
The Homomorphism Problem for
Regular Graph Patterns

Miguel Romero
Simons Inst. for the Theory of Comp.

Berkeley, University of California
m.romero.orth@gmail.com

Pablo Barceló
Center for Semantic Web Research &

DCC, University of Chile
pbarcelo@dcc.uchile.cl

Moshe Y. Vardi
Department of Computer Science

Rice University
vardi@cs.rice.edu

Abstract—The evaluation of conjunctive regular path queries
– which form the navigational core of the query languages
for graph databases – raises challenges in the context of the
homomorphism problem that are not fully addressed by existing
techniques. We start a systematic investigation of such challenges
using a notion of homomorphism for regular graph patterns
(RGPs). We observe that the RGP homomorphism problem
cannot be reduced to known instances of the homomorphism
problem, and new techniques need to be developed for its study.

We first show that the non-uniform version of the problem
is computationally harder than for the usual homomorphism
problem. By establishing a connection between both problems,
in turn, we postulate a dichotomy conjecture, analogous to
the algebraic dichotomy conjecture held in CSP. We also look
at which structural restrictions on left-hand side instances of
the RGP homomorphism problem ensure efficiency. We study
restrictions based on the notion of bounded treewidth modulo
equivalence, which characterizes tractability for the usual ho-
momorphism notion. We propose two such notions, based on
different interpretations of RGP equivalence, and show that they
both ensure the efficiency of the RGP homomorphism problem.

I. INTRODUCTION

The homomorphism problem. The homomorphism problem
for relational structures – given relational structures A and
B, is there a homomorphism h : A → B? – provides an
equivalent reformulation of two fundamental tasks in computer
science: (a) the constraint satisfaction problem (CSP) [1], and
(b) conjunctive query (CQ) evaluation in databases [2]. In
general, this problem is NP-complete. This has motivated a
long line of work whose main goal is to understand which
restrictions of the problem are tractable. Such question has
been studied mainly from two points of view, described next:

The non-uniform homomorphism problem: Many CSPs of in-
terest can be reformulated as a non-uniform homomorphism
problem in which the template B is fixed and the input consists
of the instance A only; written as Hom(B). The Dichotomy
Conjecture of Feder and Vardi postulates that Hom(B) is either
tractable or NP-complete [3]. A series of groundbreaking
results have given rise to a refined version of this conjecture
– the so-called Algebraic Dichotomy Conjecture (ADC) –
which postulates that Hom(B) is tractable if B has certain

algebraic property; otherwise, it is NP-complete. Only the NP-
completeness side of the ADC is known to hold [4], [5], [6].1

Structural restrictions on the left-hand side: This is of interest
in the context of CQ evaluation over relational databases,
i.e., the problem of checking if B |= q, where (i) q is
a (Boolean) CQ, i.e., a sentence in the {∃,∧}-fragment of
FO of the form ∃ȳ

∧
1≤i≤mRi(x̄i), where the Ri(x̄i)’s are

atoms, and (ii) B is a relational structure (the database).
This problem is equivalent to checking whether A → B,
where A = {Ri(x̄i) | 1 ≤ i ≤ m}. The input now
consists of both A and B, and we are interested in identifying
which classes C of A’s (resp., CQs) ensure tractability of the
homomorphism problem (resp., CQ evaluation). Formally, we
want to understand when Hom(C,−) – the restriction of the
homomorphism problem in which the structure A is in C – is
tractable. A prime example of this is when the class C is of
bounded treewidth [10], [11]. Such good behavior also extends
to the C’s that are of bounded treewidth modulo equivalence,
i.e., those for which there is an integer k ≥ 1 such that every
A in C is homomorphically equivalent to an A′ of treewidth k
[11]. As shown by Grohe [12], for schemas of fixed arity this
notion exhausts the space of classes C for which Hom(C,−) is
tractable (under complexity assumptions). That is, Hom(C,−)
is tractable iff C has bounded treewidth modulo equivalence.

Many extensions of the homomorphism problem have been
studied in the literature. One such an extension that is partic-
ularly relevant to us is the one that relates to the evaluation
of existential positive FO (∃+FO) formulas. Its non-uniform
version (denoted ∃+FO(B)) has been studied in [13], [14],
while the problem of which classes of ∃+FO formulas ensure
efficient solvability of evaluation was studied in [15].

Here we study another extension of the homomorphism
problem, of high relevance in the context of evaluation of
navigational queries over the emerging data model of graph
databases, i.e., edge-labeled directed graphs [16]. This prob-
lem relates to the evaluation of queries in the most basic such
language: the conjunctive regular path queries (CRPQs) [17],
that extend CQs with the ability to check for the existence
of a path that satisfies a regular condition. CRPQs form the
core of practical graph query languages such as SPARQL 1.1

1Different proofs of the ADC have recently been announced in three articles
[7], [8], [9], but such proofs have not been peer reviewed yet.978-1-5090-3018-7/17/$31.00 c©2017 IEEE

[18] and PGQL [19] (cf., [20]), and constitute an active area
of theoretical research [21], [22], [23]. Our goal is to develop
an in-depth study of the homomorphism problem for CRPQs,
and advance the understanding of when such a problem can
be efficiently solved. It turns out to be the case that this
problem stands on its own right: it cannot be reduced to
known instances of the homomorphism problem, and requires
developing new techniques to fully realize its potential.
Homomorphisms for regular graph patterns. As customary,
we deal not only with CRPQs, but with its two-way extension,
C2RPQs [24], that allow to traverse edges in both directions.
Boolean C2RPQs are sentences of the form:

φ = ∃z̄
(
L1(x1, y1) ∧ · · · ∧ Lm(xm, ym)

)
, (1)

where the Li’s are regular expressions over the alphabet of
edge labels and their inverses. A CRPQ is simply a C2RPQ
that does not use such inverses. In C2RPQ evaluation, we are
thus interested in checking if G |= φ, where G is a graph
database, and φ is a C2RPQ of the form (1). As for CQs, this
boils down to checking if there is a certain “homomorphism”
from φ to G. The notion of homomorphism now needed,
though, is more flexible than the one used in CQ evaluation.
This is because φ no longer can be seen as a relational
structure, but corresponds to a two-way regular graph pattern
(2RGP) P = {Li(xi, yi) | 1 ≤ i ≤ m}, where the Li’s
are regular expressions. A homomorphism from P to a graph
database G is allowed to map the pair (xi, yi) of variables to a
pair (u, v) of nodes in G that is linked by some path labeled in
the regular language Li. This is more general than the standard
homomorphism, where each Li is an atomic edge.2

This flexibility poses new demands on the homomorphism
problem, not all of which can be solved with its existing
toolbox. In consequence, we lack a thorough understanding of
the problems 2RGPHom(G) – the non-uniform 2RGP homo-
morphism problem in which the template is a graph database G
– and 2RGPHom(C,−) – the 2RGP homomorphism problem
in which the 2RGPs A on the left-hand side are in class C.
In particular, we have no answers to the following questions:
2RGPHom(G): When can we efficiently solve 2RGPHom(G)?
Can this problem be computationally harder than Hom(G)?
How does this relate to the ADC? (Recall that the ADC can
be reduced to its version over graph databases [27]).
2RGPHom(C,−): For which classes C can we efficiently
solve 2RGPHom(C,−)? In other words, when is C2RPQ
evaluation efficiently solvable? How does this relate to known
structural restrictions that yield tractability for Hom(C,−),
e.g., bounded treewidth modulo equivalence?

Our goal is to start a systematic investigation of the 2RGP
homomorphism problem. In particular, we want to gain under-
standing of when 2RGPHom(G) is tractable and which struc-
tural restrictions on C ensure efficiency for 2RGPHom(C,−).
Our results. We divide our contributions as follows:

2The 2RGP homomorphism problem is different to the subgraph homeo-
morphism problem studied in [25], [26]: the latter is defined only for directed
graphs, and maps edges of P to pairwise node-disjoint simple paths in G.

The non-uniform 2RGP homomorphism problem: C2RPQs
extend CQs over graph databases. Hence, if 2RGPHom(G) is
tractable then so is Hom(G). We observe that the converse
is not true: there is a graph database G such that Hom(G) is
tractable but 2RGPHom(G) is NP-complete; i.e., the class of
G’s for which 2RGPHom(G) is tractable is strictly contained
in the class for which Hom(G) is tractable (assuming P 6= NP).
Moreover, all this holds even in the absence of inverses.
Thus, we cannot simply apply the ADC in our context, and
we need to develop new tools to study our problem.

We first deal with the case in which no inverses are allowed,
i.e., we study RGPHom(G), the problem of evaluating RGPs
without inverses over G. In such context we establish a connec-
tion between the RGP and the usual homomorphism problem,
as follows: for each graph database G there is a relational
structure EG such that RGPHom(G) and Hom(EG) are poly-
nomially interreducible. Thus, RGPHom(G) is tractable (resp.,
NP-complete) if Hom(EG) is tractable (resp., NP-complete).
Moreover, if a dichotomy for the Hom(G)’s holds, then a
dichotomy for the RGPHom(G)’s also holds. (Notice that the
converse is not implied since a dichotomy for the EG’s does
not directly imply a dichotomy for all templates).

The aforementioned connection also allows us to postulate
a conjecture for the non-uniform problem RGPHom(G) –
analogous to the ADC – based on an algebraic property over
G. As for ADC, which uses a notion of polymorphism that is
connected to CQ-definability, our conjecture uses a notion of
polymorphism that characterizes CRPQ-definability [28].

