. For every expression e[K̄ , V̄] of Lara(�All=) there is a constrained expression φe(K̄ , V̄) of RAc
Agg(All) with eD = φD

e , for
each Lara database D.
121

P. Barceló, N. Higuera, J. Pérez et al. Theoretical Computer Science 935 (2022) 105–127
6.3. Non-definability in Lara(�All=)

It is known that queries definable in RAAgg(All) satisfy two important properties, namely, genericity and locality. These
properties allow us to prove that neither convolution of matrices nor matrix inversion can be defined in the language. From
Corollary 1 we obtain then that none of these queries is expressible in Lara(�All=). We explain this next.

Convolution. Let A be an arbitrary matrix and N a square matrix. For simplicity we assume that N is of odd size (2n + 1) ×
(2n + 1). The convolution of A and N , written A ∗ N , is a matrix of the same size as A with entries are defined as

(A ∗ N)k� =
2n+1∑
s=1

2n+1∑
t=1

Ak−n+s,�−n+t · Nst . (5)

Notice that k − n + s and � − n + t could be invalid indices for matrix A. The standard way of dealing with this issue is zero
padding. This simply assumes those entries outside A to be 0. In the context of the convolution operator, one usually calls
N a kernel.

We represent the matrices A and N over the schema σ that consists of relation symbols {EntryA[K1, K2, V], EntryK [K1,

K2, V]}. Assume that Keys = {k1, k2, k3, . . .} and Values =Q. If A is a matrix of values in Q of dimension m × p, and N is a
matrix of values in Q of dimensions (2n + 1) × (2n + 1) with m, p, n ≥ 1, we represent the pair (A, N) as the Lara database
D A,N over σ that contains all facts EntryA(ki, k j, Aij), for i ∈ [m], j ∈ [p], and all facts EntryK (ki, k j, Nij), for i ∈ [2n + 1],
j ∈ [2n + 1]. The query Convolution over schema σ takes as input a Lara database of the form D A,N and returns as output
an associative table of sort [K1, K2, V] that contains exactly the tuples (ki, k j, (A ∗ N)i j). We can then prove the following
result.

Proposition 3. The query Convolution is not expressible in Lara(�All=).

Proof. We first observe that when Lara(�All=) expressions are interpreted as expressions over matrices, they are invariant
under reordering of rows and columns of those matrices. More formally, we make use of key-permutations and key-generic
queries. A key-permutation is an injective function π : Keys → Keys. We extend a key-permutation π to be a function over
Keys ∪ Values by letting π be the identity over Values. An expression φ(K̄ , V̄) is key-generic if for every Lara database D ,
key-permutation π , and tuple t = (k̄, ̄v) of sort (K̄ , V̄),

t ∈ φD ⇔ π(t) ∈ φπ(D)

where π(D) is the Lara database that is obtained by applying π on every fact of D . The following lemma expresses the
self-evident property that expressions in RAAgg(All) are key-generic.

Lemma 1. Every expression φ(K̄ , V̄) of RAAgg(All) is key-generic.

With the aid of Lemma 1 we can now prove Proposition 3, as it is easy to show that Convolution is not key-generic (even
when the kernel N is fixed). To obtain a contradiction assume that there exists an expression φ(K1, K2, V) in RAAgg(All)
such that for every Lara database D A,N , as defined above, we have that (ki, k j, v) ∈ φD A,N iff (A ∗ N)i j = v . Let A, N , and A′
be the following matrices:

A =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

⎤
⎥⎥⎦ N =

⎡
⎣

1 1 1
1 1 1
1 1 1

⎤
⎦

A′ =

⎡
⎢⎢⎣

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

The Lara representations for these matrices are depicted in Fig. 6. Consider now the key-permutation π such that π(k2) =
k3, π(k3) = k2, and π is the identity for every other value in Keys. Clearly then, π(D A,N) = D A′,N . Now, the convolutions
(A ∗ N) and (A′ ∗ N) are given by the matrices

