
Journal of Computer and System Sciences 119 (2021) 97–124
Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Regularizing conjunctive features for classification

Pablo Barceló a,b,∗, Alexander Baumgartner c, Victor Dalmau d, Benny Kimelfeld e

a Institute for Mathematical and Computational Engineering, Faculty of Engineering & School of Mathematics, Pontificia Universidad Católica 
de Chile, Avda. Vicuña Mackenna 4860, Macul, Santiago, Chile
b IMFD Chile, Chile
c Instituto de Ciencias de la Ingeniería, Universidad de O’Higgins, Av. Libertador Bernardo O’Higgins 611, Rancagua, Chile
d Universitat Pompeu Fabra, Roc Boronat, 138, 08018, Barcelona, Spain
e Technion – Israel Institute of Technology, Faculty of Computer Science, Technion City, Haifa, 3200003, Israel

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 August 2019
Received in revised form 17 August 2020
Accepted 24 January 2021
Available online 17 February 2021

Keywords:
Classification
Feature generation
Conjunctive queries
Separability
Generalized hypertree width

We consider the feature-generation task wherein we are given a database with entities 
labeled as positive and negative examples, and we want to find feature queries that 
linearly separate the two sets of examples. We focus on conjunctive feature queries, and 
explore two problems: (a) deciding if separating feature queries exist (separability), and 
(b) generating such queries when they exist. To restrict the complexity of the generated 
classifiers, we explore various ways of regularizing them by limiting their dimension, the 
number of joins in feature queries, and their generalized hypertreewidth (ghw). We show 
that the separability problem is tractable for bounded ghw; yet, the generation problem is 
not because feature queries might be too large. So, we explore a third problem: classifying 
new entities without necessarily generating the feature queries. Interestingly, in the case 
of bounded ghw we can efficiently classify without explicitly generating such queries.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Context Feature engineering is a critical and resource-consuming task in the development of machine-learning solutions in 
general, and classifiers in particular [46,23,21]. In the framework proposed by Kimelfeld and Ré [28], the general goal is to 
utilize the knowledge of the underlying relational database to provide automated assistance in feature engineering. One of 
the fundamental tasks discussed in that framework is that of separability—given a database with labeled examples, determine 
whether a class of queries (e.g., conjunctive queries) is rich enough to provide the features needed for classification; that is, 
is there a sequence of feature queries and a classifier that separate the examples according to their labels?

We first summarize the framework of Kimelfeld and Ré [28]. The database schema has a special unary relation of entities
to be classified, known as the entity schema. A feature query is a query that selects entities, and a statistic is a vector of 
feature queries. Every entity in the database is then assigned a vector, where the ith entry is +1 if the entity is selected by 
the ith feature query in the statistic, and −1 otherwise. A training database consists of a database over the entity schema 
along with a labeling function that partitions the entities into positive examples and negative examples. A classifier maps every 
vector representing an entity into +1, denoting the positive class, or −1, denoting the negative class. When evaluating 

* Corresponding author at: Institute for Mathematical and Computational Engineering, Faculty of Engineering & School of Mathematics, Pontificia 
Universidad Católica de Chile, Avda. Vicuña Mackenna 4860, Macul, Santiago, Chile.

E-mail addresses: pbarcelo@uc.cl (P. Barceló), alexander.baumgartner.x@gmail.com (A. Baumgartner), victor.dalmau@upf.edu (V. Dalmau), 
bennyk@cs.technion.ac.il (B. Kimelfeld).
https://doi.org/10.1016/j.jcss.2021.01.003
0022-0000/© 2021 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcss.2021.01.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcss.2021.01.003&domain=pdf
mailto:pbarcelo@uc.cl
mailto:alexander.baumgartner.x@gmail.com
mailto:victor.dalmau@upf.edu
mailto:bennyk@cs.technion.ac.il
https://doi.org/10.1016/j.jcss.2021.01.003


P. Barceló, A. Baumgartner, V. Dalmau et al. Journal of Computer and System Sciences 119 (2021) 97–124
a classifier over a database, the entities are classified into positive and negative cases by transforming each entity into a 
vector, via the statistic, and then applying the classifier to this vector.

As in Kimelfeld and Ré [28], we focus on features that are Conjunctive Queries (CQs) without constants, and on the class 
of linear classifiers. We consider the task of feature generation that aims at automatically proposing feature queries for the 
statistic. In the separability problem, we are given a training database, and the goal is to determine if there exist a statistic 
and a classifier that separate the entities according to their labeling. When separability is tractable, we also study the ability 
to actually produce the statistic, i.e., feature generation. As we shall see, determining the existence of a separating statistic 
does not necessarily mean that we can produce the statistic.

The separability problem is the database variant of the classic separability from Machine Learning (cf., e.g., [2,33]), except 
that, here, we are given a database and not numeric vectors, and we need to generate the features. The motivation is the 
practice of automatically generating features as queries, and particularly via joins, which is quite common [1,36,40,29]. 
While such features often involve aggregate queries over the joins, we aim to take a step forward in understanding the 
theoretical ground for this practice, and we begin with seeking simple and restricted queries that are still useful as features 
in the sense that they provide (approximate) separation.

Separation via simple features may appear to contrast with recent work that focuses on applying more complex
functions—aiming to eliminate the engineering of specialized features—such as functions for aggregating database infor-
mation towards statistical models [25] and neural-based feature functions that operate over raw databases [31]. This effort 
also includes the embedding of database tuples into a (feature) vector space [8] via graph neural networks [45,17] or more 
specialized tuple-to-vector techniques [34]. However, our approach complements these efforts in several senses. First, clas-
sifiers that are based on simple features can help in seeking accompanying explainable models, at least when their accuracy 
is comparable, or just for parts of the database as in the approach of local surrogate models [39,38]. Second, we believe 
that our theoretical analysis can lead to understanding the complexity inherent to the more complex functions, the quality 
and limitation of the techniques in use (e.g., back-propagation and gradient analysis), and the assumptions that modern 
approaches implicitly make on the data.

The problem The plain definition of the separability problem allows for feature queries that are arbitrarily complex. This is 
indeed the case in the proof of coNP-completeness of separability for linear classifiers over CQs shown in [28]. Yet, allowing 
complex feature queries entails several problems. The first problem is the classic risk of overfitting—feature queries seek 
information that is too specific to the examples, and hence, the learned classifier fails to generalize beyond the training 
database. The second problem is high computational complexity—feature queries might be hard to evaluate (under com-
bined complexity). Finally, complex queries are complicated to interpret and manipulate by human engineers. Following the 
machine learning terminology, we name this kind of complexity restriction and reduction for learned models as regulariza-
tion [42,41].

Our proposal In this work, we explore regularization at the level of the statistic and feature queries. We consider simplicity 
constraints on feature CQs and study their implication on the complexity of separability and feature generation. Natural 
realizations of “simplicity” might involve the size of the features—how many joins do they use? and the complexity of their 
structure—how cyclic are they? Hence, the restrictions we consider are twofold:

• bounding the number of atoms (join operators), and
• more generally, bounding the generalized hypertree width (ghw).

When these bounds are constant, the feature queries can be evaluated efficiently [11]. Restricting the number of atoms is an 
inherent artifact of common algorithms for feature generation from relational databases, which build joins incrementally up 
to a limited (small) depth [1,36,40,29,43]. While we are not aware of ghw playing a role in features for machine learning, 
it has been shown that a very small width is common in “natural” queries [7]. In addition, we explore the more traditional 
form of regularization—bounding the dimension of (i.e., the number of feature CQs in) the statistic, which motivates classic 
notions of regularization (viewed as the number of nonzero coefficients) [14,35]. We also study the complexity of combining 
the bound on the dimension with the bounds on the CQ features.

Our results on separability As said, in the absence of any restriction, the separability problem is coNP-complete even for 
a fixed schema [28]. If we fix the schema and pose a constant bound on the number of atoms, then there is only a 
polynomial number of possible feature queries up to equivalence; in that case, the statistic that consists of all feature CQs 
(up to equivalence) is itself a separating statistic, if any such statistic exists. In particular, both separability and feature 
generation become tractable. We show that this tractability continues to hold when the schema is not necessarily fixed, but 
rather, we keep fixed just the maximal arity of the relations. It remains open whether just bounding the number of atoms 
in each feature query (and not fixing the schema or its maximal arity) suffices to solve separability in polynomial time. Still, 
even in this case the problem is feasible by a fixed-parameter tractable algorithm [13] (the parameter being the arity of the 
schema).

When we consider the class of CQs of bounded ghw (for some bound k), we observe an interesting phenomenon: 
separability is solvable in polynomial time. And yet, we cannot necessarily generate the separating statistic (when it exists), 
98



P. Barceló, A. Baumgartner, V. Dalmau et al. Journal of Computer and System Sciences 119 (2021) 97–124
Table 1
Selected complexity results for the separability problem. We assume that the 
schema is fixed.

Problem L = CQ L = CQ[m] L = GHW(k)

L-Sep coNP-complete [28] PTIME PTIME
L-Sep[�] coNEXPTIME-complete PTIME EXPTIME-complete

simply because the feature queries may be too large. Interestingly, it turns out that, while we cannot generate the feature 
CQs of a separating statistic, we can still classify according to it! To make this formal, we define the classification problem: 
given a training database and an evaluation database (which is simply a database over the entity schema), classify the 
entities of the evaluation database in a way that is explainable by a learned statistic; i.e., there exists a statistic that agrees 
with both the training labels (over the training database) and the produced new labels (over the evaluation database). We 
prove that in the case of bound ghw, the classification problem is solvable in polynomial time. This result is obtained by 
applying techniques based on the existential cover game [11].

Next, we turn to investigating the complexity implications of bounding the dimension of the statistic. We first show 
a general polynomial-time reduction from a variant of the problem of Query By Example (QBE) [44,9,3]: given a database 
and two tables, is there a query such that the result contains all of the tuples of the first table, and none of the tuples 
of the second table? The reduction applies to any query language L that is used for both problems. Using this general 
reduction, we obtain complexity results about the separability problem for several classes of CQs due to known results 
about QBE. For other classes of CQs, we first prove their complexity in QBE and then apply our reduction to establish the 
complexity of separability. In particular, we prove that for every combination of positive constant bounds on the dimension 
of the classifier and the number of atoms per CQ, separability is NP-complete. For general CQs, the complexity rises to 
coNEXPTIME-completeness, and EXPTIME-completeness for bounded ghw.

Table 1 shows selected complexity results that we obtain for separability. The classes of feature queries are the one of 
all CQs (denoted CQ), the one of all CQs with at most m atoms (denoted CQ[m]), and the one of all CQs of ghw bounded by 
k (denoted GHW(k)). The computational problems for each class L of feature queries is that of general separability (L-Sep) 
and the separability by a statistic with at most � features (L-Sep[�]). We assume that the schema is fixed, and throughout 
the paper, we explain the importance of this assumption, and moreover, when it is necessary. However, no such assumption 
is needed for the tractability of separability for bounded ghw (i.e., GHW(k)-Sep).

Further results Our analysis so far is applied to perfect classification, which means that we seek a statistic and a classifier 
that classify the examples precisely, no errors allowed. One might wonder if our (positive and negative) complexity results 
are based on the perfection of the classification. This is not the case: most of our complexity results apply to approximate
classification, where we are given a number ε ∈ [0, 1) and we allow an ε fraction of the examples to be misclassified. In 
particular, for the hardness results, we prove a general reduction from approximate separability to precise separability which 
holds for every fixed ε . We also obtain feasibility results for CQs of bounded ghw and CQs with a fixed number of atoms by 
revisiting the techniques we use for perfect separability.

We also study the separability problem for more expressive feature queries, in particular FO queries. We observe that 
FO has the dimension-collapse property, which means that every training database that is FO-separable is also separable by a 
statistics with a single FO feature. This allows us to show that FO-separability has the same complexity as the QBE problem 
for FO, which is known to be GI-complete [4]. We also provide a characterization based on a definability condition of when 
a query language has the dimension collapse property. From this we obtain that several relevant fragments of FO also have 
this property: most notably, the k-variable fragment of FO, for any k ≥ 1, and the class of existential FO formulas. On the 
other hand, the class of CQs, the class of CQs of bounded generalized hypertreewidth, and even the existential positive 
FO formulas do not have such a property. In fact, we prove something stronger: All these languages have the unbounded-
dimension property, implying that there is no bound on the number of features from the language that are needed to separate 
training databases.

Note that our work is restricted to the linear case of classification, which is commonly viewed as a classic notion for 
separability, at least as a baseline to compare to more expressive classifier classes (cf., e.g., [2,33]). Moreover, in some cases, 
such as Lemma 5.8 of Kimelfeld and Ré [28], or Lemma 5.4 of the current paper, a linear separation exists if and only if the 
class of CQs can distinguish between the positive and the negative examples, regardless of the classifier class; in such cases, 
the complexity results immediately extend to every superclass of the linear classifiers.

Organization of the paper The rest of the paper is organized as follows. We give basic notation and definitions in Section 2, 
and define the separability problem in Section 3. In the next three sections, we study the complexity implications of bound-
ing the maximum number of atoms per CQ (Section 4), the generalized hypertree width (Section 5), and the dimension of 
the statistic (Section 6). In Section 7, we provide results for approximate separability. We discuss feature queries beyond 
CQs in Section 8 and conclude in Section 9.
99



P. Barceló, A. Baumgartner, V. Dalmau et al. Journal of Computer and System Sciences 119 (2021) 97–124
2. Preliminaries

Databases and homomorphisms A schema σ is a finite set of relation symbols, each of which has an associated arity k > 0. 
A fact over σ is an expression of the form R(ā), where R is a k-ary relation symbol in σ and ā is a k-tuple of elements 
taken from a predefined universe. A database D over a σ is a finite set of facts over σ . The domain of D , denoted dom(D), 
is the set of universe elements that occur in the facts of D . We write |D| to denote the size of a reasonable encoding of D .

Let D and D ′ be databases over σ . A homomorphism from D to D ′ is a mapping h : dom(D) → dom(D ′) such that for 
each fact R(ā) ∈ D we have that R(h(ā)) ∈ D ′ . Here, we use the conventional notation h(ā) := (h(a1), . . . , h(ak)). We write 
D → D ′ if there is a homomorphism from D to D ′ . We also write (D, ̄a) → (D ′, ̄a′), where ā and ā′ are tuples over dom(D)

and dom(D ′), respectively, to denote that there is a homomorphism h from D to D ′ such that h(ā) = ā′ .

Conjunctive queries We consider here conjunctive queries without constants. Formally, a Conjunctive Query (CQ) q over a 
schema σ is a First-Order (FO) formula of the form

∃ ȳ
(

R1(x̄1) ∧ · · · ∧ Rn(x̄n)
)
, (1)

such that the following hold: (1) For each i ∈ {1, . . . , n} we have that Ri is a k-ary relation symbol in σ and x̄i is a k-tuple 
of variables, and (2) ȳ is a tuple of variables from x̄1, . . . , ̄xn . The expressions Ri(x̄i) are the atoms of q. We write q(x̄) to 
denote that x̄ is a sequence that consists of all free variables of q, i.e., the ones that do not occur in ȳ. In this work, we 
mainly deal with unary CQs, namely CQs q(x) with a single free variable x.

As usual, we define the evaluation of a CQ in terms of homomorphisms. To do so, we associate with each CQ q(x̄) a 
database

Dq = {R1(x̄1), . . . , Rn(x̄n)},
which consists precisely of the atoms in q, where variables are treated as elements from the universe. A homomorphism 
from q(x̄) to a database D is then a homomorphism from Dq to D .

The evaluation of q(x̄) over D is the set

q(D) := {ā | (Dq, x̄) → (D, ā)}.
If q is unary, then we abuse notation and view q(D) as a set of elements rather than unary tuples.

When there is no risk of ambiguity, we identify q with Dq; e.g., we write (q, ̄x) → (D, ̄a) instead of (Dq, ̄x) → (D, ̄a).

Linear classifiers A classifier is a function H : {1, −1}n → {1, −1}, where n > 0 is the arity. In this paper, we restrict the 
discussion to the class of linear classifiers. Recall that a tuple w̄ = (w0, w1, . . . , wn) of real numbers defines a linear classifier 
�w̄ in the following way. For (b1, . . . , bn) ∈ {1, −1}n we have

�w̄(b1, . . . ,bn) :=
{

1 if
∑

1≤i≤n wibi ≥ w0,

−1 otherwise.

We view a sequence 〈(b̄1, y1), . . . , (b̄m, ym)〉 of vectors in {1, −1}n+1 as a collection of examples, consisting of positive 
examples (where yi = 1) and negative examples (where yi = −1). As a shorthand notation, we write such a sequence as 
(b̄i, yi)

m
i=1 and refer to it as a training collection. The training collection (b̄i, yi)

m
i=1 is linearly separable if there is a linear 

classifier �w̄ such that �w̄(b̄i) = yi for all i ∈ {1, . . . , m}; in this case, we say that �w̄ linearly separates (b̄i, yi)
m
i=1.

3. The separability problem

Our investigation is in the context of the classification framework introduced by Kimelfeld and Ré [28], which recall next.

The framework An entity schema is a schema that includes a distinguished unary relation symbol η used to represent entities. 
To improve readability, we refer to an entity schema simply by σ and denote the corresponding entity symbol by ησ (but if 
σ is clear from the context, we simply write η). Let D be a database over an entity schema σ . An entity of D is a constant 
a such that η(a) ∈ D . We denote by η(D) the set of entities of D .

In this work, a feature query is a unary CQ q(x) over an entity schema σ . We are interested in the set of entities selected 
by q(x) over a database D of schema σ . Hence, without loss of generality, we assume that the atom η(x) is always present 
in feature queries q(x), and therefore it holds that q(D) ⊆ η(D). We denote by 1q(D) : η(D) → {1, −1} the indicator function
defined by q(D) over η(D); that is, for each e ∈ η(D) we have that 1q(D)(e) = 1 if e ∈ q(D), and 1q(D)(e) = −1 otherwise.