Adding inverses, on the other hand, turns the problem even
computationally harder; that is, there are graph databases
G such that RGPHom(G) is tractable but 2RGPHom(G) is
NP-complete. Moreover, we prove some general intractability
results for the problem 2RGPHom(G) that suggest that the
conditions that ensure tractability in this case must be quite
restrictive. Thus, it is possible that a dichotomy can more
easily be obtained for the problem 2RGPHom(G) than for its
analogue RGPHom(G) without inverses. We finally connect
2RGPHom(G) with ∃+FO(G) – the evaluation of ∃+FO
sentences over fixed template G – and show that the former is
polynomially reducible to the latter, but not the opposite.
Structural restrictions: We study which classes C of 2RGPs
ensure the efficiency of 2RGPHom(C,−). Recall that for
relational structures (over fixed arity schemas such as the ones
used for representing graph databases) the C’s that ensure
tractability of Hom(C,−) are those of bounded treewidth
modulo (homomorphic) equivalence. We use this result as a
yardstick, and study how bounded treewidth modulo equiva-
lence relates to the efficiency of 2RGPHom(C,−).

The crucial difference is that while the notion of homo-
morphic equivalence for relational structures is well-defined,
it is not for 2RGPs. This is because homomorphisms, as
studied in the paper, are defined from a 2RGP P to a graph
database G, but not from P to another 2RGP P ′. Moreover,
there seems to be no canonical way to define “homomorphic
equivalence for 2RGPs”. We thus propose two natural notions
of homomorphic equivalence for 2RGPs – the first one based

on a suitable class of homomorphisms for 2RGPs and the
second one on the logical equivalence of their underlying
C2RPQs – and prove that they yield classes of 2RGPs of
bounded treewidth modulo equivalence with good properties
in terms of the 2RGP homomorphisms. In fact, the first class
ensures tractability for 2RGPHom(C,−), and the second one
fixed-parameter tractability (recall that this is a desirable prop-
erty for 2RGPHom(C,−), not held by all classes of 2RGPs
[29]). These classes are also conceptually important: While
the one based on homomorphisms for 2RGPs corresponds to
a natural extension of the notion of bounded treewidth modulo
equivalence for relational structures – and actually allows for
the application of similar tools based on the existential pebble
game [26] –, the one based on C2RPQ equivalence is relevant
for the evaluation and optimization of C2RPQs [23].

We finally study a slight extension of the notion of bounded
treewidth modulo “C2RPQ equivalence” – based on equiva-
lence for unions of C2RPQs – for which the 2RGP homomor-
phism problem remains fixed-parameter tractable. This is, in a
sense, optimal, as we prove that the problem is NP-complete.

Organization. Preliminares are in Section II. The non-uniform
problem is studied in Section III and structural restrictions
based on bounded treewidth in Section IV. In Section V, we
study restrictions based on equivalence for unions of C2RPQs.
We finish in Section VI with conclusions and open problems.

II. PRELIMINARIES

Relational structures and homomorphisms. Let Dom be a
countably infinite set of elements. A schema σ is a set of
relation symbols, each one of which has an associated arity
n > 0. A fact over σ is an expression of the form R(c̄), where
R is a relation symbol in σ of arity n > 0 and c̄ is an n-tuple
over Dom. A relational structure A over σ is a set of facts
over σ. We write Dom(A) for the domain of A, i.e., the set
of elements from Dom that are mentioned in the facts of A.
From now on we assume all relational structures to be finite.

Let A and B be relational structures. A homomorphism
from A to B is a mapping h : Dom(A) → Dom(B) such
that, for each fact R(c̄) in A, it is the case that R(h(c̄))
belongs to B. We write h : A → B to denote that h is a
homomorphism from A to B, and A → B to state that at
least one such a homomorphism exists. The homomorphism
problem for relational structures is defined as follows: Given
relational structuresA and B over σ, is it the case thatA → B?

CQ evaluation. The problem of Boolean conjunctive query
(CQ) evaluation over relational databases is equivalent to the
homomorphism problem (see, e.g., [30]). Indeed, recall that
the former is the problem of checking if B |= q, given a rela-
tional structure B (the relational database) and a Boolean query
q – the CQ – which corresponds to a formula in the {∃,∧}-
fragment of FO of the form ∃ȳ(R1(x̄1)∧· · ·∧Rm(x̄m)), where
the Ri(x̄i)’s are atomic relational formulas such that x̄i is a tu-
ple of variables. Given a Boolean CQ q = ∃ȳ

∧
1≤i≤mRi(x̄i),

we denote by Aq the relational structure that is obtained
from the set {Ri(x̄i) | 1 ≤ i ≤ m} by replacing each

variable x with a fresh element c ∈ Dom. Analogously,
given a relational structure A = {R1(c̄1), . . . , Rm(c̄m)},
we write qA for the Boolean CQ ∃ȳ

∧
1≤i≤mRi(x̄i), where

{R1(x̄1), . . . , Rm(x̄m)} is the set that is obtained from A by
replacing each constant c ∈ Dom(A) with a fresh variable x.
It is clear then that for each relational structure B:

B |= q ⇐⇒ Aq → B and A → B ⇐⇒ B |= qA.

C2RPQ evaluation. A graph database G is a finite directed
graph whose edges are labeled over a countable alphabet Σ.
We represent such G as a relational structure over the schema
{Pa | a ∈ Σ}, where the Pa’s are binary relation symbols.
Then Dom(G) corresponds to the set of nodes of the graph
database, and a fact of the form Pa(u, v) in G, for a ∈ Σ,
represents the presence of an a-labeled edge from node u to
node v. We often write u a

 v for the fact Pa(u, v).
A path in the graph database G is a sequence:

ρ = v0
a1 v1

a2 v2 . . . vk−1
ak vk,

for k ≥ 0, such that vi−1
ai vi is in G for each 1 ≤ i ≤ k.

For querying purposes, we are typically interested in the label
of such path, denoted λ(ρ), which is the word a1 . . . ak ∈ Σ∗.

Conjunctive two-way regular path queries (C2RPQs) ex-
press properties of paths in graph databases that can traverse
edges in both directions. A clean way to handle the backward
traversal of edges is by using the notion of completion of a
graph database, defined next. Let Σ be a finite alphabet. We
write Σ± for the alphabet that extends Σ with the inverse a−

of each symbol a ∈ Σ. Given a graph database G over Σ, we
define its completion G± as the graph database over Σ± that

extends G with the edge v a−

 u, for each edge u a
 v in G.

For a regular expression L over Σ±, we write L(G) for the
set of pairs (u, v) ∈ Dom(G) × Dom(G) such that there is a
path ρ from u to v in G± for which λ(ρ) matches L.

A C2RPQ over Σ is a formula φ = ∃z̄
∧

1≤i≤m xi
Li yi,

where each Li is a regular expression over Σ±. A CRPQ is a
C2RPQ that does not mention the inverses a−, for a ∈ Σ. For a
Boolean C2RPQ φ as above and a graph database G, we write
G |= φ if there is a mapping h :

⋃
1≤i≤m{xi, yi} → Dom(G)

such that (h(xi), h(yi)) ∈ Li(G), for each 1 ≤ i ≤ m.
The Boolean C(2)RPQ evaluation problem takes as input a

graph database G and a C(2)RPQ φ, and asks if G |= φ.
Regular graph patterns and homomorphisms. As in the
case of CQs, Boolean C2RPQ evaluation can be recast in
terms of the homomorphism problem. To do this, however,
it is necessary to introduce more general notions of structure
and homomorphism than the ones we have used so far. This is
because the structures that represent C2RPQs have to be able
to express facts based on regular expressions, and the notion
of homomorphism used for C2RPQ evaluation has to be able
to give proper semantics to such facts. We do this by using the
notion of regular graph pattern (cf. [31]), as described next.

A two-way regular graph pattern (2RGP) P is a graph
database over Reg(Σ±), where Reg(Σ±) is the set of regular
expressions over Σ±. An RGP is a 2RGP that does not mention

the inverses a−, for a ∈ Σ. A homomorphism from 2RGP P
to graph database G is a mapping h : Dom(P) → Dom(G)

such that for each edge u L
 v in P , where u, v ∈ Dom(P)

and L ∈ Reg(Σ±), it is the case that (h(u), h(v)) ∈ L(G).
We write h : P → G if h is a homomorphism from P to G,
and P → G if one such a homomorphism exists.

The (2)RGP homomorphism problem is as follows: Given a
(2)RGP P and a graph database G, is it the case that P → G?
In general, these problems are NP-complete.
C2RPQ evaluation and 2RGP homomorphisms. C2RPQ
evaluation can be recast in terms of the 2RGP homomor-
phism problem. Given a Boolean C(2)RPQ φ of the form
∃z̄
∧

1≤i≤m xi
Li yi over Σ, we denote by Pφ the (2)RGP

which is obtained from {xi
Li yi | 1 ≤ i ≤ m} by replacing

each variable z with a fresh element c in Dom. Analogously,
given a (2)RGP P = {ui

Li vi | 1 ≤ i ≤ m}, we denote
by φP the Boolean C(2)RPQ ∃z̄

∧
1≤i≤m xi

Li yi, where

{xi
Li yi | 1 ≤ i ≤ m} is obtained from P by replacing

each constant u ∈ Dom(P) by a fresh variable w. Then:

Proposition II.1. For each C(2)RPQ φ and (2)RGP P:

G |= φ ⇐⇒ Pφ → G and P → G ⇐⇒ G |= φP ,

over each graph database G.

Hence, the C(2)RPQ evaluation problem is NP-complete.

III. THE NON-UNIFORM RGP HOMOMORPHISM PROBLEM

Let G be a graph database. We define 2RGPHom(G) as the
problem of checking if P → G, given a 2RGP P . We study
for which graph databases G is 2RGPHom(G) tractable.

