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Abstract

We consider unranked trees, that have become an ac-
tive subject of study recently due to XML applications,
and characterize commonly used fragments of first-
order (FO) and monadic second-order logic (MSO) for
them via various temporal logics. We look at both un-
ordered trees and ordered trees (in which children of the
same node are ordered by the next-sibling relation), and
characterize Boolean and unary FO and MSO queries.
For MSO Boolean queries, we use extensions of the µ-
calculus: with counting for unordered trees, and with
the past for ordered. For Boolean FO queries, we use
similar extensions of CTL?. We then use composition
techniques to transfer results to unary queries. For the
ordered case, we need the same logics as for Boolean
queries, but for the unordered case, we need to add
both past and counting to the µ-calculus and CTL?.
We also consider MSO sibling-invariant queries, that
can use the sibling ordering but do not depend on the
particular one used, and capture them by a variant of
the µ-calculus with modulo quantifiers.

1 Introduction

Logics and automata over unranked trees – that is, trees
in which nodes can have arbitrary many children – have
recently received much attention due to XML applica-
tions, which typically model XML documents as la-
beled unranked trees [31]. Logical formalisms for XML
languages are usually based on MSO, monadic second-
order logic, or FO, first-order logic. While having MSO
or FO as their basis, syntactically they could be quite
different: e.g., syntactic modifications of MSO or FO
that ensure faster query evaluation [30, 32], restrictions
of Datalog [15, 16], or model-theoretic formalisms [23].
MSO is often used as a basis for query languages and is
closely connected to schema specifications, while navi-
gational aspects (e.g., XPath) are usually based on FO.

It is known that over ranked trees (that is, trees in
which the number of children is fixed) one has tight
connections between logics such as MSO and FO and
temporal logics. For example, over the infinite binary
tree MSO equals the µ-calculus Lµ [12, 33]. Further-
more, the monadic path logic over the infinite binary
tree has precisely the power of CTL? [18], which implies
that CTL? = FO over finite binary trees.

Thus, it seems natural to consider analogs of tempo-
ral logics over unranked trees and relate them to FO
and MSO. Unlike results of [37, 20, 29] that describe
fragments of FO and MSO corresponding to modal and
temporal logics, we are interested in extensions of tem-
poral logics that have the power of MSO and FO over
unranked trees. The reason is that temporal logics de-
fine bisimulation-invariant properties, but many XML
queries of interest are not bisimulation-invariant (for
example, XML DTDs are essentially equivalent to full
MSO [39]). Many navigational properties of impor-
tance in the XML context are very natural to express
in temporal logics; furthermore, temporal logics enjoy
nice algorithmic properties which could hopefully be
adapted in the XML context. Various connections have
been explored in the literature (for example, implica-
tion for various CTL fragments based on tree-patterns
[28], verifying properties of paths in XML documents
[1], ambient logic-based languages for semi-structured
data [6], extensions of XPath with an until-like oper-
ator [26], or extensions of LTL for trees [35]). Our
goal here is to systematically relate FO and MSO over
unranked trees to temporal logics.

In the XML setting, one most often studies Boolean
queries, giving a yes/no answer on a tree (for example,
validation of XML documents with respect to DTDs),
or unary queries, selecting nodes from a document
(e.g., finding the set of nodes reachable by an XPath
expression). Both are naturally modeled by temporal
logics which are evaluated in an element in a struc-
ture. They naturally define unary queries, and for the
Boolean case, we evaluate them at the root.
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In view of [12, 20, 33, 18, 29], it is expected that MSO
should correspond to some variation of the µ-calculus,
and FO should be related to CTL?. For exact state-
ments of results, it is important to decide how precisely
we represent trees as transition systems. We shall cer-
tainly use the edge relation itself (that is, the child
relation ≺ch in a tree). In unranked trees, one typi-
cally has a next-sibling relation ≺sb on children of the
same node. These two will be our basic vocabulary
symbols when we deal with MSO. For the case of FO,
notice that temporal logics naturally talk about reach-
ability which is not FO-definable. Hence, when dealing
with FO, we shall be using the descendant relation ≺∗ch
(which is the transitive closure of ≺ch) and the sibling
ordering ≺∗sb (which is the transitive closure of ≺sb).

Organization The paper is organized as follows. We
present notations in Section 2. In Section 3 we deal
with Boolean queries. We first review known results
relating MSO and FO over unordered trees to Lµ and
CTL? with counting, and give a simple direct proof
for the MSO case. Then we turn to ordered trees and
characterize MSO and FO by adding the ability to rea-
son about the past to Lµ and CTL?. In Section 4 we
deal with unary queries. Our proofs are based on the
results for Boolean queries and several composition re-
sults that allow us to transfer results to the unary case.
It turns out that for the ordered case, the same logics
work for unary queries, but for unordered trees one has
to add past connectives as well. Then in Section 5 we
deal with sibling-invariant queries, and show that they
are captured by adding modulo quantifiers to Lµ. As
a corollary, we get a simple proof of a result by Cour-
celle. In Section 6 we offer remarks on the complexity
of model-checking and on XML applications.