A statistic over an entity schema σ is a sequence � = (q1, . . . , qn) of feature queries over σ . If D is a database, then we 
define the mapping �D : η(D) → {1, −1}n as follows for all entities e ∈ η(D):

�D(e) := (
1q1(D)(e), . . . ,1qn(D)(e)

)
.

100



P. Barceló, A. Baumgartner, V. Dalmau et al. Journal of Computer and System Sciences 119 (2021) 97–124
Card

id number issued

c1 100 Chile
c2 101 USA
c3 102 Spain

Transaction

id card_number place

t1 100 Chile
t2 100 Brazil
t3 101 Chile

η

att λ

c1 −1
c2 1
c3 −1

Fig. 1. The training database (D, λ) from Example 3.1.

A labeling λ of a database D over entity schema σ is a function λ : η(D) → {1, −1} that partitions the set of entities 
into:

• the set {e ∈ η(D) | λ(e) = 1} of positive examples, and
• the set {e ∈ η(D) | λ(e) = −1} of negative examples.

A training database over σ is a pair (D, λ), where D is a database over σ and λ is a labeling of D .

Definition 3.1 (L-separability). Let L be a class of queries and (D, λ) a training database. Then (D, λ) is L-separable if there 
is a statistic � = (q1, . . . , qn) such that each qi is in L and (�D(e), λ(e))e∈η(D) is linearly separable.

In other words, (D, λ) is L-separable if there is a statistic � such that each feature query q ∈ � is in L and a linear 
classifier �w̄ that satisfies

�w̄(�D(e)) = λ(e), for every e ∈ η(D).

In this case, we say that (�, �w̄ ) L-separates (D, λ); or simply that � is a statistic that L-separates (D, λ) if �w̄ is 
irrelevant.

Example 3.1 (Motivated by Example 3.1 in [28]). Consider an entity schema σ that consists of binary relation symbol Card, 
ternary relation symbol Transaction, and unary relation symbol η that represents entities. We have a training database 
(D, λ) over σ as shown in Fig. 1. The idea is that Card collects information about the number and place of issue of credit 
cards, while Transaction collects information about ids of transactions, together where the credit card used and the 
location.

Then (D, λ) is CQ-separable by the statistics � = (q1(x), q2(x)), for

• q1(x) := ∃y∃z(Card(x, y, z) ∧ Transaction(x′, y, z)), and
• q2(x) := ∃y∃z(Card(x, y, z) ∧ Transaction(x′, y, z′)).

In fact, observe that

�D =
⎛
⎝1q1(D)(c1) 1q2(D)(c1)

1q1(D)(c2) 1q2(D)(c2)

1q1(D)(c3) 1q2(D)(c3)

⎞
⎠ =

⎛
⎝ 1 1

−1 1
−1 −1

⎞
⎠

Let The question is then whether the inequalities below have a solution w0, w1, w2 ∈R: such that

w11q1(D)(c1) + w21q2(D)(c1) < w0 (since η(c1) = −1)

w11q1(D)(c2) + w21q2(D)(c2) ≥ w0 (since η(c2) = 1)

w11q1(D)(c3) + w21q2(D)(c3) < w0 (since η(c3) = −1).

We can readily observe that this is the case by choosing w0 = w2 = 1 and w1 = −1. �
The separability problem This paper focuses on the L-separability problem, or L-Sep for short, for a class L of queries (usually 
CQs). Originally proposed in [28], in the problem L-Sep the goal is to determine the existence of a separating statistic � in 
L. It is formally defined as follows.
101



P. Barceló, A. Baumgartner, V. Dalmau et al. Journal of Computer and System Sciences 119 (2021) 97–124
Problem: L-Sep

Input: A training database (D, λ)

Question: Is (D, λ) L-separable?

The following is known about the complexity of the L-Sep problem, when L is the class CQ of all CQs.

Theorem 3.1. [28] The problem CQ-Sep is coNP-complete. The lower bound holds even if the schema consists of a single binary relation 
R and the distinguished symbol η.

Notice that CQ-Sep is not in the class NP, as not necessarily a pair (D, λ) that is CQ-separable can be separated by 
a statistic of polynomial size composed by CQs. Theorem 3.1 states, in turn, that non-CQ-separability always admits a 
polynomial size witness. We provide a sketch of how the upper bound is obtained as it is instructive for some of the results 
later presented in the paper. First, notice We use the following characterization of CQ-separability which is implicit in [28].

Lemma 3.2. The following statements are equivalent for all training databases (D, λ).

1. (D, λ) is CQ-separable.
2. There are no entities e, e′ ∈ η(D) such that λ(e) = λ(e′), and yet e ∈ q(D) ⇔ e′ ∈ q(D) for all q(x) ∈ CQ.

Notice that condition (2) is equivalent to stating that there are no entities e, e′ ∈ η(D) such that λ(e) = λ(e′), and yet 
(D, e) → (D, e′) and (D, e′) → (D, e). Hence, to check if (D, λ) is not CQ-separable we can apply the following NP-algorithm:

• Guess entities e, e′ ∈ η(D) such that λ(e) = λ(e′).
• Guess a homomorphisms from (D, e) to (D, e′), and viceversa.

It follows that CQ-Sep is in coNP.

Version of the separability problem studied in the paper We study the complexity of L-Sep for subfamilies L enforcing various 
natural restrictions on the feature CQs. In addition, we consider two regularization variants of the separability problem:

• The dimension of (i.e., the number of features in) � is bounded by a constant �. We denote this variant by L-Sep[�].
• The dimension is not bounded, but rather is given as input. We denote this variant by L-Sep[∗].

Hence, we have three variants of the separability problem, namely L-Sep, L-Sep[�], and L-Sep[∗].

4. Bounded number of feature atoms

As we will see next, one can overcome the high complexity of separability (and related problems), at least under the 
yardstick of parameterized complexity [13], by fixing the number of atoms allowed in feature CQs.

For every fixed m ≥ 1, we denote by CQ[m] the class of CQs with at most m atoms (not counting atom η(x) which we 
assume appears in every feature query q(x)). The following simple observation allows us to obtain a better understanding 
of the complexity of the separability problem when restricted to feature queries in CQ[m].

Proposition 4.1. For every fixed m ≥ 1, there is an algorithm that determines if a given training database (D, λ) is CQ[m]-separable, 
and if so, constructs a pair (�, �w̄) that CQ[m]-separates (D, λ). The running time of the algorithm is bounded by |D|c · 2s(k) for a 
constant c ≥ 1 and polynomial s :N →N , where k ≥ 1 is the maximal arity of a relation in D.

Proof. Observe that (D, λ) is CQ[m]-separable iff it is separable by the statistic � that contains all feature queries q(x) in 
CQ[m] that mention only relation symbols that appear in D . Let us denote by r the number of relation symbols in 	 that 
appear in D . The number of different feature CQs in � is then bounded by

rm · (mk)mk = rm · 2m log m k log k,

corresponding to the number of ways in which one can choose the relation symbols used in the atoms of a CQ in � and 
the disposition of at most mk variables in such atoms. In particular, since m is fixed, the statistic � can be constructed in 
time rm · 2p(k) , for some polynomial p :N →N .

Now, for each CQ q(x) in �, we can compute q(D) in time O (|D|m), and thus the indicator function 1q(D) : η(D) →
{1, −1} can be computed in time O (|D|m+1). Hence, the set of tuples of the form �D(e), for e ∈ η(D), can be computed in 
time O (|D|m+1 · rm · 2p(k)) = O (|D|2m+1 · 2p(k)), which is |D|2m+1 · 2p′(k) for some polynomial p′ :N →N .
102



P. Barceló, A. Baumgartner, V. Dalmau et al. Journal of Computer and System Sciences 119 (2021) 97–124
Finally, we need to determine whether (�D(e), λ(e))e∈η(D) is indeed linearly classifiable. Recall that linear separability 
can be solved in polynomial time, by a reduction to the problem of finding a solution to a linear program (which is known 
to be tractable by a landmark result in combinatorial optimization [27,24]). This procedure also finds a linear classifier 
�w̄ that separates the training collection (�D (e), λ(e))e∈η(D) in case it exists. Thus, checking if (D, λ) is CQ[m]-separable, 
and, if so, computing a pair (�, �w̄ ) that CQ[m]-separates (D, λ), can be done in time |D|c · 2s(k) for a constant c ≥ 1 and 
polynomial s :N →N . This concludes the proof. �

From Proposition 4.1, the problem CQ[m]-Sep can be solved in time |D|O (1) · f (k), for a computable function f :N →N , 
where k is the maximal arity of a relation symbol mentioned in D . In the terminology of parameterized complexity, this 
means that the problem is Fixed-Parameter Tractable (FPT), with the parameter being the maximum arity k of a relation 
symbol in the schema (or simply the arity of the schema from now on). Summing up:

Corollary 4.2. For all fixed m ≥ 1, the problem CQ[m]-Sep is FPT with the parameter being the arity of the schema.

The restriction on the number of atoms allowed in statistics is necessary for obtaining the positive result stated in 
Corollary 4.2. In fact, Theorem 3.1 states that CQ-Sep is coNP-hard even if the schema is of a fixed arity; hence, the problem 
cannot be FPT if the parameter is the arity of the schema (assuming PTIME = NP).

Recall from Theorem 3.1 that CQ-Sep, and hence also CQ[m]-Sep, can be solved in coNP. It remains an interesting open 
problem whether CQ[m]-Sep is NP-hard for some fixed m ≥ 1, or can be solved in polynomial time. Nevertheless, there 
is a way to restrict the problem in order to ensure tractability: bounding the arity of the schema by a fixed constant. As 
explained in the proof of Proposition 4.1, the implication of this restriction is that the number of different feature CQs that 
one can form in this case (up to equivalence) is polynomial in the size of the input. Still, we can do better than fixing the 
arity, since the argument remains valid if we assume only that the maximal number of occurrences per variable in the feature 
CQs is bounded by a constant. Formally, for fixed m, p ≥ 1 let CQ[m, p] be the class of CQs with at most m atoms and in 
which each variable occurs at most p times. Then:

Proposition 4.3. CQ[m, p]-Sep can be solved in polynomial time, for every fixed m and p.

Importantly, the results stated in Corollary 4.2 and Proposition 4.3 are obtained via a constructive proof that allows to 
perform the following tasks with the same tractability guarantees, if the input (D, λ) is indeed CQ[m]-separable.

• Feature generation: Construct a pair (�, �w̄) that CQ[m]-separates the training database (D, λ).
• Classification: Apply (�, �w̄) to a given evaluation database for performing the actual classification.

As shown next, things become more complicated if, instead of the number of atoms, we bound the generalized hypertree-
width of feature queries.

5. Bounded generalized hypertree-width

In this section, we investigate the complexity implications of regularizing statistics by bounding the generalized 
hypertree-width of the feature CQs.

5.1. Background

Hypertree-width We start by introducing the classes of CQs of bounded generalized hypertree-width [16] (also known as 
coverwidth [11]). We adopt the definition of Chen and Dalmau [11], which better suits non-Boolean queries. A tree decom-
position of a CQ q = ∃ ȳ

∧
1≤i≤n Ri(x̄i) is a pair (T , χ), where T is a tree and χ is a mapping that assigns a subset of the 

existentially quantified variables in ȳ to each node t ∈ T , such that:

1. For all 1 ≤ i ≤ m, the variables in x̄i ∩ ȳ are contained in χ(t), for some t ∈ T .
2. For all variables y in ȳ, the node set {t ∈ T | y ∈ χ(t)} induces a connected subtree of T .

The width of node t in (T , χ) is the minimal size of an I ⊆ {1, . . . , m} such that 
⋃

i∈I x̄i covers χ(t). The width of (T , χ) is 
the maximal width of the nodes of T . The generalized hypertree-width (ghw for short) of q is the minimum width of its tree 
decompositions.

For a fixed k, we denote by GHW(k) the class of CQs of ghw at most k. In contrast to the case of general CQs, the 
evaluation problem for CQs in GHW(k) can be solved in polynomial time [15]. Notice that each CQ in CQ[k] is also in 
GHW(k), but not viceversa.
103



P. Barceló, A. Baumgartner, V. Dalmau et al. Journal of Computer and System Sciences 119 (2021) 97–124
q:

Pa

PbPb

q′:

Pa

Pb Pb

Fig. 2. The CQs q and q′ from Example 5.1.

The existential cover game There is a link between the evaluation of CQs in GHW(k) and a version of the pebble game, 
known as existential cover game [11], that we recall below. The existential k-cover game (for k a natural number) is played 
by Spoiler and Duplicator on pairs (D, ̄a) and (D ′, ̄b), where D and D ′ are databases and ā and b̄ are n-ary (n ≥ 0) tuples 
over dom(D) and dom(D ′), respectively. In each round of the game, Spoiler places (resp., removes) a pebble on (resp., from) 
an element of dom(D), and Duplicator responds by placing (resp., removing) its corresponding pebble on an element of 
(resp., from) dom(D ′). The number of pebbles is not bounded, but Spoiler is constrained as follows: At any round p of the 
game, if c1, . . . , c� (� ≤ p) are the elements marked by Spoiler’s pebbles in D , there must be a set of at most k facts in D
that contain all such elements (this is why the game is called k-cover, as pebbled elements are covered by no more than k
facts).

Duplicator wins if she has a winning strategy, that is, she can indefinitely continue playing the game in such a way that 
after each round, if c1, . . . , c� are the elements that are marked by Spoiler’s pebbles in D and d1, . . . , d� are the elements 
marked by the corresponding pebbles of Duplicator in D ′ , then(

(c1, . . . , c�, ā), (d1, . . . ,d�, b̄)
)

is a partial homomorphism from D to D ′ . That is, for every atom R(c̄) ∈ D , where each element c of c̄ appears in 
(c1, . . . , c�, ̄a), it is the case that R(d̄) ∈ D ′ , where d̄ is the tuple obtained from c̄ by replacing each element c of c̄ by 
its corresponding element d in (d1, . . . , d�, ̄b). We write (D, ̄a) →k (D ′, ̄b) if Duplicator wins.

Notice that →k “approximates” → as follows:

→ � · · · � →k+1 � →k � · · · � →1 (k ≥ 1).

Example 5.1. Fig. 2 shows two CQs q and q′ . The schema consists of binary relation symbols Pa and Pb . Nodes represent 
variables, and an edge labeled Pa between x and y represents the presence of atoms Pa(x, y) and Pa(y, x). (Same for Pb). 
All variables are existentially quantified. Clearly, q → q′ . In addition, it can easily be established that q →1 q′ . �

The approximations provided by →k over → are convenient complexity-wise: Checking whether (D, ̄a) → (D ′, ̄b) is NP-
complete, but (D, ̄a) →k (D ′, ̄b) can be solved efficiently (as long as k is fixed) by applying standard greatest fixed-point 
algorithms based on local consistency notions developed in the area of constraint satisfaction.

Proposition 5.1. [11] For all fixed k ≥ 1, whether (D, ̄a) →k (D ′, ̄b) can be determined in polynomial time.

Moreover, there is a close connection between →k and the evaluation of CQs in GHW(k).

Proposition 5.2. [11] (D, ̄a) →k (D ′, ̄b) if and only if for every CQ q(x̄) in GHW(k) we have that

(q, x̄) → (D, ā) =⇒ (q, x̄) → (D ′, b̄) .

In particular, for all CQs q(x̄) in GHW(k), databases D, and tuples ā, it holds that ā ∈ q(D) if and only if (q, ̄x) →k (D, ̄a).

5.2. Separability

In contrast to the case of arbitrary CQs, the separability problem for the classes of CQs of bounded ghw is tractable. We 
prove this result by applying techniques based on the existential cover game.

Theorem 5.3. For all fixed k ≥ 1, the problem GHW(k)-Sep is solvable in polynomial time.

The proof is based on the following lemma which corresponds to the relativization of Lemma 3.2 from CQ to GHW(k).

Lemma 5.4. The following statements are equivalent for all training databases (D, λ).

1. (D, λ) is GHW(k)-separable.
104



P. Barceló, A. Baumgartner, V. Dalmau et al. Journal of Computer and System Sciences 119 (2021) 97–124
2. There are no entities e, e′ ∈ η(D) such that λ(e) = λ(e′), and yet e ∈ q(D) ⇔ e′ ∈ q(D) for all q(x) ∈ GHW(k).

Proof. The fact that 1 → 2 is straightforward. We now prove that 2 → 1. For each e ∈ η(D), we define a query

qe(x) :=
∧

e′∈η(D)

qe′
e (x), (2)

where qe′
e (x) = q(x) is an arbitrary CQ in GHW(k) such that e ∈ q(D) and e′ /∈ q(D)—if such q(x) exists at all—and it is η(x)

otherwise. Then qe(x) can be reformulated as an equivalent CQ in GHW(k). This is because each conjunct in qe(x) is in 
GHW(k), and GHW(k) is closed under taking conjunctions (see, e.g., [6]).

We denote by � the binary relation over η(D) such that e � e′ iff e′ ∈ qe(D). It is easy to see that � is reflexive and 
transitive, that is, it is a preorder. Recall that an equivalence class of � over η(D) is an equivalence class of the equivalence 
relation “e � e′ and e′ � e”. We overload notation and write E � F , for equivalence classes E, F over η(D) defined by �, iff 
there are elements e ∈ E and f ∈ F such that e � f . Since � is a partial order, there is a topological sort of such equivalence 
classes with respect to �. Let E1, E2, . . . , Em be one such a topological sort.

