
Combining Temporal Logics for Querying XML

Documents

Marcelo Arenas1 Pablo Barceló2 Leonid Libkin3

1 Pontificia Universidad Católica de Chile
2 Universidad de Chile

3 University of Edinburgh

Abstract. Close relationships between XML navigation and temporal
logics have been discovered recently, in particular between logics LTL
and CTL⋆ and XPath navigation, and between the µ-calculus and nav-
igation based on regular expressions. This opened up the possibility of
bringing model-checking techniques into the field of XML, as documents
are naturally represented as labeled transition systems. Most known re-
sults of this kind, however, are limited to Boolean or unary queries, which
are not always sufficient for complex querying tasks.
Here we present a technique for combining temporal logics to capture n-
ary XML queries expressible in two yardstick languages: FO and MSO.
We show that by adding simple terms to the language, and combining
a temporal logic for words together with a temporal logic for unary tree
queries, one obtains logics that select arbitrary tuples of elements, and
can thus be used as building blocks in complex query languages. We
present general results on the expressiveness of such temporal logics,
study their model-checking properties, and relate them to some common
XML querying tasks.

1 Introduction

It has been observed many times that the basic settings of the fields of database
querying and model checking are very similar: in both cases one needs to evaluate
a logical formula on a finite relational structure. Both fields have invested heavily
in developing logical formalisms and efficient algorithms for query evaluation and
model checking, but despite this, there are very few direct connections between
them, although there is certainly interest in bringing them closer together (see,
e.g., an invited talk at the last ICDT [36]).

Our goal is to explore one possible connection between database querying
and temporal-logic model-checking: we concentrate on the recently discovered
connections between XML querying/navigation, and temporal and modal logics
[1, 3, 6, 25, 15, 27]. Since XML documents are modeled as labeled unranked trees
with a sibling ordering [19, 28], they can naturally be viewed as labeled transition
systems. Furthermore, many common XML tasks involve navigation via paths in
a document, reminiscent of temporal properties of paths in transition systems.

In terms of expressiveness, the yardstick logics for XML querying are FO
(first-order) and MSO (monadic second-order). But from the point of view of

efficiency of query evaluation, they are not the best, as they cannot guarantee
fast (linear-time) query-evaluation – which is often the goal for query evaluation
on trees [20] – without a very high (nonelementary) price in terms of the size of
the query [14]. However, many temporal logics overcome this problem [20, 25, 3],
which makes them suitable for XML querying.

The connection between XML navigation and temporal logics was best
demonstrated in the work of Marx [25] and his followers [7, 1, 2, 15]. In partic-
ular, [25] gave an expressive completeness result for XPath: adding a temporal
until operator (found in logics such as LTL, CTL) to the core of XPath gives it
precisely the power of FO, one of the yardstick database query languages. FO
sentences over both binary and unranked trees are also known [18, 3] to have the
power of a commonly used temporal logic CTL⋆, and MSO has the power of the
modal µ-calculus over both binary [30] and unranked trees [3].

The main limitation of these results is that they only apply to Boolean (i.e.,
yes/no) queries, or unary queries, that select a set of nodes from a document
(and the result of [25] also extends to queries with two free variables). While
for problems such as validation, or for some information extraction tasks [16]
this is sufficient, there are many cases where more expressiveness is needed than
Boolean or unary queries provide. For example, the core of XQuery consists of
expressions that essentially select arbitrary tuples of nodes, based on properties
of paths leading to them, and then output them rearranged as a different tree.
But while it is known that the usual MSO/automata connection extends to the
case of n-ary queries [31], logical formalisms for n-ary queries and their model-
checking properties have not been adequately explored.

In this paper, we show how standard temporal logics can define n-ary queries
over XML documents, thus opening a possibility of using efficient model-checking
algorithms [9] in XML querying. We begin with an easy observation that lan-
guages capturing binary FO (or MSO) queries can be extended with a simple
binary term to capture arbitrary n-ary queries. While some languages for bi-
nary FO and MSO are known [25, 15], there is an abundance of nice formalisms
for unary and Boolean queries, and those logics tend to have very good model-
checking properties. Thus, as our main contribution, we present a technique for
combining temporal logics to obtain languages for n-ary XML queries. To char-
acterize n-ary L queries, where L could be FO or MSO (and the result applies
to several other logics lying between FO and MSO), one needs:

Ingredients: – a temporal logic L0 that captures Boolean L over words (e.g.,
LTL for FO, or µ-calculus for MSO);

– a temporal logic L1 that captures unary L queries over XML trees (quite
a few are known [25, 32, 24, 3]: for example, CTL⋆ with the past for FO,
or the full µ-calculus for MSO);

– some binary operations on trees, such as the largest common ancestor
for two nodes.

Combination mechanism: This comes in the form of XPath’s node tests: for
each formula ψ of L1, we have a node test [ψ] that becomes an atomic
proposition of L0 and simply checks if ψ is true in a given node.

Let us add a few early comments on binary operations (exact sets of those
will be defined later in Section 3). Consider the standard document order for
XML documents: s ≤d s

′ if either s′ is a descendant of s, or s occurs ahead of
s′ as one looks at the string representation of a document:

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
� s2

s ⊓ s
′

s s
′

s1

Fig. 1. Document ordering and binary terms

Then a path from s to s′ witnessing s ≤d s
′ naturally defines two points, s1

and s2, where it changes direction. Note that s1 is the successor of s ⊓ s′ in the
direction of s, and s2 is the successor of s⊓ s′ in the direction of s′, where s⊓ s′

is the meet (largest common ancestor) of s and s′. This naturally suggests two
terms: one of them is the meet ⊓ of two nodes, and the other is the successor of
one node in the direction of its descendant. This is the set of terms we use here.