2 Preliminaries

Trees and strings An unranked tree domain D is
a prefix-closed finite set of strings of natural numbers,
such that if s·i ∈ D then s·j ∈ D, for all j < i. If Σ is
a finite alphabet, then an (ordered) unranked Σ-tree is
a first-order structure

T = 〈D,≺ch,≺sb, ≺
∗
ch,≺

∗
sb, (Pa)a∈Σ〉,

where ≺ch is interpreted as the child relation (s ≺ch s ·i
if s, s ·i ∈ D), ≺sb as the sibling order (s ·i ≺sb s ·(i+1)
if s ·(i+1), s · i ∈ D), and Pa as the set of nodes labeled
a, for a ∈ Σ (as usual, we require that the Pa’s form
a partition of D, that is, each element of the domain
is assigned a unique label in Σ). Furthermore, ≺∗ch is
the transitive-reflexive closure of ≺ch (the descendant

relation), and ≺∗sb is the transitive-reflexive closure of
≺sb (linear ordering on siblings). The empty string will
be denoted by ε; hence ε ∈ D is the root of T .

We shall denote first-order logic by FO and monadic
second-order logic (that extends FO with quantifica-
tion over sets) by MSO. In all our applications, the
vocabulary will contain at least the labeling predi-
cates Pa for a ∈ Σ. The rest of the vocabulary
will be explicitly listed in square brackets; for exam-
ple, MSO[≺ch,≺sb] refers to MSO over the vocabulary
(≺ch,≺sb, (Pa)), and FO[≺∗ch] refers to FO over the vo-
cabulary (≺∗ch, (Pa)). Since ≺∗ch and ≺∗sb are definable
from ≺ch and ≺sb in MSO but not in FO, we normally
use ≺ch and ≺sb for MSO, and ≺∗ch and ≺∗sb for FO.

We shall view a finite string s of length n over Σ as
a structure 〈[n], <, (Pa)a∈Σ〉 with the universe [n] =
{0, . . . , n− 1}, a binary predicate < interpreted as the
usual ordering, and Pa interpreted as the set of posi-
tions i < n in which a ∈ Σ occurs.

Unranked tree automata An unranked nondeter-
ministic tree automaton (UNTA) is A = (Q,Σ, F, δ),
where Q is a set of states, Σ is the alphabet, F ⊆ Q is
the set of final states, and δ : Q×Σ → 2Q∗

is the tran-
sition function such that for every q ∈ Q and a ∈ Σ,
δ(q, a) is a regular language over Q.

A run of an automaton A on a tree T with domain D is
a function ρ : D → Q such that, for every element s ∈
D labeled a with children s1 ≺sb . . . ≺sb sn, the string
ρ(s1)ρ(s2) . . . ρ(sn) is in δ(ρ(s), a). A tree is accepted
by A if there is a run ρ such that ρ(ε) ∈ F (that is, the
root is in a state in F ). The set of trees accepted by A
is denoted by L(A). An automaton A is deterministic
if for every tree it has exactly one run.

Temporal logics We shall mostly consider the
modal µ-calculus Lµ and CTL?. These will be
interpreted over finite transition systems K =
〈S, (Er)r∈R, (Pa)a∈Σ〉, where R is a finite list of binary
relation symbols and each Er is interpreted as a subset
of S × S; each Pa is a subset of S. We shall view a Σ-
tree T as a transition system with two binary relations
≺ch and ≺sb.

The formulae of Lµ are given by

ϕ := a (a ∈ Σ) | X | ϕ ∨ ϕ | ¬ϕ | 3(Er)ϕ | µX ϕ(X),

where in µX ϕ(X), the variable X must occur posi-
tively in ϕ. Given K, s ∈ S, and a valuation v for free
variables (such that each v(X) is a subset of S), we de-
fine the semantics (omitting the rules for propositional
letters and Boolean connectives) by
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• (K, v, s) |= X iff s ∈ v(X).

• (K, v, s) |= 3(Er)ϕ iff (K, v, s′) |= ϕ for some s′

with (s, s′) ∈ Er.

• (K, v, s) |= µX ϕ(X) iff s is in the least fixed point
of the operator defined by ϕ; in other words, if
s ∈

⋂

{P | {s′ | (K, v[P/X ], s′) |= ϕ} ⊆ P}, where
v[P/X ] extends the valuation v by v(X) = P .

When we refer to Lµ being equivalent to a logic on
trees, we mean Lµ formulae without free variables
(which are then evaluated in an element of K). As
usual, we define 2(Er)ϕ as ¬3(Er)¬ϕ. If we list ex-
plicitly binary relations Ei’s, we write Lµ[E1, . . . , Ek]
to refer Lµ formulae that only use those relations. For
example, Lµ[≺ch,≺sb] refers to Lµ formulae that use
both ≺ch and ≺sb relations.

Next we define CTL? in a way that is convenient when
we have several binary relations, say E1, . . . , Em. Then
CTL?[E1, . . . , Em] has state formulae α, and Ei-path
formulae βi, i ≤ m, defined by the grammars below:

α := a (a ∈ Σ) | ¬α | α ∨ α | Eβi, i ≤ m

βi := α | ¬βi | βi ∨ βi | XEi
βi | βi UEi

βi

Of course for the case of just one binary relation this
is the standard definition of CTL?.