For each Ei , we select an arbitrary entity ei ∈ Ei . It is not hard to see then that the following hold for each i ∈ {1, . . . , m}
and entity e ∈ Ei :

• e ∈ qei (D), and
• e /∈ qe j (D) for each j ∈ {1, . . . , m} with i < j.

It follows from Kimelfeld and Ré [28] that these properties imply that the statistics � = (qe1 , . . . , qem ) separates (D, λ). 
Since each qei can be reformulated as an equivalent CQ in GHW(k), we conclude that (D, λ) is GHW(k)-separable. �

Proposition 5.2 establishes that the condition of Lemma 5.4, stating that for all q(x) ∈ GHW(k) it is the case that e ∈
q(D) ⇔ e′ ∈ q(D), is equivalent to saying that

(D, e) →k (D, e′) and (D, e′) →k (D, e) .

Hence, the following test checks for GHW(k)-separability.

Test: GHW(k)-separability
Input: A training database (D, λ)

Condition: Accept if (D, e) →k (D, e′) or (D, e′) →k (D, e), for all e, e′ ∈ η(D) with λ(e) = λ(e′)

Proposition 5.5. A training database (D, λ) is GHW(k)-separable iff the GHW(k)-separability test accepts (D, λ).

From Proposition 5.1, the GHW(k)-separability test can be performed in polynomial time, which yields Theorem 5.3.
While Theorem 5.3 establishes the tractability of GHW(k)-Sep, the proof is not constructive, that is, it does not show how 

to efficiently construct a statistic that realizes GHW(k)-separability. As shown next, this is not coincidental: separability and 
feature generation behave differently for GHW(k).

5.3. Feature generation

We now look at the problem of generating a statistics that GHW(k)-separates a training database (D, λ). It follows from 
Chen and Dalmau [11] that there is an exponential time algorithm that takes as input an entity e ∈ η(D) and constructs a 
CQ q′

e(x) in GHW(k) that is equivalent to qe(x), where qe(x) is as defined in Equation (2) in the proof of Lemma 5.4. On the 
other hand, Lemma 5.4 states that if (D, λ) is GHW(k)-separable, then it is separable by a statistic that contains only queries 
of the form q′

e(x) for e ∈ η(D). Therefore, if (D, λ) is GHW(k)-separable, then there exists a statistic � with polynomially 
many features, each of which is of at most exponential size, such that � GHW(k)-separates (D, λ). This statistic � can be 
constructed in exponential time from (D, λ). Summing up:

Proposition 5.6. For all fixed k, there is an exponential-time algorithm that determines whether a given training database (D, λ) is 
GHW(k)-separable, and if so, generates a statistic � that:

• GHW(k)-separates (D, λ);
• has a dimension linear in the number of entities in η(D);
• consists of CQs of size at most exponential in that of D.

As it turns out, the size of statistic � in Proposition 5.6 is essentially optimal.
105



P. Barceló, A. Baumgartner, V. Dalmau et al. Journal of Computer and System Sciences 119 (2021) 97–124
Theorem 5.7. Let k ≥ 1 be fixed. For all n, m ≥ 1 there is a training database (D, λ) with |D| = O (n + m) such that:

• (D, λ) is GHW(k)-separable.
• For all statistics � = (q1, . . . , qp) that linearly separate (D, λ), it is the case that (a) p ≥ m, and (b) at least one of the qis, for 

i ∈ {1, . . . , p}, has �(2n) atoms.

Before proving the theorem, we introduce an important result. Recall from Proposition 5.2 that, for every k ≥ 1, if 
(D, ̄a) →k (D ′, ̄b), where D and D ′ are databases and ā and b̄ are n-ary tuples over dom(D) and dom(D ′), respectively, 
then there is a CQ q(x̄) ∈ GHW(k) such that D |= q(ā) but D ′ |= q(b̄). In the case when D = D ′ , we call a CQ q(x̄) satisfying 
such conditions a GHW(k)-separator for (D, ̄a, ̄b). The following result states that GHW(k)-separators are, in some cases, 
necessarily of exponential size. Moreover, this holds even when ā and b̄ consist of single elements.

Proposition 5.8 (Implicit in [30]). Fix k ≥ 1. There is a family of databases Dn and elements an, bn ∈ dom(Dn), for n ≥ 0, such that

• (Dn, an) →k (Dn, bn),
• the size of Dn is polynomial in n, and
• each GHW(k)-separator for (Dn, an, bn) has �(2n) atoms.

We would like to remark that while this result is not explicitly stated in [30], its proof can be almost directly extracted 
from the proof of the main result in such a paper; namely, that checking, for a fixed k ≥ 1, whether (D, a) →k (Db) is a
PTIME-complete problem.

We now prove Theorem 5.7. The intuition is as follows. For each n, m ≥ 1, we start by taking the tuple (Dn, an, bn)

as given in the statement of Proposition 5.8. We then extend Dn with a distinguished set of m − 1 constants interpreted 
in a very specific way over the schema. The resulting database is denoted D∗

n . We need to prove two things. First, that 
each statistics � formed by CQs in GHW(k) that linearly separates (D∗

n, λ) must have at least m features. Second, that at 
least one CQ in � must be of exponential size in n. The first part follows more or less straightforwardly from the way in 
which distinguished constants are interpreted over the schema: the statistics � needs to have a different feature CQ for 
each distinguished constant, as otherwise it would not be able to separate the given entities. One more feature CQ is then 
needed to separate an from bn . For the second part, we show that if � separates (D∗

n, λ) then there must be at least one 
feature CQ from GHW(k) in � that provides a GHW(k)-separator for (Dn, an, bn). By assumption, this feature CQ must be of 
at least exponential size in n.

Proof of Theorem 5.7. Fix n, m ≥ 1, and let (Dn, {an}, {bn}) be as given in the statement of Proposition 5.8. By assumption, 
there is a GHW(k)-separator qn(x) for (Dn, {an}, {bn}).

Without loss of generality, we can assume that (Dn, bn) → (Dn, an); if not, we build a new database D ′
n that is obtained 

by taking two disjoint copies D1
n and D2

n of Dn , and then fusing the elements that correspond to an and bn in D1
n and 

D2
n , respectively, into a single element a′

n . It is clear then that if b′
n is the element that corresponds to bn in D1

n , then 
(D ′

n, b′
n) → (D ′

n, a′
n). In addition, if (Dn, an, bn) has a GHW(k)-separator then so does (D ′

n, {a′
n}, {b′

n}). Finally, as we observe 
next, for each GHW(k)-separator q′(x) of (D ′

n, a′
n, b′

n) there is a GHW(k)-separator q(x) of (Dn, {an}, {bn}) such that the atoms 
of q(x) are a subset of the atoms in q′(x). This implies that each GHW(k)-separator for (D ′

n, a′
n, b′

n) must also have �(2n)

atoms.

Claim 1. For each GHW(k)-separator q′(x) of (D ′
n, a′

n, b′
n) there is a GHW(k)-separator q(x) of (Dn, an, bn) such that the atoms of 

q(x) are a subset of the atoms in q′(x).

Proof. Consider an arbitrary GHW(k)-separator q′(x) for (D ′
n, a′

n, b′
n). Then there is homomorphism h′ from q′ to D ′

n such 
that h′(x) = a′

n , but no homomorphism g′ from q′ to D ′
n such that g′(x) = b′

n . By definition, h′ must satisfy two properties.

• At least some variable y = x from q′ satisfies that h′(y) ∈ D1
n (otherwise, there is also a homomorphism g′ from q′ to 

D ′
n such that g′(x) = b′

n , which is a contradiction).
• Each atom R(z̄) in q′ is mapped to D1

n or D2
n by h′ (since Dn

1 and Dn
2 only share the element a′

n).

Let q1 and q2 be the queries that are obtained by taking precisely those atoms in q′ that are mapped by h′ to D1
n and 

D2
n , respectively. Notice then that there is a homomorphism g′ from q2 to D ′

n such that g′(x) = b′
n (by simply mimicking 

the result of h′ in D1
n). In addition, q1(x) satisfies the following properties.

• First, q1 ∈ GHW(k). This follows by taking a tree decomposition (T , χ ′) of q′(x) whose width is k, turning each bag 
χ ′(t), for t ∈ T , into a new bag χ(t) by removing all the variables not in q1, and then noticing that for any set A of 
atoms of q′ that covers a bag χ ′(t), for t ∈ T , the restriction of A to the atoms that only mention variables in q1 also 
covers χ(t).
106



P. Barceló, A. Baumgartner, V. Dalmau et al. Journal of Computer and System Sciences 119 (2021) 97–124
• Second, q1(x) is a GHW(k)-separator for (Dn, an, bn). In fact, we know that h′ is a homomorphism from q1 to D1
n

such that h′(x) = a′
n . Therefore, there is a homomorphism ha from q1 to Dn such that ha(x) = an . In addition, b /∈

q(Dn). Assume otherwise, i.e., there is a homomorphism hb from q1 to Dn such that hb(x) = bn . Then there is also 
a homomorphism g from q1 to D ′

n such that g(x) = b′
n . It follows that the mapping f from q′ to D ′

n defined as 
f (y) = g(y), if y belongs to q1, and f (y) = g′(y), otherwise, is a homomorphism from q′ to D ′

n such that f (x) = b′
n . 

This is a contradiction.

This finishes the proof of the claim as we can define q(x) to be q1(x). �
We now continue with the proof of Theorem 5.7. Let us define a database D∗

n which extends Dn with fresh constants 
b′, a′

1, ..., a
′
m−1 and fresh facts

κ1(a
′
1), . . . , κm−1(a

′
m−1),

assuming that the κi s are unary relation symbols not in the schema of Dn . We define η(D∗
n) := dom(D∗

n), and the labeling 
λ : η(D∗

n) → {1, −1} so that λ(e) = 1 if e ∈ qn(Dn) ∪ {a′
1, ..., a

′
m−1} and λ(e) = −1 otherwise. Notice then that λ(an) = 1 and 

λ(bn) = 1.
We prove the following claim.

Claim 2. It is the case that (D∗
n, λ) is GHW(k)-separable by a statistics with m features, but not by a statistics with m − 1 features.

Proof. Consider the statistic � = (κ1, . . . , κm−1, qn), which is formed by queries in GHW(k). We claim that (�, �w̄ ) sep-
arates (D∗

n, λ), where w̄ = (1 − m, 1, . . . , 1). In fact, notice by definition that for each e ∈ η(D∗
n) = dom(D∗

n) it is the case 
that �w̄(�D∗

n (e)) = 1 iff e belongs to the evaluation of at least some CQ in � over D∗
n . We prove that the latter holds iff 

λ(e) = 1.
Let us first consider the elements e with λ(e) = 1. If e ∈ qn(D∗

n) then this is trivial. In addition, if e = a′
i , for i ∈ {1, . . . , m −

1}, then e ∈ κi(D∗
m). Consider now an arbitrary element e with λ(e) = −1. Then by definition e /∈ κi(D∗

n), for each i ∈
{1, . . . , m − 1}. Also, e /∈ qn(D∗

n) as we prove next. Assume, for the sake of contradiction, that this is not the case.

• Suppose first that e ∈ dom(Dn). Then e ∈ qn(Dn). This is because the restriction of D∗
n to the symbols in the schema 

of Dn homomorphically maps to Dn , and, thus, if e ∈ qn(D∗
n) we would have that e ∈ qn(Dn). But then λ(e) = 1 by 

definition, which is a contradiction.
• Suppose now that e = b′ . Since the only atom that mentions b′ in D∗

n is η(b′), and, in addition, η(D∗
n) = dom(D∗

n), we 
would have that any element in D∗

n belongs to q∗
n(D∗

n); in particular, bn . But then bn ∈ qn(Dn) from the previous item, 
which is a contradiction as λ(bn) = −1.

We prove next that (D∗
n, λ) is not GHW(k)-separable by a statistics with m − 1 features. Assume to the contrary that 

such a statistics � = (q1, . . . , qm−1) exists. For each i ∈ {1, . . . , m − 1} it is the case that λ(a′
i) = λ(b′), and, therefore,

�w̄(�D∗
n (a′

i)) = �w̄(�D∗
n (b′)).

Hence, for each i ∈ {1, . . . , m − 1} there is at least some q(x) in � such that q(D∗
n) ∩ {b′, a′

i} is either {b′} or {a′
i}. But 

q(D∗
n) ∩ {b′, a′

i} = {b′} is not possible, as otherwise we would have q(D∗
n) = dom(D∗

n) by a previous observation. Hence for 
each i ∈ {1, . . . , m − 1} there exists a q(x) in � such that q(D∗

n) ∩ {b′, a′
i} = {a′

i}. It is easy to see then that q(x) must be 
equivalent to κi(x), and hence q(D∗

n) = {a′
i}. In fact, if q(x) selects a′

i then it can only be equivalent to κi(x) or η(x). But the 
latter is not possible as otherwise q(D∗

n) = dom(D∗
n).

Hence, � is equivalent to the statistic (κ1, . . . , κm−1). For each κi we have that an, bn /∈ κi(D∗
n). But then

�w̄(�D∗
n (an)) = �w̄(�D∗

n (bn)),

thus contradicting the fact that � separates (D∗
n, λ) as λ(an) = 1 and λ(bn) = −1. This finishes the proof of the claim. �

Assume then that (D∗
n, λ) is GHW(k)-separable by a statistics � with p ≥ m features. It remains to show that at least one 

feature query in � has to have at least �(2n) atoms. Since (Dn, bn) → (Dn, an), it is also the case that (D∗
n, bn) → (D∗

n, an). 
Hence, there must be some query q∗

n(x) in � such that an ∈ q∗
n(D∗

n) but bn /∈ q∗
n(D∗

n); otherwise � could not separate the 
element an with λ(an) = 1 from the element bn with λ(bn) = −1. We can then establish the following.

Claim 3. If we remove from q∗
n(x) all atoms of the form η(z) and κi(z), for i ∈ {1, . . . , m − 1}, we obtain a GHW(k)-separator for 

(Dn, an, bn).

Proof. Since η(D∗
n) = dom(D∗

n), an atom η(z) is equal to the trivial condition z ∈ dom(D∗
n) and can be removed. Let us 

assume then that
107



P. Barceló, A. Baumgartner, V. Dalmau et al. Journal of Computer and System Sciences 119 (2021) 97–124
q∗
n(x) := ∃ ȳ

(
κi1(z1) ∧ · · · ∧ κip (zp) ∧ R1(x̄1) ∧ · · · ∧ Rt(x̄t)

)
,

where 1 ≤ i1, . . . , ip ≤ m − 1 and the R�s come from the schema of Dn . We know that an ∈ q∗
n(D∗

n); hence x = z j , for each 
j ∈ {1, . . . , p}. Thus,

q∗
n(x) := ∃ ȳ0∃z1, . . . , zm

(
κi1(z1) ∧ · · · ∧ κip (zp) ∧ R1(x̄1) ∧ · · · ∧ Rt(x̄t)

)
,

where ȳ0 is ȳ without z1, . . . , zp . By definition, for each j ∈ {1, . . . , p}, the element a′
i j

only appears twice in D∗
n; namely, 

in the facts κi j (a
′
i j
) and η(a′

i j
). Therefore, zi j cannot appear in any of the atoms R�(x̄�), for 1 ≤ � ≤ t . This means that 

we can safely remove each atom of the form κi j (zi j ) from q∗
n , as it is expressing a trivial condition; i.e., that there is an 

element in the interpretation of κi j over D∗
n . The resulting query q(x) satisfies that q(D∗

n) = q∗
n(D∗

n), and, therefore, q(x) is a 
GHW(k)-separator for (D∗

n, a, b). �
Therefore, the q∗

n(x)s must have �(2n) atoms, as otherwise we would have a family of GHW(k)-separators for the tuples 
(Dn, an, bn) that neither has �(2n) atoms. This is a contradiction. �

We are thus faced with an apparently contradictory situation: while we can efficiently check for the existence of a 
statistic that GHW(k)-separates the input (D, λ), materializing such a statistic might be infeasible. Interestingly, for classifying
unseen entities, this statistic does not need to be materialized—we can perform this task efficiently by applying techniques 
based on the existential cover game. Next, we formalize this statement and prove it.

5.4. Classification

In this section, we discuss the problem of classifying an evaluation database based on a training database, without 
necessarily materializing a statistic. Formally, in this problem we are given a training database (D, λ) and an evaluation 
database D ′ , which is a database over the same schema as D . The goal is to classify the entities of D ′ according to some
statistic and linear classifier that separate D .

Problem: L-Cls

Input: An L-separable training database (D, λ) and an evaluation database D ′
Output: A labeling λ′ of D ′ such that there is (�,�w̄) that L-separates both (D, λ) and (D ′, λ′)

We prove the following:

Theorem 5.9. GHW(k)-Cls can be solved in polynomial time for all fixed k ≥ 1.

Before proving this result we provide a high-level idea of the proof. Consider an input given by (D, λ) and D ′ . We 
make use of the CQs qe(x), for e ∈ η(D), as well as several concepts defined in the proof of Lemma 5.4. It can be shown 
that the training database (D, λ) is GHW(k)-separable, then it is GHW(k)-separable by a statistic � = (qe1 (x), . . . , qem (x)), 
where ei ∈ Ei for an arbitrary topological sort E1, . . . , Em of the equivalence classes defined by �. We can then construct in 
polynomial time a linear classifier �w̄ and a labeling λ′ of η(D ′) such that (�, �w̄ ) GHW(k)-separates (D, λ) and (D ′, λ′). 
The crucial observation is that this step does not require building the statistic �. To prove this we use known properties of 
the existential cover game.

Proof of Theorem 5.9. Consider an input for GHW(k)-Cls that consists of a GHW(k)-separable training database (D, λ) over 
an entity schema σ and an evaluation database D ′ over σ . We need to construct a labeling λ′ of η(D ′) such that there 
exists (�, �w̄) that GHW(k)-separates both (D, λ) and (D ′, λ′).