(A ∗ N) =

⎡
⎢⎢⎣

2 2 1 0
2 2 1 0
1 1 2 1
0 0 1 1

⎤
⎥⎥⎦ (A′ ∗ N) =

⎡
⎢⎢⎣

1 1 0 0
1 2 1 1
0 1 2 2
0 1 2 2

⎤
⎥⎥⎦
122

P. Barceló, N. Higuera, J. Pérez et al. Theoretical Computer Science 935 (2022) 105–127
EntryA =

K1 K2 V
k1 k1 1
k1 k2 0
.
.
.

.

.

.
.
.
.

k2 k1 0
k2 k2 1
k2 k3 0
.
.
.

.

.

.
.
.
.

k4 k3 0
k4 k4 1

EntryN =

K1 K2 V
k1 k1 1
k1 k2 1
.
.
.

.

.

.
.
.
.

k3 k2 1
k3 k3 1

EntryA′ =

K1 K2 V
k1 k1 1
k1 k2 0
.
.
.

.

.

.
.
.
.

k3 k2 0
k3 k3 1
k3 k4 0
.
.
.

.

.

.
.
.
.

k4 k3 0
k4 k4 1

Fig. 6. Lara representations for matrices A and K in the proof of Proposition 3.

We know that (k1, k1, 2) ∈ φD A,N (since (A ∗ N)11 = 2). Then, since φ is generic, we have that π(k1, k1, 2) ∈ φπ(D A,N) . Thus,
since π(D A,N) = D A′,N , π(k1) = k1, and π is the identity over Values, we obtain that (k1, k1, 2) ∈ φD A′,N , which is a con-
tradiction since (A′ ∗ N)11 = 1 �= 2. This proves that Convolution is not expressible in RAAgg(All). Hence from Corollary 1 we
obtain that Lara(�Agg) cannot express Convolution. �
Matrix inverse. It has been shown by Brijder et al. [2] that matrix inversion is not expressible in Matlang by applying
techniques based on locality. The basic idea is that Matlang is subsumed by RAAgg(∅) = RAAgg , and the latter language
can only define local properties. Intuitively, this means that expressions in RAAgg can only distinguish up to a fixed-radius
neighborhood from its free variables (see, e.g., [19] for a formal definition). On the other hand, as shown in [2], if matrix
inversion were expressible in Matlang there would also be a RAAgg expression that defines the transitive closure of a binary
relation (represented by its adjacency Boolean matrix). This is a contradiction as transitive closure is the prime example of a
non-local property. Exactly the same techniques can be used to show that matrix inversion is not expressible in Lara(�All=).
For this, we use first the fact that Lara(�All=) can be embedded in RAAgg(All) by Corollary 1, and then that RAAgg(All) is also
local (cf., [11,19]).

As before, we represent Boolean matrices as databases over schema σ = {Entry[K1, K2, V]}. Assume that Keys = N and
Values = Q. The Boolean matrix M of dimension n × m, for n, m ≥ 1, is represented as the Lara database D M over σ that
contains all facts Entry(i, j, bij), for i ∈ [n], j ∈ [m], and bij ∈ {0, 1}, such that Mij = bij . Consider the query Inv over schema
σ that takes as input a Lara database of the form D M and returns as output the Lara database D M−1 , for M−1 the inverse
of M . We can then obtain the following result by using the aforementioned argument.

Proposition 4. The query Inv is not expressible in Lara(�All=).

