
Graph Logics with Rational Relations:
The Role of Word Combinatorics

Pablo Barceló Pablo Muñoz

Dept. of Computer Science
University of Chile

pbarcelo@dcc.uchile.cl pmunoz@dcc.uchile.cl

Abstract

Graph databases make use of logics that combine traditional first-
order features with navigation on paths, in the same way logics
for model checking do. However, modern applications of graph
databases impose a new requirement on the expressiveness of the
logics: they need comparing labels of paths based on word relations
(such as prefix, subword, or subsequence). This has led to the study
of logics that extend basic graph languages with features for com-
paring labels of paths based on regular relations, or the strictly more
powerful rational relations. The evaluation problem for the former
logic is decidable (and even tractable in data complexity), but al-
ready extending this logic with such a common rational relation as
subword or suffix turns evaluation undecidable.

In practice, however, it is rare to have the need for such powerful
logics. Therefore, it is more realistic to study the complexity of
less expressive logics that still allow comparing paths based on
practically motivated rational relations. Here we concentrate on the
most basic such languages, which extend graph pattern logics with
path comparisons based only on suffix, subword or subsequence.
We pinpoint the complexity of evaluation for each one of these
logics, which shows that all of them are decidable in elementary
time (PSPACE or NEXPTIME). Furthermore, the extension with
suffix is even tractable in data complexity (but the other two are
not). In order to obtain our results we establish a link between the
evaluation problem for graph logics and two important problems in
word combinatorics: word equations with regular constraints and
square shuffling.

Categories and Subject Descriptors H.2.3 [Database Manage-
ment]: Languages—Query Languages

Keywords rational relations, logics for graphs, complexity of
evaluation, regular path queries, word equations, shuffle

1. Introduction

Graph databases are important for applications in which the topol-
ogy of the data is as important as data itself. Intuitively, a graph
database represents objects (the nodes) and relationships between

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CSL-LICS 2014, July 14–18, 2014, Vienna, Austria.
Copyright c© 2014 ACM 978-1-4503-2886-9. . . $15.00.
http://dx.doi.org/10.1145/2603088.2603122

those objects (often modeled as labeled edges). The last years have
witnessed an increasing interest in graph databases, due to the up-
rise of applications that need to manage and query massive and
highly-connected data (e.g., the semantic web, social networks and
biological networks). See [2] for a survey on graph database mod-
els, and [3, 23] for surveys on graph logical languages.

The logics used for specifying properties of graph databases
combine standard first-order features with navigational ones. The
latter allow to recursively traverse the edges of the graph while
checking for the existence of paths satisfying given conditions.
These navigational features are close in spirit to the ones used in
logics for model checking [10]. Notably, basic evaluation tasks
for both families of languages can be carried out using similar
techniques based on automata.

The building block for navigational languages over graph
databases is the class of regular path queries [11], or RPQs, that
define pairs of nodes in graph databases linked by a path whose la-
bel satisfies a regular expression. Closing RPQs under conjunction
and existential quantification gives rise to the conjunctive RPQs,
or CRPQs [9]. Evaluation of CRPQs is NP-complete, but its data
complexity – i.e., the complexity when the query is assumed to be
fixed – is tractable (NLOGSPACE). The latter is considered to be
acceptable in the database context [22].

It has been noticed that CRPQs fall short of expressive power
for modern applications of graph databases due to their inability to
compare paths [5]. For instance, semantic web languages compare
paths based on semantic associations and biological sequences
are compared in terms of their mutual edit distance, but these
requirements cannot be expressed with CRPQs. To overcome this
limitation, a family of extended CRPQs has been proposed [3]. The
logics in this family extend CRPQs with the ability to compare
labels of paths with elements from a set S of relations on words.
Each such logic is denoted CRPQ(S) (or simply CRPQ(S) in the
case when S = {S}).

The first such logic to be studied was CRPQ(REG) [5], where
REG is the class of regular relations on words [13], or equivalently,
relations defined by synchronous n-ary automata. The class REG
includes important relations on strings, such as prefix, equal length
of words, and fixed edit distance. Using automata techniques it can
be shown that CRPQ(REG) preserves the good data complexity
properties of CRPQs (that is, evaluation of CRPQ(REG) queries
is in NLOGSPACE in data complexity). Still, the expressiveness of
this logic is limited for many applications; e.g., in biological net-
works or the semantic web one deals with subwords and subse-
quences, but these relations are not regular. They are rational; i.e.,
they can still be defined by automata, but those whose heads move
asynchronously [6].

Adding rational relations to CRPQs has to be done carefully
since the evaluation problem for CRPQ(RAT) is undecidable. How-

ever, we are not interested in all rational relations, but only in some
particular ones often encountered in practice. The approach taken
by Barceló, Figueira and Libkin in [4] was studying to what ex-
tent rational relations such as subword �sw , suffix �suff or sub-
sequence �ss, can be added to CRPQ(REG) without losing de-
cidability of evaluation. It was shown that this is not possible
for the first two; i.e., evaluation for CRPQ(REG ∪ {�sw}) and
CRPQ(REG ∪ {�suff}) is undecidable. On the other hand, eval-
uation for CRPQ(REG ∪ {�ss}) is decidable, but with very high
data complexity (non-elementary, or not bounded by any stack of
exponentials). Therefore, these languages are impractical.

In practice, however, it is uncommon to have the need to com-
pare paths based on both the aforementioned rational relations and
arbitrary regular relations in REG. Therefore, a more realistic ap-
proach would be to study the complexity of evaluation for less ex-
pressive logics, starting from those of the form CRPQ(�) – for �
one of �sw, �suff or �ss – that only allow to compare paths based
on a single rational relation of interest. Our goal is to understand
what is the cost of evaluation for such logics (and, in particular, if
any of them can be evaluated efficiently in data complexity).