An Ei-path π is a sequence s1s2 . . . of nodes such that
(sj , sj+1) ∈ Ei for every sj , sj+1 in π, and such that if
the set {s | (sj , s) ∈ Ei} is nonempty, then one of the
elements of this set is sj+1. (Note that in trees, both
≺ch-paths and ≺sb-paths will be finite, although typi-
cally in transition systems one considers infinite paths.
This is not a problem, however, since we can make all
paths infinite by adding a child labeled ⊥ 6∈ Σ to each
leaf, and a ≺ch loop for that element, and likewise for
the youngest sibling on each sibling path.)

Given an Ei-path π = s1s2 . . ., we let πk be the path
starting at sk. Then (we only list the essential rules):

• (K, s) |= Eβi iff there exists an Ei-path π = s . . .
such that (K, π) |= βi;

• (K, π) |= α iff (K, s1) |= α, where π = s1 . . .;

• (K, π) |= XEi
βi iff π = s1s2 . . . is an Ei-path and

and (K, π2) |= βi; and

• (K, π) |= βi UEi
β′i iff π is an Ei-path and there is

a number k such that (K, πk) |= β′i and (K, πl) |=
βi for all l < k.

Sometimes (e.g. [18]), one has a version of CTL? that
has different Xi operators for different binary relations

Ei and only one until operator U for all the relations,
which refers to paths over the union of all Ei’s. Such a
logic, over binary trees, is equivalent to monadic path
logic of two successor relations [18]. Hence, over finite
binary trees, where each path is uniquely determined
by its endpoints, this logic is equivalent to FO. Notice,
however, in case of relations ≺ch and ≺sb, a path over
≺ch ∪ ≺sb is not uniquely determined by its endpoints.

We shall refer to this version of CTL? as CTL?[
⋃

i Ei].
In this case path formulae are closed under the until
operator U and next operators XEi

, and the semantics
of XEi

ϕ is that the next element on the path is reached
by an Ei-edge, and ϕ is true in the continuation of the
path from that element.

Boolean and unary queries Since temporal logic
formulae are satisfied in an element of a transition sys-
tem (or a node of a tree in our case), they naturally give
rise to classes of Boolean and unary queries definable
over unranked trees. We say that MSO (or FO) unary
queries over unranked trees are captured by a temporal
logic L if for every MSO (FO, resp.) formula ϕ(x) there
exists an L-formula ψ such that for every unranked tree
T and a node s we have T |= ϕ(s) ⇔ (T, s) |= ψ, and
conversely, for every L formula ψ we can find ϕ(x) such
that the above holds.

MSO (or FO) Boolean queries over unranked trees are
captured by a temporal logic L if for every MSO (FO,
resp.) sentence ϕ there exists an L-formula ψ such that
for every unranked tree T we have T |= ϕ ⇔ (T, ε) |=
ψ, and conversely, for every L formula ψ we can find a
sentence ϕ such that the above holds. That is, Boolean
queries are witnessed at the root.

In general, if one of the above is the case, we shall say
that over unranked trees MSO = L or FO = L, and
it will be clear from the context whether we speak of
Boolean or unary queries.

Quantifier rank, types The quantifier rank qr(ϕ)
of a formula (FO or MSO) is the depth of quantifier
nesting in ϕ. With each structure M of vocabulary θ we
associate its FO rank-k type tpk

FO[θ](M) = {ϕ | M |=

ϕ and qr(ϕ) = k}, where ϕ ranges over FO sentences.
Similarly we define tpk

MSO[θ](M). If the vocabulary θ

is understood, we omit it (and for trees, we normally
omit the unary predicates).

A rank-k (FO) type is a set of sentences of the form
tpk

FO(M) (and likewise for MSO). It is well-known that
there are finitely many rank-k types for all k, and for
each rank-k (FO or MSO) type τ there is a sentence
(FO or MSO) ϕτ such that M |= ϕτ iff tpk

FO(M) = τ
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(or tpk
MSO(M) = τ). We normally associate types with

formulae that define them.

We write M ≡k M
′ iff tpk

FO(M) = tpk
FO(M′) (equiva-

lently, if the duplicator wins the k-round Ehrenfeucht-
Fräıssé game on M and M

′) and likewise for MSO.

Remarks on proof techniques Standard proof tech-
niques for relating logics like FO and MSO to temporal
logics include automata, and the composition method
[24, 18, 32]. In addition, some results can be shown by
using the standard translation from unranked trees into
binary trees. However, these reductions, while often
useful steps in proofs, do not usually immediately yield
the desired results. For example, the standard transla-
tion of unranked Σ-labeled trees into ranked ones intro-
duces several nodes labeled by a symbol ⊥ 6∈ Σ. Hence,
over translations, the CTL? formula EF⊥ will be true,
but since no node in the original tree is labeled ⊥ it is
unclear how to translate this formula back into CTL?

over unranked trees. Another difficulty arises when one
analyzes paths in unranked trees that are translations
of paths in ranked trees: those can change direction
from “child” to “next sibling” arbitrarily many times,
which causes problems with translating temporal logic
formulae.

3 Boolean queries

Throughout this section, all statements of the form
FO = L or MSO = L refer to Boolean queries.

3.1 Unordered trees

In unordered unranked trees, one does not have the sib-
ling ordering, so we are dealing with logics MSO[≺ch]
and FO[≺∗ch]. We review results below for the sake
of completeness and comparison with other results, as
they follow from known facts [40, 29]. Furthermore, we
shall provide some extensions in Section 4.