A. Connections with the non-uniform homomorphism problem

For each graph database G the problem Hom(G) is polyno-
mially reducible to 2RGPHom(G) (since 2RGPs extend graph
databases). It is natural to ask if the opposite is also true.
We prove next that it is not (under complexity theoretical
assumptions). Moreover, this holds even in the absence of
inverses. Formally, let us write HomNP-c and RGPHomNP-c
for the classes of graph databases G such that Hom(G) and
RGPHom(G) are NP-complete. Then:

Proposition III.1. Unless P=NP, it is the case that:

HomNP-c (RGPHomNP-c.

Proof. The separating example G is a directed cycle on three
elements (encoded as the graph database G = {u1

a

u2, u2
a
 u3, u3

a
 u1}). Then Hom(G) is tractable. In fact,

G has bounded width, a property that ensures tractability of
Hom(G) [3]. In turn, RGPHom(G) is NP-complete. Indeed,
consider the regular expression L = a+aa. Then L(G) is the
inequality relation over Dom(G), i.e., L(G) = {(ui, uj) | 1 ≤
i, j ≤ 3 and i 6= j}. We can reduce then 3-COLORABILITY
to RGPHom(G): Given an undirected graph G = (V,E), con-
struct an RGP PG whose set of edges is {u L

 v | (u, v) ∈ E}.
It is clear that G is 3-colorable iff PG → G.

Hence, we cannot directly reduce the study of RGPHom(G)
to Hom(G). To better understand the complexity of
RGPHom(G) then, we develop a connection with the usual
homomorphism problem based on the notion of regular ex-
pansions of graph databases. Let us reinforce the fact that in
the rest of the section we focus on RGPs only, i.e., no inverses
are allowed. 2RGPs are studied in Section III-B.

Regular expansions: Let G be a graph database over Σ. A set
S ⊆ Dom(G) × Dom(G) is Reg(Σ)-definable, if there is a
regular expression L over Σ such that S = L(G).

Definition III.1 (Regular expansions). Let G be a graph
database over Σ, and suppose that S1, . . . , S` is an enumera-
tion of all Reg(Σ)-definable subsets of Dom(G)×Dom(G). The
regular expansion EG of G is a graph database over alphabet
{s1, . . . , s`}, where each si is a fresh symbol, whose set of
edges is {u si v | (u, v) ∈ Si}.

The crucial property of the regular expansion EG is that it
defines a problem Hom(EG) which is polynomially interre-
ducible with RGPHom(G).

Theorem III.2. RGPHom(G) and Hom(EG) are polynomially
interreducible, for each graph database G.

Proof. Let S1, . . . , S` be the enumeration of the Reg(Σ)-
definable sets used in the construction of EG , and E1, . . . , E`
their corresponding witnessing regular expressions. First we
show that Hom(EG) reduces to RGPHom(G). LetH be a graph
database over {s1, . . . , s`}, and PH be the RGP obtained from
H by replacing each edge u si v, for 1 ≤ i ≤ `, with u Ei v.
Clearly, H → EG ⇔ PH → G. On the other hand, let P be an
RGP and HP be the graph database that is obtained from P
by replacing each edge u L

 v by u
si∗ v, where 1 ≤ i∗ ≤ `

satisfies that Si∗ = L(G). Since each L(G) can be constructed
in polynomial time, it follows that HP can also be constructed
in polynomial time. Clearly, P → G ⇔ HP → EG .

A consequence of the previous theorem is that establish-
ing a dichotomy for RGPHom(G) reduces to establishing
a dichotomy for the usual homomorphism problem over a
particular class of templates; namely, the ones that correspond
to regular expansions of graph databases:

Corollary III.3. The following are equivalent:

1) For each graph database G the problem RGPHom(G)
is tractable or NP-complete.

2) For each regular expansion EG the problem Hom(EG) is
tractable or NP-complete.

The Algebraic Dichotomy Conjecture: The currently held di-
chotomy conjecture for the standard non-uniform homomor-
phism problem is based on algebraic notions. For such a
reason, it is known as the Algebraic Dichotomy Conjec-
ture (ADC). Based on the ADC, we develop an algebraic
dichotomy conjecture for our problem RGPHom(G), which
holds if the ADC holds. To do this, we need to further refine

the previously established connection between RGPHom(G)
and the usual non-uniform homomorphism problem Hom(G).

For simplicity, we state the ADC only for graph databases.
This is without loss of generality, as the general ADC can
be reduced to its version over graph databases [27]. A central
notion for the ADC is that of polymorphism, as defined below.
Let G be a graph database over Σ. A polymorphism of G is a
mapping f : Dom(G)n → Dom(G), for some integer n ≥ 1,
such that for each symbol a ∈ Σ and set {ui

a
 vi | 1 ≤

i ≤ n} of edges in G, it is the case that f(u1, . . . , un)
a

f(v1, . . . , vn) is also in G.
Crucial to the ADC are the so-called weak near-unanimity

(WNU) polymorphisms, which are polymorphisms satisfying
certain identities (for a definition see e.g. [4], [5]). Also, the
ADC is usually stated in terms of cores [32]. A graph database
G is a core if every homomorphism h : G → G is surjective.
It is known that when classifying the complexity of Hom(G)
we can assume without loss of generality that G is a core.

Conjecture III.4 (ADC). Let G be a graph database that
is a core. Then Hom(G) is tractable if G has a WNU
polymorphism, and it is NP-complete otherwise.

Let us remark that only the first part of the ADC remains
open: it is known that if G is a core without WNU polymor-
phisms, then Hom(G) is NP-complete [4], [5].

Now we present our conjecture for the non-uniform RGP
homomorphism problem. To do so, we introduce a notion of
polymorphism that plays a similar role for RGPHom(G) than
the usual notion for Hom(G). Let G be a graph database over
Σ. For nodes u, v of G, we denote by LG(u, v) the set of
words over Σ that can be “read” from u to v in G; i.e.:

LG(u, v) = {λ(ρ) | ρ is a path from u to v in G}.

A regular polymorphism of G is a mapping f : Dom(G)n →
Dom(G), for n ≥ 1, such that for each tuples ū = (u1, . . . , un)
and v̄ = (v1, . . . , vn) in Dom(G)n, it is the case that:

LG(ui, vi) ⊆ LG(f(ū), f(v̄)), for some 1 ≤ i ≤ n.

It is worth noticing that the notion of regular polymorphism
has been applied before to study CRPQ-definability [28]. This
is in line with the well-studied relationship between the usual
notion of polymorphism and CQ-definability [4], [5], [33].

We now postulate our conjecture. Without loss of generality,
we only state it in terms of cores of graph databases.

Conjecture III.5 (ADC for RGPs). Let G be a graph database
that is a core. Then RGPHom(G) is tractable if G has a WNU
regular polymorphism, and it is NP-complete otherwise.

The key property of regular polymorphisms that supports
our conjecture is established below. This enables us to connect
some relevant algebraic properties of G with those of EG :

Lemma III.6. Let G be a graph database. The following are
equivalent for each mapping f : Dom(G)n → Dom(G):
• f is a regular polymorphism of G.
• f is a polymorphism of EG .

Proof. Recall that EG is defined over the alphabet {s1, . . . , s`},
given by an enumeration S1, . . . , S` of the Reg(Σ)-definable
sets of G. Let E1, . . . , E` be the corresponding witnessing reg-
ular expressions. Assume first that f : Dom(G)n → Dom(G)
is not a polymorphism of EG . Then there is a symbol si, with
1 ≤ i ≤ `, and tuples ū = (u1, . . . , un), v̄ = (v1, . . . , vn)
such that (a) uj

si vj ∈ EG , for each 1 ≤ j ≤ n,
and (b) f(ū)

si f(v̄) 6∈ EG . Therefore, (uj , vj) ∈ Si,
for each 1 ≤ j ≤ n, and thus there is a word wj in
LG(uj , vj) satisfying Ei. Notice that wj 6∈ LG(f(ū), f(v̄)),
for each 1 ≤ j ≤ n; otherwise (f(ū), f(v̄)) ∈ Si, and
hence f(ū)

si f(v̄) would belong to EG . We conclude that
f is not a regular polymorphism of G. Assume now that f
is not a regular polymorphism of G. Then there are tuples
ū = (u1, . . . , un), v̄ = (v1, . . . , vn), and words w1, . . . , wn
such that: (i) wj ∈ LG(uj , vj) for each 1 ≤ j ≤ n, and
(ii) wj 6∈ LG(f(ū), f(v̄)), for each 1 ≤ j ≤ n. Consider
the regular expression E = w1 + · · · + wn, and pick an
i∗ ∈ {1, . . . , `} such that Si∗ = E(G). Then (uj , vj) ∈ Si∗ ,
and thus uj

si∗ vj ∈ EG , for each 1 ≤ j ≤ n. By condition (ii),
we have that (f(ū), f(v̄)) 6∈ Si∗ , and then f(ū)

si∗ f(v̄) 6∈ EG .
Hence, f is not a polymorphism of EG .

As a corollary to Lemma III.6 we obtain that the ADC
implies the ADC for RGPs:

Corollary III.7. If ADC holds, then ADC for RGPs holds.

We do not know if the converse is true. This is equivalent to
the question of whether the ADC can be reduced to its version
over regular expansions, i.e., graph databases of the form EG .

Let us finish by observing that only the first part of the
ADC for RGPs remains open (as for the ADC); i.e., whether
the existence of a WNU regular polymorphism of G implies
tractability of RGPHom(G). In fact:

Proposition III.8. Let G be a core without WNU regular
polymorphisms. Then RGPHom(G) is NP-complete.

Proof. It is straightforward to prove that EG is also a core. In
view of Lemma III.6, EG does not have a WNU polymorphism,
and hence Hom(EG) is NP-complete. From Theorem III.2, we
conclude then that RGPHom(G) is NP-complete.