Some partial results in [4], obtained using automata techniques,
show that this restriction dramatically reduces the complexity for
two of the logics: evaluation for CRPQ(�suff) and CRPQ(�ss) is in
NEXPTIME, and data complexity is in NP. On the other hand, such
techniques were insufficient for determining the precise complexity
of these problems and for establishing the decidability of evaluation
for the logic CRPQ(�sw). In particular, they provide no answer to
the question of which of these logics have good behavior in terms
of data complexity.

In this paper we provide complete answers to the previous ques-
tions by establishing a “missing link” between the evaluation prob-
lem for these logics and important problems in word combinatorics.
Before explaining those techniques and our results in depth, it is
worth mentioning that our results do not intend to be specific to
the aforementioned rational relations. For instance, our positive re-
sults are obtained in the most general possible way, so that they
could be later used to obtain tractability of evaluation for CRPQs
extended with different rational relations. Also, our negative lower
bounds might serve as the ground over which the intractability of
other graph logics can be established.

Proof techniques and main results We start by noticing that the
evaluation problem for the logics CRPQ(�suff) and CRPQ(�sw)
can be reduced in PSPACE to the solvability of word equations with
regular constraints. The latter has been shown to be in PSPACE

[12], based on ideas generated by the sophisticated Makanin’s
algorithm [19]. This immediately answers one of the questions left
open in [4]: evaluation for CRPQ(�sw) is decidable in PSPACE.
The evaluation of both CRPQ(�sw) and CRPQ(�suff) is known
to be PSPACE-hard [4]; therefore, both problems are PSPACE-
complete (which matches the complexity of evaluation for first-
order logic).

We then move to study whether any of these languages can be
evaluated in polynomial time in data complexity (that is, assuming
the formula to be fixed). In this case the reduction to solvability
of word equations can be constructed in logarithmic space and
yields a fixed word equation, while the input consists of the regular
constraints only. We identify a condition on this class of instances
that ensures solvability in NLOGSPACE; such condition refers to
the existence of only a finite number of principal solutions for
the word equation (when regular constraints are not taken into
account). We then show that equations generated by reduction from
the evaluation problem for CRPQ(�suff) are of this form, and
thus that CRPQ(�suff) can be evaluated in NLOGSPACE in data
complexity.

This technique cannot be applied to CRPQ(�sw) since equa-
tions generated from this language do not have the finite num-
ber of principal solutions property (even in restricted settings).
Moreover, we prove the quite surprising result that evaluation
of CRPQ(�sw) is PSPACE-complete even in data complexity
(i.e., there is a fixed CRPQ(�sw) formula for which evaluation
is PSPACE-complete). This shows a striking difference between
CRPQ(�sw) and CRPQ(�suff) in terms of the data complexity of
evaluation. As a corollary to our techniques we obtain the follow-
ing result of independent interest: There is a word equation e, such
that checking solvability of e under regular constraints is PSPACE-
complete. This result was not previoulsy known in the literature.

In the second part of the paper we study the complexity of eval-
uation for CRPQ(�ss). This case is different since we cannot re-
duce it to solvability of word equations with regular constraints.
Instead, we have to use different techniques to prove that the pre-
vious bounds obtained in [4] for this problem are sharp. We start
by showing that the evaluation problem for CRPQ(�ss) is NP-
complete in data complexity. The lower bound is obtained by apply-
ing word shuffling techniques. In particular, we establish a simple
reduction from the problem of unshuffling a square, i.e., the prob-
lem of checking whether a word w can be obtained by taking the
shuffle of some word u with itself, which has been very recently
proved to be NP-complete [8, 21]. We also prove that, in general,
evaluation for CRPQ(�ss) is NEXPTIME-complete. In this case,
we use a more cumbersome reduction from a suitable succinct ver-
sion of the longest common subsequence problem. This proves that,
in its full generality, the language CRPQ(�ss) is impractical.

Organization of the paper We present basic notation and results
in Section 2 and a review of logics over graph databases in Sec-
tion 3. Our results on the complexity of evaluation for the log-
ics CRPQ(�suff) and CRPQ(�sw) are presented in Section 4, and
those for CRPQ(�ss) in Section 5. We finish with our final remarks
in Section 6.

2. Preliminaries

Practical relations on words Let Σ be a finite alphabet and assume
that w,w′, w′′, u are words in Σ∗ such that w = w′uw′′. Then:

• u is a subword of w (written as u �sw w),

• w′ is a prefix of w (written as w′ �pref w), and

• w′′ is a suffix of w (written as w′′ �suff w).

We say that w′ is a subsequence of w (written as w′ �ss w)
if w′ is obtained by removing some letters (perhaps none) from w,
i.e., w = a1 . . . an, and w′ = ai1ai2 . . . aik , where 1 ≤ i1 <
i2 < . . . < ik ≤ n.

When we want to make explicit that relation � is over Σ, for �
one of �pref , �suff , �sw , or �ss, we write �Σ.

Regular and rational relations We assume familiarity with nonde-
terministic finite automata (NFA) and regular expressions. We start
by defining regular relations. Let Σ be a finite alphabet, ⊥ 6∈ Σ
a new alphabet letter, and Σ⊥ := Σ ∪ {⊥}. Each tuple w̄ =
(w1, . . . , wn) of words from Σ∗ can be viewed as a word over Σn

⊥

as follows: pad words wi with ⊥ so that they all are of the same
length, and use as the k-th symbol of the new word the n-tuple of
the k-th symbols of the padded words. Formally, let |wi| be the
length of the word wi and ℓ = maxi |wi|. Then w1 ⊗ . . .⊗ wn is
a word of length ℓ whose k-th symbol is (a1, . . . , an) ∈ Σn

⊥ such
that:

ai =

{

the kth letter of wi if |wi| ≥ k

⊥ otherwise.