In this paper we look at combined logics that capture n-ary FO and MSO
queries. We give their precise definition, prove expressive completeness for n-ary
queries, study their model-checking properties, and relate them to XPath queries
and XML tree patterns.

2 Notation

Unranked trees as transition systems A tree domain D is a finite prefix-closed
subset of N

∗ (strings of natural numbers) such that s · i ∈ D and j < i imply
s · j ∈ D. That is, if a node s has n children, they are s · 0, . . . , s · (n− 1). Nodes
of trees are labeled by letters from a finite alphabet Σ. A Σ-tree is viewed as a
transition system

T = (D,≺ch,≺sb, (Pa)a∈Σ),

where D is a tree domain, ≺ch is the child relation (s ≺ch s · i for all s, s · i ∈ D),
≺sb is the next-sibling relation (s · i ≺sb s · (i+1) for all s · (i+1) ∈ D), and Pa’s
are labeling predicates (s ∈ Pa iff s is labeled a). We shall write ≺∗

ch and ≺∗
sb

for the transitive-reflexive closures of ≺ch and ≺sb. The root of T is the empty
string denoted by ε.

We also use the document ordering s ≤d s
′ which holds iff s appears before s′

if the document is written as a string; i.e., either s ≺∗
ch s

′, or there exist distinct
s0, s1, s2 such that s0 ≺ch s1 ≺∗

ch s, s0 ≺ch s2 ≺∗
ch s

′, and s1 ≺∗
sb s2 (see Fig. 1).

We shall also view Σ-words as transition systems; the domain of a word w
of length n is {0, . . . , n− 1}, with the successor relation i ≺ i+ 1 on it, together
with the labeling relations Pa’s. We assume, as is common when one deals with
temporal logics over words, that each position i can be labeled by more than
one symbol from Σ.

FO and MSO over trees First-order logic (FO) is the closure of atomic formulae
under Boolean connectives and first-order quantification ∀x, ∃x. MSO in addition
allows quantification over sets ∀X, ∃X and new atomic formulae X(x) (or x ∈
X). When we deal with FO which cannot define the transitive closure of a
relation, we use x ≺∗

ch y and x ≺∗
sb y, as well as Pa(x), as atomic formulae for

trees, and the ordering < as well as Pa(x)’s for words. For MSO, one can use
either ≺∗

ch and ≺∗
sb, or ≺ch and ≺sb, since transitive closure is MSO-definable.

We shall only deal with MSO formulae with free first-order variables.
If ϕ(x1, . . . , xn) is an FO or MSO formula with n free variables, it defines an

n-ary query on a tree T which produces the set {ā ∈ Dn | T |= ϕ(ā)}. We let
FOn (resp., MSOn) stand for the class of n-ary queries definable in FO (resp.,
MSO). Queries definable by sentences are Boolean queries (they produce yes/no
answers) and queries definable in FO1 and MSO1 are unary queries.

Temporal logics We shall use standard temporal logics such as LTL, CTL⋆, and
the µ-calculus Lµ, cf. [9]. LTL is interpreted over Σ-words and its syntax is:

ϕ,ϕ′ := a, a ∈ Σ | ϕ ∨ ϕ′ | ¬ϕ | Xϕ | ϕUϕ′.

(As usual, X stands for ’next’ and U for ’until’.) If we have a word w with n
positions 0, . . . , n − 1 labeled by symbols from Σ, the semantics of (w, i) |= ϕ
(that is, ϕ is satisfied in the ith position) is defined by:

– (w, i) |= a iff i labeled with a;
– (w, i) |= ϕ ∨ ϕ′ iff (w, i) |= ϕ or (w, i) |= ϕ′; (w, i) |= ¬ϕ iff (w, i) 6|= ϕ;
– (w, i) |= Xϕ iff (w, i+ 1) |= ϕ;
– (w, i) |= ϕUϕ′ iff there exists k ≥ i such that (w, k) |= ϕ′ and (w, j) |= ϕ for

every i ≤ j < k.

Each LTL formula ϕ defines a Boolean query over words, that is, the set of
words w such that (w, 0) |= ϕ. A theorem by Kamp says that this set of queries
is precisely the set of Boolean FO queries over words, i.e. LTL = FO0.

For other logics, we need their versions that can refer to the past. CTL⋆
past,

a version of CTL⋆ with the past operators [21], is given below specifically for
unranked trees. The grammars for state formulae α (satisfied by a node and thus
defining unary queries) and path formulae β (satisfied by a path) are:

α, α′ := a (a ∈ Σ) | ¬α | α ∨ α′ | Eβ
β, β′ := α | ¬β | β ∨ β′ | Xchβ | X−

chβ | Xsbβ | X−
sbβ | βUβ′ | β Sβ′

Here X− is the ’previous’ and S is the ’since’ operator. A path π is a sequence
s1s2 . . . of nodes such that for every j, either sj ≺ch sj+1 or sj ≺sb sj+1. As usual
with logics with the past, we require the paths to be maximal: that is, s1 = ε,
and all paths end in a leaf that is also the youngest child of its parent. We define
the semantics of path formulae (T, π, ℓ) |= β with respect to a position ℓ in a
path (where ℓ is an integer). The truth of state formulae is defined with respect
to a node of a tree. The rules are as follows (omitting Boolean connectives):

– (T, s) |= a for a ∈ Σ iff s is labeled a.
– (T, s) |= Eβ iff there exists a path π = s1s2 . . . and ℓ ≥ 1 such that s = sℓ

and (T, π, ℓ) |= β;
– (T, π, ℓ) |= α iff (T, sℓ) |= α;
– (T, π, ℓ) |= Xchβ (or X−

chβ) iff (T, π, ℓ + 1) |= β and sℓ ≺ch sℓ+1 (or if
(T, π, ℓ− 1) |= β and sℓ−1 ≺ch sℓ); the rules for Xsb are analogous.