7. Adding built-in predicates over keys

7.1. Expressing the convolution query in Lara

In Section 6 we saw that there are important linear algebra operations, such as matrix inverse and convolution, that
Lara(�All=) cannot express. The following result shows, in turn, that a clean extension of Lara(�All=) can express matrix
convolution. This extension corresponds to the language Lara(�All

<), i.e., the extension of Lara(�All=) in which we assume
the existence of a strict linear-order < on Keys and extension functions are definable in the logic EFAll

< that extends EFAll= by
allowing atomic formulas of the form K1 < K2 and ¬(K1 < K2), for K1, K2 key-attributes. Even more, the only numerical
predicates from All we need are + and ×, as long as we have access to the extension functions for copying attributes
and projection over value-attributes defined in Section 5 and used in our expressive completeness results. We denote the
resulting logic as Lara(�

{+,×}
<).

Proposition 5. The query Convolution is expressible in Lara(�
{+,×}
<).

Proof of Proposition 5. We organize the proof in three parts. We first show how expressions in Lara(�
{+,×}
<) can express

arithmetical operations over key-attributes, and then apply this idea to define the convolution query.

Expressing numerical operations over key- and value-attributes. Assume for simplicity that Keys = N and Values = Q.
Consider first the extension function f : (K , K ′, ∅) → (∅, V) defined as the following EF{+,×}

< expression:

φ f (K , K ′, V) := (¬(K < K ′) ∪ Zero(V)) �� ((K < K ′) ∪ One(V)
)
,

where Zero and One are the numerical predicates {0} and {1}, respectively. Notice that we slightly abuse terminology here
as we allow unions of expressions with different sets of attributes, something that it is not permitted in EF{+,×}

< . It is easy
123

P. Barceló, N. Higuera, J. Pérez et al. Theoretical Computer Science 935 (2022) 105–127
to see, however, that they can be mimicked by adding suitable joins on the expressions. Now consider a relation EntryA of
sort [K , K ′, V] that represents a square matrix of dimension n ×n. By our definition of f we have that Map f EntryA has sort
[K , K ′, V] and its evaluation consists of all triples (x, y, i) ∈ [n]3 such that i = 1 if x ≥ y, and i = 0 otherwise.

Consider now the expression

IndK ,V := ��K+ Map f EntryA

that aggregates Map f EntryA by summing over V while grouping over K . The evaluation of IndK ,V contains all pairs (x, i) ∈
[n] × [n] such that i is the natural number that represents the position of x in the linear order over Keys. Hence, we have
that IndK ,V contains all pairs (x, i) ∈ [n] × [n] such that x is a key, i is a value, and x = i. This simple fact allows us to
express filters and extension functions using arbitrary properties definable as an expression with predicates over key- and
value-attributes together, using symbols <, +, and ×, and without actually mixing sorts.

For example, consider an associative table R of sort [K , V 1] with [n] as set of keys, and assume that we want to construct
a new table R ′ of sort [K , V 2] such that, for every tuple (x, v) ∈ R , relation R ′ contains the tuple (x, j) with j = 2x + v . We
make use of the extension function g : (K , V , V 1) → (∅, V 2) defined by the expression φg(K , V , V 1, V 2) := (V 2 = 2V 1 + V).
Notice that φg only mentions attributes of the second sort. We can construct R ′ as

R ′ := Mapg(IndK ,V �� R)

To see that this works, notice first that IndK ,V and R have the same set of keys; namely, the set [n]. Moreover, given that
IndK ,V and R share no value-attribute, we do not need to specify any aggregate operator on the join of the expression
IndK ,V �� R . Notice, then, that the result of IndK ,V �� R is a table of sort [K , V , V 1] that contains all tuples (x, i, v) such that
(x, i) ∈ IndK ,V and (x, v) ∈ R , or equivalently, all tuples (x, i, v) such that (x, v) ∈ R and x = i. Then with Mapg(IndK ,V ��+ R)

we generate all tuples (x, j) such that

(x, v) ∈ R, x = i, and (j = 2i + v),

or equivalently, all tuples (x, j) such that (x, v) ∈ R , and (j = 2x + v), which is what we wanted to obtain.
Hence, from now on if φ(K̄ , V̄ , V̄ ′) is an expression in EF over key and value-attributes together, using predicates <, +,

and ×, we allow to write Mapφe to define the set of pairs (k̄, ̄v ′) such that (k̄, ̄v) belongs to the evaluation of e1, for some
tuple v̄ of value-attributes, and (k̄, ̄v, ̄v ′) satisfies φ.