A relation R ⊆ (Σ∗)n is called a regular n-ary relation over Σ
if there is an NFA (or equivalently, a regular expression) over Σn

⊥

that defines {w1 ⊗ . . . ⊗ wn | (w1, . . . , wn) ∈ R}. The class of
regular relations is denoted by REG, and we write REGn to denote
the restriction of REG to relations of arity n.

Example 2.1. The binary relation �Σ
pref is regular, as witnessed

by the expression
(
⋃

a∈Σ(a, a)
)∗

·
(
⋃

a∈Σ(⊥, a)
)∗

. On the other

hand, there is a finite alphabet Σ such that �Σ
sw is not regular.

Similarly for �suff and �ss.

There are two equivalent ways to define rational relations over
Σ. One uses regular expressions, which are now built from tuples
ā ∈ (Σ ∪ {ε})n applying the usual operations of union, concate-
nation, and Kleene star. Alternatively, n-ary rational relations can
be defined by means of n-tape automata, that have n heads for the
tapes and one additional control; at every step, based on the state
and the letters it is reading, the automaton can enter a new state
and move some (but not necessarily all) tape heads. The classes of
n-ary relations so defined are called rational n-ary relations; we
use the notation RATn and RAT, as before. For technical reasons
we assume that rational relations are syntactically given as n-tape
automata, but we often switch to the regular expressions view in
examples and proofs to facilitate readability.

Example 2.2. Binary relations �Σ
suff , �Σ

sw, and �Σ
ss are all rational:

• The expression
(
⋃

a∈Σ(ε, a)
)∗

·
(
⋃

a∈Σ(a, a)
)∗

defines �suff .

• The relation �sw is defined by the expression
(
⋃

a∈Σ(ε, a)
)∗

·
(
⋃

a∈Σ(a, a)
)∗

·
(
⋃

a∈Σ(ε, a)
)∗

.

• The expression
(
⋃

a∈Σ(ε, a) ∪ (a, a)
)∗

defines �ss.

Clearly, RAT1 = REG1, as both correspond to the class of
regular languages. On the other hand, we have strict inclusions
REGk (RATk for each k > 1; e.g., there is a finite alphabet
Σ such that �Σ

suff ∈ RAT2 − REG2. Same for �sw and �ss.
We do not distinguish between an NFA (resp., regular expres-

sion) S and the set of n-tuples of words it defines; e.g., we write
w̄ ∈ S to denote that the n-tuple w̄ of words belongs to the lan-
guage defined by S. Also, we abuse notation and write �sw to de-
note the set that consists of each rational relation �Σ

sw, for Σ a finite
alphabet. Same for �suff and �ss.

The generalized intersection problem As shown in [4], the evalu-
ation problem for logics of the form CRPQ(S) (S ⊆ RAT) can be
stated in language-theoretical terms. Such reformulation is known
as the generalized intersection problem. We introduce such prob-
lem below; its relationship with the complexity of evaluation is ex-
plained in Section 3.

For the sake of our results, it is sufficient to concentrate on the
case when S is a set of binary relations on words. We write [m] for
{1, . . . ,m}. For an index set I ⊆ [m]2, we assume that mappings
λ : I → 2S are always of finite range, i.e., |λ((i, j))| is finite, for
each pair (i, j) ∈ I . The generalized intersection problem for S is
the following decision problem:

PROBLEM: GENINT(S)
INPUT: A tuple (L1, . . . , Lm, I, λ) such that

the Li’s are NFAs over Σ,

I ⊆ [m]2, and λ : I → 2S .
QUESTION: Are there words wi ∈ Li, for i ∈ [m],

such that (wi, wj) ∈ S
for all (i, j) ∈ I and S ∈ λ((i, j))?

Intuitively, GENINT(S) asks if there are words wi ∈ Li, for
1 ≤ i ≤ m, that satisfy the constraints specified by I and λ. Each

such constraint forces a particular pair (wi, wj) to belong to every
relation in λ((i, j)).

For a fixed index set I ⊆ [m]2, we shall write GENINTI(S); in
that case, the input to the problem consists of the NFAsL1, . . . , Lm

and the (finite range) mapping λ only.
In the case when S = (REG2 ∪ �), for � one of �sw ,

�suff or �ss, there is a particular restriction of GENINT(S) we
are interested in. This takes as input a regular relation R ∈ REG2

over Σ, and the problem is determining whether the intersection of
R and � is nonempty. Notice that this corresponds to the restriction
of GENINT(S) in which I = {(1, 2)} is fixed, and inputs are
of the form (L1 = Σ∗, L2 = Σ∗, λ) for some λ that satisfies

λ((1, 2)) = {R,�Σ}, for R ∈ REG2. We denote this restriction
by (REG2 ∩ �). In case that the alphabet Σ is also fixed, we write
(REG2 ∩Σ �).

Next we present some important results from [4] regarding
the complexity of the generalized intersection problem. We later
explain how they can be used to determine the complexity of
evaluation for graph logics. We start with classes that extend REG2

with rational relations �sw , �suff or �ss. In this case the problem
becomes either undecidable or highly intractable:

Theorem 2.1. [4]

1. If � is one of �sw or �suff , then there is a finite alphabet Σ
such that (REG2 ∩Σ �) is undecidable.

2. The problem GENINT(REG2 ∪�ss) is decidable, but there is a
finite alphabet Σ such that (REG2 ∩Σ �ss) is non-elementary.

We consider now the cases when S is �suff or �ss. This restric-
tion allows to reduce the complexity of GENINT(S).

Theorem 2.2. [4] Let � be �suff or �ss. Then GENINT(�) is in
NEXPTIME. For each fixed I , GENINTI(�) is in NP.

The decidability of GENINT(�sw) was left open in [4].

3. Review of Logics over Graph Databases

Graph databases The standard abstraction of graph databases [2]

is finite Σ-labeled graphs G = (V,E), where V is a finite set
of nodes, and E ⊆ V × Σ × V is a set of labeled edges. A
path ρ from v0 to vm in G is a sequence of edges (v0, a0, v1),
(v1, a1, v2), · · · , (vm−1, am−1, vm) from E, for some m ≥ 0.
The label of ρ, denoted by κ(ρ), is the word a0 · · · am−1 ∈ Σ∗.
Notice that κ(ρ) is the empty word ε if ρ = v, for v ∈ V .