Define the counting µ-calculus Cµ (cf. [11, 19]) as an
extension of Lµ with formulae 3

≥k(Er)ϕ. The seman-
tics of (K, s) |= 3

≥k(Er)ϕ is as follows: there exist
distinct elements s1, . . . , sk such that (s, si) ∈ Er and
(K, si) |= ϕ for every 1 ≤ i ≤ k. Then we have the
following consequence of results in: [40, 11, 19]:

Theorem 3.1 Over unranked trees, MSO[≺ch] =
Cµ[≺ch]. Furthermore, the translations between MSO
and Cµ are effective.

Proof. The equality can easily be deduced from known
results: given an MSO sentence ϕ, consider ϕ ∧ ϕT

where ϕT says that the structure is a tree. This sen-
tence is clearly invariant under unwinding and thus by
[40, 11, 19] is equivalent to a Cµ formula which then is
equivalent to ϕ over unranked trees.

To see effectiveness, we provide (in the appendix) a
simple direct proof that translates tree automata cap-
turing MSO[≺ch] into Cµ. 2

Next, define a similar counting extension of CTL? de-
noted by CTL?

count. If α is a state formula, we allow a

new state formulae EX≥k
E α such that (K, s) |= EX≥k

E α
if there exist distinct elements s1, . . . , sk such that
(s, sj) ∈ E and (K, sj) |= α for every 1 ≤ j ≤ k.

Theorem 3.2 (Moller, Rabinovich [29]) Over
unranked trees, FO[≺∗ch] = CTL?

count[≺ch]. 2

3.2 Ordered trees

In this section we look at the full vocabulary contain-
ing both ≺ch and ≺sb for the case of MSO, and their
transitive closures ≺∗ch and ≺∗sb for the case of FO. We
show that these are captured by Lµ and CTL? if we
add the ability to reason about the past.

3.2.1 MSO

The full µ-calculusLfull
µ (cf. [38]) adds backward modal-

ities 3(E−)ϕ with the semantics (K, s) |= 3(E−)ϕ iff
(K, s′) |= ϕ for some s′ such that (s′, s) ∈ E.

We shall also consider an additional binary relation
first-child over unranked trees (as is common in many
XML applications and in some languages, see, e.g. [15,
16]). We denote it by ≺fc; then in a tree with domain
D, s ≺fc s

′ iff s, s′ both belong to D and s′ = s · 0.

Theorem 3.3 Over unranked trees,

MSO[≺ch,≺sb] = Lfull
µ [≺ch,≺sb] = Lµ[≺ch,≺sb,≺fc],

and translations between these formalisms are effective.

Proof sketch. Translations from Lfull
µ [≺ch,≺sb] and

Lµ[≺ch,≺sb,≺fc] into MSO are routine. To see that
MSO[≺ch,≺sb] is subsumed by Lµ[≺ch,≺sb,≺fc], we
consider a deterministic unranked tree automaton Aϕ

equivalent to an MSO sentence ϕ, and define a simul-
taneous fixed point formula that computes the sets
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Xi, i ≤ m (where m is the number of states of Aϕ)
such that for every tree T with domainD, s ∈ Xi iff the
unique run of Aϕ assigns state qi to s. In the process,
we need an inner fixed point computation that checks
if the string of states assigned to children s · 0, . . . , s · j
of s is in the right regular language. We can check
that such a string is in a given regular language using
just the 3(≺sb) modalities if a formula is evaluated in
the first position of a string. Hence, with ≺fc, this can
be done in Lµ. Alternatively, with backward modali-
ties we can reach the beginning of the string, and from
there check membership in a regular language. Notice
also that the MSO[≺ch,≺sb] = Lµ[≺fc,≺sb] equality
can be proved by using translation into ranked trees
and equality of MSO and Lµ over binary trees [33, 12].

3.2.2 FO

FO over trees was studied in several recent papers,
partly due to its close connection with XPath [2, 5, 3,
25, 26]. Some of these papers provide algebraic charac-
terizations of FO and its fragments on trees [5, 3], oth-
ers define extensions of the XPath formalism to capture
FO [25, 26].

To capture FO over ≺∗ch and ≺∗sb, we shall use an ex-
tension CTL?

past of CTL? that allows reasoning about
the past. Normally such a logic is defined by allowing
in addition to X and U their “inverses” usually called
Y (yesterday) and S (since) [22]. We shall use the no-
tation X≺−

ch

and X≺−

sb

instead of Y, referring to them

as next with respect to inverses of ≺−ch and ≺−sb of ≺ch

and ≺sb. In general, the semantics of path formulae of
CTL?

past refers to a path and a position in a path; that
is, one defines the notion (K, π, `) |= β. A path there-
fore includes not only the future but also the past, and
we require that paths include the entire past. That is,
all ≺ch-paths start in the root, and all ≺sb-paths start
in the oldest child.

The semantics of CTL?
past[E1, . . . , Er] is as follows [22]

(again, listing only the essential rules):

• (K, s) |= Eβi if there is an Ei-path π = s1s2 . . .
and ` ≥ 1 such that s = s` and (K, π, `) |= βi;

• (K, π, `) |= XE
−

i

βi iff π is an Ei-path, ` > 1 and

(K, π, `− 1) |= βi;

• (K, π, `) |= βi SEi
β′i iff π is an Ei-path and

there exists k < ` such that (K, π, k) |= β′i and
(K, π, j) |= βi for all k < j ≤ `.