– (T, π, ℓ) |= βUβ′ iff there exists k ≥ ℓ such that (T, π, k) |= β′ and (T, π, j) |=
β whenever ℓ ≤ j < k.

– (T, π, ℓ) |= βSβ′ iff there exists k ≤ ℓ such that (T, π, k) |= β′ and (T, π, j) |=
β whenever k < j ≤ ℓ.

The version of the µ-calculus we consider here is the full µ-calculus Lfull
µ [35]

that also allows one to refer to the past. Its formulae are defined as

ϕ := ⊤ | ⊥ | a | X | ¬ϕ | ϕ ∨ ϕ | 3(≺)ϕ | µX.ϕ(X),

where a ∈ Σ, ≺ refers to either ≺ch or ≺sb, or their inverses: parent (≺−
ch),

and previous sibling (≺−
sb); X ranges over a collection V of variables, and in

µX.ϕ(X), the variable X occurs positively in ϕ(X). The semantics, with respect
to a valuation v that associates a set of nodes with each variable, is standard: ⊤
is true, ⊥ is false, 3(≺)ϕ is true in s if ϕ is true in some s′ such that s ≺ s′, X is
true in s iff s ∈ v(X), and µX.ϕ(X) defines the least fixed point of the operator
S 7→ {s | (T, v[S/X], s) |= ϕ}, where v[S/X] refers to a valuation that extends v
by assigning S to X . Queries (unary or Boolean) are defined by formulae without
free variables.

Lµ over words is defined by using one modality for the successor relation.
Over words, Lµ formulae evaluated in the initial position have the power of
MSO sentences: Lµ = MSO0. For unary queries over unranked trees, we have:

Fact 1 ([3, 25, 32]) Over unranked trees, CTL⋆
past = FO1 and Lfull

µ = MSO1.

3 Capturing n-ary queries

From binary to n-ary queries As mentioned in the introduction, there is
a simple technique for extending a logic capturing FO2 or MSO2 to a logic
capturing FOn or MSOn. It is already implicit in [33], and we briefly outline it.

Let Q2 be a collection of binary queries given by formulae α(x, y) with
two free variables. We then define Qn to be the collection of n-ary queries
ψ(x1, . . . , xn) which are Boolean combinations of α(t, t′), with α ∈ Q2 and t, t′

being terms given by the grammar t, t′ := xi, i ∈ [1, n] | t ⊓ t′. The meaning of
t ⊓ t′ is the largest common ancestor of t and t′.

Each ψ(x1, . . . , xn) in Qn naturally defines a query that returns a set of n-
tuples of nodes in a tree. Using the composition technique, and in particular the
composition lemma from [33], one can easily show

Proposition 1. If Q2 captures FO2 (or MSO2), then Qn captures FOn (or
MSOn, respectively) over unranked trees.

For example, if Q2 is the set of binary conditional XPath queries [25], then Qn

captures FOn over unranked trees.
However, characterizations of binary FO or MSO over XML trees are not

nearly as common as characterizations of Boolean and unary queries (with the
notable exceptions of conditional XPath in [25], which captures FO2, and cater-
pillars expressions extended with unary MSO tests in [5], which capture MSO2).
Moreover, for Boolean and unary queries much has been invested into efficient
query-evaluation and model-checking [9, 24, 20]. Thus, our goal is to find a way to
get a language for n-ary queries out of languages for Boolean and unary queries.

From Boolean and unary queries to n-ary queries We now show how to
characterize n-ary FO and MSO queries by combining temporal logics. In what
follows, we assume that:

– L0 is a temporal logic that, for an arbitrary finite alphabet, captures either
Boolean FO or Boolean MSO queries over words over that alphabet;

– L1 is a logic that, for an arbitrary finite alphabet Σ, captures either unary
FO or unary MSO queries over Σ-labeled unranked trees.

We then define a combined logic In(L0,L1) that will capture FOn or MSOn. For
now, we use a fixed set of binary relations (≺∗

ch) and (≺∗
sb) and a fixed grammar

generating terms, but we shall present alternatives at the end of the section.

Variables Fix n variables x1, . . . , xn. Given a tree T , a valuation v in T is a
mapping that assigns to each xi an element si of the domain of T .

Terms These are given by the grammar:

(T) t, t′ := xi, i ∈ [1, n] | root | t ⊓ t′ | succ(t, t′)

Each valuation v on the variables extends to a valuation on terms: v(root) = ε,
v(t⊓t′) is the longest common prefix of v(t) and v(t′), and v(succ(t, t′)) is defined
as the child of v(t) in the direction of v(t′). More precisely, if v(t) ≺∗

ch v(t
′), and

s is such that v(t) ≺ch s and s ≺∗
ch v(t

′), then s = v(succ(t, t′)). Otherwise we
set v(succ(t, t′)) = v(t).

Node tests We define an alphabet ∆ that consists of symbols [ψ] for each formula
ψ of L1 (the notation comes from XPath’s node tests, because this is precisely
the role of L1 formulae). Notice that ∆ is infinite but in all formulae we shall
only use finitely many symbols [ψ] and thus we can restrict ourselves to a finite
sub-alphabet used in each particular formula.

Interval formulae An interval formula is a formula of the form χ(t, t′) where χ
is an L0 formula over a finite subset of ∆, and t, t′ are two terms.