Graph logics The main building block for graph logics are regular

path queries, or RPQs [11]; they are expressions of the form

ϕ(x, y) = x
L

−→ y,

where L is a regular expression over Σ. Given a Σ-labeled graph
G = (V,E), an RPQ ϕ(x, y) of the form above, and v, v′ nodes of
G, we have that G |= ϕ(v, v′) iff there is a path ρ from v to v′ in
G with κ(ρ) ∈ L.

Conjunctive RPQs, or CRPQs [9], are the closure of RPQs
under conjunction and existential quantification. Formally, they are
expressions of the form

ϕ(x̄) = ∃ȳ

m
∧

i=1

(ui
Li−→ u

′
i), (1)

where variables ui, u
′
is come from x̄, ȳ. The semantics naturally

extends the semantics of RPQs: ϕ(ā) is true inG iff there is a tuple
b̄ of nodes such that |̄b| = |ȳ| and for every i ≤ m and every vi, v

′
i

interpreting ui and u′
i in (ā, b̄), respectively, there is a path ρi from

vi and v′i whose label κ(ρi) is in Li.
CRPQs can further be extended to compare paths. For that, we

need to name path variables, and choose a class S of allowed binary

relations on paths. The class CRPQ(S) consists of all formulas of
the form:

ϕ(x̄) = ∃ȳ
(

m
∧

i=1

(ui
χi:Li−→ u

′
i) ∧

∧

(i,j)∈I

∧

S∈λ((i,j))

S(χi, χj)
)

,

where I ⊆ [m]2 and λ : I → 2S . We use variables χ1, . . . , χm to
denote paths; these are quantified existentially. That is, the seman-
tics ofG |= ϕ(ā) is that there is a tuple b̄ of nodes and paths ρk, for
k ≤ m, between vk and v′k (where, as before, vk, v

′
k are elements

of ā, b̄ interpreting uk, u
′
k) such that (κ(ρi), κ(ρj)) ∈ S whenever

(i, j) ∈ I and S ∈ λ((i, j)).
For instance, CRPQ(REG2) extends CRPQs with the ability

to compare pairs of labels of paths with regular relations, and
CRPQ(REG2 ∪ �ss) extends the latter with the possibility to com-
pare labels of paths with the subsequence relation.

Example 3.1. The CRPQ(�ss) formula

∃y, y′
(

(x
χ:Σ∗a
−→ y) ∧ (x

χ′:Σ∗b
−→ y

′) ∧ χ �ss χ
′)

finds nodes v so that there are two paths starting from v, one ending
with an a-edge, whose label is a subsequence of the other one, that
ends with a b-edge.

The evaluation problem For a logic CRPQ(S) this is the problem

of, given a graph databaseG, a tuple v̄ of nodes, and a formulaϕ(x̄)
in CRPQ(S), determine whether G |= ϕ(v̄). This corresponds to
the combined complexity of evaluation. In the context of databases,
one is often interested in data complexity, when the typically small
formula ϕ is fixed, and the input consists of the typically large
structure (G, v̄). Let C be a complexity class. As usual, we say
that the evaluation of CRPQ(S) is in C in data complexity, if the
evaluation of each formula in CRPQ(S) is in C. The evaluation
of CRPQ(S) is C-hard in data complexity, if there is a formula in
CRPQ(S) for which the evaluation is C-hard. Finally, CRPQ(S)
evaluation is C-complete if it is both in C and C-hard.

The complexity of evaluation for the logic CRPQ(REG2) was
studied in [5] using standard automata techniques. In particular, this
logic is tractable in data complexity.

Theorem 3.1. [5] The evaluation problem for CRPQ(REG2) is
PSPACE-complete, and NP-complete for CRPQ. The evaluation
problem for CRPQ(REG2) is NLOGSPACE-complete in data com-
plexity.

On the other hand, determining the complexity of logics of the
form CRPQ(S), where S ⊆ RAT2, is more difficult; in particular,
it is equivalent to determining the complexity of GENINT(S) for
suitable complexity classes. This is stated in the next lemma, which
uses techniques from [4].

Lemma 3.2. Let C be a complexity class closed under PSPACE

reductions. If GENINT(S) is in C, then evaluation of CRPQ(S)
is in C. Moreover, if GENINT(S) is C-hard, then evaluation of
CRPQ(S) is C-hard.

Furthermore, again applying techniques from [4] we prove that
the data complexity of evaluation of CRPQ(S) can be studied in
terms of suitable restrictions GENINT(S). From now on, we denote
by GENINTI,Σ,λ(S) the restriction of GENINT(S) in which the
index set I ⊆ [m]2, the alphabet Σ, and the (finite range) mapping
λ : I → 2S are fixed. The input to this problem consists only of
regular expressions Li, for i ≤ m, over the fixed alphabet Σ.

Lemma 3.3. Let C be a complexity class closed under NLOGSPACE

reductions.

1. If for each I ⊆ [m]2 it is the case that GENINTI(S) is in C,
then evaluation of CRPQ(S) is in C in data complexity.

2. If there is an index set I ⊆ [m]2, a finite alphabet Σ, and a

mapping λ : I → 2S , such that GENINTI,Σ,λ(S) is C-hard,
then evaluation of CRPQ(S) is C-hard in data complexity.

Applying these two lemmas, together with Theorems 2.1 and
2.2, we can find complexity bounds for the evaluation for some im-
portant graph logics. This is summarized in the next two corollaries.
The first one talks about logics of the form CRPQ(REG2 ∪ �), for
� one of �sw, �suff or �ss.