We shall use the abbreviation PEi
β for true SEi

β

(sometime in the past β).

One can also define a version of CTL?
past with unique

“until” and “since” operators and several “next” and
“previous” operators. We shall denote this logic by
CTL?

past[≺ch ∪ ≺sb]. The semantics naturally com-
bines the semantics of past and the the semantics of
CTL?[

⋃

i Ei] (that is, we have ≺ch ∪ ≺sb paths). For
example, (T, π, `) |= X≺ch

ϕ if (T, π, ` + 1) |= ϕ and
from position ` to position `+ 1 one goes by the child
relation.

It is known that over a Kripke structure (or a transition
system with a single binary relation), CTL?

past = CTL?

if each state has a unique path that leads from an ini-
tial state to it [22]. But unranked trees are modeled as
transition systems with two binary relations, and over
the union of these relations, there may be more than
one history. In fact one can easily show that over un-
ranked trees, CTL? ( CTL?

past (for example, a formula
saying that the root’s oldest child is labeled b and one
other child is labeled a is not expressible in CTL? as
can be shown by a simple game argument).

Our main result connecting FO and past CTL? can
be seen as an analog of the equality between FO and
CTL? over finite binary trees [18]. Furthermore, the
result that uses the logic with multiple until operators
is a refinement of a result in [26] (we provide additional
information on the use of the past connectives).

Theorem 3.4 Over unranked trees,

FO[≺∗ch,≺
∗
sb]

= CTL?
past[≺ch,≺sb]

= CTL?
past[≺ch ∪ ≺sb].

Moreover, every formula of CTL?
past[≺ch,≺sb] is equiv-

alent to a formula that does not use since operators
S≺ch

and S≺sb
as well as X≺−

ch

but uses X≺−

sb

and P≺sb
,

and the translation between these logics are are effec-
tive.

Proof sketch. We use the standard translation of un-
ranked trees into binary trees τ : D → {0, 1} such
that τ(ε) = ε and for each string s = s′ · i in D,
τ(s·0) = τ(s)·0 and τ(s′·(i+1)) = τ(s)·1. Moreover, we
complete τ(D) to make it a binary tree without unary
branching. That is, if τ(s) has only one child in the
image of τ on D, we add the second child and give it
a new label ⊥ 6∈ Σ. This extends τ to translation from
unranked trees to binary ones. It is well known that if
we consider the resulting binary trees as trees in the vo-
cabulary −<0,−<1,≺, (Pa)a∈Σ, P⊥, where −<0 and −<1
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are interpreted as the first and second successor and ≺
is the prefix relation, then there is an effective trans-
lation ϕ 7→ ϕ◦ from FO sentences over (≺∗ch,≺

∗
sb, Pa)

into FO sentences over (−<0,−<1,≺, (Pa)a∈Σ, P⊥) such
that T |= ϕ iff τ(T ) |= ϕ◦.

Suppose we are given a sentence ϕ of FO[≺∗ch,≺
∗
sb].

Consider ϕ◦ over binary Σ ∪ {⊥}-labeled trees. By
[18], there exists a CTL? formula ψ over −<0,−<1 and
atomic propositions a ∈ Σ and ⊥ such that τ(T ) |= ϕ◦

iff τ(T ) |= ψ.

The main part of the proof is providing a translation
of ψ into CTL?

past[≺ch,≺sb]. There are two main com-
plications: first, one has to be careful about about the
extra nodes labeled ⊥ (for example, one cannot trans-
late ⊥ by false because formulae such as EF⊥ will be
true in trees τ(T )). Also paths over τ(T ) may change
direction from −<0 to −<1 arbitrarily many times, and
thus correspond to an arbitrary union of ≺ch and ≺sb

paths in T . But all paths over τ(T ) have the follow-
ing shape when translated back into T : a path may
continue along the ≺sb-relation, then continue along
the ≺ch-relation, but then with each element it also
includes all its older siblings. Thus, a path formula is
translated into a family of pairs consisting of a ≺sb-
path formula, and a ≺ch-path formula, with the latter
also referring to the past, with respect to the sibling
relation, of each element. Very roughly, if β and γ are
translated into β′ and γ′ then β U γ will be translated
into a formula of the following shape:

β′ U≺sb

(

β′ ∧ EX≺ch

(

(β′ ∧ ¬P≺sb
¬β′) U≺ch

γ′
))

saying that β′ holds on a sibling path, and then on
a child path, so that it in addition none of the older
siblings witnesses ¬β′, until γ′ holds. This leads to
further complication as one needs to reason about finite
non-maximal paths, but one can show that such paths
can be added without increasing the expressiveness of
state formulae. Full details of the translation are shown
in the appendix. It also shows that in the resulting
formulae we only need to reason about the past P with
respect to the next-sibling relation.