B. Adding inverses

An analogous ADC can also be stated for the problem
2RGPHom(G) – i.e., when we add inverses to RGPs. The
only difference is that now tractability is stated in terms of
two-way regular polymorphisms. These are defined exactly as
before, save that now we work over the completion G± of G.

However, it might be simpler to actually establish a di-
chotomy in this case, as 2RGPHom(G) easily becomes NP-
complete. This suggests that the tractability cases must be
quite restricted. Our next result confirms this claim and estab-
lishes a complete dichotomy for the case of directed graphs.

Theorem III.9. Let G be a directed graph that is a core. Then
2RGPHom(G) is tractable if G is either (i) the directed path of

length 1, (ii) the directed cycle of length 1, or (iii) the directed
cycle of length 2. Otherwise, 2RGPHom(G) is NP-complete.

It is worth noticing that this is true only because in-
verses are available. In particular, Theorem III.9 does not
hold for RGPHom(G). Moreover, there are some simple
directed graphs G for which RGPHom(G) is tractable, but
2RGPHom(G) is NP-complete. These include, for instance,
all directed paths of length at least two.

Connections with non-uniform evaluation for ∃+FO: We
now establish a connection between 2RGPHom(G) and
∃+FO(G), i.e., the problem of evaluating Boolean existential
positive FO formulas over fixed template G. Let us notice first
that for each graph database G the problem 2RGPHom(G)
can be reduced in polynomial time to the problem ∃+FO(G):

Proposition III.10. Let G be a fixed graph database. There
is a polynomial time reduction that on input a 2RGP P con-
structs an ∃+FO sentence θP such that P → G ⇔ G |= θP .

It is worth understanding whether a polynomial time re-
duction in the opposite direction can also be obtained. This
is important since a dichotomy for the non-uniform problem
∃+FO(G) is known to hold [13], [14], and thus such a reduc-
tion would provide us with a dichotomy for 2RGPHom(G)
as well. We prove next that it is not possible to find such a
reduction (under complexity theoretical assumptions). Follow-
ing previous terminology, we write ∃+FONP-c for the class of
graph databases G such that ∃+FO(G) is NP-complete. Then:

Proposition III.11. Unless P=NP, it is the case that
2RGPHomNP-c (∃+FONP-c.

The separating example consists of a single directed edge
between two different nodes.

IV. STRUCTURAL RESTRICTIONS FOR THE 2RGP
HOMOMORPHISM PROBLEM

Let C be a class of 2RGPs. Recall that 2RGPHom(C,−)
is the problem of checking if P → G, given a 2RGP P ∈ C
and a graph database G. We study which classes C of 2RGPs
ensure that 2RGPHom(C,−) can be efficiently solved. In
particular, we concentrate on studying how the notion of
bounded treewidth modulo equivalence relates to the efficient
solvability of 2RGPHom(C,−). Based on the fact that there
is no canonical way to define “homomorphic equivalence for
2RGPs”, we propose two natural interpretations of the notion
– one based on a suitable class of homomorphisms for 2RGPs
and the other one on the logical equivalence of their underlying
C2RPQs – and prove that they both yield classes of 2RGPs of
bounded treewidth modulo equivalence with good properties
in terms of the 2RGP homomorphism problem.

A. Bounded treewidth

The homomorphism problem Hom(C,−) can be solved in
polynomial time when C is a class of graph databases of
bounded treewidth. This can be proved by using techniques
based on the existential pebble game [11]. Such techniques

can naturally be extended to also show that 2RGPHom(C,−)
is tractable when C is a class of 2RGPs of bounded treewidth.
We present such techniques in this section.

Recall that the treewidth of a graph is a measure of how
much the graph resembles a tree; cf. [34]. This is formalized
using the notion of tree decomposition, as follows. Let G =
(V,E) be an undirected graph. A tree decomposition of G is a
pair (T, β), where T is a tree and β is a mapping that assigns
a nonempty set of nodes in V to each node t in T , such that:

1) For each v ∈ V it is the case that the set of nodes t ∈ T
such that v ∈ β(t) is connected.

2) For each edge {u, v} ∈ E there is a node t ∈ T such
that {u, v} ⊆ β(t).

The width of (T, β) is max {|β(t)| | t ∈ T}−1. The treewidth
of G is the minimum width of its tree decompositions.

The treewidth of a graph database G = {ui
ai vi | 1 ≤

i ≤ m} over Σ is the treewidth of its underlying undirected
graph (Dom(G), {(ui, vi) | 1 ≤ i ≤ m}) The treewidth of a
2RGP P over Σ is thus the treewidth of the graph database G
over Reg(Σ±) that represents it. For k ≥ 1, we write TW(k)
for the class of graph databases of treewidth at most k, and
TW(k)2rgp for the class of 2RGPs of treewidth at most k.
The existential pebble game for 2RGPs: We present a natural
extension of the existential pebble game [26] to handle the
semantics of 2RGPs. Fix k ≥ 1. Let P and G be a 2RGP and
a graph database over Σ, respectively. The existential k-pebble
game on (P,G) proceeds in rounds. In the first round Spoiler
places his pebbles p1, . . . , pk on (not necessarily distinct)
elements c1, . . . , ck of Dom(P), and Duplicator responds
by placing her pebbles q1, . . . , qk on elements d1, . . . , dk
of Dom(G). In each further round, Spoiler removes one of
his pebbles, say pi, for 1 ≤ i ≤ k, and places it on an
element of Dom(P), and Duplicator responds by placing her
corresponding pebble qi on an element of Dom(G). Duplicator
wins if she has a winning strategy, i.e., she can indefinitely
continue playing the game in such way that after each round,
if c1, . . . , ck and d1, . . . , dk are the elements covered by
pebbles p1, . . . , pk and q1, . . . , qk in P and G, respectively,
then:

(
(c1, . . . , ck), (d1, . . . , dk)

)
satisfies that for every edge

c
L
 c′ ∈ P , where L is a regular expression over Σ± and c, c′

appear in (c1, . . . , ck), we have that (d, d′) ∈ L(G), where d
and d′ are the elements corresponding to c and c′, respectively,
in (d1, . . . , dk). We write P →k G if Duplicator wins.

The following two results establish the good properties of
the existential k-pebble game in terms of the 2RGP homomor-
phism problem for the class TW(k):

Proposition IV.1 (Follows from [11]). For each k ≥ 1, if P
is a 2RGP in TW(k)2rgp and G is a graph database, then:

P →k+1 G ⇐⇒ P → G.

In addition:

Proposition IV.2 (Follows from [26]). Fix k ≥ 1. The problem
of checking if P →k G, for a 2RGP P and a graph database
G, can be solved in time (|P|+ |G|)O(k).

Thus, to check whether P → G for P ∈ TW(k)2rgp, it is
sufficient to check in time (|P|+ |G|)O(k) if P →k+1 G. This
yields the tractability of 2RGPHom(TW(k)2rgp,−):

Theorem IV.3. Fix k ≥ 1. Then 2RGPHom(TW(k)2rgp,−)
can be solved in polynomial time (|P|+ |G|)O(k).

B. Bounded treewidth modulo homomorphic equivalence

We start by recalling the notion of bounded treewidth
modulo (homomorphic) equivalence for graph databases. We
write TW(k)� for the class of graph databases G that are ho-
momorphically equivalent to some G′ in TW(k); i.e., G → G′
and G′ → G (written G � G′). It is easy to see that this notion
properly extends bounded treewidth; i.e., TW(k) (TW(k)�
for each k ≥ 1, and TW(k)� 6⊆ TW(`) for each ` ≥ 1.

The reason why the homomorphism problem for the classes
of graph databases of bounded treewidth modulo equivalence
can be solved in polynomial time is simple: the existential
pebble game techniques developed above continue to apply
for them. Formally, let G and G′ be graph databases such that
G is in TW(k)�. Then checking if G → G′ still boils down to
checking if G →k+1 G′ [11]. Hence, Hom(TW(k)�,−) can
be solved in time (|G|+ |G′|)O(k).

The goal of this section is to present a simple, yet
meaningful notion of “homomorphic equivalence for 2RGPs”
that preserves such a good behavior for the problem
2RGPHom(C,−). The notion is based on a class of homo-
morphisms between 2RGPs that we define next.

2RGP homomorphisms: Our definition uses the notion of
containment between regular languages. However, since our
regular expressions can mention inverses, it is convenient to
work with a more flexible notion of containment based on
foldings [24]. Let Σ be a finite alphabet. Recall that we denote
by Σ± the alphabet Σ ∪ {a− | a ∈ Σ}. If p ∈ Σ± and p = a
for some a ∈ Σ, then p− denotes a−. On the other hand, if
p = a− for a ∈ Σ, then p− denotes a. Let s = s1 . . . sk and
t = t1 . . . t` be words over Σ±. Then t folds onto s if there is
a sequence i0, . . . , i` of positions in {0, . . . , k} such that:
• i0 = 0 and i` = k, and
• for each 1 ≤ j ≤ `, it is the case that ij = ij−1 + 1 and
tj = sij , or ij = ij−1 − 1 and tj = s−ij−1

.
Intuitively, t folds onto s if t can be read in s by a two-way

automaton that outputs symbol p, each time p is read from
left-to-right, and p−, each time p is read from right-to-left.
For instance, abb−a−abb−c folds into abb−c.

If L is a language over Σ±, we write fold(L) for the set of
words u over Σ± such that some v ∈ L folds onto u. We can
now define our notion of homomorphism between 2RGPs:

Definition IV.1 (2RGP homomoprhisms). Let P and P ′ be
2RGPs. A 2RGP homomorphism from P to P ′ is a mapping
r : Dom(P)→ Dom(P ′) such that, for each edge u L

 v in P
there is an edge r(u)

L′

 r(v) in P ′, where L,L′ ∈ Reg(Σ±),
such that L′ ⊆ fold(L). We write P →2rgp P ′ if there is
a 2RGP homomorphism from P to P ′, and P �2rgp P ′ if
P →2rgp P ′ and P ′ →2rgp P .