Let us consider again the CQs qe(x), for e ∈ η(D), defined in the proof of Lemma 5.4. From the definition of qe(x) it 
follows that for all e′ ∈ η(D) we have that e′ ∈ qe(D) iff for all CQs q(x) ∈ GHW(k) it is the case that e ∈ q(D) implies 
e′ ∈ q(D). In turn, from Proposition 5.2 we get that the latter holds iff (D, e) →k (D, e′). Therefore, the problem of testing 
whether e′ ∈ qe(D), given e, e′ ∈ η(D), can be solved in polynomial time due to Proposition 5.1.

Let E1, . . . , Em be an arbitrary topological sort of the equivalence classes defined by � over η(D). From the proof of 
Lemma 5.4 it follows that the training database (D, λ) is GHW(k)-separable by any statistic � = (qe1 (x), . . . , qem (x)) such 
that ei ∈ Ei .

The topological sort E1, . . . , Em and, thus, also the elements e1, . . . , em , can be constructed in polynomial time from 
(D, λ). This is due to the fact that the relation � over η(D) can be constructed efficiently (as we have already mentioned 
that e � e′ iff e′ ∈ qe(D) iff (D, e) →k (D, e′), which is decidable in polynomial time). In addition, it follows from [28]
that one can construct in polynomial time a linear classifier �w̄ such that (�, �w̄ ) separates (D, λ), without actually 
constructing �, but rather just using �.
108



P. Barceló, A. Baumgartner, V. Dalmau et al. Journal of Computer and System Sciences 119 (2021) 97–124
Algorithm 1 Classification algorithm GHW(k)-Cls.
Require: An GHW(k)-separable training database (D, λ) and an evaluation database D ′

1: ([e1], . . . , [em]) := topological sort of the equivalence classes defined by →k over η(D)

2: �w̄ = (w0, . . . , wm) := linear classifier such that (�, �w̄ ) separates (D, λ), where � = (qe1 (x), . . . , qem (x)) � It can be computed efficiently without 
computing �

3: for each f ∈ η(D ′) and i ∈ {1, . . . , m} do
4: if (D, ei) →k (D ′, f ) then
5: 1qei (D ′)( f ) = 1
6: else
7: 1qei (D ′)( f ) = −1
8: end if
9: end for

10: for each f ∈ η(D ′) do
11: if

∑
1≤i≤m wi · 1qei (D ′)( f ) ≥ w0 then

12: λ′( f ) = 1
13: else
14: λ′( f ) = −1
15: end if
16: end for
17: return λ′ : η(D ′) → {1, −1}

We define a labeling λ′ of η(D ′) such that for each f ∈ η′(D) it holds that λ′( f ) = �w̄(�D ′
( f )). Clearly, (�, �w̄)

GHW(k)-separates (D, λ) and (D ′, λ′). We need to show that λ′ can be constructed in polynomial time, or equivalently, that 
given f ∈ η(D ′) we can compute λ′( f ) = �w̄(�D ′

( f )) in polynomial time. By definition,

�w̄(�D ′
( f )) = 1 ⇔

∑
1≤i≤m

wi · 1qei (D ′)( f ) ≥ w0,

assuming that w̄ = (w0, . . . , wm). The latter can be checked in polynomial time, since computing 1qei (D ′)( f ) boils down to 
checking (D, ei) →k (D ′, f ). The pseudo-code of the procedure is shown in Algorithm 1. �

In summary, in this section we have established that it takes polynomial time to decide whether a given training database 
(D, λ) is GHW(k)-separable (Theorem 5.3). At the same time, it may be infeasible to actually materialize the separating 
statistic, since it might be too large (Theorem 5.7). Then again, to classify entities of a given evaluation database D ′ , we do 
not need to materialize such a statistic, and in fact, this classification can be carried out in polynomial time (Theorem 5.9).

6. Bounding the dimension

While the separability and classification problems become tractable if we restrict to statistics formed by CQs in GHW(k), 
for each fixed k ≥ 1, there is one aspect of such statistics that complicates its applicability: as stated in Theorem 5.7, the 
number of feature queries required to separate a training database (D, λ) might depend on the number of elements in 
dom(D). This problem is not exclusive to the class GHW(k); in fact, a similar negative result can be proved for statistics 
based on the general class of CQs.

To address this issue, we study the separability problem for the restricted class of statistics that allow a bounded number 
of features only. Recall that this problem is denoted L-Sep[∗], for L a class of CQs. The input consists of a training database 
(D, λ) and an integer � ≥ 1, and the task is to decide if there is a statistic formed by at most � feature queries in L that 
separates (D, λ). If, in addition, the number � of features is fixed, we denote the problem by L-Sep[�].

As we show next, the study of L-Sep[∗] and L-Sep[�] is directly related to query-by-example problem (QBE). This allows 
us to apply the wide arsenal of results and tools for QBE [44,9,6] in order to understand the complexity of L-Sep[∗]. We 
first introduce QBE.

6.1. The query-by-example problem

We start by defining the notion of GHW(k)-explanation for a query language L.

Definition 6.1 (L-explanations). Let D be a database, and assume that S+ and S− are relations over D of positive and negative
examples, respectively. An L-explanation for (D, S+, S−) is a query q(x̄) in L such that S+ ⊆ q(D) and q(D) ∩ S− = ∅.

Notice that when S+ and S− are singletons, then an L-explanation for (D, S+, S−) is an L-explanation for (D, S+, S−), 
where L-explanations are the natural generalization of the notion defined before Proposition 5.8 to any query language L.

The QBE problem for the class L is then defined as follows.
109



P. Barceló, A. Baumgartner, V. Dalmau et al. Journal of Computer and System Sciences 119 (2021) 97–124
Problem: L-QBE

Input: A database D and relations S+ and S− over D
Question: Is there an L-explanation for (D, S+, S−)?

The following is known regarding the complexity of QBE:

Theorem 6.1. [44,9,6] The following statements hold:

• CQ-QBE is coNEXPTIME-complete.
• GHW(k)-QBE is EXPTIME-complete, for each k ≥ 1.

The lower bounds continue to hold even if the schema is fixed and S+, S− are nonempty unary relations such that S− = dom(D) \ S+ .

6.2. Separability for bounded dimension

One of the crucial properties used in the study of separability is that a training database (D, λ) is CQ-separable iff there 
are no entities e, e′ ∈ η(D) such that λ(e) = λ(e′), yet e and e′ are “indistinguishable” by CQs [28]. As the next example 
shows, this does not hold under the current restriction on the dimension of the statistic.

Example 6.1. Let σ be an entity schema with two unary symbols R and S and the entity symbol η. Consider the database

D = {R(a), S(a), S(c),η(a),η(b),η(c)}
over σ . We define a labeling λ : η(D) → {1, −1} such that

λ(a) = λ(b) = 1 and λ(c) = −1.

It is not hard to see that (D, λ) is not CQ-separable by a statistic with one feature. This is in spite of the fact that a can 
be distinguished from c by the CQ R(x), and b can be distinguished from c by the CQ S(x). On the other hand, (D, λ) is
CQ-separable by a statistic with two features; namely, � = (R(x), S(x)). �

On the other hand, we can design a simple “guess-and-check” algorithm that solves L-Sep[∗], for an arbitrary class L of 
CQs, if we know how to solve L-QBE.

Test: (L, �)-separability
Input: A training database (D, λ)

Condition: Accept if for each e ∈ η(D) there is a vector κ̄e ∈ {1, −1}� such that

• (κ̄e, λ(e))e∈η(D) is linearly separable; and
• for all j ∈ {1, . . . , �} an L-explanation for (D, S+

j , S−
j ) exists, where S+

j = {e | κ̄e[ j] = 1}, 
S−

j = {e | κ̄e[ j] = −1}, and κ̄e[ j] is the j-th component of κ̄e[ j]

It is easy to see that the following holds for every class L of CQs.

Lemma 6.2. A training database is L-separable by a statistic with at most � features if and only if the (L, �)-separability test accepts 
(D, λ).

Proof. Assume that (D, λ) is L-separable by a statistic � with l features. Then κ̄e can be chosen to be �D (e), for each 
e ∈ η(D).

On the other hand, since the (L, �)-separability test accepts (D, λ), there is an L-explanation q j(x) for (D, S+
j , S−

j ), 
where S+

j = {e | κ̄e[ j] = 1} and S−
j = {e | κ̄e[ j] = −1}, for all j ∈ {1, . . . , �}. Such L-explanations form a statistic � =

(q1(x), . . . , q�(x)). From the linear separability of (κ̄e, λ(e))e∈η(D) it follows then that there is a linear classifier �w̄ such 
that �w̄(κ̄e) = λ(e), for all e ∈ η(D). �

It is not hard to see, by applying Theorem 6.1, that for every � ≥ 1 the (CQ, �)-separability test can be carried out 
in coNEXPTIME, while for every fixed k ≥ 1, the (GHW(k), �)-separability test can be carried out in EXPTIME. Then, from 
Lemma 6.2 we obtain an upper bound for the complexity of CQ-Sep[∗] and GHW(k)-Sep[∗], for every k ≥ 1.
110



P. Barceló, A. Baumgartner, V. Dalmau et al. Journal of Computer and System Sciences 119 (2021) 97–124
Algorithm 2 Algorithm for L-Sep[∗].
Require: A training database (D, λ) and an integer � ∈N
1: for each e ∈ η(D) and each vector κ̄e ∈ {1, −1}� do
2: if (κ̄e, λ(e))e∈η(D) is linearly separable and for all j ∈ {1, . . . , �} an L-explanation for (D, S+

j , S−
j ) exists then

3: (D, λ) is L-separable by a statistics with at most � features
4: end if
5: end for
6: (D, λ) is not L-separable by a statistics with at most � features

Proposition 6.3. The following statements hold:

• CQ-Sep[∗] is in coNEXPTIME, while
• GHW(k)-Sep[∗] is in EXPTIME for every k ≥ 1.

Proof. Let L = CQ or L = GHW(k). From Lemma 6.2 we can use Algorithm 2 below for solving L-Sep[∗].
The algorithm can clearly be implemented in exponential time if we are granted access to L-QBE to check whether an L-

explanation for (D, S+
j , S−

j ) exists. We obtain from Theorem 6.1 the L-QBE subroutine can be implemented in coNEXPTIME

for CQ, and in EXPTIME for GHW(k). Since the input (D, S+
j , S−

j ) to L-QBE in Algorithm 2 is of polynomial size, it easily 
follows then that the algorithm can also be implemented in coNEXPTIME for CQ, and in EXPTIME for GHW(k). �

It can be shown that these bounds are optimal by using a general reduction from QBE for any class L of CQs (under a 
mild assumption on L). This reduction actually states something stronger: The lower bound for our problems continue to 
hold even if the number of features � ≥ 1 is fixed.

Lemma 6.4. Let L be a class of CQs such that, for every schema σ , all CQs with only one atom over σ belong to L.
Fix � ≥ 1. Then L-QBE reduces in polynomial time to L-Sep[�], when the former is restricted to inputs (D, S+, S−) such that 

S+, S− are nonempty unary relations with S− = dom(D) \ S+ .

Proof. Let D be a database over some schema σ and assume that S+, S− are nonempty unary relations over D such that 
S− = dom(D) \ S+ . Define an entity schema σ ′ that extends σ with the entity symbol η and � − 1 fresh unary symbols 
κ1, . . . , κ�−1. We construct a database D ′ over σ ′ that extends D with fresh constants c−, c1, ..., c�−1 and facts κ1(c1), . . . ,
κ�−1(c�−1). We define

η(D ′) = S+ ∪ S− ∪ {c−, c1, ..., c�−1} = dom(D ′),
and a labeling λ : η(D ′) → {1, −1} in such a way that λ(e) = 1 if e ∈ S+ ∪ {c1, ..., c�−1} and λ(e) = −1 if e ∈ S− ∪ {c−}.

By construction of D ′ , for any CQ q(x) over σ ′:

1. If c− ∈ q(D ′) then q(D ′) = η(D ′) = dom(D ′).
2. For each i ∈ {1, . . . , � − 1}, if ci ∈ q(D ′) then either q(D ′) = {ci} or q(D ′) = η(D ′) = dom(D ′).

We claim that there is an L-explanation for (D, S+, S−) iff (D ′, λ) is L-separable by a statistics with � features. As-
sume first that q(x) is an L-explanation for (D, S+, S−). Let qi(x) := κi(x), for each 1 ≤ i ≤ � − 1. Then the statistic 
� = (q1, . . . , q�−1, q) belongs to L by hypothesis. Moreover, (�, �w̄) separates (D ′, λ), where w̄ = (1 − l, 1, . . . , 1). The 
proof of this fact mimics the one presented by the first two paragraphs of the proof of Claim 2 in the proof of Theorem 5.7, 
so we omit it.

Assume, on the other hand, that � separates (D ′, λ), where � is a statistic with � features from L. It can be proved then 
that there are at least � − 1 distinct feature queries q1, . . .q�−1 in �, such that for each 1 ≤ j ≤ � − 1 and e ∈ S+ ∪ S− ∪ {c−}
it holds that e /∈ q j(D). The proof of this fact mimics the one presented by the last two paragraphs of the proof of Claim 2, so 
we again omit it. Now, aside from {q1, . . .q�−1}, there is only one more feature query q(x) in �. By our previous observation, 
it must be the case that e ∈ q(D ′) ⇔ e′ /∈ q(D ′) for each e ∈ S+ and e′ ∈ S− ∪ {c−} (as otherwise there would be entities 
e ∈ S+ and e′ ∈ S− ∪ {c−} such that �D ′

(e) = �D ′
(e′), contradicting the fact that � separates (D ′, λ)). By property (1) then, 

it must be the case that e ∈ q(D ′) for each e ∈ S+ , and e′ /∈ q(D ′) for each e′ ∈ S− ∪ {c−}. This means that S+ ⊆ q(D ′) and 
(S− ∪ {c−}) ∩ q(D ′) = ∅.

It remains to show that we can restrict q so that it only contains symbols from σ , i.e., if q′ is the query obtained from q
by removing atoms of the form η(x) and κi(x), then q′(D ′) = q(D ′). The proof of this fact mimics the proof of Claim 3, so 
we omit it. �

In view of Theorem 6.1 and Lemma 6.4, we obtain the following:

Theorem 6.5. It is the case that:
111



P. Barceló, A. Baumgartner, V. Dalmau et al. Journal of Computer and System Sciences 119 (2021) 97–124
• CQ-Sep[∗] is coNEXPTIME-complete.
• GHW(k)-Sep[∗] is EXPTIME-complete, for each k ≥ 1.

The lower bounds continue to hold even for the L-Sep[�] problem, for any fixed � ≥ 1, where L is either CQ or GHW(k).

The lower bounds for CQ-Sep[�] and GHW(k)-Sep[�] established in the previous theorem hold even for a fixed schema. 
This is based on the fact that the lower bounds in Theorem 6.1 hold over a fixed schema, and the reduction from QBE to 
L-Sep[�] provided in the proof of Lemma 6.4 enlarges the schema of the input database for QBE with only � extra unary 
symbols (for fixed � ≥ 1).

6.3. Generating a statistic

Next we establish lower bounds on the number of atoms required by feature queries under the assumption that statistics 
are of a bounded dimension.

Theorem 6.6. Fix � ≥ 1. For every n ≥ 1 there is a training database (D, λ) such that:

1. |D| is polynomial in n,
2. (D, λ) is CQ-separable,
3. for every statistics � = (q1, . . . , q�) that CQ-separates (D, λ), at least one qi has �(2n) atoms.

This holds true if we restrict to the class of statistics formed by CQs in GHW(k), but then, at least one qi has �(22n
) atoms.

Proof. We start with the case of CQ. We use the following result.

Proposition 6.7. [44] There is a family (Dn, S+
n , S−

n )n≥0 of tuples of databases Dn and unary relations S+
n and S−

n over dom(Dn) with 
S−

n = dom(Dn) \ S+
n , such that

• the size of Dn is polynomial in n,
• there is a CQ-explanation for (Dn, S+

n , S−
n ), and

• the smallest such CQ-explanation has �(2n) atoms.

Let (Dn, S+
n , S−

n ) be as defined in the previous proposition. We proceed in the same way than in the proof of Lemma 6.4: 
that is, we construct a database D that extends Dn with fresh constants c−, c1, ..., c�−1 and fresh facts κ1(c1), . . . ,
κ�−1(c�−1), and then define

η(D) = S+
n ∪ S−

n ∪ {c−, c1, ..., c�−1} = dom(D),

and a labeling λ : η(D) → {1, −1} in such a way that λ(e) = 1 if e ∈ S+ ∪ {c1, ..., c�−1} and λ(e) = −1 if e ∈ S− ∪ {c−}.
From the proof of Lemma 6.4, we know that there is an CQ-explanation for (Dn, S+

n , S−
n ) iff (D, λ) is CQ-separable by a 

statistics with exactly � features. It suffices to inspect one direction of the proof of Lemma 6.4, namely, where we assume 
that there is a statistic � with � features in CQ that separates (D, λ). There we show that � must contain a query q(x)
such that, after removing all the atoms of the form κi(xi) from q, it becomes an L-explanation for (Dn, S+

n , S−
n ). Therefore, 

q(x) must have at least �(2n) atoms from Proposition [44].
The proof for GHW(k) is analogous, this time using Proposition 5.8. �
In summary, while bounding the dimension of statistics for general CQs and CQs of bounded ghw is positive from a 

generalization point of view, it also creates new problems that affect the practicality of the approach: (1) The complexity of 
separability becomes prohibitively high, and (2) feature queries can grow exponentially large (or even double exponentially 
if we bound their ghw).