CTL?
past[≺ch,≺sb] can easily be translated into

CTL?
past[≺ch ∪ ≺sb]. In turn, CTL?

past[≺ch ∪ ≺sb] can
be translated into FO. One way of showing this is by
translating it into CTL?

past over trees τ(T ) and then us-
ing [18] to conclude that formulae can be expressed in
FO. Another way is by mimicking the proof of transla-
tion from CTL? over binary trees to deal with multiple
changes of path direction from ≺ch to ≺sb. This shows
that all the formalisms are equivalent. 2

Notice that we also have an analog of Theorem 3.3 stat-

ing that MSO[≺ch,≺sb] = Lµ[≺ch,≺sb,≺fc], as we can
see that FO[≺∗ch,≺

∗
sb] = CTL?[≺ch,≺sb,≺fc]. Indeed,

that FO can be embedded into CTL?[≺sb,≺fc] is an
immediate consequence of [18], and since X≺fc

can be
expressed in CTL?

past[≺ch ∪ ≺sb] we get the converse
as well.

4 Unary queries

In this section we look at temporal logics capturing
MSO and FO unary queries; that is, we need equiva-
lence in every node of the tree, not just the root. We
start with the case of ordered trees, where we can use
logics already defined, and then move to the unordered
case where an extension of logics seen in Section 3 pro-
vides the desired characterization.

4.1 Ordered trees

Being able to talk about an arbitrary point in a tree
means knowing the entire “history”, that is, being able
to reason about the past with respect to ≺ch and ≺sb

relations. This ability is already present in extensions
of Lµ and CTL? seen in Section 3, and in fact we can
prove the following.

Theorem 4.1 The equivalences

a) MSO[≺ch,≺sb] = Lfull
µ [≺ch,≺sb]

b) FO[≺∗ch,≺
∗
sb] = CTL?

past[≺ch,≺sb]
= CTL?

past[≺ch ∪ ≺sb],

hold for unary queries over unranked trees.

In part b), the first equality is an immediate conse-
quence of results of [26]. There are several ways in
which these results can be proved. For example, part a)
can be proved in a way similar to the proof of Theorem
3.3 by using query automata [32] instead of the usual
automata. The proof of [26], which uses an LTL-like
logic, is very syntactic and establishes the separation
property for the logic.

Here we give more semantic proofs based on the com-
position method [24, 18, 32]. We provide a sketch for
the FO case. Consider an unranked tree T with domain
D and s ∈ D. We use the notation Ts for the subtree
of T rooted at s. Let s = s′ · (` − 1) (that is, s is an
`th child), and let s′ · (p− 1) be the highest numbered
child of s′ (that is, s′ has p children). Fix a number
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k and let σ1, . . . , σt enumerate all the quantifier-rank
k + 2 types of FO[≺∗ch,≺

∗
sb].

We define a string w̄→k (s) of length p− l + 1 such that
the ith letter of this string is tpk+2

FO[≺∗

ch
,≺∗

sb
](Ts′·(`−1+i)).

We also define a string w̄←k (s) of length `−1 whose ith
letter is tpk+2

FO[≺∗

ch
,≺∗

sb
](Ts′·i).

Let ρ1, . . . , ρm enumerate all the quantifier-rank k + 2
types of strings over the alphabet {σ1, . . . , σt}, and let
Γ = {ρ1, . . . , ρm}. We define an extended alphabet

Σ′ = Σ × (Γ ∪ {#}) × (Γ ∪ {#}).

Now with each element s of the domainD of a tree T at
distance d from the root, we associate a string w̄k(T, s)
of length d+ 1 over Σ′ as follows. Let s0, s1, . . . , sd be
the path leading from the root s0 of T to s = sd. Then
in w̄k(T, s) the ith letter is (a, ρi1, ρi2) where: a is the
label of si; and if i < d, then ρi1 = tpk+2

FO (w̄→k (si+1)),

and ρi2 = tpk+2
FO (w̄←k (si+1)); if i = d, then ρi1 =

ρi2 = #. The main composition lemma, proved by an
Ehrenfeucht-Fräıssé game argument, is the following.

Lemma 4.2 Given trees T and T ′, and elements s and
s′ in T and T ′, respectively, the following holds:

w̄k(T, s) ≡k+2 w̄k(T ′, s′) =⇒ (T, s) ≡k (T ′, s′) .

Since the relation ≡k is of finite index, every FO for-
mula ϕ with qr(ϕ) = k is equivalent to a disjunc-
tion of formulae specifying the rank-(k + 2) type of
w̄k(T, s). Thus, it remains to show how to define
those in CTL?

past. Since every FO formula over strings
is equivalent to an LTL formula by Kamp’s theorem
[21], one simply codes the sentence defining the type
of w̄k(T, s) into (past) LTL with new alphabet letters
defining types of strings w̄→k (si) and w̄←k (si). Those
(again by Kamp’s theorem) can be expressed in LTL
or past LTL over an alphabet which includes symbols
for rank-k types of subtrees rooted in nodes. But by
Theorem 3.4 (using the fact that one can eliminate ≺ch-
past from CTL?

past[≺ch,≺sb]) we can see that each such
type is definable in CTL?

past, finishing the proof.

4.2 Unordered trees

In logics Cµ and CTL?
count used for the unordered case

we do not have the ability to refer to the past, which is
essential if we want to deal with unary queries. Thus,
we extend them in the following ways: C full

µ refers to

the extension of the full µ-calculus Lfull
µ with count-

ing, that is, formulae 3
≥k(Er)ϕ. Notice that count-

ing is only done with respect to the future, not the
past. Likewise, we define CTL?

count, past as an exten-

sion of CTL?
past with formulae EX≥k

Ei
ϕ that counting

the number of Ei-successors of a given element satisfy-
ing ϕ (that is, counting again is done with respect to
the future). Then we have the following result.