The semantics is as follows. Let v be a valuation on xi’s. The interval between
s = v(t) and s′ = v(t′) is defined as:

– if s ≺∗
ch s

′, then the interval is the sequence s = s0, s1, . . . , sm = s′ such that
si ≺ch si+1 for each 0 ≤ i < m (and the interval between s′ and s is simply
listed “backwards”: s′ = sm, . . . , s0 = s);

– if s ≺∗
sb s

′, then it is the sequence s = s0, s1, . . . , sm = s′ such that si ≺sb

si+1 for each 0 ≤ i < m (listed backwards for the interval between s′ and s);
– otherwise the interval is just {s}.

Let [ψ1], . . . , [ψr] be all the∆-symbols mentioned in χ. Then the interval between
s and s′ naturally defines a ∆-word in which si is labeled by all [ψp]’s such that
(T, si) |= ψp. Then (T, v) |= χ(t, t′) iff the interval between v(t) and v(t′), viewed
as a ∆-word, satisfies χ.

In(L0,L1) formulae are finally defined as Boolean combinations of the following
formulae:

t ≺∗
ch t

′, t ≺∗
sb t

′, χ(t, t′),

where t, t′ are terms, and χ(t, t′) ranges over interval formulae. Given a valuation
v, the semantics of χ(t, t′) has already been defined, and (T, v) |= t ≺∗

ch t
′ (or

t ≺∗
sb t

′) iff v(t) ≺∗
ch v(t

′) (or v(t) ≺∗
sb v(t

′), respectively). For s̄ = (s1, . . . , sn)
and a formula ϕ we shall write (T, s̄) |= ϕ if (T, v) |= ϕ under the valuation
v(xi) = si, i ≤ n.

Each In(L0,L1) formula ϕ then defines an n-ary query which maps a tree T
with domain D to {s̄ ∈ Dn | (T, s̄) |= ϕ}.

Theorem 1. If L0 captures Boolean FO (respectively, Boolean MSO) queries
over words, and L1 captures unary FO (respectively, unary MSO) queries over
unranked trees, then the queries definable by In(L0,L1) are precisely the n-ary
FO (respectively, n-ary MSO) queries over unranked trees.

The proof of Theorem 1 is based on the composition method, cf. [18, 29, 33].
We start with the (already mentioned) composition lemma from [33], which was
used there to obtain n-ary languages that involved regular or star-free expressions
over formulae of FO or MSO in one or two variables, and modify it to eliminate
regular expressions and formulae referring to two variables by using temporal
logics over words and trees.

Other binary relations and terms Our choice of terms and binary relations
≺∗

ch and ≺∗
sb is not the only possible one. In general, if we have a grammar τ

defining a set of terms and a collection ρ of binary relations, we can define a
logic In[τ, ρ](L0,L1) in exactly the same way as In(L0,L1) except:

1. τ -terms are used in place of the terms defined by the grammar (T), and
2. in Boolean combinations only relations from ρ between terms are used.

Now define a new grammar T
′ for terms:

(T′) t, t′ := xi, i ∈ [1, n] | root | gen succ(t, t′),

where gen succ(s, s′) is the generalized successor of s in the direction of s′. Its
meaning is as follows: look at the path from s to s′ which is either a child/parent
path (if s ≺∗

ch s′ or s′ ≺∗
ch s), or next/previous-sibling path (if s ≺∗

sb s′ or
s′ ≺∗

sb s), or the path shown in the Fig. 1 (that witnesses either s ≤d s′ or
s′ ≤d s). In the first two cases, gen succ(s, s′) is the successor of s on that path;
in the third case, it is the first node where the direction of path changes between
child/parent and next/previous sibling. For example, in Fig. 1, gen succ(s, s′) =
s1 and gen succ(s′, s) = s2.

Theorem 2. If L0 captures Boolean FO (respectively, Boolean MSO) queries
over words, and L1 captures unary FO (respectively, unary MSO) queries over
unranked trees, then the queries definable by In[T′,≤d](L0,L1) are precisely the
n-ary FO (respectively, n-ary MSO) queries over unranked trees.

That is, with the new set of terms based on just one binary operation, one
can capture all n-ary queries by using only the document ordering.

4 Model-checking for combined logics

We now deal with the complexity of the model-checking problem for In(L0,L1),
that is, the complexity of checking, for an In(L0,L1) formula ϕ, a tree T and
an n-tuple s̄ of its nodes, whether (T, s̄) |= ϕ. (The results will hold for the
alternative system of terms and the document order ≤d as well.)

We first offer a general result that makes some mild assumptions on logics L0

and L1. We then consider specific cases of logics L0 and L1 so that In(L0,L1)
captures FOn or MSOn and provide better complexity bounds.

Let MCL : N × N → N be the complexity of model-checking for a logic L;
i.e., given a structure M and an L-formula γ, verifying M |= γ can be done in
O(MCL(‖M‖, ‖γ‖)), where ‖·‖ is the size of encoding of structures (formulae).

We make three very mild assumptions on model-checking algorithms for L0

and L1. First, we assume that formulae are given by their parse-trees; second,
that labeling nodes by additional symbols not used in formulae does not change
their truth values; and third, that MCL(·, ·) is a nondecreasing function in both
arguments such that MCL(n,m1)+MCL(n,m2) ≤ MCL(n,m1+m2). All logics
considered here – FO, MSO, LTL, CTL⋆, Lµ, etc. – easily satisfy these properties.

Proposition 2. If logics L0 and L1 satisfy the three properties described above,
then the complexity of model-checking for the combined logic In(L0,L1) is
O

(

‖T ‖ ·MCL1(‖T ‖, ‖ϕ‖) + MCL0(‖T ‖, ‖ϕ‖)
)

.