In the construction we also make use of filtering expressions defined as follows. Given an expression e1[K̄ , V̄] and an EF
expression ϕ(K̄ , V̄) over key and value-attributes using predicates <, +, and ×, then filtering e1 with ϕ is a new expression
e2 = Filterϕ(e1) that has sort [K̄ , V̄] and such that for every database D it holds that (k̄, ̄v) is in eD

2 if and only if (k̄, ̄v) ∈ eD
1

and (k̄, ̄v) satisfies ϕ . It is easy to see that the filter operator is expressible in Lara(�
{+,×}
<).

Expressing the convolution. We now have all the ingredients to express the convolution. We first write the convolution
definition in a more suitable way so we can easily express the required sums. Let N be a kernel of dimensions m × m with
m an odd number. First define mid as m−1

2 . Consider now a matrix A of dimension n1 × n2 . Now, for every (i, j) ∈ [n1] × [n2],
one can write the following expression for (A ∗ N)ij:

(A ∗ N)ij =
∑

{{ Ast · Nkl | s ∈ [n1], t ∈ [n2], k, l ∈ [m]
and i − mid ≤ s ≤ i + mid

and j − mid ≤ t ≤ j + mid

and k = s − i + mid + 1

and l = t − j + mid + 1 }}. (6)

Now, in order to implement the above definition in Lara(�
{+,×}
<) we use the extension function diag and the filtering

expressions neighbors and kernel, as defined below, where we assume that all attributes used in formulas correspond to
key-attributes. We use a loose syntax here, as otherwise the presentation would become very cumbersome, but we remark
that in fact all these expressions can be expressed in the language EF over key and value-attributes together, using predicates
<, +, and ×. The existential quantifier is a shorthand for expressing projection on all value attributes save for the one which
is quantified:

diag(k, �,m) := (k = �) → m = 1 �� ¬(k = �) → m = 0

neighbors(i, j, s, t,m) := ∃mid
(
2 × mid = m − 1 ��

i − mid ≤ s �� s ≤ i + mid �� j − mid ≤ t �� t ≤ j + mid
)

124

P. Barceló, N. Higuera, J. Pérez et al. Theoretical Computer Science 935 (2022) 105–127
kernel(i, j,k, �, s, t,m) := ∃mid
(
2 × mid = m − 1 ��

k = s − i + mid + 1 �� � = t − j + mid + 1
)

We note that the first two expressions are essentially mimicking the inequalities in (6). The last expression is intuitively
defining the diagonal.

Let EntryA[(i, j), (v)] and EntryN [(k, �), (u)] be the two associative tables that represent a matrix A and the convolu-
tion kernel N , respectively. Here i, j, k represent key-attributes, while u, v represent value-attributes. We first construct an
expression that computes the dimension of the kernel:

M = ��∅+ MapdiagEntryN .

By the definition of diag we have that M[∅, (m)] has no key attributes, but has a single value attribute m that contains one
tuple storing the dimension of K . Now we proceed to take the join of EntryA with itself, EntryN , and M . For that we need
to make a copy of EntryA in which attributes (i, j, v) are renamed as (s, t, w). This expression is thus defined as:

C = EntryA �� EntryN �� (rename(i, j,v),(s,t,w)(EntryA)) �� M.

Notice that since the expressions involved in this join share neither key- nor value-attributes, the join is simply computing
the cartesian product of the associative tables represented by such expressions. Notice that such a cartesian product thus
produces an associative table of sort C[(i, j, k, �, s, t), (v, u, w, m)].

To finalize, we compute the following filters over C :

F = Filterkernel(Filterneighbors(C)).