6.4. Bounded dimension and number of feature atoms

Let us go back to the restriction on statistics introduced in Section 4: fixing the number of atoms allowed in feature CQs. 
Recall that this restriction is well-behaved in terms of separability; in fact, the problem becomes FPT, with the parameter 
being the arity of the schema (see Corollary 4.2). In addition, this restriction prevents statistics from growing too large in 
terms of the size of the data. In fact, the number of different CQs in CQ[m]—the class of CQs with at most m atoms—
depends exclusively on m and the underlying schema σ (in particular, in the number r ≥ 1 of relation symbols in σ and 
the maximum arity k ≥ 1 of any such a relation symbol).

Yet, the number of different CQs in CQ[m] is exponential in the combined size of m and k, and thus could still be quite 
large for practical purposes. It might be reasonable then in this case to also bound the number of feature queries allowed 
112



P. Barceló, A. Baumgartner, V. Dalmau et al. Journal of Computer and System Sciences 119 (2021) 97–124
in statistics. This calls for the study of CQ[m]-Sep[∗] and CQ[m]-Sep[�], that is, the separability problem for statistics based 
on the class of CQs with at most m atoms wherein the number of features is bounded or corresponds to the fixed � ≥ 1, 
respectively.

It is not hard to see that CQ[m]-Sep[∗] is FPT, with the parameter being the size of the schema, which is the upper 
bound between the number of symbols in the schema and the maximum arity over all such symbols. The proof of this fact 
is constructive in the sense that it yields a pair (�, �w̄ ) that CQ[m]-separates the input training database (D, λ) where �
has at most � features. Therefore, the classification problem CQ[m]-Cls[∗] is also FPT.

Proposition 6.8. For each m ≥ 1 both CQ[m]-Sep[∗] and CQ[m]-Cls[∗] are FPT, with the parameter being the size of the schema.

Notice the difference with Corollary 4.2, which establishes that CQ[m]-Sep is FPT with the parameter being the arity of 
the schema only. As we show next, the extra requirement on the parameter is necessary (under conventional complexity 
assumptions).

Proposition 6.9. For each m ≥ 1 the problem CQ[m]-Sep[∗] is NP-complete even for fixed arity schemas.

We do not provide a proof of this result now, as we actually prove a stronger result later in item (2) of Proposition 6.12.
Therefore, if for any m ≥ 1 the problem CQ[m]-Sep[∗] is FPT with the parameter being the arity of the schema, then 

P = NP. The reason why CQ[m]-Sep[∗] is NP-hard is because it involves choosing a set of at most � feature CQs in CQ[m], 
for a given � ≥ 1, that separates the input (D, λ). Notice that this establishes an interesting difference with the problem 
CQ[m]-Sep, which we do not know whether it is NP-hard.

Interestingly, the intractability holds even if the number of features is fixed (but the arity of the schema is not).

Theorem 6.10. The problem CQ[m]-Sep[�] is NP-complete, for each fixed � ≥ 1.

We now explain the proof of the NP-hardness in Theorem 6.10. Recall that Lemma 6.4 provides a general way of obtaining 
lower bounds for separability with a fixed number of features via a reduction from a restricted version of QBE. However, 
unlike the case of CQ and GHW(k), for k ≥ 1, for which the complexity of QBE is well understood, the complexity of QBE for 
CQ[m], for m ≥ 1, has not been studied in the literature. We show it to be NP-complete below, even in the restricted setting 
required by Lemma 6.4, which is a surprisingly negative result. In fact, the problem is NP-complete even for the class CQ[1]
of single-atom CQs.

Proposition 6.11. CQ[m]-QBE is NP-complete for each fixed m ≥ 1. The lower bound holds even if the input is of the form (D, S+, S−)

and S+, S− are nonempty unary relations such that S− = dom(D) \ S+ .

The lower bound in Theorem 6.10 follows directly then from Lemma 6.4 and Proposition 6.11. The rest of this section is 
devoted to proving Proposition 6.11.

Proof of Proposition 6.11. Consider the following problem, which we call ConstrainedPartition. Its input I consists of an 
integer n ≥ 1 given in unary, a collection of positive constraints of the form X ⊆ Y1 ∨ X ⊆ Y2 ∨ · · · ∨ X ⊆ Yr , where each Yi

is a partition of [n] = {1, . . . , n}, and a collection of negative constraints X � Z , where Z is a partition of [n]. (We assume 
that partitions of [n] are given as reflexive, symmetric, and transitive binary relations on [n]). The problem consists in 
determining if there is a solution for I , i.e., a partition X of [n] that satisfies all positive and negative constraints specified 
in I .

The strategy behind the proof of Proposition 6.11 is as follows.

(a). We first show that ConstrainedPartition is NP-complete.
(b). We then show that ConstrainedPartition reduces in polynomial time to the restriction of CQ[1]-QBE defined by inputs 

of the form (D, S+, S−), where S+, S− are nonempty unary relations such that S− = dom(D) \ S+ .
(c). We then reduce in polynomial time the latter problem to CQ[m]-QBE, for each m ≥ 1, for inputs as specified in (2).

Proof of (a). We reduce from SAT. Given a CNF formula F , we construct an instance of the ConstrainedPartition problem 
in the following way. Let n be 4|V |, assuming that V = {v1, v2, . . . } are the variables of F . We associate with every literal �
of F a partition X� on [n] as follows.

• If � = vi , then the classes of X� are {4i − 3, 4i}, {4i − 2, 4i − 1}, and another class containing the rest of elements in [n].
• If � = ¬vi , then the classes of X� are {4i − 3, 4i − 1}, {4i − 2, 4i}, and another class containing the rest of elements in 

[n].
113



P. Barceló, A. Baumgartner, V. Dalmau et al. Journal of Computer and System Sciences 119 (2021) 97–124
In addition, we associate with every set A of literals from F the partition X A defined as 
⋂

�∈A X� . Notice that it follows 
directly from the definition that A ⊆ B iff XB ⊆ X A , for every pair A, B of sets of literals.

The instance I of ConstrainedPartition contains then the following constraints.

• For every variable vi in V , we have that I contains the positive constraint (X ⊆ Xvi ) ∨ (X ⊆ X¬vi ).
• For every clause C in F , it is the case that I contains the negative constraint X �

⋂
�∈C X¬� .

Let s be any assignment on the variables of F and define X = X A , where A is the set of all literals satisfied by s. Since 
A ⊆ B iff XB ⊆ X A , it follows that

1. X satisfies all positive constraints in I , and
2. X satisfies all negative constraints in I iff s satisfies F .

Therefore, if F is satisfiable then our instance I of ConstrainedPartition has a solution.
On the other hand, assume that the ConstrainedPartition instance I has some solution X . Let A be a set of literals 

constructed in the following way. For each variable vi , we know that the constraint (X ⊆ Xvi ) ∨ (X ⊆ X¬vi ) is satisfied. 
Then choose a literal �i = vi or �i = ¬vi such that X ⊆ X�i and include �i in A. It follows by (1) that X A satisfies every 
positive constraint in I . Furthermore, since X ⊆ X� for every � ∈ A it follows that X ⊆ X A . Hence, X A is also a solution 
of the instance I due to the form of the negative constraints. Consequently, we can directly obtain from A an assignment 
satisfying F .

Proof of (b). Consider an input I to ConstrainedPartition. We assume without loss of generality that I contains the 
positive constraint X ⊆ [n] × [n]. From I we construct a database D as follows.

• Let C be the collection of all positive constrains in I . For each c ∈ C of the form

X ⊆ Y1 ∨ X ⊆ Y2 ∨ · · · ∨ X ⊆ Yr,

we add to D a tuple of the form R(c, ȳi), for each i ∈ {1, . . . , r}, where ȳi is an n-ary tuple of fresh elements represent-
ing the partition Yi of [n], i.e., if ȳi = (y1, . . . , yn) then for each 1 ≤ j ≤ k ≤ n we have that y j = yk iff ( j, k) ∈ Yi .

• Let D be the collection of all negative constrains in I . For each d ∈ D of the form X � Z , we add to D the tuple R(d, ̄z), 
where as before z̄ is an n-ary tuple of fresh elements representing the partition Z on [n].

Also, we define S+ := {c | c ∈ C} and S− = dom(D) \ S+ . Clearly, (D, S+, S−) can be constructed in polynomial time from I . 
We show next that I has a solution iff (D, S+, S−) has a CQ[1]-explanation.

Let X be a partition of [n] and x̄ a tuple of elements representing X . It follows directly from the definitions that if x0 is 
an element not in x̄ then the evaluation of a query of the form R(x0, ̄x) over D contains a tuple of the form (e, ȳ), where 
e ∈ C ∪D and ȳ is a tuple representing partition Y of [n], iff X ⊆ Y . This directly implies the following claim.

Claim 4. Let x̄ a tuple of elements representing partition X of [n]. Then X is a solution for I iff q(D) = S+ , where q(x0) = ∃x̄R(x0, ̄x).

We now prove the correctness of the construction. Assume first that I has a solution X . By Claim 4, the CQ q(x0) =
∃x̄R(x0, ̄x) is a CQ[1]-explanation for (D, S+, S−), where x̄ is a tuple of elements representing partition X and x0 does not 
occur in x̄.

Assume now that there is a CQ[1]-explanation for (D, S+, S−). Then this explanation can be assumed to be of the form

q(xi) := ∃ ȳ R(x0, . . . , xn), i ∈ {0, . . . ,n},
where the x j s, for j ∈ {0, . . . , n}, are not necessarily distinct variables and ȳ is a tuple that contains all the x j s that are 
different from xi . It remains to show that i = 0 and x0 = x j for each j ∈ {1, . . . , n}. In fact, consider the constraint c = X ⊆
[n] × [n] in I . Then R(c, ȳ) ∈ D , where ȳ is a tuple of fresh elements representing partition [n] × [n]. Hence c ∈ q(D) since 
q(xi) is a CQ[1]-explanation for (D, S+, S−). But c only appears in the first coordinate of the tuples in D , and thus i = 0. 
For the same reason, x0 = x j for each j ∈ {1, . . . , n}. Therefore, there is a CQ[1]-explanation for (D, S+, S−) of the form 
∃x̄R(x0, ̄x). Then X is a solution for I from Claim 4, where X is the partition of [n] represented by x̄.

Proof of (c). It remains to show that CQ[1]-QBE reduces to CQ[m]-QBE. Let D be a database and S+, S− nonempty unary 
relations such that S− = dom(D) \ S+ . Consider m disjoint copies of the input (D, S+, S−), namely (D1, S+

1 , S−
1 ), . . . , (Dm,

S+
m, S−

m). Now, construct the database D ′ as the union 
⋃m

i=1 Di extended by m − 1 fresh unary relations

#i(D ′) = dom(D ′) \ dom(Di), for 2 ≤ i ≤ m,

and unary relations T + = S+ and T − = dom(D ′) \ S+ .
1 1

114



P. Barceló, A. Baumgartner, V. Dalmau et al. Journal of Computer and System Sciences 119 (2021) 97–124
Claim 5. There is a CQ[1]-explanation for (D, S+, S−) iff there is a CQ[m]-explanation for (D ′, T +, T −).

First, assume that there is a query q(x) in CQ[1] such that S+ ⊆ q(D) and q(D) ∩ S− = ∅. It follows that (S+
1 ∪· · ·∪ S+

m) ⊆
q(D ′) and q(D ′) ∩ (S−

1 ∪ · · · ∪ S−
m) = ∅. Extending q(x) by the m − 1 atoms #2(x), . . . , #m(x) gives the desired explanation, 

separating T + from T − .
On the other hand, assume that there is a query q(x) in CQ[m] such that T + ⊆ q(D ′) and q(D ′) ∩ T − = ∅. From

S+
1 ⊆ q(D ′) and q(D ′) ∩ (S+

2 ∪ · · · ∪ S+
m) = ∅,

it follows that q(x) must contain the m − 1 atoms #2(x), . . . , #m(x). Let q′(x) be the query in CQ[1] which is obtained from 
q(x) by removing any atom of the form #i(y), for 2 ≤ i ≤ m, where y is either existentially quantified or y = x. It must be 
the case that q′(x) is of the form ∃ ȳR(x, ȳ), for R some relation symbol. We claim that q′(D ′) separates S+

1 from S−
1 over 

D1, and thus q(x) is a CQ[1]-explanation for (D, S+, S−). In fact, by definition S+
1 ⊆ q(D ′), which implies that S+

1 ⊆ q′(D ′). 
In addition, q′(D ′) ∩ S−

1 = ∅. Assume otherwise. Then also q(D ′) ∩ S−
1 = ∅ as every element in S−

1 satisfy each atom # j(x)
which is in q(x) but not in q′(x). �
6.5. Fixed number of variable occurrences

Recall from Proposition 4.3 that we can ensure tractability of separability, for statistics with an unbounded number 
of features, by fixing both the number of atoms and the number of occurrences of variables in feature queries; that is, 
CQ[m, p]-Sep is in PTIME, for fixed m, p ≥ 1.

In the current scenario this continues to hold only if we fix the number � ≥ 1 of features allowed in statistics. In turn, if 
the number � is given as part of the input the problem becomes NP-hard.

Proposition 6.12. Fix m, p ≥ 1. The following holds:

1. The problems CQ[m, p]-Sep[�] and CQ[m, p]-Cls[�] are in PTIME, for each fixed � ≥ 1.
2. The problem CQ[m, p]-Sep[∗] is NP-complete. This holds even for fixed arity schemas.

Proof. We start with (1). Since all feature queries in CQ[m, p] can be generated in polynomial time (modulo renaming of 
variables) and � is fixed, we can also generate in polynomial time all possible statistics containing at most � feature queries 
in CQ[m, p]. Also, for each such statistic �, we can find, in polynomial time, a linear classifier separating (D, λ) or report 
that none exists. This is because, since m is fixed, we can construct �D (e) for every e ∈ η(D) in polynomial time.

We now prove (2). First note that, since m is fixed, the (L, �)-separability test from section 6.2 implies that 
CQ[m, p]-Sep[∗] is in NP. To prove NP-hardness we consider the following problem, which we shall call BoundedLinSep: 
given a collection 〈(bi, yi)

m
i=1〉 of Boolean examples and � ≥ 1, decide whether 〈(bi, yi)

m
i=1〉 is linearly separable by a linear 

classifier �w̄ such that w = (w0, w1, . . . , wn) contains at most � non-zero values besides w0.
First, we prove that there is a polynomial time reduction from VertexCover to BoundedLinSep, and hence that Bound-

edLinSep is NP-hard. Let (G, �) be an instance of VertexCover, where G = (V , E) is a graph and � ≥ 1. Let V = {v1, . . . , vn}
and E = {e1, . . . , em} and construct the instance (〈(bi, yi)

m+1
i=1 〉, �) of BoundedLinSep, where (〈(bi, yi)

m+1
i=1 〉 is defined as fol-

lows.

• For every i = 1, . . . , m we have yi = 1 and bi = (b1
i , . . . , b

n
i ), where b j

i = 1 if ei is incident to v j and 0 otherwise.

• In addition, ym+1 = −1 and bm+1 = (0, . . . , 0).

The correctness of the reduction is a direct consequence of the following proposition.

Proposition 6.13. For every S ⊆ {1, . . . , n}, it is the case that {v j | j ∈ S} is a vertex cover of G iff there is linear classifier 
�(w0,w1,...,wn) such that w j = 0 for every j ≥ 1 not in S.

Proof. Assume first that {v j | j ∈ S} is a vertex cover and define w = (w0, w1, . . . , wn), where w j = 1 if j ∈ S ∪ {0} and 
0 otherwise. It follows easily that �w̄ linearly classifies (bi, yi)

m+1
i=1 . Conversely, assume that {v j | j ∈ S} is not a vertex 

cover and let ei be an edge not covered by it. It follows that �w̄ (bi) = �w̄(bm+1) for every w = (w0, w1, . . . , wn) such that 
w j = 0 for every j ≥ 1 not in S . �

To complete the proof, we show that there is a polynomial time reduction from BoundedLinSep to CQ[m, p]-Sep[∗]. Let 
〈(bi, yi)

m
i=1〉 be a collection of Boolean examples, where bi = (b1

i , . . . , b
n
i ). Construct a training database (D, λ) as follows. The 

schema of D contains, besides entity relation η, a binary relation E and n unary relations κ1, . . . , κn . Assume that initially 
D is empty. Let K be 1 if p = 1 or m = 1, and m − 1 otherwise. For each i ∈ {1, . . . , m}, add K new elements d1, . . . , dK to 
i i

115



P. Barceló, A. Baumgartner, V. Dalmau et al. Journal of Computer and System Sciences 119 (2021) 97–124
dom(D). Also include facts E(dr
i , d

r+1
i )K−1

r=1 and κ j(dK
i ) for every j ∈ {1, . . . , n} with b j

i = 1. Finally, set η(D) = {d1
1, . . . , d

1
m}

and let λ(d1
i ) = yi , for every 1 ≤ i ≤ m.

For every j = 1, . . . , n, let q j(x1) ∈ CQ[m, p] be the query

∃x2, . . . , xK (E(x1, x2) ∧ · · · ∧ E(xK−1, xK ) ∧ κ j(xK ))

It is easy to see that if some query q ∈ CQ[m, p] is not equivalent (under renaming of variables) to any query of the form 
q j , then q(D) is either ∅ or η(D). Consequently, if � is any statistic that separates (D, λ) we can assume that all its 
feature queries are from {q1, . . . , qn}. Also, note that by construction for every j ∈ {1, . . . , n} and i ∈ {1, . . . , m}, d1

i ∈ q j(D)

iff b j
i = 1. It follows that for every linear classifier w , we have that �w̄ (bi) = �w̄(�D(d1

i )). Correctness of the reduction 
follows directly. �
7. Approximate separability

We now discuss a generalization of the separability problem, allowing some examples to be misclassified. Hence, we 
handle the case where a training database is inseparable due to a small amount of noise in the data. This notion of approx-
imation captures the common goal of minimizing the number of misclassified examples [10,37,26], and corresponds to one 
of the studied notions of separation errors [5,47]. We revise the previously obtained complexity results for the case that a 
relative error ε , for 0 ≤ ε < 1, is allowed in the classification of the training examples.