These bounds are produced by a naive model-checking algorithm. An
In(L0,L1) formula is a Boolean combination of term comparisons and in-
terval formulae χ(t, t′). To evaluate χ(t, t′) in (T, s̄), we define a valuation
v(xi) = si, i ≤ n, and do the following:

1. Compute v(t) and v(t′) and the interval between them.

2. For each symbol [ψ] for ψ ∈ L1 mentioned in ϕ, and each s in the interval
between v(t) and v(t′), mark s with [ψ] if (T, s) |= ψ (by using the model-
checking algorithm for L1).

3. With all elements in the interval marked, use the model-checking algorithm
for L0 to check if χ holds.

The bound easily follows from this and our assumptions on L0 and L1.
Even if we assume that L0 is a logic with very good model-checking complex-

ity (say, O(‖T ‖·‖ϕ‖)), the bound of Proposition 2 still says that model-checking
is quadratic in ‖T ‖, while in XML query processing, generally acceptable com-
plexity is of the form O(f(‖ϕ‖) · ‖T ‖) for reasonable f [20, 24], and ideally
O(‖T ‖ · ‖ϕ‖) (see, e.g., [16, 25]).

However, the bound can be lowered if we make some assumptions (that will
hold in cases of interest) not only on model-checking properties of L1, but also
on the complexity of computing the set {s | (T, s) |= ψ} for L1 formulae ψ
(that is, on the complexity of unary query evaluation). Assume that there is a
function f : N → N satisfying f(m) + f(k) ≤ f(m + k) (e.g., f(m) = c · mp

or f(m) = 2m) and a number ℓ > 0 such that unary query evaluation in L1 is
done in time f(‖ψ‖) · ‖T ‖ℓ. In this case, if an In(L0,L1) formula ϕ mentions
[ψ1], . . . , [ψr], we can in time

∑

i f(‖ψi‖) · ‖T ‖
ℓ ≤ f(‖ϕ‖) · ‖T ‖ℓ label all nodes

in which ψi holds with [ψi], 1 ≤ i ≤ r, and thus check ϕ in time O(f(‖ϕ‖) ·
‖T ‖ℓ + MCL0(‖ϕ‖, ‖T ‖)). We thus obtain the following:

Theorem 3. If unary query evaluation in L1 is done in time f(‖ψ‖) ·‖T ‖ℓ, and
the complexity of model-checking for an L0 formula α on a word w is g(‖α‖) ·
‖w‖p, then the complexity of model-checking of In(L0,L1) is

O
(

max{f(‖ϕ‖), g(‖ϕ‖)} · ‖T ‖max{ℓ,p}
)

.

In particular, if both f and g are linear functions and ℓ = p = 1, we get an
O(‖ϕ‖ · ‖T ‖) model-checking algorithm for In(L0,L1).

We now use known results on model-checking over words and trees to obtain
good model-checking algorithms for combined logics over unranked trees.

MSOn queries To get a logic In(L0,L1) that captures MSOn we need a logic
for unary MSO on trees, and a logic for MSO sentences on words. The former is
provided by Lfull

µ , the full µ-calculus [3]. Over trees (in general, acyclic transition
systems), Lµ is known to admit O(‖ϕ‖2 · ‖t‖) model-checking complexity [26],
but this result does not extend to Lfull

µ since introduction of the past modali-
ties effectively transforms trees into cyclic transition systems. However, it can
be shown by coding query automata [29] that a small fragment of Lfull

µ suffices

to capture MSO1 over trees. We let (Lfull
µ)+ be the fragment of Lfull

µ that con-
tains no negation (and thus is alternation-free) but is allowed to use additional
labels “root”, “leaf”, “first-sibling”, and “last-sibling” [16] with their intuitive
meanings.

Lemma 1. Over unranked trees, (Lfull
µ)+ = MSO1.

Unary query evaluation in alternation-free µ-calculus L+
µ can be done in

linear-time for arbitrary transition systems [10], and hence it is linear-time for
(Lfull

µ)+ over trees. For words, alternation-free µ-calculus L0
µ captures MSO0

(by coding automata), and again from [10], the complexity of model-checking is
linear in both the formula and the word. Combining this with Theorem 3 we
get:

Corollary 1. The logic In(L0
µ, (L

full
µ)+) captures MSOn over unranked trees,

and the complexity of In(L0
µ, (L

full
µ)+) model-checking is O(‖T ‖ · ‖ϕ‖).

FOn queries We need logics for Boolean FO queries on words and unary FO on
trees. The former is, by Kamp’s theorem, LTL, which has linear-time complexity
over words.

Among logics used in verification, CTL⋆ with the past is known to capture
unary FO over trees (see Fact 1). However, even though it can be embedded in
Lfull

µ , the complexity of CTL⋆ does not match the linear complexity we had for

(Lfull
µ)+, being in general 2O(‖ϕ‖) · ‖T ‖ (see [12]; also, [4] shows that translation

into Lfull
µ will exhibit exponential blowup).

In fact, we can show that it is highly unlikely that we can get linear time
evaluation for CTL⋆

past over trees. In general, CTL⋆ is known to be PSPACE-
complete [34]. Here we show that over trees, the complexity of model-checking is
lower, but still intractable, being in the second level of the polynomial hierarchy.

Theorem 4. The model-checking problem for CTL⋆
past over unranked trees is

∆p
2-complete.