Corollary 3.4. [4]

1. Let S = (REG2 ∪ �), for � one of �sw or �suff . There is a
CRPQ(S) formula ϕ such that the evaluation problem for ϕ is
undecidable.

2. The evaluation problem for CRPQ(REG2 ∪ �ss) is decidable,
but non-elementary even in data complexity.

In other words, these logics are completely impractical, since
the evaluation problem for them is either undecidable or very
expensive in data complexity. Notice that the upper bound for
CRPQ(REG2 ∪ �ss) follows directly from Lemma 3.2 and The-
orem 2.1. On the other hand, the lower bounds follow from Lemma
3.3 and Theorem 2.1. This is because (REG2 ∩Σ �), for � one of
�sw, �suff or �ss, is of the form GENINTI,Σ′,λ(REG2 ∪ �), for
some I , Σ′ and λ [4].

The next corollary deals with logics of the form CRPQ(�ss)
and CRPQ(�suff). It is shown that this restriction reduces dramati-
cally the complexity of evaluation. The proof follows directly from
Theorem 2.2 and Lemmas 3.2 and 3.3.

Corollary 3.5. [4] The evaluation problem for CRPQ(�ss) and
CRPQ(�suff) can be solved in NEXPTIME, and in NP in data
complexity.

The case of CRPQ(�sw) was left open in [4]. Our goal is
determining the precise complexity of evaluation for logics of the
form CRPQ(�), for � one of �sw , �suff or �ss. We do this in
the following sections. Since the generalized intersection problem
is of independent interest and allows for a clean presentation, we
concentrate on studying the complexity of such problem and then
transfer the results to the complexity of evaluation for the logics
using Lemmas 3.2 and 3.3.

4. The logics CRPQ(�suff) and CRPQ(�sw)

The relations �suff and �sw have an important property in com-
mon: they can be defined by word equations. This observation im-
plies that GENINT(�suff) and GENINT(�sw) can be reduced in
polynomial time to the problem of solving word equations with
regular constraints, which is in PSPACE. It follows that evaluation
of both CRPQ(�suff) and CRPQ(�sw) is PSPACE-complete. This
is explained in Section 4.1.

In order to understand the data complexity of these logics,
we need to dig deeper in the classes of word equations they can
be reduced to. In the case of CRPQ(�suff) such class allows
for efficient solvability, and as a consequence the data complex-
ity of CRPQ(�suff) is tractable (see Section 4.2). In the case of
CRPQ(�sw) such good properties are not preserved, and in fact
we prove that the data complexity of CRPQ(�sw) continues being
PSPACE-complete (see Section 4.3).

4.1 Word equations and the generalized intersection problem

Let X be a countably infinite set of variables. A word equation
over Σ [19] is an expression e of the form ϕ = ψ, where both
ϕ and ψ are words over Σ ∪ X . A solution for e is a mapping h
from the variables that appear in e to Σ∗ that unifies both sides of
the equation, i.e., h(ϕ) = h(ψ), assuming that h(a) = a for each

symbol a ∈ Σ.1 A word equation with regular constraints [12] is
a tuple (e, ν), where e is a word equation and ν is a mapping that
associates an NFA Lx over Σ with each variable x that appears in
e. A solution for (e, ν) is a solution h for e over Σ that satisfies
h(x) ∈ Lx, for each x ∈ X that is mentioned in e.

A deep result due to Makanin states that the existence of solu-
tions problem for word equations is decidable [19]. By applying
somewhat different techniques, Plandowski proved that the prob-
lem is in PSPACE [20]. Then Gutiérrez et al. developed an exten-
sion of those techniqes to prove that the latter holds even for word
equations with regular constraints:

Theorem 4.1. [12] The existence of solutions problem for word
equations with regular constraints is PSPACE-complete.

Word equations can be used to define relations on words (see,
e.g., [15, 18]). Formally, an n-ary relationR over Σ∗ is definable by
word equations, if there is a word equation e over Σ and variables
x1, . . . , xn appearing in e such that:

R = {(h(x1), . . . , h(xn)) | h is a solution for e}.

We denote by EQ the set of binary relations that are definable
by word equations. We assume that each such binary relation is
specified as a word equation that defines it.

Example 4.1. Both �suff and �sw are in EQ. In fact, �suff is the
set of pairs (x, y) that satisfy the word equation y = zx, and �sw

is the set of pairs (x, y) that satisfy the word equation y = zxw.
On the other hand, �ss is not in EQ [14].

The fact that relations in EQ can be defined with word equations
implies that the problem GENINT(EQ) boils down to the problem
of solving word equations with regular constraints. We explain this
with an example.

Example 4.2. Consider the index set

I✸ = {(1, 2), (1, 3), (2, 4), (3, 4)}

and an instance of GENINTI✸(�suff) of the form

(L1, L2, L3, L4, λ),

where the Li’s are NFAs over Σ, for 1 ≤ i ≤ 4, and λ((i, j)) =
{�Σ

suff}, for each (i, j) ∈ I✸.
We are thus looking for the existence of words w1, w2, w3, w4

over Σ such that for each pair (i, j) ∈ I✸ the following holds:
wi ∈ Li, wj ∈ Lj , and wi �suff wj . In other words, we are
looking for pairs (wi, wj) that satisfy the equation with regular
constraints

(wj = uijwi, νij),

where νij(wj) = Lj , νij(wi) = Li, and νij(uij) = Σ∗.
Putting all this together we can prove that (L1, L2, L3, L4, λ) is

in GENINTI✸(�suff) iff the word equation with regular constraints
(e, ν) has a solution, where e and ν are as follows: (1) e is the word
equation

w2#w3#w4#w4 = u12w1#u13w1#u24w2#u34w3,

where # is a symbol not in Σ, and (2) ν(wi) = Li, for each
1 ≤ i ≤ 4, and ν(ui,j) = Σ∗, for each (i, j) ∈ I✸. Clearly,
(e, ν) can be constructed in logarithmic space (LOGSPACE) from
S . Notice that e only uses variables and the symbol #, and its form
depends exclusively on I and λ.