We note that F has sort F [(i, j, k, �, s, t), (v, u, w, m)] (just like C). We also note that for every (i, j) the tuple (i, j, k, l, s, t) is
a key in F if, and only, if it satisfies the conditions defining the multiset in Equation (6). Thus to compute what we need, it
only remains to multiply and sum, which is done in the following expression:

R = ��i j
+ (Mapv�=w×u F).

Thus R is of sort [(i, j), (v�)] and is such that (i, j, v) is in R if and only if v = (A ∗ K)ij . �
Hutchison et al. [13] showed that for every fixed kernel N , the query (A ∗ N) is expressible in Lara. However, the

Lara expression they construct depends on the values of N , and hence their construction does not show that in general
convolution is definable in Lara. Our construction is stronger, as we show that there exists a fixed Lara(�

{+,×}
<) expression

that takes A and N as input and produces (A ∗ N) as output.

7.2. Can Lara(�
{+,×}
<) express inverse?

We believe that Lara(�
{+,×}
<) cannot express Inv. However, this seems quite challenging to prove. First, the tool we used

for showing that Inv is not expressible in Lara(�All=), namely, locality, is no longer valid in this setting. In fact, queries
expressible in Lara(�

{+,×}
<) are not necessarily local.

Proposition 6. The language Lara(�
{+,×}
<) can express non-local queries.

The reason why this result holds is as follows. By the discussion in the proof of Proposition 5, one can use arbitrary
predicates + and × over Keys to define extension functions. With this observation one can construct, given a relation A[K]
that contains all values in [n], a Lara(�

{+,×}
<) expression that defines a relation BIT[K , V] that contains all pairs (x, i) such

that x ∈ [n] and the i-th bit of the binary expansion of x is 1. With BIT one can mimic the construction of Proposition 8.22
in [19] to show that Lara(�

{+,×}
<) can express a nonlocal query. This construction is carried out in first-order logic extended

with numerical predicates + and ×, and hence in RA extended with numerical predicates + and ×. The expressions used
in the proof can then be mimicked in Lara(�

{+,×}
<), using ideas developed in our expressive completeness result.

The proposition implies that one would have to apply techniques more specifically tailored for the logic, such as
Ehrenfeucht-Fraïssé games, to show that Inv is not expressible in Lara(�

{+,×}
<). Unfortunately, it is often combinatorially

difficult to apply such techniques in the presence of built-in predicates, e.g., a linear order, on the domain; cf., [5,23,9]. So
far, we have not managed to succeed in this regard.

In turn, we can show that Inv is not expressible in a natural restriction of Lara under complexity-theoretic assumptions.
To start with, Inv is complete for the complexity class Det, which contains all those problems that are logspace reducible
to computing the determinant of a matrix. It is known that Logspace ⊆ Det, where Logspace is the class of functions
computable in logarithmic space, and this inclusion is believed to be proper [3]. Hence, under the assumption that Logspace

�= Det, no language that can be evaluated in Logspace in data complexity can express the query Inv. Recall that a language
125

P. Barceló, N. Higuera, J. Pérez et al. Theoretical Computer Science 935 (2022) 105–127
L can be evaluated in Logspace in data complexity, if for each fixed expression e in L the evaluation eD of e on an input
Lara database D can be computed in Logspace.

There is an extension of RA, known as RA with arithmetic [10], that has the property that can be evaluated in Logspace in
data complexity. In addition, it is able to express most aggregate operators used in practice, e.g., SUM, MIN, MAX, AVG, and
COUNT. It is easy to see that RA with arithmetic subsumes the fragment of Lara, without extension functions, in which only
these aggregate operators are used. If we now extend this fragment of Lara with any set of extension functions that can
be computed in Logspace, the resulting language can still be evaluated in Logspace in data complexity. From our previous
observation, under the assumption that Logspace �= Det this fragment of Lara cannot express the matrix inversion query
Inv.