Proof sketch. The usual algorithm for CTL⋆ model checking combines the state
labeling technique for CTL model checking with LTL model checking. Its com-
plexity mainly depends on the complexity of the LTL part. In particular, it runs
in polynomial time if we have an oracle for verifying whether a formula Eϕ holds
in a state s, where ϕ is an LTL formula. For unranked trees, it can be proved
that the latter problem is NP-complete and, thus, the model-checking problem
for CTL⋆

past is in ∆p
2. For hardness reduction, we use (as [23] for CTL+) the

problem of verifying whether the largest satisfying assignment (interpreted as a
binary number) of a propositional formula is even. 2

Nonetheless, there is a temporal logic for trees that has the desired linear
complexity. The logic, which we call TLtree (for tree temporal logic), was first
defined in [32] for the case of trees without a sibling order ≺sb, and further used
in XPath investigations [25]. Its syntax is given by:

α, α′ := ⊤ | ⊥ | a (a ∈ Σ) | α∨α′ | ¬α | X∗α | X−
∗ α | αU∗α

′ | αS∗α
′,

where ∗ is either ‘ch’ (child) or ‘sb’ (next sibling). We define the semantics with
respect to a tree and a node in a tree:

– (T, s) |= ⊤; (T, s) 6|= ⊥;
– (T, s) |= a iff s is labeled a;

– (T, s) |= Xchα if (T, s · i) |= α for some i;
– (T, s) |= X−

chα if (T, s′) |= α where s′ is the parent of s (s′ ≺ch s);
– (T, s) |= αUchα

′ if there is a node s′ such that s ≺∗
ch s

′, (T, s′) |= α′, and for
all s′′ 6= s′ satisfying s ≺∗

ch s
′′ ≺∗

ch s
′ we have (T, s′′) |= α.

The semantics of Sch is defined by reversing the order in the semantics of Uch,
and the semantics of Xsb,X

−
sb,Usb, and Ssb is the same by replacing the child

relation with the next sibling relation.
Whenever we deal with TLtree, we assume (for the convenience of transla-

tions) that the weak until or unless operator [9] ϕWψ ≡ ¬(¬ψU¬(ϕ ∨ ψ)) is
available for each of the until operators. This changes neither expressiveness nor
the complexity of model-checking [9].

TLtree naturally defines unary queries on trees, and the results in [32] can be
extended to show that TLtree = FO1 (see, for instance, [25]). Furthermore, we
can show:

Lemma 2. Unary query evaluation in TLtree can be done in time O(‖T ‖ ·‖ϕ‖).

We thus have a logic for FOn with linear model-checking:

Corollary 2. The logic In(LTL,TLtree) captures FOn over unranked trees, and
the complexity of In(LTL,TLtree) model-checking is O(‖T ‖ · ‖ϕ‖).

5 Combined temporal logics and XML querying

In this section we present two concrete translations from XML query languages
into combined temporal logics. We start with XPath (or, more precisely, CX-
Path, or conditional XPath [25]). As it captures FO2, one immediately obtains
from Corollary 2 that it can be translated into I2(LTL,TLtree). We present a
translation which shows how the main features of combined temporal logics cor-
respond naturally to navigation through XML documents. We then give an ex-
ample of translating tree patterns – a common mechanism for expressing queries
for selecting tuples of nodes in XML documents [8, 22] – into In(LTL,TLtree).

From Conditional XPath to I2(LTL,TLtree) Conditional XPath (CXPath) [25]
is an extension of the logical core of XPath 1.0 that captures FO2 queries over
XML documents. The language contains basic expressions step, path expressions
path, and node tests test, given by the grammar below:

step := child | parent | right | left,
path := step | ?test | (step/?test)+ | path/path | path ∪ path,
test := a, a ∈ Σ | 〈path〉 | ¬test | test ∨ test.

Given a tree T , the semantics of a step or a path expression e is the set [[e]]T
of pairs of nodes, and for a test expression e, [[e]]T is a set of nodes of T . The
semantics is defined in Figure 2. Note that ’/’ is the concatenation of paths, and

[[child]]
T

= {(s, s′) | s ≺ch s′} [[a]]
T

= {s | s is labeled a}
[[parent]]

T
= {(s, s′) | s′ ≺ch s} [[test ∨ test

′]]
T

= [[test]]
T
∪ [[test′]]

T

[[right]]
T

= {(s, s′) | s ≺sb s′} [[¬test]]
T

= D − [[test]]
T

[[left]]
T

= {(s, s′) | s′ ≺sb s} [[〈path〉]]
T

= {s | ∃s′ : (s, s′) ∈ [[path]]
T
}

[[?test]]
T

= {(s, s) | s ∈ [[test]]
T
}

[[path/path′]]
T

= [[path]]
T
◦ [[path′]]

T
[[path ∪ path

′]]
T

= [[path]]
T
∪ [[path′]]

T

[[(child/?test)+]]
T

= {(s, s′) | s ≺+

ch
s′, and ∀s′′ :

`

s ≺+

ch
s′′ ≺∗

ch s′ → s′′ ∈ [[test]]
T

´

}

Fig. 2. The semantics of CXPath

the 〈path〉 test corresponds to Eβ of CTL⋆. We use the notation ≺+ for the
transitive closure, that is, ≺ ◦ ≺∗.

Translating FO2 into CXPath is necessarily non-elementary (which easily
follows from the fact that translation from FO to LTL over words is necessarily
nonelementary [11]). For the combined logic, we can show:

Theorem 5. For every CXPath path formula ϕ there exists an equivalent
I2(LTL,TLtree) formula ϕ◦. Moreover, ϕ◦ can be constructed in single-
exponential time.

Below we sketch the translation and explain the reason for the exponen-
tial blowup (intuitively, it arises from putting CXPath expressions in a certain
normal form [25] that fits in nicely with I2(LTL,TLtree)).