Assume that Σ# is the extension of finite alphabet Σ with
a fresh symbol #. Generalizing from the idea presented in the
previous example, we can prove the following proposition:

1 We assume, as usual, that if ϕ = a1 . . . an then h(ϕ) =
h(a1) . . . h(an).

Proposition 4.2. There is a LOGSPACE translation that, given

NFAs L1, . . . , Lm over Σ, an index set I ⊆ [m]2 , and a (finite

range) mapping λ : I → 2EQ, constructs a word equation with reg-
ular constraints (e, ν) over Σ# such that (L1, . . . , Lm, , I, λ) ∈
GENINT(EQ) iff (e, ν) has a solution.

Also, the form of e depends exclusively on I and λ.

As a corollary to Proposition 4.2 and Theorem 4.1, we obtain
that GENINT(EQ), and, thus, GENINT(�suff) and GENINT(�sw),
are in PSPACE. It follows that the three problems are complete for
this class. This is because the problem of checking for nonempti-
ness the language defined by the intersection of regular expressions
L1, . . . , Lm, which is known to be PSPACE-hard [16], can be effi-
ciently reduced to GENINT(�), for � one of �suff and �sw. This
reduction can be carried out even in the restricted case in which the
index set I ⊆ [m]2 is acyclic [4]; that is, when the undirected graph
defined by I over [m] is acyclic. Summing up:

Corollary 4.3. The problem GENINT(EQ) is in PSPACE.
In particular, the problems GENINT(�suff) and GENINT(�sw)

are PSPACE-complete. The lower bound holds even in the case in
which the index set I is acyclic.

Complexity of CRPQ(�suff) and CRPQ(�sw) We can now ap-
ply Lemma 3.2, and make use of the results in Corollary 4.3,
to determine the precise complexity of evaluation for the logics
CRPQ(EQ), CRPQ(�suff) and CRPQ(�sw):

Theorem 4.4. Evaluation for CRPQ(EQ) is in PSPACE.
In particular, the evaluation problem for CRPQ(�), when �

is either �suff or �sw, is PSPACE-complete. This holds even for

formulas of the form ∃ȳ (
∧m

i=1(ui
χi:Li−→ u′

i) ∧
∧

(i,j)∈I
χi � χj)

in which I is acyclic.

Our next goal is to determine whether any of these logics is
efficient in data complexity. We start with CRPQ(�suff).

4.2 The data complexity of CRPQ(�suff)

We prove here that evaluation of CRPQ(�suff) is in NLOGSPACE

in data complexity. From Lemma 3.3 it is sufficient to show that
GENINTI(�suff) is in NLOGSPACE, for each I ⊆ [m]2. We
explain below how to prove this.

Let I ⊆ [m]2 be an index set and consider an instance of
GENINTI(�suff) of the form (L1, . . . , Lm, λ), for L1, . . . , Lm

NFAs over Σ and λ : I → 2{�suff}. We can assume w.l.og. that
λ((i, j)) = {�Σ

suff}, for each (i, j) ∈ I . Applying Proposition
4.2 we can construct in LOGSPACE a word equation with regular
constraints (e, ν), such that (i) the form of e depends exclusively
on I (since λ is uniquely determined by I in this case), and thus it
is fixed, and (ii) (L1, . . . , Lm, λ) is in GENINTI(S) iff (e, ν) has
a solution over Σ#. From now on we denote such word equation e
by e(I), in order to make explicit its dependence on I only.

From the previous remarks we obtain the following: For each in-
dex set I ⊆ [m]2, the problem GENINTI(S) reduces in LOGSPACE

to the problem of solving the fixed word equation e(I) under regu-
lar constraints. Notice that the alphabet Σ is not fixed in this case,
but only the pattern described by e(I).

As mentioned before, it was proved in [12] that checking the
existence of solutions for word equations with regular constraints
(e, ν) is complete for PSPACE. On the other hand, the algorithm
provided in [12] does not yield better bounds when the word equa-
tion e is fixed (in fact, we prove later that this restriction remains
hard for PSPACE). Here we study such problem but restricted to
word equations of the form e(I), i.e., word equations obtained by
applying the translation of Proposition 4.2 to GENINTI(�suff). We
prove that under such restriction the problem becomes tractable.
In order to do this we prove a stronger result. We first identify a

class Efin of word equations such that solving each fixed equation
e ∈ Efin under regular constraints can be done in NLOGSPACE,
and then prove that each equation of the form e(I) is in Efin. The
class Efin consists of those word equations that only admit a finite
number of principal solutions. We formally define this class below
and establish its good behavior in our context.

Finite number of principal solutions For the sake of convenience,
we assume from now on that word equations e are simply expres-
sions of the form ϕ = ψ, where ϕ and ψ are words that consist
of variables and constants. We do not assume as before that the al-
phabet Σ, where solutions for e are to be searched, is part of the
definition of e. In fact, we freely interpret e over alphabets Σ that
extend the set of constants that are mentioned in the equation.

Let e be a word equation and h1, h2 two solutions for e over Σ1

and Σ2, respectively. Then h1 divides h2 if there is a continuous
morphism α : Σ∗

1 → Σ∗
2 such that h2 = α ◦ h1. Recall that α is

a morphism if (i) α(ε) = ε, and (ii) for each w ∈ Σ∗ such that
w = a1 . . . an, it is the case that α(w) = α(a1) . . . α(an). The
morphism α is continuous if α(a) 6= ε, for each a ∈ Σ. A solution
h for e is principal [1] when it is divided by no other but itself
(up to isomorphism). It is known that each word equation that has a
solution has a principal solution [18]. We denote by Efin the class of
word equations e with only a finite number of principal solutions.