P ′
L1 L

1

L
2 L2

L1 L1

P

Fig. 1. The 2RGPs P and P ′ from Example IV.4.

Let k ≥ 1. We write TW(k)�2rgp for the class of 2RGPs
P such that P �2rgp P ′ for some P ′ in TW(k)2rgp.

Example IV.4. Consider regular languages L1, L2 over Σ such
that L1 ⊆ L2. Let P be the 2RGP shown in Figure 1. Clearly,
P ∈ TW(2)2rgp \ TW(1)2rgp. On the other hand, P is in
TW(1)�rgp . In fact, it is easy to see that P �2rgp P ′, where
P ′ is the 2RGP in TW(1)rgp also shown in Figure 1.

In accordance with the previous example, we notice that
bounded treewidth modulo 2RGP homomorphic equivalence
properly extends bounded treewidth for 2RGPs:

Proposition IV.5. Let k ≥ 1. Then TW(k)2rgp (
TW(k)�2rgp

and TW(k)�2rgp
6⊆ TW(`)2rgp for each ` ≥ 1.

We prove next that 2RGPHom(TW(k)�2rgp
,−) can be

solved in polynomial time by using the existential (k + 1)-
pebble game for 2RGPs:

Theorem IV.6. Fix k ≥ 1. Then for each 2RGP P in
TW(k)�2rgp and graph database G it is the case that:

P → G ⇐⇒ P →k+1 G.

Therefore, 2RGPHom(TW(k)�2rgp
,−) can be solved in poly-

nomial time (|P|+ |G|)O(k).

Proof. Clearly, if P → G then P →k+1 G (the Duplicator
simply responds by following the homomorphism). Assume,
on the other hand, that P →k+1 G. Since P is in TW(k)�2rgp

,
there is a 2RGP P ′ in TW(k)2rgp such that P �2rgp P ′. Thus,
P ′ →2rgp P . It is not hard to prove that, together with the fact
that P →k+1 G, this implies P ′ →k+1 G, and hence P ′ → G
from Proposition IV.1 since P ′ is in TW(k)2rgp. But we also
have that P →2rgp P ′. It is not hard to prove that, together
with the fact that P ′ → G, this implies that P → G.

Decidability of the notion: The problem of checking if a
2RGP P is in TW(k)�2rgp

is decidable. More precisely:

Theorem IV.7. For each fixed k ≥ 1, it is PSPACE-complete
to check whether a 2RGP P is in TW(k)�2rgp

.

This is in contrast with the problem of checking
bounded treewidth modulo homomorphic equivalence for
graph databases, which is NP-complete. More formally, for
each fixed k ≥ 1 it is NP-complete to check if the graph
database G is in TW(k)� [11]. The difference lies in the fact
that checking G � G′, for graph databases G and G′, is in NP,
but this no longer holds if we want to check P �2rgp P ′
for 2RGPs P and P ′. In fact, this step requires checking

containment between regular expressions, which is a PSPACE-
complete problem [35].

Implication for C2RPQ evaluation: As mentioned in Section
II, each Boolean C2RPQ φ can be associated with a 2RGP
Pφ such that G |= φ ⇔ Pφ → G for each graph database G.
This observation, together with our previous results, allows us
to identify a large class of C2RPQs for which evaluation is
tractable. Formally, let TW(k)φ�2rgp

be the class of C2RPQs
φ such that its associated 2RGP Pφ is in TW(k)�2rgp

. Then:

Corollary IV.8. Fix k ≥ 1. Evaluation for C2RPQs in
TW(k)φ�2rgp

can be solved in polynomial time (|φ|+ |G|)O(k).

C. Bounded treewidth modulo logical equivalence

In this section we stress the connection between 2RGPs and
C2RPQs even further. It is worth, however, to start by recalling
an important connection between the notion of homomorphic
equivalence for graph databases and the logical equivalence
of the CQs associated with them.

CQ equivalence: Recall from Section II that each Boolean
CQ q over graph databases can be associated with a graph
database Gq – and, correspondingly, each graph database G
can be associated with a Boolean CQ qG over graph databases
– in such a way that for each graph database H:

H |= q ⇐⇒ Gq → H and G → H ⇐⇒ H |= qG .

It is known that the homomorphic equivalence of graph
databases G and G′ can be recast in terms of the equivalence
of their associated Boolean CQs qG and qG′ , respectively.
Analogously, the equivalence of Boolean CQs q and q′ boils
down to the homomorphic equivalence of the graph databases
Gq and Gq′ , respectively [36]. Formally, Boolean CQs q and
q′ over graph databases are equivalent, denoted q ≡ q′, if for
every graph database G we have that G |= q ⇔ G |= q′. Then:

G � G′ ⇐⇒ qG ≡ qG′ and q ≡ q′ ⇐⇒ Gq � Gq′ .

Hence, the notion of bounded treewidth modulo equivalence
for graph databases can be equivalently expressed in terms
of the equivalence of Boolean CQs. Formally, let us write
TW(k)q� for the class of Boolean CQs q that are equivalent to
some q′ that is associated with a graph database Gq′ ∈ TW(k).
It is clear then that for each Boolean CQ q with associated
graph database Gq , and for each graph database G with
associated Boolean CQ qG , we have that:

q ∈ TW(k)q� ⇐⇒ Gq ∈ TW(k)� and

G ∈ TW(k)� ⇐⇒ qG ∈ TW(k)q�.

In particular, it follows from Theorem IV.6 that the evaluation
problem for CQs in TW(k)q� is tractable.

C2RPQ equivalence: Let us now return to our case of interest:
the 2RGP homomorphism problem. As mentioned in Section
II, in the same way that Boolean CQs can be associated with
graph databases, each Boolean C2RPQ φ can be associated
with a 2RGP Pφ – and, correspondingly, each 2RGP P can

P ′

a∗

a∗

a∗

$1 $3

$2

$1 $2 $3

a∗a∗

a∗ a∗

P

Fig. 2. The 2RGPs P and P ′ from Example IV.9.

be associated with a Boolean C2RPQ φP over graph databases
– in such a way that for each graph database H:

H |= φ ⇐⇒ Pφ → H and P → H ⇐⇒ H |= φP .

It is thus natural – following the previous observations – to
define a notion of bounded treewidth modulo equivalence for
2RGPs based on the logical equivalence of their associated
C2RPQs. In fact, such notion has proved to be relevant in
the context of evaluation and optimization of C2RPQs over
graph databases [23]. We formalize this idea next. As before,
we write φ ≡ φ′, for C2RPQs φ and φ′, if for every graph
database G it is the case that G |= φ⇔ G |= φ′. Then:

Definition IV.2 (TW(k)φ≡2rgp
and TW(k)≡2rgp

). We define
TW(k)φ≡2rgp

, for k ≥ 1, as the class of Boolean C2RPQs
φ such that there is a C2RPQ φ′ with φ ≡ φ′ and Pφ′ ∈
TW(k)2rgp. Analogously, we define TW(k)≡2rgp

as the class
of 2RGPs whose associated C2RPQ φP is in TW(k)φ≡2rgp

.

Next we provide an example of a 2RGP in TW(1)≡2rgp
:

Example IV.9 (Taken from [23]). Consider the 2RGP P
shown in Figure 2. It can be proved that φP ≡ φP′ , where
P ′ is also shown in Figure 2. Clearly, P ′ ∈ TW(1)2rgp, and
hence P ∈ TW(1)≡2rgp

. It can be proved, on the other hand,
that P 6∈ TW(1)�2rgp .

In line with the previous example, bounded treewidth mod-
ulo C2RPQ equivalence properly extends bounded treewidth
modulo 2RGP homomorphism equivalence:

Proposition IV.10. Let k ≥ 1. Then TW(k)�2rgp (
TW(k)≡2rgp and TW(k)≡2rgp 6⊆ TW(`)�2rgp for each ` ≥ 1.

This extension, on the other hand, comes at a price: It is
easy to prove that the characterization of P → G in terms
of P →k+1 G, which holds for the P’s in TW(k)�2rgp

,
no longer holds for the P’s in TW(k)≡2rgp

. In addition, it
does not even seem possible to modify the existential pebble
game techniques to establish good properties of the classes
TW(k)≡2rgp

in terms of the 2RGP homomorphism problem.
By using more elaborate techniques based on au-

tomata, on the other hand, we are able to show that
the classes TW(k)≡2rgp are well-behaved in terms of
2RGPHom(C,−). In particular, we prove that the prob-

lem 2RGPHom(TW(k)≡2rgp
,−), for each fixed k ≥ 1,

is fixed-parameter tractable, with the parameter being
the size of the 2RGP P . Intuitively, this means that
2RGPHom(TW(k)≡2rgp

,−) can be solved by an algorithm
whose running time depends only polynomially on the size
of G and more loosely on the size of P . This is a desirable
property if we consider that P is encoding a C2RPQ φ, which
is in general orders of magnitude smaller than the graph
database G. Moreover, under usual complexity theoretical
assumptions this good behavior does not extend to all classes
of 2RGPs [29]. Our main result establishes the following:

Theorem IV.11. For each fixed k ≥ 1 the problem
2RGPHom(TW(k)≡2rgp

,−) can be solved in time:

O
(
|G|t(k) · 2s(|P|)

)
,

for t : N→ N a linear function and s : N→ N a polynomial.