We start with path expressions. CXPath, as well as XPath 1.0, allows ex-
pressions containing any combination of the four axes child, parent, right and
left, but [25] gave a normal form for paths: namely, every CXPath expression
is equivalent to a union of simple paths defined by:

simple-path := ?test | dpath | upath | lpath | rpath |
upath/rpath | rpath/dpath | upath/rpath/dpath |
upath/lpath | lpath/dpath | upath/lpath/dpath,

where dpath (down-path) is a concatenation of paths child, ?test and
(child/?test)+ that mentions child or (child/?test)+ at least once; and
upath, rpath and lpath (up-, right-, and left-paths) are defined in the same
way but replacing child by parent, right and left, respectively. Thus, it suf-
fices to provide translations for simple path expressions. As an example we show
translations of dpath and upath/rpath/dpath, as the remaining translations
are very similar. For a downpath π, we define an interval formula π◦(x1, x2)
such that for every Σ-tree T and a pair of nodes s1, s2 in it, (s1, s2) ∈ [[π]]T iff
(T, s1, s2) |= x1 ≺∗

ch x2 ∧ (π◦)(x1, x2):

(child)◦ := X¬X⊤
(?test)◦ := [test◦] ∧ ¬X⊤

((child/?test)+)◦ := X¬(⊤U¬[test◦])
(child/dpath)◦ := X dpath◦

(?test/dpath)◦ := [test◦] ∧ dpath◦

((child/?test)+/dpath)◦ := X ([test◦]U (X−dpath◦)),

where test◦ is the translation of test expressions into TLtree formulae.
As another example, consider a simple path upath/rpath/dpath. Assume

that a node s′ is reachable from a node s by following this path, as in Fig. 1,
where s1 = succ(s ⊓ s′, s) and s2 = succ(s ⊓ s′, s′). Then upath/rpath/dpath is
expressed by an I2(LTL,TLtree) formula ϕ(x1, x2):

(upath◦)(x1, succ(x1 ⊓ x2, x1)) ∧ succ(x1 ⊓ x2, x1) ≺
∗
sb succ(x1 ⊓ x2, x2) ∧

(rpath◦)(succ(x1 ⊓ x2, x1), succ(x1 ⊓ x2, x2)) ∧ (dpath◦)(succ(x1 ⊓ x2, x2), x2).

Finally we must deal with node tests which will be translated into TLtree.
Had we used CTL⋆

past, the translation would have have been immediate as 〈path〉

is simply E(path◦). But TLtree is more restrictive, and thus our first step is to
give an equivalent grammar for CXPath node tests:

test := a, a ∈ Σ | 〈union〉 | ¬test | test ∨ test

union := concat | union∪ union

concat := step | ?test | (step/?test)+ |
step/concat | ?test/concat | (step/?test)+/concat

Here the semantics is existential: test is true in s if for some s′ it is the case
that (s, s′) is in the semantics of the corresponding path expression. With the
new grammar, the translation (given below for the ’child’ axis) is quite straight-
forward:

a◦ := a 〈union〉◦ := union
◦

(¬test)◦ := ¬test◦ (test1 ∨ test2)
◦ := test

◦

1 ∨ test
◦

2

(union1 ∪ union2)
◦ := union

◦

1 ∨ union
◦

2 child
◦ := Xch ⊤

(?test)◦ := test
◦ ((child/?test)+)◦ := Xch test

◦

(child/concat)◦ := Xch concat
◦ (?test/concat)◦ := test

◦ ∧ concat
◦

((child/?test)+/concat)◦ := Xch ¬(¬concat◦ Wch ¬test◦)

To conclude, we note that the translation of paths into the normal form is
exponential [25] and the same is true for the translation for tests; for formulae
in normal form, translations into both TLtree and I2(LTL,TLtree) are linear,
which proves the theorem.

From tree-patterns to In(LTL,TLtree) Tree-pattern queries are a popular way
of navigating in XML documents and retrieving n-ary tuples of nodes [8, 22]. Fix
an alphabet Σ and n variables x1, . . ., xn. Tree-pattern queries use a restricted
language for paths (where a ranges over Σ):

step := self | child | child+

path := step | step/?a | step/xi | step/?a/xi, i ≤ n

Variables retrieve nodes from documents: for example, self/xi retrieves the node
where the formula is evaluated, and child+/?a/xi retrieves all the descendants
of a node that are labeled a. Tree-pattern formulae are defined as follows:

ϕ := path | path[ϕ, . . . , ϕ],

with the additional requirement that each variable xi is mentioned at most once.
In a tree-pattern formula, square brackets are used to indicate that a list of paths
have a common starting point.

An n-ary tree-pattern formula ϕ is definable in FO and thus in
In(LTL,TLtree). In fact, one can prove a stronger result:

Proposition 3. For every tree-pattern formula ϕ one can construct in linear-
time an equivalent In(LTL,TLtree) formula ϕ◦.

6 Conclusions

Connections between XML querying and temporal logics were discovered re-
cently but familiar logics such as CTL⋆ or the µ-calculus were only suitable for
Boolean or unary queries over XML documents. Here we have shown how to
combine temporal logics to obtain query languages for selecting arbitrary tuples
of nodes from XML trees, that capture the power of FO and MSO querying. The
observation that composing monadic queries is sufficient to capture n-ary MSO
was also made recently in [13].