Example 4.3. The word equation x = yz is in Efin. In fact, its only
principal solution h is the one that satisfies h(x) = ab, h(y) = a
and h(z) = b. On the other hand, the equation xy = yx does not
belong to Efin; its principal solutions are all solutions of the form
hm,n, for m,n > 0 relatively primes, where hm,n(x) = am and
hm,n(y) = an.

Next we establish the good behavior of Efin in our context.
We denote by Weq(e) the problem of evaluating the fixed word
equation e under regular constraints. Formally, this takes as input
an alphabet Σ that extends the set of constants that are mentioned
in e, and a mapping ν that associates an NFA Lx over Σ with each
variable x that is mentioned in e, and the question is whether (e, ν)
has a solution.

Theorem 4.5. Weq(e) is in NLOGSPACE, for each e ∈ Efin.

Proof (idea): Consider an input to Weq(e) that consists of a
finite alphabet Σ and a mapping ν that associates an NFA over Σ
with each variable that is mentioned in e. We start by computing the
(finite) set of principal solutions for e using Lentin’s algorithm [17].
This can be done in constant time since e is fixed. It can be proved
that (e, ν) has a solution over Σ iff there is a principal solution h
for e for which the procedure we describe below does not fail.

Let Y and Σ0 be the set of variables and constants mentioned in
e, respectively. Assume that the principal solution h is a mapping
from Y ∪ Σ0 to the set of words over a finite alphabet ∆. We can
assume w.l.o.g that Σ ∩ ∆ = Σ0. From h we try to construct
a solution for (e, ν) over Σ, by searching for a morphism ϕ :
∆∗ → Σ∗ such that (i) ϕ(a) = a, for each a ∈ Σ0, and (ii)
ϕ(h(y)) ∈ ν(y), for each variable y ∈ Y . We explain how
to do this with an example, since the full construction is a bit
cumbersome.

Assume that Y = {x, y, z}, ∆ = {a, b, c}, and h satisifies
the following: h(x) = abc, h(y) = b and h(z) = ac. Suppose
that we can guess states q0, q1, q2, q3 in ν(x), states r0, r1 in ν(y),
and states s0, s1, s2 in ν(z), such that q0, r0, s0 are initial states,
q3, r1, s2 are final states, and the following holds:

• State (q1, s1) is reachable from (q0, s0) reading word w1 over
the NFA ν(x)× ν(z).

• State (q2, r1) is reachable from (q1, r0) reading word w2 over
the NFA ν(x)× ν(y).

• State (q3, s2) is reachable from (q2, s1) reading word w3 over
the NFA ν(x)× ν(z).

Then (e, ν) has a solution h′ over Σ given as: h′(x) = w1w2w3,
h′(y) = w2 and h′(z) = w1w3. If, on the other hand, it is not
possible to find such states, then we declare that h fails.

It is not hard to see how this idea can be extended to the general
case. Notice that the number of states to be guessed is bounded by
the maximum length of a word of the form h(y), for y ∈ Y , and
thus it is fixed. Each such state can be represented using logarithmic
space. Furthermore, the number of variables in Y is fixed, and,
therefore, each one of the reachability tasks can be carried out
in NLOGSPACE using standard “on-the-fly” techniques. Thus, the
procedure can be performed in NLOGSPACE for each principal
solution of e. Since the number of such solutions is fixed, we
can determine in NLOGSPACE whether the equation (e, ν) has a
solution over Σ.

Principal solutions and �suff From our previous remarks, proving

that GENINTI(�suff) is in NLOGSPACE, for each I ⊆ [m]2,
amounts to proving that Weq(e(I)) is in NLOGSPACE for each
such I . Due to Theorem 4.5, it is sufficient to prove that e(I) ∈
Efin, for every I ⊆ [m]2. This is proved below.

Lemma 4.6. The word equation e(I) is in Efin, for each I ⊆ [m]2.

Proof (idea): Consider an arbitrary word equation of the form
e(I), for I ⊆ [m]2. We prove that e(I) has a finite number of
principal solutions. We start by defining systems of word equations.
These are sets of the form {E1, . . . , En}, where each Ei is an
extended word equation. The latter are expressions of the form
ϕ1 = · · · = ϕℓ. In general, the ϕi’s are words over Σ ∪ X , but
in our case we can restrict them to be simply words over X (i.e.,
the ϕi’s are composed exclusively by variables). A solution for the
extended equation ϕ1 = · · · = ϕℓ over Σ is a mapping h from
X to Σ∗ such that h(ϕ1) = · · · = h(ϕℓ). A solution h for the
system {E1, . . . , En} is a mapping from X to Σ∗ such that h is a
solution for each Ei, 1 ≤ i ≤ n. Principal solutions of systems of
word equations are defined exactly in the same way than for word
equations. While systems of word equations can be reduced to a
single word equation, they are convenient for our proof.

We first note that e(I) can be “reduced” to a system of word
equations of a special form, which we call suffix-like. Formally, a
system {E1, . . . , En} is suffix-like if the following holds:

1. For each 1 ≤ i ≤ n, if Ei is of the form ϕ1 = · · · = ϕℓ, then
no ϕj contains repeated variables, for 1 ≤ j ≤ ℓ.

2. For each 1 ≤ i, j ≤ n, if Ei is of the form ϕ1 = · · · = ϕℓ and
Ej is of the form ψ1 = · · · = ψℓ′ , then the following holds for
each 1 ≤ k ≤ ℓ, 1 ≤ k′ ≤ ℓ′, and variable x ∈ X that appears
in both ϕk and ψk′ : Assume ϕk = pxs and ψk′ = p′xs′.
Then s = s′. In other words, a variable completely determines
the suffixes of the components of the extended equations of the
system where it appears.

Then we have the following:

Claim 4.7. There is a suffix-like system E(I) of word equations
with the same number of principal solutions than e(I).

In order to prove Claim 4.7, we first assume w.l.o.g. that I is
a DAG, and then construct E(I) from e(I) by applying variable
substitutions following a topological order of I .