As a corollary, we thus obtain the following:

Corollary IV.12. Fix k ≥ 1. The evaluation problem for
C2RPQs in TW(k)φ≡2rgp

is feasible in time O(|G|t(k) ·2s(|φ|)),
for t : N→ N a linear function and s : N→ N a polynomial.

Proof of Theorem IV.11: The proof is based on a small-witness
property for the fact that a 2RGP P is of bounded treewidth
modulo C2RPQ equivalence. As a matter of fact, in order to
prove Theorem IV.7, we already obtained one such a small-
witness property – in fact, a polynomial-witness property – for
the classes TW(k)�2rgp

of bounded treewidth modulo 2RGP
homomorphic equivalence. The small-witness property we es-
tablish here is, on the other hand, much more difficult to prove.
This is because the fact that a 2RGP P is in TW(k)≡2rgp

can
be caused by some intricate interactions among the regular
expressions of P . To handle such complications we need to
be more flexible in terms of which objects are allowed to be
a “witness” for the fact that 2RGP P is of bounded treewidth
modulo C2RPQ equivalence. In fact, as explained next we
allow such witnesses to be expressed as sets of 2RGPs and
also to slightly increase the original treewidth considered.

Given a set {P1, . . . ,Pn} of 2RGPs and a graph database G,
we write

⋃
1≤i≤n Pi → G if Pi → G for some 1 ≤ i ≤ n. The

next lemma establishes our desired small-witness property.

Lemma IV.13. Fix k ≥ 1. There is a single-exponential time
algorithm that on input a 2RGP P in TW(k)≡2rgp

, computes
a set R of 2RGPs such that:

1) Each 2RGP R ∈ R is in TW(2k + 1)2rgp, and
2) for each graph database G: P → G iff

⋃
R∈RR → G.

Proof Sketch: Let us first note that the case k = 1 follows
directly from [23], thus we focus on the case k > 1. Let A(·)
and E(·) be two fixed functions that map a regular expression
to an equivalent nondeterministic finite automaton (NFA) and
vice versa, respectively. It is well-known that we can take
A and E to have an output of at most of polynomial and
exponential size, respectively. Let s, s′ be states in an NFA

M . We denote by M(s, s′) the NFA obtained from M by
setting the initial state as s and the set of final states as {s′}.

Let r ≥ 1. Next we define the notion of r-subdivision. The
intuition is that an r-subdivision of a 2RGP Q is a 2RGP
obtained by “dividing” each regular expression L in Q into a
sequence of regular expressions L1, . . . , L`, whose concatena-
tion defines a language that is contained in the language of L.
The parameter r bounds the possible length of the sequence
L1, . . . , L`. Formally, an r-subdivision of a 2RGP Q is a
2RGP obtained as follows. Replace each edge u L

 v inQ by a
set of edges {u L1 u1, u1

L2 u2, . . . , u`−1
L` v}, where (i) the

ui’s are fresh elements, (ii) ` ≤ r, and (iii) there is a sequence
s0, . . . , s` of states of A(L) that satisfies the following: s0 and
s` are an initial and final state of A(L), respectively, and for
each 1 ≤ i ≤ `, it is the case that Li = E(A(L)(si−1, si)).
We denote by SDr(Q) the set of all r-subdivisions of Q.

For 2RGPs Q and Q′, we say that Q′ is a quotient of Q
if Q′ can be obtained from Q and a partition V1, . . . , Vn of
Dom(Q) by identifying all the elements in Vi with one fresh
element vi, for 1 ≤ i ≤ n. For a set of 2RGPs C, we denote
by Quot(C) the set of all quotients of a 2RGP in C.

Our algorithm constructs, given the 2RGP P , the set R =
Quot(SDr(P)) ∩ TW(2k + 1)2rgp, where r = 2(k + 1)|P|2.
It is routine to verify that the set R is not empty and can
be constructed in exponential time. By definition, R satisfies
condition (1) of the lemma. It remains to prove condition (2).
We start by showing that

⋃
R∈RR → G implies P → G,

for each graph database G. Suppose R → G, for some R ∈
R. In particular, R ∈ Quot(SDr(P)), and therefore, there
exists R′ ∈ SDr(P) such that R is a quotient of R′. By
composing the renaming function that defines R from R′ with
the homomorphism that witnesses R → G, we obtain that
R′ → G. By definition of subdivisions, it follows that P → G.

To show that P → G implies
⋃
R∈RR → G, we need the

following technical lemma:

Lemma IV.14. Fix k > 1. Let P be a 2RGP and G be a graph
database in TW(k). If P → G, then R → G, for some R ∈
Quot(SDr(P)) ∩ TW(2k + 1)2rgp, where r = 2(k + 1)|P|2.

Proof Sketch: Let h be a homomorphism from P to G and let
(T, β) be a tree decomposition of width k of the underlying
undirected graph of G. We define a set V ⊆ Dom(G) as
follows. Let I = {h(u) | u ∈ Dom(P)}. For a node v ∈ I, let
t↓v be the node in T that is the root of the subtree in T induced
by {t | v ∈ β(t)}. Let F = {t↓v | v ∈ I} and define Flca to be
the set of nodes of T that contains F and all the least common
ancestors in T of every pair of nodes in F . Let Tlca be the
(rooted) tree induced by the tree structure of T over the nodes
in Flca, and let βlca be the restriction of β to the nodes of Tlca.
Then the set V is defined as V =

⋃
t∈Tlca βlca(t). Note that

I ⊆ V. Also, it can be verified that |V| ≤ 2(k+ 1)|Dom(P)|.
Suppose P is of the form {ui

Li vi | 1 ≤ i ≤ n}. Let
i ∈ {1, . . . , n}. Since h is a homomorphism, there is a path
ρi in the completion G± of G from h(ui) to h(vi), whose
label matches Li. Since h(ui), h(vi) ∈ V, we can decompose

ρi into a sequence of paths ρ1
i , . . . , ρ

mi
i such that (i) its

concatenation is precisely ρ, and (ii) for each 1 ≤ j ≤ mi, the
endpoints of ρji are in V, while all the internal nodes of ρji are
not in V. Using pumping arguments, we can choose mi to be
at most |V| · |Li| ≤ 2(k+1)|P|2 = r. Let w0

i , w
1
i , . . . , w

mi
i be

the sequence of nodes from V such that the endpoints of ρji are
wj−1
i and wji , for each 1 ≤ j ≤ mi. In particular, w0

i = h(ui)
and wmii = h(vi). Now let π be an accepting run of A(Li) on
the word λ(ρi), i.e., the label of ρi. Let s0

i , s
1
i . . . , s

mi
i be the

sequence of states of A(Li) such that λ(ρji) goes from sj−1

to sj in the run π. In particular, s0 and smi are the initial and
final states in the run π, respectively.

Now we are ready to define the 2RGP R. The domain of
R is Dom(R) = V. For each 1 ≤ i ≤ n, let w0

i , w
1
i , . . . , w

mi
i

and s0
i , s

1
i , . . . , s

mi
i be the sequences defined above. For each

1 ≤ j ≤ mi, we have an edge in R of the form wj−1
i

Lji wji ,
where Lji = E(A(Li)(s

j−1
i , sji)).

Notice that R → G via the identity homomorphism. Also,
observe that R ∈ Quot(SDr(P)). Indeed, by construction,
we have that R ∈ Quot(SDr′(P)), where r′ = max{mi |
1 ≤ i ≤ n}. As noted above, mi ≤ r, for each 1 ≤ i ≤
n. Finally, from the pair (Tlca, βlca) one can define a tree
decomposition (T ′, β′) for R of width at most 2k + 1. The
idea is to show that whenever w L

 w′ is an edge in R,
then either {w,w′} ⊆ βlca(t), for some t ∈ Tlca, or w ∈
βlca(t1) and w′ ∈ βlca(t2) for an edge {t1, t2} in Tlca. With
this property at hand, (T ′, β′) is obtained from (Tlca, βlca)
by adding for each edge {t1, t2} a node t1,2 “between” t1
and t2 with label β′(t1,2) = βlca(t1) ∪ βlca(t2). As it turns
out, (T ′, β′) is actually a tree decomposition of width at most
2k + 1 and then R ∈ TW(2k + 1)2rgp as required.

To conclude the lemma we need the notion of expansions
(also known as canonical databases in [17], [23]) of a 2RGP.
The idea is that an expansion is a graph database obtained
from a 2RGP Q by replacing each edge u L

 v by a fresh
path from u to v with a label satisfying L. As it turns out,
a 2RGP Q is “equivalent” to its (potentially infinite) set of
expansions, i.e., (†) for each graph database G, we have that
Q → G iff H → G, for some expansion H of Q. Moreover,
(‡) if Q ∈ TW(k)2rgp and H is an expansion of Q, then
H ∈ TW(k). Here our assumption k > 1 is crucial: a 2RGP

of the form {u L
 v, u

L′

 v} belongs to TW(1)2rgp but its
expansions may belong to TW(2) \ TW(1).

We prove that P → G implies
⋃
R∈RR → G, for each

graph database G. Assume that P → G. Let P ′ be a 2RGP
in TW(k)2rgp which is a witness for P ∈ TW(k)≡2rgp . Then
P → G, since P ′ → G. By (†), H′ → G, for some expansion
H′ of P ′. Also by (†), P ′ → H′ and then P → H′. By (‡),
we know that H′ ∈ TW(k). We apply Lemma IV.14, and
obtain a 2RGP R ∈ Quot(SDr(P)) ∩ TW(2k + 1)2rgp, for
r = 2(k + 1)|P|2, such that R → H′. Clearly, R ∈ R. Since
H′ → G, it follows that R → G. Thus,

⋃
R∈RR → G.