8. Final remarks and future work

We believe that the work on query languages for analytics systems that integrate relational and statistical functionalities
provides interesting perspectives for database theory. In this paper we focused on the Lara language, which has been
designed to become the core algebraic language for such systems, and carried out a systematic study of its expressive
power in terms of logics and concepts traditionally studied in the database theory literature.

As we have observed, expressing interesting ML operators in Lara requires the addition of complex features, such as
arithmetic predicates on the numerical sort and built-in predicates on the domain. The presence of such features complicates
the study of the expressive power of the languages, as some known techniques no longer hold, e.g., genericity and locality,
while others become combinatorially difficult to apply, e.g., Ehrenfeucht-Fraïssé games. In addition, the presence of a built-in
linear order might turn the logic capable of characterizing some parallel complexity classes, and thus inexpressibility results
could be as hard to prove as some longstanding conjectures in complexity theory.

A possible way to overcome these problems might be not looking at languages in its full generality, but only at extensions
of the tame fragment Lara(�All=) with some of the most sophisticated operators. For instance, what if we extend Lara(�All=)

directly with an operator that computes Convolution? Is it possible to prove that the resulting language (Lara(�All=) + Con-
volution) cannot express matrix inverse Inv? Somewhat a similar approach has been followed in the study of Matlang; e.g.,
[2] studies the language (Matlang + Inv), which extends Matlang with the matrix inverse operator.

Another interesting line of work corresponds to identifying which kind of operations need to be added to Lara in order
to be able to express in a natural way recursive operations such as matrix inverse. One would like to do this in a general yet
minimalistic way, as adding too much recursive expressive power to the language might render it impractical. It would be
important to start then by identifying the most important recursive operations one needs to perform on associative tables,
and then abstract from them the minimal primitives that the language needs to possess for expressing such operations. A
good starting point for this might be the recently proposed extension of Matlang with recursive features [7].

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgement

Barceló and Pérez are funded by FONDECYT grant 1200967. All authors have been funded by ANID - Millennium Sci-
ence Initiative Program - Code ICN17002. Barceló has also been funded by National Center for Artificial Intelligence CENIA
FB210017, Basal ANID. We are grateful to the reviewers of a preliminary version of this paper who provided us with relevant
and constructive criticisms.

References

[1] Pablo Barceló, Nelson Higuera, Jorge Pérez, Bernardo Subercaseaux, On the expressiveness of LARA: a unified language for linear and relational algebra,
in: ICDT, 2020, 6.

[2] Robert Brijder, Floris Geerts, Jan Van den Bussche, Timmy Weerwag, On the expressive power of query languages for matrices, ACM Trans. Database
Syst. 44 (4) (2019) 15.

[3] Stephen A. Cook, A taxonomy of problems with fast parallel algorithms, Inf. Control 64 (1–3) (1985) 2–21.
[4] Serge Abiteboul, et al., Research directions for principles of data management (Dagstuhl perspectives workshop 16151), Dagstuhl Manifestos 7 (1)

(2018) 1–29.
[5] Ronald Fagin, Larry J. Stockmeyer, Moshe Y. Vardi, On monadic NP vs. monadic co-np, Inf. Comput. 120 (1) (1995) 78–92.
[6] Floris Geerts, On the expressive power of linear algebra on graphs, in: ICDT, 2019, 7.
[7] Floris Geerts, Thomas Muñoz, Cristian Riveros, Domagoj Vrgoc, Expressive power of linear algebra query languages, CoRR, arXiv:2010 .13717, 2020.
[8] Goetz Graefe, Richard L. Cole, Fast algorithms for universal quantification in large databases, ACM Trans. Database Syst. 20 (2) (1995) 187–236.
[9] Martin Grohe, Thomas Schwentick, Locality of order-invariant first-order formulas, in: MFCS, 1998, pp. 437–445.