Formally, a training database (D, λ) is L-separable with error ε if there is a statistic �, with feature queries from L, and 
a linear classifier �w̄ , such that

{e ∈ η(D) | �w̄(�D(e)) = λ(e)} ≤ ε · |η(D)| .
We then say that (�, �w̄ ) L-separates (D, λ) with error ε . We study the following problem.

Problem: L-ApxSep
Input: A training database (D, λ) and an ε ∈ [0,1)

Question: Is (D, λ) L-separable with error ε?

As before, we study two variants of this problem in which the dimension is given as input or bounded by a constant 
� ≥ 1. These are denoted by L-ApxSep[∗] and L-ApxSep[�], respectively.

7.1. Intractable cases

L-ApxSep is at least as difficult as L-Sep, since L-Sep is precisely L-ApxSep when ε = 0. Thus all lower bounds ob-
tained for the latter along the paper continue to hold for the former. The same holds for L-ApxSep[∗] and L-ApxSep[�]
w.r.t. L-Sep[∗] and L-Sep[�], respectively. More interestingly, such lower bounds continue to hold even if ε is an ar-
bitrary fixed value with ε ∈ [0, 1/2).1 This is proved via a polynomial-time reduction from L-Sep (resp., L-Sep[∗] and 
L-Sep[�]) to (L, ε)-ApxSep (resp., (L, ε)-ApxSep[∗] and (L, ε)-ApxSep[�]), the restriction of L-ApxSep (resp., L-ApxSep[∗]
and L-ApxSep[�]) in which ε is an arbitrary fixed value in the interval [0, 1/2). These reductions hold for any class L of 
CQs.

Proposition 7.1. Fix an arbitrary ε ∈ [0, 1/2). For all L there are polynomial-time reductions

• from L-Sep to (L, ε)-ApxSep;
• from L-Sep[∗] to (L, ε)-ApxSep[∗]; and
• from L-Sep[�] to (L, ε)-ApxSep[�] for all fixed � ≥ 1.

Proof. Let (D, λ) be a training instance over some schema σ and ε be the allowed classification error. We construct a 
training instance (D ′, λ′) such that (D ′, λ′) cannot be L-separated with less than k examples being misclassified, where k
is chosen according to the cardinality of η(D) and ε . Moreover, (D, λ) is L-separable iff (D ′, λ′) can be L-separated with k
examples being misclassified.

Let D ′ be the extension of D with 2k fresh constants c1, . . . , ck and c′
1, . . . , c

′
k such that

η(D ′) = η(D) ∪ {c1, . . . , ck} ∪ {c′
1, . . . , c′

k}
and all the other relations of D ′ are equal to those from D , i.e., the fresh constants do not appear in any relation except for 
η(D ′). We define λ′ : η(D ′) → {1, −1} as

1 For ε ≥ 1/2 the problem is trivial, since then we can always find a classifier that separates with error ε .
116



P. Barceló, A. Baumgartner, V. Dalmau et al. Journal of Computer and System Sciences 119 (2021) 97–124
λ′(x) :=

⎧⎪⎨
⎪⎩

λ(x) if x ∈ η(D),

+1 if x ∈ {c1, . . . , ck},
−1 if x ∈ {c′

1, . . . , c′
k}.

By construction, (D ′, λ′) cannot be L-separated with less than k examples being misclassified. In addition, it is clear that 
if (D, λ) is L-separable, then (D ′, λ′) can be L-separated with k examples being misclassified. On the other hand, assume 
that (D ′, λ′) can be L-separated with k examples being misclassified. Since either all the entities c1, . . . , ck or all the entities 
c′

1, . . . , c
′
k are misclassified by construction, no entity from η(D) is misclassified. It follows that (D, λ) is separable.

By definition, the error is ε = k
|η(D)|+2k . Therefore, we get

k = |η(D)| ε

1 − 2ε
.

For 0 ≤ ε < 1
2 , it holds that ε

1−2ε is some positive constant M and (D ′, λ′) can be constructed in polynomial time because 
we only add 2M|η(D)| = O (n) constants, where n is the size of D . �

Now, as all lower bounds for L-Sep, L-Sep[∗] and L-Sep[�] presented in the paper are for complexity classes that are 
closed under polynomial-time reductions, Proposition 7.1 implies that they continue to hold for their approximate versions, 
even if ε is an arbitrary fixed value with 0 ≤ ε < 1/2. Therefore, our hardness results do not arise from the aim of finding a 
“strict” classifier, but are due to the inherent complexity of the problem.

7.2. Feasible cases

In view of the previous discussion, we can only hope to obtain a feasible complexity for approximate separability in 
the cases where (perfect) separability is also feasible. As we have seen, there are two such cases: statistics formed by CQs 
with a bounded number of atoms, where separability is FPT (Corollary 4.2 and Proposition 6.8), and statistics of unbounded 
dimension formed by CQs of bounded ghw, where separability is solvable in PTIME (Theorem 5.3). We study both cases 
below.

7.2.1. Approximate CQ[m]-separability
We first study the approximate separability problem CQ[m]-ApxSep for statistics formed by CQs with a fixed number 

of atoms. It is not hard to see that this problem is FPT, if we assume the parameter to be the size of the schema. Notice 
again the difference with Corollary 4.2, which establishes that the exact separability problem CQ[m]-Sep is FPT with the 
parameter being the arity of the schema only. As in Proposition 6.9, the extra requirement on the parameter is necessary 
(under conventional complexity assumptions).

Proposition 7.2. The following holds for each m ≥ 1.

1. The problem CQ[m]-ApxSep is FPT with the parameter being the size of the schema.
2. The problem CQ[m]-ApxSep is NP-complete. This holds even for fixed arity schemas.

Proof. We first prove (1). Let (D, λ) and ε an instance of CQ[m]-ApxSep. Suppose that � is the statistic formed by all 
feature queries in CQ[m]. As noted in the proof of Proposition 4.1, it takes time f (s) to construct �, for f a computable 
function and s the size of the schema. We then have to check whether there is a linear classifier �w̄ such that (�, �w̄ )

classifies correctly at least an ε-fraction of the elements in η(D). To check this we first construct the set V of all vectors 
of the form �D(e), for e ∈ η(D). As observed in the proof of Proposition 4.1, it takes time D2m+1 · 2p′(s) to compute V , 
for p′ : N → N a polynomial. Moreover, by definition the size of V is bounded by 2dim(�) , where dim(�) denotes the 
dimension of �. We then proceed as follows. For each V ′ ⊆ V we check two things:

• It is the case that V ′ contains a “large enough” fraction of the vectors corresponding to entities in η:

|{e ∈ η(D) | �D(e) ∈ V ′}| ≥ (1 − ε)|η(D)|.
• There is a linear classifier that correctly classifies all entities in {e ∈ η(D) | �D(e) ∈ V ′} with respect to λ.

If such a set V ′ exists, then the algorithm accepts. It is easy to see that the running time of this algorithm is

22O (dim(�)) · |D|O (1).

But dim(�) is also bounded by f (s), which shows that the whole procedure can be implemented in FPT when the parameter 
is assumed to be the size of the schema.
117



P. Barceló, A. Baumgartner, V. Dalmau et al. Journal of Computer and System Sciences 119 (2021) 97–124
We now prove (2). We use the following problem, which was shown to be NP-hard in [12]: given a collection 〈(bi, yi)
m
i=1〉

of boolean examples and an ε ∈ [0, 1], decide whether there is a linear classifier that classifies correctly at least a ε-fraction 
of the examples. This problem reduces to CQ[m]-ApxSep as in the proof of item (2) of Proposition 6.12 (setting p to ∞). �

From (2), if for any m ≥ 1 the problem CQ[m]-ApxSep is FPT with the parameter being the arity of the schema, then 
P = NP. The difference in complexity between CQ[m]-Sep and CQ[m]-ApxSep stems from the nature of their underlying 
classification task: CQ[m]-Sep calls for exact linear separability, which is in PTIME [27,24], while CQ[m]-ApxSep calls for 
approximate linear separability, which is NP-complete [22]. This yields item (2) in Proposition 7.2.

A similar situation holds for CQ[m]-ApxSep[∗], the restriction of CQ[m]-ApxSep to statistics with at most � features, 
where � is given as part of the input. On the other hand, if � is fixed, then we can again ensure fixed-parameter tractability 
by using only the arity of the schema as the parameter.

Proposition 7.3. For all fixed m ≥ 1, the following hold:

1. The problem CQ[m]-ApxSep[∗] is FPT with the parameter being the size of the schema.
2. The problem CQ[m]-ApxSep[∗] is NP-complete even for fixed arity schemas.
3. For every fixed � ≥ 1, the problem CQ[m]-ApxSep[�] is FPT with the parameter being the arity of the schema.

Proof. Let us start with (1). Let (D, λ), � ≥ 1, and ε ∈ [0, 1) be an instance of CQ[m]-ApxSep[∗]. Consider a statistic �. We 
say that a set S ⊆ η(D) is �-consistent if d ∈ S ⇔ e ∈ S , for every d, e ∈ η(D) with �D(d) = �D(e). Also, a set P of statistics 
is complete for (D, λ), if among all pairs (�, �w̄) with minimum error for (D, λ) there is one where � belongs to P . A 
complete family of statistics gives rise to the following algorithm: accept if for some statistic � ∈ P and some �-consistent 
S ⊆ η(D) there is a linear classifier �w̄ such that

�w̄(�D(e)) = 1 ⇐⇒ e ∈ S,

and (�, �w̄) classifies correctly at least an ε-fraction of the elements in η(D).
The correctness of the algorithm is straightforward. Its running time (ignoring the cost of finding P) is

O

( ∑
�∈P

22dim(�) |D|O (1)

)

where dim(�) denotes the dimension of �.
It remains to find a complete set P of statistics. As noted in the proof of Proposition 4.1 the set of queries in CQ[m] that 

mention only relation symbols that appear in D has cardinality at most f (s), where f is a computable function and s is the 
size. Hence, we can obtain a complete P set of cardinality 

∑�
i=1

( f (s)
i

) ≤ 2 f (s) by choosing all statistics containing at most �
queries from CQ[m]. Since each statistic in the set has at most f (s) queries, it follows that the algorithm is FPT.

The proof of (3) is analogous, but now we use the fact that the number of queries in CQ[m] that mention only relation 
symbols that appear in D has cardinality at most |D|m · f (k), for f a computable function and k the arity of the schema.

The proof of (2) can easily be obtained by combining ideas of the proofs of items (2) in Proposition 6.12 and 7.2. �
We conclude this part by observing that all our feasibility results are via constructive proofs that result in the proper 

statistic; hence, in the cases of tractable separability (and variants), both approximate feature generation and approximate 
classification, namely CQ[m]-ApxCls, CQ[m]-ApxCls[�], and CQ[m]-ApxCls[∗], are FPT. The problem L-ApxCls takes as input 
a number ε ∈ [0, 1), a training database (D, λ) that is L-separable with error ε , and an evaluation database D ′ . The goal is 
to construct a labeling λ′ of D ′ such that there exists (�, �w̄ ) that L-separates (D ′, λ′), and at the same time, L-separates 
(D, λ) with error ε . The problems L-ApxCls[�] and L-ApxCls[∗] are defined analogously.

7.2.2. Approximate GHW(k)-separability
Now we look at approximate separability for statistics formed by CQs of bounded generalized hypertreewidth. Our main 

result is as follows.

Theorem 7.4. Fix k ≥ 1. There is a polynomial time algorithm that takes as input a training database (D, λ) and computes a labeling 
λ′ : η(D) → {1, −1} such that:

1. (D, λ′) is GHW(k)-separable; and
2. for every λ′′ : η(D) → {1, −1} such that (D, λ′′) is GHW(k)-separable, we have that |{e ∈ η(D) | λ(e) = λ′(e)}| ≤ |{e ∈ η(D) |

λ(e) = λ′′(e)}|.
118



P. Barceló, A. Baumgartner, V. Dalmau et al. Journal of Computer and System Sciences 119 (2021) 97–124
Proof. Let (D, λ) be a given training database. For each e ∈ η(D), we define [e] to be the set of elements e′ ∈ η(D) such 
that (D, e′) →k (D, e) and (D, e) →k (D, e′). It is easy to see that the classes of the form [e], for e ∈ η(D), define a partition 
of η(D). Define a new labeling λ′ : η(D) → {1, −1} as follows:

λ′(e) :=
{

1 if
∑

e′∈[e] λ(e′) ≥ 0,

−1 otherwise.

Due to Theorem 5.3, there is a polynomial-time algorithm that computes every [e]; therefore, λ′ can be constructed in 
polynomial time. By its definition, each equivalence class [e] is consistent with λ′ , that is, λ′ maps all elements of [e] to the 
same value. Hence, due to Lemma 5.4, it is the case that (D, λ′) is GHW(k)-separable.

We will show that λ′ is a best approximation of λ, in terms of the cardinality of the “disagreement,” among the labelings 
λ′′ of η(D) such that (D, λ′′) is GHW(k)-separable. Formally, this means that for every λ′′ : η(D) → {1, −1} such that 
(D, λ′′) is GHW(k)-separable, we have that |{e ∈ η(D) | λ(e) = λ′(e)}| ≤ |{e ∈ η(D) | λ(e) = λ′′(e)}|, or, equivalently, that ∑

e∈η(D) |λ′(e) − λ(e)| ≤ ∑
e∈η(D) |λ′′(e) − λ(e)|. We will show that this inequality holds, for all such λ′′ , already in each 

equivalence class [e]; that is, 
∑

e′∈[e] |λ′(e′) − λ(e′)| ≤ ∑
e′∈[e] |λ′′(e′) − λ(e′)|.

So, let λ′′ : η(D) → {1, −1} be such that (D, λ′′) is GHW(k)-separable, and let e ∈ η(D). Since λ′ is consistent on [e], either 
all λ′(e′) are +1 or all λ′(e′) are −1. Hence, either all λ′(e′) − λ(e′) are nonnegative or all λ′(e′) − λ(e′) are nonpositive. It 
follows that∑

e′∈[e]
|λ′(e′) − λ(e′)| = ∣∣ ∑

e′∈[e]
(λ′(e′) − λ(e′))

∣∣ .
Analogously,∑

e′∈[e]
|λ′′(e′) − λ(e′)| = ∣∣ ∑

e′∈[e]
(λ′′(e′) − λ(e′))

∣∣ .
So, we need to prove that∣∣ ∑

e′∈[e]
(λ′(e′) − λ(e′))

∣∣ ≤ ∣∣ ∑
e′∈[e]

(λ′′(e′) − λ(e′))
∣∣

or, equivalently, that∣∣ ∑
e′∈[e]

λ′(e′) −
∑

e′∈[e]
λ(e′)

∣∣ ≤ ∣∣ ∑
e′∈[e]

λ′′(e′) −
∑

e′∈[e]
λ(e′)

∣∣ .
Let us define x′ = ∑

e′∈[e] λ′(e′), define x′′ = ∑
e′∈[e] λ′′(e′), and define y = ∑

e′∈[e] λ(e′). We need to prove that |x′ − y| ≤
|x′′ − y|. Since both λ′ and λ′′ are constant (either always 1 or always −1) on [e], we have that x′ = x′′ or x′ = −x′′ . In the 
first case, we are done. In the second one, we need to show that |x′ − y| ≤ | − x′ − y|, i.e., |x′ − y| ≤ |x′ + y|. But this is true 
for λ′ , as either both x′ and y are nonnegative, or both x′ and y are nonpositive. The pseudo-code of the procedure is given 
in Algorithm 3. �

Theorem 7.4 implies that GHW(k)-ApxSep and GHW(k)-ApxCls are tractable.

Corollary 7.5. For all fixed k ≥ 1, the problems GHW(k)-ApxSep and GHW(k)-ApxCls can be solved in polynomial time.

Proof. Given a training database (D, λ), we apply Theorem 7.4 to compute in polynomial time a labeling λ′ : η(D) → {1, −1}
such that (D, λ′) is GHW(k)-separable and λ′ minimizes the disagreement with respect to λ, among those labelings λ′′ such 
that (D, λ′′) is GHW(k)-separable. Thus, the minimal error δ, for 0 ≤ δ ≤ 1, with which a statistic GHW(k)-separates (D, λ)

is ({e ∈ η(D) | λ′(e) = λ(e)})/|η(D)|. Then in order to determine whether (D, λ) is separable with error ε , we simply check 
whether δ ≥ ε .

To solve GHW(k)-ApxCls on an evaluation database D ′ , we solve in polynomial time the problem GHW(k)-Cls on input 
given by training database (D, λ′) and evaluation database D ′ . This generates a labeling λ∗ of η(D ′) such that there is a pair 
(�, �w̄) that GHW(k)-separates both (D, λ′) and (D ′, λ∗). Therefore, the pair (�, �w̄) also GHW(k)-separates (D, λ) with 
error δ, and thus with error ε , and GHW(k)-separates (D ′, λ∗) with no error. �
8. More expressive feature queries

In this section, we embark on a preliminary exploration of the separability problem for more expressive feature lan-
guages, in particular First-Order Logic (FO) and some fragments thereof. While the problems have been discussed over 
CQs, they naturally extend to any query language L, and we can talk about L-separability and about L-Sep for arbitrary 
fragments L of FO. We write FO when L is the class of all FO formulas.