One of the main goals of this work is to bring techniques developed in the
model-checking community into the field of XML querying, where complexity
of query evaluation for languages such as XPath and XQuery is a very recent
and active topic of research [17, 20]. We have shown that some of the combined
logics achieve the best possible complexity of model-checking: linear in both
the formula and the document. Two natural extensions of this work are: (1) an
experimental evaluation of the combined temporal logics proposed here using
existing model-checkers, and (2) further extension of the logics by allowing them
to reshape tuples of nodes, thus making them closer to languages such as XQuery.

Acknowledgments We thank anonymous referees for their comments. Arenas is sup-

ported by FONDECYT grant 1050701; Arenas and Barceló by Grant P04-067-F from

the Millennium Nucleus Centre for Web Research; Libkin is on leave from the Univer-

sity of Toronto, supported by the European Commission Marie Curie Excellence grant

MEXC-CT-2005-024502, EPSRC grant E005039, and a grant from NSERC.

References

1. L. Afanasiev, M. Franceschet, M. Marx, M. de Rijke. CTL model checking for
processing simple XPath queries. In TIME 2004, pages 117–124.

2. L. Afanasiev, P. Blackburn, I. Dimitriou, B. Gaiffe, E. Goris, M. Marx, M. de Rijke:
PDL for ordered trees. J. Appl. Non-Classical Logics 15 (2005), 115–135.

3. P. Barceló, L. Libkin. Temporal logics over unranked trees. LICS’05, pages 31–40.
4. G. Bhat, R. Cleaveland. Efficient model checking via the equational µ-calculus. In

LICS 1996, pages 304–312.
5. R. Bloem, J. Engelfriet. Monadic second order logic and node relations on graphs

and trees. Struct. in Logic and Comp. Science, 1997: 144-161.
6. L. Cardelli, G. Ghelli. A query language based on the ambient logic. In ESOP

2001, pages 1–22.

7. B. ten Cate. Expressivity of XPath with transitive closure. In PODS’06, pages
328–337.

8. Z. Chen, H.V.Jagadish, L. Lakshmanan, S. Paparizos. From tree patterns to gen-
eralized tree patterns: on efficient evaluation of XQuery. VLDB’03, pages 237–248.

9. E. Clarke, B.-H. Schlingloff. Model Checking. In Handbook of Automated Reason-

ing, Elsevier 2001, pages 1635–1790.
10. R. Cleaveland, B. Steffen. A linear-time model-checking algorithm for the

alternation-free modal mu-calculus. CAV’91, pages 48–58.
11. K. Compton, C.W. Henson. A uniform method for proving lower bounds on the

computational complexity of logical theories. APAL 48 (1990), 1–79.
12. E. A. Emerson, C.-L. Lei. Modalities for model checking: branching time logic

strikes back. Sci. Comput. Program. 8 (1987), 275–306.
13. E. Filiot, J. Niehren, J-M. Talbot, S. Tison. Composing monadic queries in trees.

In PLAN-X 2006: 61-70.
14. M. Frick, M. Grohe. The complexity of first-order and monadic second-order logic

revisited. In LICS 2002, 215–224.
15. E. Goris, M. Marx. Looping caterpillars. In LICS 2005, pages 51–60.
16. G. Gottlob, C. Koch. Monadic datalog and the expressive power of languages for

web information extraction. J. ACM 51 (2004), 74–113.
17. G. Gottlob, C. Koch, R. Pichler, L. Segoufin. The complexity of XPath query

evaluation and XML typing. J. ACM 52 (2005), 284–335.
18. T. Hafer, W. Thomas. Computation tree logic CTL* and path quantifiers in the

monadic theory of the binary tree. In ICALP’87, pages 269–279.
19. N. Klarlund, Th. Schwentick, D. Suciu. XML: model, schemas, types, logics, and

queries. In Logics for Emerging Applications of Databases, Springer 2003.
20. C. Koch. Processing queries on tree-structured data efficiently. In PODS’06, pages

213–224.
21. O. Kupferman, A. Pnueli. Once and for all. In LICS’95, pages 25–35.
22. L. Lakshmanan, G. Ramesh, H. Wang and Z. Zhao. On testing satisfiability of tree

pattern queries. In VLDB’04, pages 120–131.
23. F. Laroussinie, N. Markey and Ph. Schnoebelen. Model checking CTL+ and FCTL

is hard. In FoSSaCS’01, pages 318–331.
24. L. Libkin. Logics for unranked trees: an overview. In ICALP’05, pages 35–50.
25. M. Marx. Conditional XPath. ACM TODS 30(4) (2005).
26. R. Mateescu. Local model-checking of modal mu-calculus on acyclic labeled tran-

sition systems. In TACAS’02, pages 281–295.
27. G. Miklau and D. Suciu. Containment and equivalence for a fragment of XPath.

J. ACM 51(1): 2–45 (2004).
28. F. Neven. Automata, logic, and XML. In CSL 2002, pages 2–26.
29. F. Neven, Th. Schwentick. Query automata over finite trees. TCS, 275 (2002),

633–674.
30. D. Niwinski. Fixed points vs. infinite generation. In LICS 1988, pages 402–409.
31. L. Planque, J. Niehren, J.M. Talbot, S. Tison. N-ary queries by tree automata. In

DBPL’05, pages 217–231.
32. B.-H. Schlingloff. Expressive completeness of temporal logic of trees. Journal of

Applied Non-Classical Logics 2 (1992), 157–180.
33. Th. Schwentick. On diving in trees. In MFCS’00, pages 660-669.
34. A. P. Sistla, E. Clarke. The complexity of propositional linear temporal logics. J.

ACM 32 (1985), 733–749.
35. M. Y. Vardi. Reasoning about the past with two-way automata. In ICALP’98,

pages 628–641.
36. M. Y. Vardi. Model checking for database theoreticians. In ICDT’05, pages 1–16.