Theorem 4.3 The equivalences

a) MSO[≺ch] = Cfull
µ [≺ch]

b) FO[≺∗ch] = CTL?
count, past[≺ch]

hold for unary queries over unranked trees.

Part b) can be easily obtained from results in [35] which
were shown by extending the proof of Kamp’s theorem
to trees. We give composition proofs of both results.
This time we use the fact that the MSO (or FO) type
of (T, s) is determined by the type of Ts and the type
of the envelope (T̄s, s) of s in T , where T̄s is T from
which Ts was cut, except s itself [24, 32]. The type of
the subtree Ts can be expressed by using results for the
Boolean case. Without sibling ordering, to compute
the type of the envelope we have to count (up to a
threshold) number of elements realizing certain types
of subtrees, which leads to the counting temporal logics
with the past.

5 Sibling-invariant queries

The notion of invariance is one of the central themes
in finite model theory, and shows up in XML appli-
cations when one deals with formalisms that do not
depend on a particular order imposed on siblings of
node (most often in the case of XML constraints). It is
known that adding relations such as order gives logics
additional power even with respect to invariant queries.
The standard example is parity in MSO: if we only
have unary predicates, MSO=FO and hence parity (the
number of elements of the universe is even) is not ex-
pressible. However, with any order on the universe,
parity is definable in MSO, by checking if there exists
a set that contains the every odd-numbered element of
the ordering, and does not contain the last element. In
the context of, for example, XML DTDs, a production
a→

(

(b|c)(b|c))∗ ensures that there is an even number
of children of each a-node, and they are all labeled b or
c, but the exact sibling ordering is irrelevant.
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The general setting of invariance is as follows. Suppose
we have a vocabulary θ and a sentence ϕ of some logic L
in vocabulary θ expanded with another relation symbol
R. Let C be a class of possible interpretations for R.
Then on θ-structures M this sentence is C-invariant if
for every possible interpretations R1, R2 ∈ C of R on
M, we have (M, R1) |= ϕ ⇔ (M, R2) |= ϕ. We shall
write (L[θ] + C)inv for this class of formulae. If C is a
class of linear orderings, we write (L[θ]+ <)inv.

For the case of sibling-invariance, we shall use, as be-
fore, relations ≺ch and ≺sb for MSO, and thus sibling-
invariant queries are those in (MSO[≺ch]+ ≺sb)inv.
One can easily show that MSO[≺ch,≺sb] defines a lin-
ear order (lexicographic ordering over N∗) and thus:

(MSO[≺ch]+ ≺sb)inv = (MSO[≺ch]+ <)inv.

Order-invariant MSO has been studied [7, 8] and com-
pletely characterized for trees. Define CMSO, counting
MSO [7], as MSO extended with modulo quantifiers
Qpxϕ(x, ·) with the semantics M |= Qpxϕ(x, ·) iff the
cardinality of the set {a | M |= ϕ(a, ·)} is congruent
to 0 modulo p. Then, using graph grammars and an
algebraic approach to recognizability, [8] proved that
CMSO = (MSO[≺ch]+ <)inv over trees.

Thus, a natural idea for capturing (MSO[≺ch]+ ≺sb)inv

by a temporal logic seems to be expanding Cµ with
3

mod p(≺ch)ϕ which is true in (T, s) iff the number
of children s′ of s with (T, s′) |= ϕ is congruent to 0
modulo p. The problem is that 3

mod p(≺ch)X is not
monotone in X and thus cannot be used in least fixed
points. Using inflationary fixed points is not a solu-
tion either because a modal calculus with inflationary
semantics behaves very differently from the µ-calculus
[10]. Thus, we shall use a different approach and im-
pose a syntactic restriction that allows modulo quan-
tifiers to be used in least fixed points, in the spirit of
extensions with arithmetic from [36].

Let Sk,p, for k, p ≥ 0, be the set {k + np | n ∈ N}.
For an alphabet Σ = {a1, . . . , ar}, consider the Parikh
map Π : Σ∗ → Nr where the ith component of Π(w) is
the number of occurrences of ai in w.

We define Cmod
µ as an extension of Cµ with new modal-

ities 3
S̄(≺ch)ϕ̄, where S̄ = (S1, . . . , Sm) is a tuple of

sets of the form Sk,p (equivalently, a tuple of pairs of
elements of N), and ϕ̄ = (ϕ1, . . . , ϕm) is a tuple of for-
mulae. Then (T, v, s) |= 3

S̄(≺ch)ϕ̄ if s has n children
s1, . . . , sn and there exists a string ws of length n in
{1, . . . ,m}∗ such that:

• if the jth symbol of ws is i, then (T, v, sj) |= ϕi;

• Π(ws) ∈ S1 × . . .× Sm.

Then we close the formulae of Cmod
µ by Boolean

combinations, and simultaneous least fixed points
µ(X1, . . . , Xm) ϕ(X1, . . . , Xm) for Xi’s occurring posi-
tively in ϕ. It is routine to verify that such formulae ϕ
define operators monotone in all Xi’s and hence least
fixed points exist.