Let us observe first that FO-separability is a more general notion than CQ-separability.
119



P. Barceló, A. Baumgartner, V. Dalmau et al. Journal of Computer and System Sciences 119 (2021) 97–124
Algorithm 3 Approx-separability algorithm GHW(k)-ApxSep.
Require: A training database (D, λ)

1: ([e1], . . . , [em]) := equivalence classes with respect to →k over η(D)

2: for each e ∈ η(D) do
3: if

∑
e′∈[e] λ(e′) ≥ 0 then

4: λ′(e) = 1
5: else
6: λ′(e) = −1
7: end if
8: end for
9: return λ′ : η(D) → {1, −1}

Example 8.1. Consider a schema that consists of a unary relation symbol A and a binary relation symbol E . Let D be a 
database over such a schema defined as

{A(a), E(a,a), A(b), E(b,b), E(b, c)}.
We define η(D) = {a, b}, λ(a) = 1, and λ(b) = −1. Clearly, (D, λ) is separable by the FO-formula φ(x) ≡ ∃y(y = x ∧ E(x, y)). 
In turn, (D, a) → (D, b) and (D, b) → (D, a), and thus a and b are indistinguishable by CQs over D . Hence, (D, λ) is not 
CQ-separable. �

Next we show that FO-separability collapses to single-feature FO-separability.

Proposition 8.1. A training database is FO-separable iff it is FO-separable by a statistics � with a single FO formula.

Proof. Let (D, λ) be an arbitrary fixed training database which is FO-separable by some pair (�, �w̄ ) with � = (φ1, . . . , φn). 
Naturally, �w̄ can be seen as a boolean function mapping vectors from {−1, 1}n to {−1, 1}. Due to the FO-separability of 
(D, λ), we have that

�D(e) = �D(e′), for all e, e′ ∈ η(D) such that λ(e) = λ(e′).

Hence, there is a boolean combination �(x) of the φi s in � such that

�(D) = S+ = {e ∈ η(D) | λ(e) = 1}.
Since FO is closed under boolean combinations, � is an FO-formula. Thus, the statistics that consists exclusively of � FO-
separates (D, λ). �

Hence, the complexity of separability for FO is the same regardless of whether the dimension of the statistic is bounded 
or not. That is, the complexity of the problems FO-Sep, FO-Sep[∗], and FO-Sep[�], for any � ≥ 1, is the same. It can be 
proved, on the other hand, that the complexity of FO-Sep[1] coincides with that of QBE for FO (FO-QBE), as one can reduce 
in polynomial time from FO-Sep[1] to FO-QBE and, on the other hand, use FO-QBE as a subroutine to solve FO-Sep[1] in 
polynomial time. Arenas and Díaz [4] have shown that FO-QBE is GI-complete, where GI is the class of problems with a 
polynomial-time reduction to the graph-isomorphism problem. Therefore:

Corollary 8.2. The problems FO-Sep, FO-Sep[∗], and FO-Sep[�], for any � ≥ 1, are GI-complete.

Proof. We have that FO-QBE and FO-Sep[1] are mutually reducible. In fact, let (D, λ) be some training instance. Recall that 
S+ = {e ∈ η(D) | λ(e) = 1} and S− = {e ∈ η(D) | λ(e) = −1}. If there is a FO-explanation q(x) for (D, S+, S−), then one can 
clearly use q(x) as a single feature to separate S+ and S− in D . In turn, if (D, λ) is FO-separable by a statistic with a single 
feature query q′(x), then either S+ ⊆ q′(D) and S− ∩ q′(D) = ∅, or S− ⊆ q′(D) and S+ ∩ q′(D) = ∅. In the first case q′(x) is 
a FO-explanation for (D, S+, S−), while in the second case its negation ¬q′(x) is a FO-explanation for (D, S+, S−). Together 
with Proposition 8.1 we get the stated complexity results. �

What about separability for fragments of FO? As we state next, FO-separability collapses to separability for statistics 
based on a simple class of formulas, namely, existential FO formulas, denoted ∃FO. Recall that these are the FO formulas of 
the form ∃x̄ψ , where ψ is quantifier-free (but allows negation). On the other hand, for the restriction on ∃FO that disallows 
negation on ψ (the so-called class of existential positive FO formulas, written ∃FO+), we have that separability collapses to 
CQ-separability. In summary:

Proposition 8.3. The following statements hold for all training databases (D, λ):

1. (D, λ) is FO-separable iff it is ∃FO-separable.
120



P. Barceló, A. Baumgartner, V. Dalmau et al. Journal of Computer and System Sciences 119 (2021) 97–124
2. (D, λ) is CQ-separable iff it is ∃FO+-separable.

Proof. We start with (1). The right-to-left direction holds trivially. Assume now that (D, λ) is FO-separable. It is easy to 
see that this implies that there are no entities e, e′ ∈ η(D) with λ(e) = λ(e′) such that (D, e) ∼= (D, e′). (Here (D, e) ∼= (D, e′)
denotes the existence of an isomorphism f from D to itself such that f (e) = e′). Assume otherwise. Then for every FO 
formula ψ(x) it is the case that D |= ψ(e) ⇔ D |= ψ(e′). This implies that �D(e) = �D(e′) for every statistics formed 
exclusively by FO formulas, which contradicts the fact that (D, λ) is FO separable.

Let us define now a notion (D, e) ⇒ (D ′, e′), for databases D, D ′ and entities e ∈ η(D) and e′ ∈ η(D ′), stating that there 
is a one-to-one homomorphism from D to D ′ that maps e to e′ . It is well-known that the satisfaction of formulas in ∃FO is 
closed under the notion defined by ⇒; that is, if (D, e) ⇒ (D ′, e′) then e ∈ q(D) implies e′ ∈ q(D ′), for each FO formula q(x)
in ∃FO. In addition, when D = D ′ the notion (D, e) ⇒ (D, e′) collapses to (D, e) ∼= (D, e′).

Thus, from this observation and the condition expressed in the first paragraph, we obtain that there are no entities 
e, e′ ∈ η(D) with λ(e) = λ(e′) such that (D, e) ⇒ (D, e′). This implies that (D, λ) is ∃FO-separable. In fact, for each entity 
f ∈ η(D) there is a formula ψD, f (x) in ∃FO such that D |= ψD, f ( f ′) iff (D, f ) ⇒ (D, f ′). It is easy to see then that the 
statistic � formed by all formulas of the form ψD,e(x), for e ∈ η(D) with λ(e) = 1, ∃FO-separates (D, λ). Indeed, we only 
need a linear classifier over � that labels as positives those entities e such that e ∈ q(D), for at least some query q in �. This 
is because each e ∈ η(D) with λ(e) = 1 satisfies at least one query in � by definition, while each e ∈ η(D) with λ(e) = −1
satisfies no query in �. Assume otherwise, i.e., there is an e ∈ η(D) with λ(e) = −1 such that e satisfies a query q(x) in �. 
By definition, q is of the form ψD,e′ (x), for e′ ∈ η(D) with λ(e′) = 1. But then (D, e) ⇒ (D, e′), which is a contradiction since 
λ(e) = λ(e′).

Let us now prove (2). The direction from left-to-right holds trivially. Assume now that (D, λ) is not CQ-separable. It 
follows from [28] then that there are entities e, e′ ∈ η(D) such that λ(e) = λ(e′), but e and e′ are “indistinguishable” by CQs. 
The latter implies that both (D, e) → (D, e′) and (D, e′) → (D, e) hold. It is well-known on the other hand that existential 
positive FO formulas are preserved by homomorphisms; in particular, if (D, e) → (D, e′) then e ∈ q(D) implies e′ ∈ q(D), 
for each FO formula q(x) in ∃FO+ . But then the entities e and e′ are also “indistinguishable” by formulas in ∃FO+ , which 
implies that (D, λ) is not ∃FO+-separable. �

Therefore, from Proposition 8.3 and Corollary 8.2 we obtain that L-Sep is GI-complete for any fragment L of FO that 
contains ∃FO, and from Theorem 3.1 that ∃FO+-Sep is coNP-complete.

As we have seen, there is an important difference between FO-separability and CQ-separability: The former collapses to 
single-feature FO-separability from Proposition 8.3, while for the latter there is no bound on the number of features which 
are required for separating training databases (recall that the same holds for GHW(k), for k ≥ 1, from Theorem 5.7). This 
motivates the two questions we study next about feature languages L.

1. When does L have the dimension-collapse property, i.e., every training database (D, λ) that is L-separable is also sepa-
rable by a single-feature statistic in L?

2. In turn, when does L have the unbounded-dimension property, that is, for all n ≥ 1 there is a training database (D, λ)

that is L-separable only by statistics with at least n features?

8.1. The dimension-collapse property

We have seen in Proposition 8.1 that FO has the dimension-collapse property. In contrast, we can show that none of CQ, 
GHW(k) and ∃FO+ have this property. Next, we present a general explanation of this fact by providing a characterization of 
when a query language L has the dimension-collapse property in terms of a certain definability condition.

Theorem 8.4. L has the dimension-collapse property if and only if for every database D, the set 
⋃

q∈L{q(D), η(D) \ q(D)} of entity 
sets is closed under intersection.

Proof. Assume that L has the dimension-collapse property, i.e., each training database (D, λ) that is L-separable is also 
separable by a statistics with a single feature in L. We prove by contradiction.

Let D be a database such that X = ⋃
q∈L{q(D), η(D) \ q(D)} is not closed under intersection. It follows that there are 

queries q1 ∈ X , q2 ∈ X such that neither q1(D) ∩ q2(D) ∈ X nor η(D) \ (q1(D) ∩ q2(D)) ∈ X . We define λ : η(D) → {−1, 1} in 
the following way:

λ(e) :=
{

+1 if e ∈ q1(D) and e ∈ q2(D),

−1 otherwise.

The training database (D, λ) is separable by � = (q1, q2) where w1 = w2 = 1 are the weights. Since neither q1(D) ∩ q2(D)

nor η(D) \ (q1(D) ∩ q2(D)) can be expressed, there is no statistic of length 1 that separates (D, λ).
On the other hand, assume that for each database D the set X = ⋃

q∈L{q(D), η(D) \ q(D)} is closed under intersection. 
(Note that since X is closed under complementation (wrt. to η(D)) and intersection, it is also closed under union.) Let 
121



P. Barceló, A. Baumgartner, V. Dalmau et al. Journal of Computer and System Sciences 119 (2021) 97–124
(D, λ) be an arbitrary fixed training database which is L-separable by some statistic � = (q1, . . . , qn). As before, �w̄ can 
be seen as a boolean function mapping vectors from {−1, 1}n to {−1, 1}. By L-separability, for all e, e′ ∈ η(D) such that 
λ(e) = λ(e′) holds that �D(e) = �D(e′). Since set intersection, set complement, and set union correspond to conjunction, 
negation, and disjunction in the boolean algebra, it follows that the set, S , containing all entities labeled positively belongs 
to X . Hence, there is some q ∈ L such that q(D) = S or η(D) \ S . In consequence, a statistic containing only q separates 
(D, λ). �

Applying this characterization, one can readily see that not only FO, but also FOk , the fragment of formulas with at most 
k variables, has the dimension-collapse property. It is possible to prove, on the other hand, that the dimension-collapse 
property also holds for every class 	k , for k ≥ 1, that consists of all FO queries of the form ∃x̄1∀x̄2 . . .Qxnψ , where ψ is 
quantifier-free and Q = ∃ if n is odd and Q = ∀ otherwise. Notice that 	1 is precisely ∃FO.

Corollary 8.5. The languages FO, FOk, and 	k, for any k ≥ 1, have the dimension-collapse property.

Proof. It is clear that FO and FOk satisfy the condition expressed in Theorem 8.4. For 	k we first observe the following: 
If there is an FO-explanation for a tuple (D, S+, S−), for unary relations S+ and S− over D , then there is also a 	1-
explanation. In fact, it is easy to see that if there is a FO-explanation then there is one of the form 

∨
a∈S+ ψD,a(x), where 

ψD,a(x) is the FO formula that describes the “isomorphism type” of a over D . This means that D |= ψD,a(b) ⇔ (D, a) ∼=
(D, b) for every b ∈ dom(D). On the other hand, it is clear that each ψD,a(x) can be expressed as a formula in 	1. For 
instance, if D = {R(a, b), S(b)} then

ψD,a(x) = ∃y
(

x = y ∧ R(x, y) ∧ S(y) ∧ ¬S(x)
)
.

Let us assume then that (D, λ) is 	k-separable. Then there is a statistic with at most one FO feature query that FO-
separates (D, λ). That is, either there is an FO-explanation for (D, S+, S−), where S+ = {e ∈ η(D) | λ(e) = 1} and S− =
η(D) \ S+ , or there is an FO-explanation for (D, T +, T −), where T + = {e ∈ η(D) | λ(e) = −1} and T − = η(D) \ T + . From 
our previous remarks, in any case there is also a statistic with at most one 	k feature query, for k ≥ 1, that 	k-separates 
(D, λ). �

In contrast, neither CQ nor GHW(k), for any k ≥ 1, satisfy the condition of Theorem 8.4. This is also the case for 	+
k , 

the restriction of 	k where no negation is allowed in the quantifier-free formula ψ . We actually prove a stronger statement 
below: All of these languages have the unbounded-dimension property.

8.2. The unbounded-dimension property

We provide a simple condition that ensures the unbounded-dimension property for a language L. A family S of sets is 
linear if A ⊆ B or B ⊆ A, for every A, B ∈ S .

Proposition 8.6. Assume that for each n ≥ 1 there is a database D such that {q(D) | q ∈ L} is linear and has cardinality at least n. 
Then L has the unbounded-dimension property.

Proof. Let n ≥ 1 and assume that D satisfies the hypothesis. We can assume, by choosing appropriately η(D), that η(D) =
{a1, . . . , an} and that {q(D) | q ∈L} contains precisely all sets of the form {a1, . . . , ai}, for i = 1, . . . , n. For every i = 1, . . . , n, 
let qi be a feature query in L satisfying q(D) = {a1, . . . , ai} and let � = (q1, . . . , qn−1).

Let λ : η(D) → {−1, +1} be the labeling defined as

λ(ai) = (−1)i, for i = 1, . . . ,n.

Observe that (�, �w̄ ) separates (D, λ) if w̄ = (0, −1, 1, −1, +1, . . . , (−1)n−1). Also, note that the assumption on {q(D) |
q ∈ L} and the fact that qn is redundant (i.e., qn(D) = η(D)) implies that we can assume that every statistic L-separating 
(D, λ) contains only feature queries from �. We shall complete the proof by showing that the statistic �′ obtained by 
removing any query qi from � does not separate (D, λ). This follows from the fact that ai ∈ q j(D) ⇔ ai+1 ∈ q j(D), for every 
j ∈ {1, . . . , i − 1, i + 1, . . . , n} (and hence, �′ could not ‘distinguish’ between ai and ai+1), but λ(ai) = λ(ai+1). �

We can show that all of the above languages satisfy the condition expressed in Proposition 8.6. Correspondingly, they all 
have the unbounded-dimension property.

Theorem 8.7. The languages CQ, GHW(k) and 	+ , for any k ≥ 1, have the unbounded-dimension property.
k

122



P. Barceló, A. Baumgartner, V. Dalmau et al. Journal of Computer and System Sciences 119 (2021) 97–124
Problem Class L Result Reference

L-Sep

CQ coNP-complete [28]
CQ[m] ? –

FPT w.r.t. the arity of the schema Corollary 4.2
CQ[m, p] PTIME Proposition 4.3
GHW(k) PTIME Theorem 5.3
FO GI-complete Corollary 8.2
∃FO GI-complete Proposition 8.3
∃FO+ coNP-complete Proposition 8.3

L-Sep[∗]

CQ coNEXPTIME-complete Theorem 6.5
CQ[m] NP-complete for fixed arity schemas Proposition 6.9

FPT w.r.t. the size of the schema Proposition 6.8
CQ[m, p] NP-complete Proposition 6.12
GHW(k) EXPTIME-complete Theorem 6.5
FO GI-complete Corollary 8.2

L-Sep[�]

CQ coNEXPTIME-complete Lemma 6.4
CQ[m] NP-complete Theorem 6.10

FPT w.r.t. the arity of the schema Proposition 7.3
CQ[m, p] PTIME Proposition 6.12
GHW(k) EXPTIME-complete Lemma 6.4
FO GI-complete Corollary 8.2

Fig. 3. Overview of complexity results for the separability problems studied in the paper.

Proof. In order to show that CQ has the unbounded feature property we only need to define, for every n ≥ 1, a structure 
D satisfying the hypothesis of Proposition 8.6. This is done as follows: dom(D) = η(D) = {a1, . . . , an}. The schema of D has 
n unary symbols κ1, . . . , κn and facts κ j(ai) for every 1 ≤ i ≤ j ≤ n. It is immediate to see that {q(D) | q ∈ CQ} contains 
precisely the sets of the form {a1, . . . , ai}, for i = 0, . . . , n. The same holds if we replace CQ by GHW(k) or 	+

k for any 
k ≥ 1. �
9. Final remarks

We studied the separability problem for CQ features under various regularizations by posing upper bounds on the num-
ber of atoms per CQ, the ghw of CQs, and the dimension of (i.e., number of features in) the statistic. When the tractability 
proofs are constructive, tractability extends to the problems of feature generation and classification of an evaluation database. 
This is not the case for the class of CQs of a bounded ghw where the feature CQs might be overly large to materialize; yet, 
we showed that classification is then tractable even without materializing the feature CQs. We also proved that our com-
plexity results extend to approximate separability, though some of our proofs require nontrivial adjustments. Finally, we 
gave preliminary results on separability with more expressive languages of feature queries, such as FO, and particularly, 
about when separability collapses to restricted fragments and a bounded number of feature queries (and even a single one).