Now we explain how Theorem IV.11 follows from Lemma
IV.13. We are given a 2RGP P in TW(k)≡2rgp and a graph

database G, and we want to check if P → G. We then apply
Lemma IV.13 to construct in exponential time the set R. From
condition (2), checking if P → G boils down then to check
whether

⋃
R∈RR → G, i.e., R → G for some R ∈ R.

We concentrate on the latter. Recall that R consists of at
most exponentially many 2RGPs R of exponential size, and
each such 2RGP R is in TW(2k + 1)2rgp (from condition
(1)). It follows then from Theorem IV.3 that checking if⋃
R∈RR → G is feasible in time

∑
R∈R(|R| + |G|)O(k),

which is O
(
|G|t(k) · 2s(|P|)

)
for t : N → N a linear function

and s : N→ N a polynomial.
As already noticed in the proof of Lemma IV.13, we have

previously established a small-witness property – similar to
the one stated in Lemma IV.13 – for the case k = 1 [23].
Interestingly, in that case, it is possible to construct the
“witness” R in such a way that each 2RPQ R ∈ R is in
TW(1)2rgp. Extending such techniques to an arbitrary k > 1
requires new insights. In particular, we no longer obtain in
Lemma IV.13 a witness R composed exclusively of 2RGPs in
TW(k)2rgp. Hence we need to be more flexible and allow R
to contain 2RGPs in TW(2k + 1)2rgp.

V. EQUIVALENCE BASED ON UNIONS OF C2RPQS

The notion of homomorphism for sets of 2RGPs used in
Lemma IV.13 naturally leads to an extended homomorphism
problem for a class C of sets of 2RGPs, defined as follows:
Given a set P ∈ C and a graph database G, is it the case
that

⋃
P∈P P → G? We abuse notation and keep writing

2RGPHom(C,−) for this problem.
The notion of treewidth extends to unions of 2RGPs, and

also ensures the tractability of 2RGPHom(C,−). Formally, we
write UTW(k)2rgp for the class of sets of 2RGPs P such that
each P ∈ P is in TW(k)2rgp. We immediately obtain from
Theorem IV.3 that 2RGPHom(UTW(k)2rgp,−) is tractable.

As 2RGPs are associated with C2RPQs, sets of 2RGPs
can be associated with unions of C2RPQs, or UC2RPQs. A
UC2RPQ Φ over Σ is an expression of the form

⋃
1≤i≤m φi,

where each φi is a C2RPQ over Σ. If Φ is a Boolean
UC2RPQ and G is a graph database, we have that G |= Φ
iff G |= φi for some 1 ≤ i ≤ m. It is clear then that if
{P1, . . . ,Pn} is a set of 2RGPs, then for each graph database
G it is the case that:

⋃
1≤i≤n Pi → G iff G |=

⋃
1≤i≤n φPi .

Correspondingly, if
⋃

1≤i≤n φi is a UC2RPQ, then for each
graph database G it is the case that: G |=

⋃
1≤i≤n φi iff⋃

1≤i≤n Pφi → G. Therefore, the evaluation problem for the
class UTW(k)Φ

2rgp, defined as the UC2RPQs Φ =
⋃

1≤i≤n φi
such that {Pφ1 , . . . ,Pφn} ∈ UTW(k)2rgp, is tractable.

The connection between sets of 2RGPs and UC2RPQs
naturally leads to a notion of bounded treewidth modulo
equivalence for sets of 2RGPs based on the equivalence of
their associated UC2RPQs. We formalize this next. Let us
write Φ ≡ Φ′, for UC2RPQs Φ,Φ′, if for every G it is the
case that G |= Φ ⇔ G |= Φ′. We then define UTW(k)Φ

≡2rgp
,

for k ≥ 1, as the class of Boolean UC2RPQs Φ such that
there is a UC2RPQ Φ′ with Φ ≡ Φ′ and Φ′ ∈ UTW(k)Φ

2rgp.

Analogously, we define UTW(k)≡2rgp
as the class of sets of

2RGPs whose associated UC2RPQ Φ is in UTW(k)Φ
≡2rgp

.
The good behavior of TW(k)≡2rgp

for 2RGPHom(C,−)
established in Theorem IV.11 extends to UTW(k)≡2rgp :

Theorem V.1. Fix k ≥ 1. Then 2RGPHom(UTW(k)≡2rgp
,−)

is feasible in time O
(
|G|t(k) · 2s(|P|)

)
, for t : N→ N a linear

function and s : N→ N a polynomial.

The reason that explains this good behavior is that Lemma
IV.13 continues to hold when the input is given as a set of
2RGPs. More formally, for each fixed k ≥ 1 there is a single-
exponential time algorithm that on input a set P of 2RGPs in
UTW(k)≡2rgp

, computes a set R ∈ UTW(2k+1)2rgp such that
for each graph database G:

⋃
P∈P P → G iff

⋃
R∈RR → G.

As a corollary of Theorem V.1, we obtain the following:

Corollary V.2. Fix k ≥ 1. Evaluation for UC2RPQs in
UTW(k)Φ

≡2rgp
is feasible in time O(|G|t(k) · 2s(|Φ|)), for

t : N→ N a linear function and s : N→ N a polynomial.

This generalizes a result in [23] that establishes the fixed-
parameter tractability of evaluation for the class UTW(1)Φ

≡2rgp

of semantically acyclic UC2RPQs.

Optimality of the previous results: The fixed-parameter
tractability of 2RGPHom(UTW(k)≡2rgp ,−) established in
Theorem V.1 is, in a sense, optimal, since the problem is also
NP-complete. This closes an open problem from [23]:

Theorem V.3. For each fixed k ≥ 1 the problem
2RGPHom(UTW(k)≡2rgp ,−) is NP-complete. Consequently,
evaluation for UC2RPQs in UTW(k)Φ

≡2rgp
is NP-complete.

Proof Sketch: Our proof is inspired by a proof in [15] that
shows that evaluation for ∃+FO is NP-complete, even for
sentences that are equivalent to an ∃+FO sentence that uses
a fixed number of variables. Our construction is different,
though, as UC2RPQs are weak in their ability to nest sub-
queries, while ∃+FO sentences have unlimited power to do
this. This complicates things for us, specially at the moment
of constructing in our reduction a UC2RPQ in UTW(k)Φ

≡2rgp
.

We reduce from the DIRECTED HAMILTONIAN PATH prob-
lem: Given a directed graph G, does G contain a directed
hamiltonian path? Let G be a directed graph with vertex
set {v1, . . . , vn}. We construct in polynomial time a graph
database HG and a set PG of 2RGPs in UTW(1)≡2rgp

, such
that G has a directed hamiltonian path iff

⋃
P∈PG P → HG.

Let G1 be the graph database over alphabet {a, $1, . . . , $n}
whose edges are {vi

$i vi | 1 ≤ i ≤ n} ∪ {vi
a
 vj |

(vi, vj) is an edge in G}. Let also G2 be the graph database

whose edges are {si
$j
 si | 1 ≤ i, j ≤ n} ∪ {si

a
 si+1 |

1 ≤ i ≤ n− 1}. We define HG := G1 ⊗G2, where ⊗ denotes
the usual direct product between relational structures.

We now define PG. Let R be the 2RGP whose edges are
{ui

$i ui, ui
Fn uj | 1 ≤ i, j ≤ n and i 6= j} ∪ {$i(ui, ui) |

1 ≤ i ≤ n}, where Fn is the regular expression:

Fn = (a+ a2 + · · ·+ an−1) + (a−+ (a−)2 + · · ·+ (a−)n−1).

Also, for each 1 ≤ i, j ≤ n and p, q ≥ 1, let Pi,jp,q := {u $i

u, v
$j
 v, u

ap

 v, u
aq

 v}. We then define a set of 2RGPs:

R =
⋃
{Pi,jp,q |, 1 ≤ i, j ≤ n, 1 ≤ p, q ≤ n2, i 6= j, p 6= q}.

We finally define PG := R ∪ R. Clearly, HG and PG can
be constructed in polynomial time from G. Next we show the
correctness of the reduction; i.e., (a) PG ∈ UTW(1)≡2rgp

, and
(b) G has a directed hamiltonian path iff

⋃
P∈PG P → HG.

We start by proving (a). Let us consider a particular set
of graph databases, which we call good. In particular, each
such good graph database is associated with a permutation
π : {1, . . . , n} → {1, . . . , n} in the following way: the edges
of the good graph database Gπ associated with permutation π
correspond precisely to the set {vi

$i vi, vπ(i)
a
 vπ(i+1) |

1 ≤ i ≤ n}. It is easy to see that R → Gπ .
Let us define now a set of 2RGPs P′ that contains precisely

the good graph databases, as well as all 2RGPs in R. It is
easy to see that each 2RGP in P′ is in TW(1)2rgp, and hence
P′ ∈ UTW(1)2rgp. We claim the following:

Claim V.4. ΦPG ≡ ΦP′ , where ΦPG and ΦP′ are the
UC2RPQs associated with PG and P′, respectively.

From Claim V.4 we obtain that PG ∈ UTW(1)≡2rgp
, as

desired. We provide now an intuitive explanation of why the
claim holds. Assume first that it is the case that G |= ΦP′ .
If G |= φP for P ∈ R, then it is also the case that G |=
ΦPG (since R ⊆ PG). Suppose then that G |= φGπ for π :
{1, . . . , n} → {1, . . . , n}. Then it can be proved that G |= R
using the fact that R → Gπ . Hence G |= ΦPG since R ∈ PG.
Assume, on the other hand, that G |= ΦPG . If G |= φP for
P ∈ R, we proceed as before. Suppose then that G |= R.
Let us consider the “image” of R in G. If such an image
corresponds to a good graph database, then G |= φGπ for some
π : {1, . . . , n} → {1, . . . , n}. If not, then it is possible to
prove that there exist two elements u and v in such an image
such that there are two paths from u to v labeled ap and aq ,
respectively, where 1 ≤ p, q ≤ n2 and p 6= q. Hence G |= φP
for some P ∈ R, which implies that G |= ΦP′ .