[10] Stéphane Grumbach, Leonid Libkin, Tova Milo, Limsoon Wong, Query languages for bags: expressive power and complexity, SIGACT News 27 (2) (1996)
30–44.

[11] Lauri Hella, Leonid Libkin, Juha Nurmonen, Limsoon Wong, Logics with aggregate operators, J. ACM 48 (4) (2001) 880–907.
126

http://refhub.elsevier.com/S0304-3975(22)00530-8/bibAF669B6BF4D9BFB5A136E72C909EC248s1
http://refhub.elsevier.com/S0304-3975(22)00530-8/bibAF669B6BF4D9BFB5A136E72C909EC248s1
http://refhub.elsevier.com/S0304-3975(22)00530-8/bib43D3A67D5D40CC40273CFE8456DD115As1
http://refhub.elsevier.com/S0304-3975(22)00530-8/bib43D3A67D5D40CC40273CFE8456DD115As1
http://refhub.elsevier.com/S0304-3975(22)00530-8/bib8FB8FC841B4F73593C3BE4A8B5870878s1
http://refhub.elsevier.com/S0304-3975(22)00530-8/bibA2595A61AEFC585184E3DEF8B1016399s1
http://refhub.elsevier.com/S0304-3975(22)00530-8/bibA2595A61AEFC585184E3DEF8B1016399s1
http://refhub.elsevier.com/S0304-3975(22)00530-8/bib2B1A334BA4F839D75BA7CE7F16433366s1
http://refhub.elsevier.com/S0304-3975(22)00530-8/bibAA089E70E86E481209235A257660FA6Ds1
http://refhub.elsevier.com/S0304-3975(22)00530-8/bib9494A0C36DFBB7CC7EE9AB98EFC51D90s1
http://refhub.elsevier.com/S0304-3975(22)00530-8/bibA4B5C9E8AAF2A2A90CA88EA454EA008Fs1
http://refhub.elsevier.com/S0304-3975(22)00530-8/bib575F1B60AD856A878DDD2514ADCA6E8Fs1
http://refhub.elsevier.com/S0304-3975(22)00530-8/bib3EB0EE8B4700427ED43EEAB93CC85171s1
http://refhub.elsevier.com/S0304-3975(22)00530-8/bib3EB0EE8B4700427ED43EEAB93CC85171s1
http://refhub.elsevier.com/S0304-3975(22)00530-8/bib163F259016C48A8FDE9DDB380FECC30Bs1

P. Barceló, N. Higuera, J. Pérez et al. Theoretical Computer Science 935 (2022) 105–127
[12] Stephan Hoyer, Joe Hamman, xarray developers, xarray development roadmap, Technical report, 2018, available at http://xarray.pydata .org /en /stable /
roadmap .html.

[13] Dylan Hutchison, Bill Howe, Dan Suciu, Lara: a key-value algebra underlying arrays and relations, CoRR, arXiv:1604 .03607, 2016.
[14] Dylan Hutchison, Bill Howe, Dan Suciu, Laradb: a minimalist kernel for linear and relational algebra computation, in: BeyondMR@SIGMOD 2017, 2017,

2.
[15] Neil Immerman, Descriptive Complexity, Graduate Texts in Computer Science, Springer, 1999.
[16] Konstantinos Karanasos, Matteo Interlandi, Doris Xin, Fotis Psallidas, Rathijit Sen, Kwanghyun Park, Ivan Popivanov, Supun Nakandala, Subru Krishnan,