An overview of the complexity of the different versions of the separability problem studied in the paper is shown in 
Fig. 3. For the reader convenience we recall some of the abbreviations involved:

• L-Sep: Separability problem of unbounded dimension for some class L of queries.
• L-Sep[�]: Separability problem of fixed dimension � for some class L of queries.
• L-Sep[∗]: Separability problem where the dimension is given as input for some class L of queries.
• CQ[m]: Class of CQs with at most m atoms, where m is fixed.
• CQ[m, p]: Class of CQs with at most m atoms and in which each variable occurs at most p times, where m and p are 

fixed.

We would like to remark that for evert version of the separability that can be solved in PTIME or is FPT, then the same 
holds for the corresponding classification problem.

Future work An immediate open problem is the complexity of separability for a bounded number of CQ atoms, that is, 
CQ[m]-Sep for any fixed m ≥ 1, when the schema is given as part of the input with no restrictions. An important direction 
for future work is the extension of the results on generalized hypertree width to more general structural restrictions on 
CQs that continue to ensure tractability of evaluation. These include CQs of bounded fractional hypertree width [19] and 
submodular width [32]. Finally, an important direction is the treatment of feature generation over databases through the lens 
of PAC learning, for instance, by adopting the concepts of Grohe et al. [20,18].

CRediT authorship contribution statement

All authors of this paper contributed in equal terms to it. This is represented in the alphabetical order of the names in 
the author’s list.
123



P. Barceló, A. Baumgartner, V. Dalmau et al. Journal of Computer and System Sciences 119 (2021) 97–124
Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

Acknowledgments

Barceló is funded by Fondecyt grant 1200967 and the Millennium Institute for Foundational Research on Data (IMFD 
Chile). Baumgartner is funded by Fondecyt grant 11191097.

References

[1] F. Ahmed, M. Samorani, C. Bellinger, O.R. Zaïane, Advantage of integration in big data: feature generation in multi-relational databases for imbalanced 
learning, in: BigData, IEEE, 2016, pp. 532–539.

[2] E. Alpaydin, Introduction to Machine Learning, MIT Press, 2009.
[3] T. Antonopoulos, F. Neven, F. Servais, Definability problems for graph query languages, in: ICDT, 2013, pp. 141–152.
[4] M. Arenas, G.I. Diaz, The exact complexity of the first-order logic definability problem, ACM Trans. Database Syst. 41 (2016) 13.
[5] B. Aronov, D. Garijo, Y. Núñez-Rodríguez, D. Rappaport, C. Seara, J. Urrutia, Minimizing the error of linear separators on linearly inseparable data, 

Discrete Appl. Math. 160 (2012) 1441–1452.
[6] P. Barceló, M. Romero, The complexity of reverse engineering problems for conjunctive queries, in: ICDT, 2017, 7.
[7] A. Bonifati, W. Martens, T. Timm, An analytical study of large SPARQL query logs, Proc. VLDB Endow. 11 (2017) 149–161.
[8] R. Cappuzzo, P. Papotti, S. Thirumuruganathan, Creating embeddings of heterogeneous relational datasets for data integration tasks, in: D. Maier, R. 

Pottinger, A. Doan, W. Tan, A. Alawini, H.Q. Ngo (Eds.), SIGMOD, 2020, pp. 1335–1349.
[9] B. ten Cate, V. Dalmau, The product homomorphism problem and applications, in: ICDT, 2015, pp. 161–176.

[10] O. Chapelle, P. Haffner, V. Vapnik, Support vector machines for histogram-based image classification, IEEE Trans. Neural Netw. 10 (1999) 1055–1064.
[11] H. Chen, V. Dalmau, Beyond hypertree width: decomposition methods without decompositions, in: CP, 2005, pp. 167–181.
[12] V. Feldman, V. Guruswami, P. Raghavendra, Y. Wu, Agnostic learning of monomials by halfspaces is hard, SIAM J. Comput. 41 (2012) 1558–1590.
[13] J. Flum, M. Grohe, Parameterized Complexity Theory, Springer, 2006.
[14] J. Friedman, T. Hastie, R. Tibshirani, Sparse inverse covariance estimation with the graphical lasso, Biostatistics 9 (2008) 432–441.
[15] G. Gottlob, G. Greco, N. Leone, F. Scarcello, Hypertree decompositions: questions and answers, in: PODS, 2016, pp. 57–74.
[16] G. Gottlob, N. Leone, F. Scarcello, Hypertree decompositions and tractable queries, J. Comput. Syst. Sci. 64 (2002) 579–627.
[17] M. Grohe, word2vec, node2vec, graph2vec, x2vec: towards a theory of vector embeddings of structured data, in: D. Suciu, Y. Tao, Z. Wei (Eds.), SIGMOD, 

2020, pp. 1–16.
[18] M. Grohe, C. Löding, M. Ritzert, Learning mso-definable hypotheses on strings, in: ALT, PMLR, 2017, pp. 434–451.
[19] M. Grohe, D. Marx, Constraint solving via fractional edge covers, ACM Trans. Algorithms 11 (2014) 4.
[20] M. Grohe, M. Ritzert, Learning first-order definable concepts over structures of small degree, in: LICS, IEEE Computer Society., 2017, pp. 1–12.
[21] I. Guyon, S. Gunn, M. Nikravesh, L.A. Zadeh, Feature Extraction: Foundations and Applications (Studies in Fuzziness and Soft Computing), Springer-

Verlag, New York, Inc., Secaucus, NJ, USA, 2006.
[22] K. Höffgen, H.U. Simon, K.S.V. Horn, Robust trainability of single neurons, J. Comput. Syst. Sci. 50 (1995) 114–125.
[23] S. Kandel, A. Paepcke, J.M. Hellerstein, J. Heer, Enterprise data analysis and visualization: an interview study, IEEE Trans. Vis. Comput. Graph. 18 (2012) 

2917–2926.
[24] N. Karmarkar, A new polynomial-time algorithm for linear programming, Combinatorica 4 (1984) 373–396.
[25] S.M. Kazemi, B. Fatemi, A. Kim, Z. Peng, M.R. Tora, X. Zeng, M.C. Dirks, D. Poole, Comparing aggregators for relational probabilistic models, CoRR, 

arXiv:1707.07785 [abs], 2017.
[26] J.M. Keller, M.R. Gray, J.A. Givens, A fuzzy k-nearest neighbor algorithm, IEEE Trans. Syst. Man Cybern. Syst. 15 (1985) 580–585.
[27] L. Khachiyan, A polynomial algorithm in linear programming, Sov. Math. Dokl. 20 (1979) 191–194.
[28] B. Kimelfeld, C. Ré, A relational framework for classifier engineering, in: PODS, 2017, pp. 5–20.
[29] A.J. Knobbe, M. de Haas, A. Siebes, Propositionalisation and aggregates, in: PKDD, 2001, pp. 277–288.
[30] P.G. Kolaitis, J. Panttaja, On the complexity of existential pebble games, in: CSL, 2003, pp. 314–329.
[31] H.T. Lam, T.N. Minh, M. Sinn, B. Buesser, M. Wistuba, Learning features for relational data, CoRR, arXiv:1801.05372 [abs], 2018, URL: http://arxiv.org /

abs /1801.05372.
[32] D. Marx, Tractable hypergraph properties for constraint satisfaction and conjunctive queries, J. ACM 60 (2013) 42.
[33] M. Mohri, A. Rostamizadeh, A. Talwalkar, Foundations of Machine Learning, MIT Press, 2012.
[34] S. Mudgal, H. Li, T. Rekatsinas, A. Doan, Y. Park, G. Krishnan, R. Deep, E. Arcaute, V. Raghavendra, Deep learning for entity matching: a design space 

exploration, in: G. Das, C.M. Jermaine, P.A. Bernstein (Eds.), SIGMOD, 2018, pp. 19–34.
[35] C.A. Murthy, Bridging feature selection and extraction: compound feature generation, IEEE Trans. Knowl. Data Eng. 29 (2017) 757–770.
[36] C. Perlich, F.J. Provost, Distribution-based aggregation for relational learning with identifier attributes, Mach. Learn. 62 (2006) 65–105.
[37] M. Pontil, A. Verri, Support vector machines for 3D object recognition, IEEE Trans. Pattern Anal. Mach. Intell. 20 (1998) 637–646.
[38] M.T. Ribeiro, S. Singh, C. Guestrin, “Why should I trust you?”: explaining the predictions of any classifier, in: KDD, ACM, 2016, pp. 1135–1144.
[39] M.T. Ribeiro, S. Singh, C. Guestrin, Anchors: high-precision model-agnostic explanations, in: AAAI, AAAI Press, 2018, pp. 1527–1535.
[40] M. Samorani, M. Laguna, R.K. DeLisle, D.C. Weaver, A randomized exhaustive propositionalization approach for molecule classification, INFORMS J. 

Comput. 23 (2011) 331–345.
[41] B. Schölkopf, A.J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond, Adaptive Computation and Ma-

chine Learning Series, MIT Press, 2002.
[42] S. Shalev-Shwartz, S. Ben-David, Understanding Machine Learning: From Theory to Algorithms, Cambridge University Press, New York, NY, USA, 2014.
[43] Y.Y. Weiss, S. Cohen, Reverse engineering spj-queries from examples, in: PODS, 2017, pp. 151–166.
[44] R. Willard, Testing expressibility is hard, in: CP, 2010, pp. 9–23.
[45] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, P.S. Yu, A comprehensive survey on graph neural networks, CoRR arXiv:1901.00596 [abs], 2019, URL: http://

arxiv.org /abs /1901.00596.
[46] C. Zhang, A. Kumar, C. Ré, Materialization optimizations for feature selection workloads, in: SIGMOD Conference, 2014, pp. 265–276.
[47] W. Ziarko, Variable precision rough set model, J. Comput. Syst. Sci. 46 (1993) 39–59.
124

http://refhub.elsevier.com/S0022-0000(21)00011-8/bib5EBBE8DB95D63D165A16548342B8F58Cs1
http://refhub.elsevier.com/S0022-0000(21)00011-8/bib5EBBE8DB95D63D165A16548342B8F58Cs1
http://refhub.elsevier.com/S0022-0000(21)00011-8/bib2B6C7A19818B0786F02E0A8347C31012s1
http://refhub.elsevier.com/S0022-0000(21)00011-8/bib17D8A03CED3652B18104B7B7D27CF07Bs1
http://refhub.elsevier.com/S0022-0000(21)00011-8/bib760D2F3C45F358DFF9F6D9F40A7B59CEs1
http://refhub.elsevier.com/S0022-0000(21)00011-8/bib1AFE6C910A85822FBF57C7BED5DC253Bs1
http://refhub.elsevier.com/S0022-0000(21)00011-8/bib1AFE6C910A85822FBF57C7BED5DC253Bs1
http://refhub.elsevier.com/S0022-0000(21)00011-8/bib1EB5D2FF275E458FC6313B2A5F2A6FCCs1
http://refhub.elsevier.com/S0022-0000(21)00011-8/bib0862B9777AEB2382E427FFAAC769BF9Cs1
http://refhub.elsevier.com/S0022-0000(21)00011-8/bibF1EFE75CA9BCDE19A625F03D539D7CACs1
http://refhub.elsevier.com/S0022-0000(21)00011-8/bibF1EFE75CA9BCDE19A625F03D539D7CACs1
http://refhub.elsevier.com/S0022-0000(21)00011-8/bib2F7CF62FF2348EA2A1425F1C9EFFF901s1
http://refhub.elsevier.com/S0022-0000(21)00011-8/bib080ACD2014CF9C1C0E50FDF9ED3687A5s1
http://refhub.elsevier.com/S0022-0000(21)00011-8/bib81B4DD343F5880DF806D4C5D4A846C64s1
http://refhub.elsevier.com/S0022-0000(21)00011-8/bibF5540BA141C53FF05CF4BE969E0ED08Es1
http://refhub.elsevier.com/S0022-0000(21)00011-8/bib77C0C93DE43A0B994B38F007643FBE8As1
http://refhub.elsevier.com/S0022-0000(21)00011-8/bib3C9512B5819EE938C1A3655E13F958B3s1
http://refhub.elsevier.com/S0022-0000(21)00011-8/bib492FD2B85F931A38FBD163BAFCC970C1s1
http://refhub.elsevier.com/S0022-0000(21)00011-8/bib7D16B4E77FA60AFC20BBD80A5B994244s1
http://refhub.elsevier.com/S0022-0000(21)00011-8/bibBC40F37480057726CA3026385BAFC732s1
http://refhub.elsevier.com/S0022-0000(21)00011-8/bibBC40F37480057726CA3026385BAFC732s1
http://refhub.elsevier.com/S0022-0000(21)00011-8/bibF3848DC03905F60EA558F328AB94975Bs1
http://refhub.elsevier.com/S0022-0000(21)00011-8/bib143529F087F458906B146472F3D25AAFs1
http://refhub.elsevier.com/S0022-0000(21)00011-8/bib0A55215103DF0831955A5C04B2E81F84s1
http://refhub.elsevier.com/S0022-0000(21)00011-8/bib0B6A8A870093113E10FFF2BAB81F7928s1
http://refhub.elsevier.com/S0022-0000(21)00011-8/bib0B6A8A870093113E10FFF2BAB81F7928s1
http://refhub.elsevier.com/S0022-0000(21)00011-8/bibBB54ECA426889E8772D9ADBE82D3B529s1
http://refhub.elsevier.com/S0022-0000(21)00011-8/bib02C3250F96C7791B254419A3DAE94D3Es1
http://refhub.elsevier.com/S0022-0000(21)00011-8/bib02C3250F96C7791B254419A3DAE94D3Es1
http://refhub.elsevier.com/S0022-0000(21)00011-8/bib98F4D09F9D51A0695C7E61148EF205B0s1
http://refhub.elsevier.com/S0022-0000(21)00011-8/bib0F80E5A6A606D68BE6A6AC011B4128EFs1
http://refhub.elsevier.com/S0022-0000(21)00011-8/bib0F80E5A6A606D68BE6A6AC011B4128EFs1
http://refhub.elsevier.com/S0022-0000(21)00011-8/bibF39B052C95AACD1384514B51622F41DAs1
http://refhub.elsevier.com/S0022-0000(21)00011-8/bib683D20E2123BAB1F1CF7CBAA54A1FC66s1
http://refhub.elsevier.com/S0022-0000(21)00011-8/bibCA1DE46F57B791199488DE93E05977EAs1
http://refhub.elsevier.com/S0022-0000(21)00011-8/bibF3E19BBC6131A4261F273EFD5C729396s1
http://refhub.elsevier.com/S0022-0000(21)00011-8/bib717397E029BDC468B7F443D712C23872s1
http://arxiv.org/abs/1801.05372
http://arxiv.org/abs/1801.05372
http://refhub.elsevier.com/S0022-0000(21)00011-8/bibB754CC8552E97A5EDA6AF8E16A2807E7s1
http://refhub.elsevier.com/S0022-0000(21)00011-8/bibABF90BFBD6032D2E70FFDBA6BC053042s1
http://refhub.elsevier.com/S0022-0000(21)00011-8/bib721E6544E3450401B1895CBADBBA0D34s1
http://refhub.elsevier.com/S0022-0000(21)00011-8/bib721E6544E3450401B1895CBADBBA0D34s1
http://refhub.elsevier.com/S0022-0000(21)00011-8/bib438A427D7C12718D31C7ACFE8A33A278s1
http://refhub.elsevier.com/S0022-0000(21)00011-8/bib852315EF2F2A808D5E30005E5D584BDBs1
http://refhub.elsevier.com/S0022-0000(21)00011-8/bib10AD19C6D6F434475A53DFC60621CC1Fs1
http://refhub.elsevier.com/S0022-0000(21)00011-8/bib89CDD3BDFFEB11DF734E528DC84030C5s1
http://refhub.elsevier.com/S0022-0000(21)00011-8/bib037AFA18F0F76F48716765DFC1B4779Ds1
http://refhub.elsevier.com/S0022-0000(21)00011-8/bib66369A7FF9EB1700C0CCBBFCBFB9D5F1s1
http://refhub.elsevier.com/S0022-0000(21)00011-8/bib66369A7FF9EB1700C0CCBBFCBFB9D5F1s1
http://refhub.elsevier.com/S0022-0000(21)00011-8/bib608189B2D596F029CA02B0B6E7D8BA7Ds1
http://refhub.elsevier.com/S0022-0000(21)00011-8/bib608189B2D596F029CA02B0B6E7D8BA7Ds1
http://refhub.elsevier.com/S0022-0000(21)00011-8/bib63E0A08C15F1A264659EC7862354748Bs1
http://refhub.elsevier.com/S0022-0000(21)00011-8/bib35C2202AD946A8139E136A885A3C81A7s1
http://refhub.elsevier.com/S0022-0000(21)00011-8/bib8873595B6F228E8D5DD41EEED4B66054s1
http://arxiv.org/abs/1901.00596
http://arxiv.org/abs/1901.00596
http://refhub.elsevier.com/S0022-0000(21)00011-8/bib54C10C23CED5934097FD64183131309Ds1
http://refhub.elsevier.com/S0022-0000(21)00011-8/bibFBA671B6D2A4E43C20268D98589BA2BAs1

	Regularizing conjunctive features for classification
	1 Introduction
	2 Preliminaries
	3 The separability problem
	4 Bounded number of feature atoms
	5 Bounded generalized hypertree-width
	5.1 Background
	5.2 Separability
	5.3 Feature generation
	5.4 Classification

	6 Bounding the dimension
	6.1 The query-by-example problem
	6.2 Separability for bounded dimension
	6.3 Generating a statistic
	6.4 Bounded dimension and number of feature atoms
	6.5 Fixed number of variable occurrences

	7 Approximate separability
	7.1 Intractable cases
	7.2 Feasible cases
	7.2.1 Approximate CQ[m]-separability
	7.2.2 Approximate GHW(k)-separability


	8 More expressive feature queries
	8.1 The dimension-collapse property
	8.2 The unbounded-dimension property

	9 Final remarks
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