We now prove (b). Assume first that G has a hamiltonian
path given by a permutation π of {1, . . . , n}. It follows that
Gπ → G1. Notice that also Gπ → G2 (in fact, this holds for
any permutation π). Then Gπ → G1 ⊗ G2, i.e., Gπ → HG,
and, therefore, PG → HG. Assume, on the other hand,
that PG → HG. Then for some 2RGP P ∈ PG it is the
case that P → HG. In particular, P → G1 and P → G2.
By construction, if P → G2 then P 6∈ R. It follows that
P = Gπ for some permutation π of {1, . . . , n}. We conclude
that the directed path defined by π is a hamiltonian path in
G. (It is worth noticing that it is also the case that G has a
directed hamiltonian path iff R → HG. However, R is not in
UTW(1)≡2rgp

. The role of the 2RGPs is thus to ensure that
PG = R∪R is in UTW(1)≡2rgp

).

Theorem V.3 states that the notion of fixed-parameter
tractability properly extends tractability (under usual complex-
ity theoretical assumptions) for the problem 2RGPHom(C,−)

under classes C of sets of 2RGPs. This establishes a stark
difference with the usual problem Hom(C,−) for classes C of
sets of graph databases; i.e., given a set G of graph databases
and a graph database H, is it the case that for some G ∈ G we
have that G → H? In fact, by combining results from [12] and
[15] we obtain that the notion of fixed-parameter tractability
coincides with tractability in such context (again under usual
complexity theoretical assumptions).

Decidability of the notion: We proved in [23] that the prob-
lem of checking if a set P of 2RGPs is in UTW(1)≡2rgp

is decidable, and actually EXPSPACE-complete. We do not
know if the decidability extends to UTW(k)≡2rgp

, for k > 1.
The difference resides precisely on our small-witness property.
As mentioned before, in the case k = 1 we can construct a
“witness” R that consists exclusively of 2RGPs in TW(1)2rgp.
Such set R can then be used to witness the fact that P ∈
UTW(1)≡2rgp

. For k > 1, on the other hand, we are only able
to construct a “witness” R ∈ UTW(2k+1)2rgp. This does not
suffice to ensure the decidability of the notion.

VI. CONCLUSIONS AND OPEN PROBLEMS

We have studied the homomorphism problem for 2RGPs. In
particular, its non-uniform version is computationally harder
than for the usual homomorphism notion. While for RGPs
establishing a dichotomy seems difficult, for 2RGPs the prob-
lem might be easier since the intractability conditions are
very general. We have also considerably expanded the frontier
of efficient solvability for 2RGPHom(C,−), showing how it
relates to the notion of bounded treewidth modulo equivalence.

Many problems still remain open. We list some of them:
1) Prove a dichotomy for the non-uniform problems

2RGPHom(G) and RGPHom(G).
2) We know that the problem 2RGPHom(TW(k)≡2rgp

,−)
is fixed-parameter tractable. Is this problem also NP-
complete? Recall that this is known to be the case for
2RGPHom(UTW(k)≡2rgp

,−), for each k ≥ 1.
3) Study the decidability status of UTW(k)≡2rgp

for k > 1:
Given a set P of 2RGPs, is P ∈ UTW(k)≡2rgp

?
4) Understand the efficiency boundary for

2RGPHom(C,−). In particular, does bounded treewidth
modulo logical equivalence exhaust fixed-parameter
tractability for 2RGPHom(C,−)?

ACKNOWLEDGMENT
This work was done in part while Romero was visiting the Simons Institute

for the Theory of Computing. Barceló is funded by the Millennium Nucleus
Center for Semantic Web Research under Grant NC120004.

REFERENCES

[1] R. Dechter, Constraint processing. Elsevier Morgan Kaufmann, 2003.
[2] S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases.

Addison-Wesley, 1995.
[3] T. Feder and M. Y. Vardi, “The computational structure of monotone

monadic SNP and constraint satisfaction: A study through datalog and
group theory,” SIAM J. Comput., vol. 28, no. 1, pp. 57–104, 1998.

[4] A. A. Bulatov, A. A. Krokhin, and P. Jeavons, “Constraint satisfaction
problems and finite algebras,” in ICALP, 2000, pp. 272–282.

[5] A. A. Bulatov, P. Jeavons, and A. A. Krokhin, “Classifying the com-
plexity of constraints using finite algebras,” SIAM J. Comput., vol. 34,
no. 3, pp. 720–742, 2005.

[6] M. Maróti and R. McKenzie, “Existence theorems for weakly symmetric
operations,” Algebra Universalis, vol. 59, no. 3-4, pp. 463–489, 2008.

[7] A. Rafiey, J. Kinne, and T. Feder, “Dichotomy for digraph
homomorphism problems,” CoRR, 2017. [Online]. Available: http:
//arxiv.org/abs/1701.02409

[8] A. A. Bulatov, “A dichotomy theorem for nonuniform csps,” CoRR,
2017. [Online]. Available: http://arxiv.org/abs/1703.03021

[9] D. Zhuk, “The proof of csp dichotomy conjecture,” CoRR, 2017.
[Online]. Available: https://arxiv.org/abs/1704.01914

[10] C. Chekuri and A. Rajaraman, “Conjunctive query containment revis-
ited,” Theor. Comput. Sci., vol. 239, no. 2, pp. 211–229, 2000.

[11] V. Dalmau, P. G. Kolaitis, and M. Vardi, “Constraint satisfaction,
bounded treewidth, and finite-variable logics,” in CP, 2002, pp. 310–
326.

[12] M. Grohe, “The complexity of homomorphism and constraint satisfac-
tion problems seen from the other side,” J. ACM, vol. 54, no. 1, 2007.

[13] B. Martin, “Dichotomies and duality in first-order model checking
problems,” CoRR, vol. abs/cs/0609022, 2006.

[14] M. Hermann and F. Richoux, “On the computational complexity of
monotone constraint satisfaction problems,” in WALCOM, 2009, pp.
286–297.

[15] H. Chen, “On the complexity of existential positive queries,” ACM Trans.
Comput. Log., vol. 15, no. 1, p. 9, 2014.

[16] P. Barceló, “Querying graph databases,” in PODS, 2013, pp. 175–188.
[17] D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi, “Con-

tainment of conjunctive regular path queries with inverse,” in KR, 2000,
pp. 176–185.

[18] “SPARQL 1.1 Query Language,” https://www.w3.org/TR/
sparql11-query/. W3C Recommendation 21 March 2013.

[19] O. van Rest, S. Hong, J. Kim, X. Meng, and H. Chafi, “PGQL: a property
graph query language,” in GRADES, 2016, p. 7.

[20] R. Angles, M. Arenas, P. Barceló, A. Hogan, J. L. Reutter, and
D. Vrgoc, “Foundations of modern graph query languages,” CoRR, vol.
abs/1610.06264, 2016.

[21] D. D. Freydenberger and N. Schweikardt, “Expressiveness and static
analysis of extended conjunctive regular path queries,” J. Comput. Syst.
Sci., vol. 79, no. 6, pp. 892–909, 2013.

[22] D. Figueira and L. Libkin, “Path logics for querying graphs: Combining
expressiveness and efficiency,” in LICS, 2015, pp. 329–340.

[23] P. Barceló, M. Romero, and M. Y. Vardi, “Semantic acyclicity on graph
databases,” SIAM J. Comput., vol. 45, no. 4, pp. 1339–1376, 2016.

[24] D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi, “Rewrit-
ing of regular expressions and regular path queries,” J. Comput. Syst.
Sci., vol. 64, no. 3, pp. 443–465, 2002.

[25] S. Fortune, J. E. Hopcroft, and J. Wyllie, “The directed subgraph
homeomorphism problem,” TCS, vol. 10, pp. 111–121, 1980.

[26] P. G. Kolaitis and M. Y. Vardi, “On the expressive power of datalog:
Tools and a case study,” J. Comput. Syst. Sci., vol. 51, no. 1, pp. 110–
134, 1995.

[27] J. Bulin, D. Delic, M. Jackson, and T. Niven, “On the reduction of the
CSP dichotomy conjecture to digraphs,” in CP, 2013, pp. 184–199.

[28] P. Barceló and M. Romero, “The complexity of reverse engineering
problems for conjunctive queries,” in ICDT, 2017.

[29] C. H. Papadimitriou and M. Yannakakis, “On the complexity of database
queries,” J. Comput. Syst. Sci., vol. 58, no. 3, pp. 407–427, 1999.

[30] P. G. Kolaitis and M. Y. Vardi, “Conjunctive-query containment and
constraint satisfaction,” J. Comput. Syst. Sci., vol. 61, no. 2, pp. 302–
332, 2000.

[31] P. Barceló, L. Libkin, and J. L. Reutter, “Querying regular graph
patterns,” J. ACM, vol. 61, no. 1, pp. 8:1–8:54, 2014.

[32] P. Hell and J. Nešeťril, Graphs and homomorphisms. Oxford University
Press, 2004.

[33] R. Willard, “Testing expressibility is hard,” in CP, 2010, pp. 9–23.
[34] R. Diestel, Graph Theory, 4th Edition, ser. Graduate texts in mathemat-

ics. Springer, 2012, vol. 173.
[35] D. Kozen, “Lower bounds for natural proof systems,” in FOCS, 1977,

pp. 254–266.
[36] A. K. Chandra and P. M. Merlin, “Optimal implementation of conjunc-

tive queries in relational data bases,” in STOC, 1977, pp. 77–90.