Markus Weimer, Yuan Yu, Raghu Ramakrishnan, Carlo Curino, Extending relational query processing with ML inference, CoRR, arXiv:1911.00231, 2019.
[17] Andreas Kunft, Alexander Alexandrov, Asterios Katsifodimos, Volker Markl, Bridging the gap: towards optimization across linear and relational algebra,

in: BeyondMR@SIGMOD 2016, 2016, p. 1.
[18] Leonid Libkin, Expressive power of SQL, Theor. Comput. Sci. 296 (3) (2003) 379–404.
[19] Leonid Libkin, Elements of Finite Model Theory, Texts in Theoretical Computer Science. An EATCS Series, Springer, 2004.
[20] Dan Olteanu, The relational data borg is learning, Proc. VLDB Endow. 13 (12) (2020) 3502–3515.
[21] Alexander M. Rush, Tensor considered harmful, Technical report, Harvard NLP Blog, 2019, available at http://nlp .seas .harvard .edu /NamedTensor, re-

trieved on March 2019.
[22] Alexander M. Rush, Tensor considered harmful pt. 2, Technical report, Harvard NLP Blog, 2019, available at http://nlp .seas .harvard .edu /NamedTensor2,

retrieved on March 2019.
[23] Thomas Schwentick, On winning Ehrenfeucht games and monadic NP, Ann. Pure Appl. Log. 79 (1) (1996) 61–92.
127

http://xarray.pydata.org/en/stable/roadmap.html
http://xarray.pydata.org/en/stable/roadmap.html
http://refhub.elsevier.com/S0304-3975(22)00530-8/bib4F66F4D2E4BDE6ED31313594933FEE01s1
http://refhub.elsevier.com/S0304-3975(22)00530-8/bibD3C327C84F809A5330BBF0D74438500Cs1
http://refhub.elsevier.com/S0304-3975(22)00530-8/bibD3C327C84F809A5330BBF0D74438500Cs1
http://refhub.elsevier.com/S0304-3975(22)00530-8/bib4236BB768B1D8BED443BDB4DF3745E1Fs1
http://refhub.elsevier.com/S0304-3975(22)00530-8/bib016E3CD0E74CD0579928C9B039EAA6BAs1
http://refhub.elsevier.com/S0304-3975(22)00530-8/bib016E3CD0E74CD0579928C9B039EAA6BAs1
http://refhub.elsevier.com/S0304-3975(22)00530-8/bibCD3D29069DD2D578C43D3D44DF115EA9s1
http://refhub.elsevier.com/S0304-3975(22)00530-8/bibCD3D29069DD2D578C43D3D44DF115EA9s1
http://refhub.elsevier.com/S0304-3975(22)00530-8/bib7CD0C4698553C97B3AAC53CBDFC0B5C2s1
http://refhub.elsevier.com/S0304-3975(22)00530-8/bibECDD52FC4F65F1B818F9305538688055s1
http://refhub.elsevier.com/S0304-3975(22)00530-8/bib2343C2C3E9597D30C7B129EC6CEBA07Cs1
http://nlp.seas.harvard.edu/NamedTensor
http://nlp.seas.harvard.edu/NamedTensor2
http://refhub.elsevier.com/S0304-3975(22)00530-8/bib49FCEA8B99F49C40F7EB59E0871F4547s1

	On the expressiveness of Lara: A proposal for unifying linear and relational algebra
	1 Introduction
	2 The LARA language
	2.1 Basics
	2.2 Data model used by LARA
	2.3 Syntax of LARA
	2.4 Semantics of LARA
	2.5 Safety of LARA

	3 Relational algebra with aggregation
	4 Assumptions for the expressive completeness result
	4.1 Semantics based on associative tables
	4.2 Availability of extension functions

	5 Expressive completeness of LARA with respect to RAAgg
	5.1 From LARA to RA with aggregation
	5.2 From RA with aggregation to LARA

	6 Expressiveness of LARA in terms of ML operators
	6.1 Discussion on numerical operations over the domain
	6.2 A language for expressing extension functions
	6.3 Non-definability in Lara(ΩAll=)

	7 Adding built-in predicates over keys
	7.1 Expressing the convolution query in Lara
	7.2 Can Lara(Ω{+,×}<) express inverse?

	8 Final remarks and future work
	Declaration of competing interest
	Acknowledgement
	References