We call an UNTA A invariant if for every state q and
alphabet symbol a, every permutation of a string in
the regular language δ(q, a) is also in δ(q, a). Thus, a
run of an invariant automaton does not depend on the
≺sb relation.

Theorem 5.1 Over unranked trees,

(MSO[≺ch]+ ≺sb)inv = Cmod
µ [≺ch].

Moreover, the class of unranked trees definable by
(MSO(≺ch)+ ≺sb)inv is precisely the class of trees ac-
cepted by deterministic invariant automata, and the
translations between the three formalisms are effective.

Proof sketch. For the proof we need a lemma about reg-
ular languages closed under permutations that can be
is easily shown by an MSO game argument1. Assume
Σ = {a1, . . . , ar}.

Lemma 5.2 A regular language L ⊆ Σ∗ is closed un-
der permutation iff there exist a finite family S of r-
tuples of sets of the form Sk,p such that w ∈ L iff for
some (S1, . . . , Sr) ∈ S, we have Π(w) ∈ S1 × . . .× Sr.

Moreover, it is easy to see that for a regular language
decidability of closure under permutations is decidable,
and the family S can be effectively constructed.

The main ingredient of the proof is showing that
(MSO(≺ch)+ ≺sb)inv properties are definable by in-
variant automata, since such automata can easily be
coded in Cmod

µ [≺ch] and the translation of Cmod
µ [≺ch]

back into invariant MSO is easy. This in turn relies
on Lemma 5.2 and a simple observation that if an au-
tomaton has a transition δ(q, a) that defines a language
not closed under permutation, then either such an au-
tomaton defines a class of trees which is not sibling-
invariant, or δ(q, a) can be replaced by a regular expres-
sion that is invariant under permutations and the tree
language accepted by the automaton does not change.
2

1This easy result may have appeared in the literature but we

were unable to find it.
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Since it is straightforward to encode in CMSO runs of
automata in which all languages δ(q, a) are invariant
under permutations (by Lemma 5.2), we obtain an easy
automata-theoretic proof of the following:

Corollary 5.3 (Courcelle [8]) Over unranked trees,
(MSO[≺ch]+ <)inv = CMSO[≺ch].

6 Remarks and conclusion

Complexity of model-checking The complexity of
model checking for logics considered here is either
known or easily derived from known results. The most
expressive logic considered here is MSO[≺ch,≺sb]=
Lfull

µ [≺ch,≺sb] = Lµ[≺fc,≺sb]. Unranked trees consid-
ered as labeled transition systems over relations ≺fc

and ≺sb are acyclic, and hence by [27] the complexity
of model checking is O(‖ϕ‖2 · ‖T‖). Furthermore, our
equivalence proof produces an alternation-free Lµ for-
mula (it is known that Lµ equals alternation-free Lµ

over all acyclic transition systems [27]) which further
reduces the complexity to O(‖ϕ‖ · ‖T‖), matching the
best complexity of monadic datalog [15].

Logics corresponding to FO are extensions of CTL?.
Then, in general, the complexity could be worse than
for Lµ because existing translations of CTL? into Lµ

exhibit exponential or even doubly exponential blowup
in the worst case [9, 4]. One can easily show that for
the counting version CTL?

count the complexity matches
that of CTL? (that is, 2O(‖ϕ‖) · ‖T‖), and for the past
version CTL?

past the best known result gives a PSPACE
bound in terms of ‖ϕ‖ + ‖T‖ [22].

XML applications Temporal logics have nice al-
gorithmic properties not only with respect to model
checking but also satisfiability. We believe they can
be useful in studying various satisfiability problems in
the XML context, that often arise in connection with
the interaction of XML DTDs and constraints (e.g.,
integrity constraints, or existence of paths satisfying
given XPath formulae).

A problem that received attention recently is consis-
tency of DTDs and XPath: that is, whether an XPath
formula and a DTD are consistent [25, 13]. In partic-
ular, [25] gives an EXPTIME upper bound which is
complemented by the matching lower bound in [13]. In
fact, it is the upper bound that is harder in this case,
but it can be derived rather easily if one appeals to
the connection between MSO and the full µ-calculus.
Both DTDs and XPath can be coded in the Lfull

µ (using
backward modalities for the ancestor and older sibling

axes). Then one uses the result of [38] showing that
satisfiability for Lfull

µ is in EXPTIME. In fact, a for-
mula that is satisfiable, is also satisfiable on a tree of
branching degree linear in the size of the formula. One
still needs to enforce a few conditions on such a tree
which could be done by using alternating two-way tree
automata which are known to be equivalent to Lfull

µ

[38]. It is our hope that the connections of this kind
could be explored further in the XML context.

Concluding remarks Figure 1 summarizes the
main equivalences between fragments of FO and MSO
and temporal logics.

There are several ways to extend this work. Quite a
bit is known about the succinctness of various logical
formalisms for trees [17], and we would like to see how
temporal logics compare to other formalisms. We also
would like to get more mileage out of the connection
with well-studied temporal logics in terms of XML ap-
plications, perhaps by extending the idea of coding into
the full mu-calculus illustrated in the previous section,
and using two-way alternating tree automata to get fur-
ther upper bound results for more complex problems
such as implication of XML constraints.
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