In view of Claim 4.7, to prove the theorem it is sufficient to show
that suffix-like systems of word equations have a finite number
of principal solutions. To do that, we apply Lentin’s algorithm
[17], a.k.a. pig-pug, that generates the set of principal solutions

of a system of word equations, and then show that such procedure
always finishes when the system is suffix-like.

The pig-pug procedure iteratively converts a system of word
equations into another system of word equations by nondetermin-
istically guessing the lengths of the words associated with the vari-
ables. It can be shown that when the original system is suffix-like,
a pig-pug application converts it into another system that is suffix-
like. This is proved by induction on the number of extended word
equations in the system.

Using the latter, it can be proved that successive applications of
the pig-pug procedure over a suffix-like system of word equations
always lead to systems of word equations in which no variable
is repeated (i.e., in addition to condition (1) we have that no two
different extended equations in the system share a variable, and for
each extended equation in the system of the form ϕ1 = · · · = ϕℓ

it is the case that no distinct ϕi’s share a variable). It is known
that this kind of systems only have a finite number of principal
solutions, which proves our result.

From Lemma 4.6 and Theorem 4.5 we obtain:

Corollary 4.8. The problem GENINTI(�suff) is in NLOGSPACE,

for each I ⊆ [m]2.

From Lemma 3.3 we now obtain our desired result: evaluation
of CRPQ(�suff) is tractable in data complexity. An NLOGSPACE

lower bound holds in this case since CRPQs are already hard for
NLOGSPACE in data complexity.

Theorem 4.9. The evaluation problem for CRPQ(�suff) is com-
plete for NLOGSPACE in data complexity.

We study next the data complexity of CRPQ(�sw).

4.3 The data complexity of CRPQ(�sw)

It is not hard to prove that word equations obtained by applying
Proposition 4.2 to GENINTI(�sw) are not in Efin, and, thus, we
cannot study the data complexity of CRPQ(�sw) along the lines
developed in the previous section. This is consistent with the re-
sults we obtain below. In fact, we show that while the combined
complexity of evaluation for CRPQ(�sw) and CRPQ(�suff) is the
same (PSPACE-complete), the situation is radically different in
terms of data complexity: Theorem 4.9 states that evaluation of
CRPQ(�suff) is tractable in data complexity, but we prove next that
the data complexity of CRPQ(�sw) remains PSPACE-complete.

Theorem 4.10. The evaluation problem for CRPQ(�sw) is PSPACE-
complete in data complexity.

The upper bound follows from Theorem 4.4. Due to Lemma 3.3,
for hardness we only need to prove this:

Proposition 4.11. There is an index set I ⊆ [m]2, a finite alphabet

Σ, and a mapping λ : I → 2{�sw}, such that GENINTI,Σ,λ(�sw)
is PSPACE-hard.

Proof. We use the index set I✸ = {(1, 2), (1, 3), (2, 4), (3, 4)}
from Example 4.2. It follows from [16] that there is a finite al-
phabet Σ such that the following problem is PSPACE-complete:
Given regular expressions L1, . . . , Lm over Σ such that no Li ac-
cepts the empty word ε, check whether

⋂

1≤i≤m
Li is nonempty.

We show that this problem can be reduced in polynomial time
to GENINTI✸,Σ$,λ✸

(�sw), where Σ$ denotes the extension of Σ

with the fresh symbol $, and λ✸ : I✸ → 2{�sw} is such that

λ✸((i, j)) = {�
Σ$
sw }, for each (i, j) ∈ I✸.

Given regular expressions L1, . . . , Lm over Σ such that no Li

accepts the empty word, we construct an instance (R1, R2, R3, R4)
of GENINTI✸,Σ$,λ✸

(�sw) such that the Ri’s are NFAs over Σ that
define the following languages:

1. R1 := $L1$L2$. . . Lm, i.e., R1 accepts words of the form
$w1$w2$. . . wm, where each wi is a (nonempty) word in
the language Li.

2. R2 := Σ+($Σ∗)m$, i.e., R2 accepts words of the form
w0$w1$w2$. . . wm, where w0, w1, . . . , wm are words over
Σ and w0 is required to be nonempty.

3. R3 := ($Σ∗)m$Σ+, i.e., R3 accepts words of the form
$w1$w2$. . . wmwm+1, wherew1, . . . , wm, wm+1 are words
over Σ and wm+1 is required to be nonempty.

4. R4 := ($Σ∗)m+1$, i.e. R4 accepts words of the form

$w1$w2$. . . wmwm+1$,

where w1, . . . , wm, wm+1 are words over Σ.

Clearly, (R1, R2, R3, R4) can be constructed in polynomial time
from the Li’s.

We claim that
⋂

1≤i≤m
Li is nonempty iff (R1, R2, R3, R4)

belongs to GENINTI✸,Σ$,λ✸
(�sw). Assume first there is word w ∈

⋂

1≤i≤m
Li. Then w 6= ε. Consider the word w̄ over Σ$ defined

as w̄ := ($w)m$, and let w1 := w̄, w2 := ww̄, w3 := w̄w and
w4 := $ww̄. It is clear that wi ∈ Ri, for 1 ≤ i ≤ 4. Furthermore,
it is easy to see that wi �sw wj , for each (i, j) ∈ I✸. We conclude
that (R1, R2, R3, R4) belongs to GENINTI✸,Σ$,λ✸

(�sw).
Assume on the other hand that there are words w1, w2, w3 and

w4 such that wi ∈ Ri, for each 1 ≤ i ≤ 4, and wi �sw wj , for
each (i, j) ∈ I✸. Since w1 ∈ R1 it must be the case that w1 is of
the form $s1$s2$. . . sm, where each si is a (nonempty) word in
Li. We prove next that s1 = sj , for each 2 ≤ j ≤ m, and thus that
s1 ∈

⋂

1≤i≤m
Li.

Since w1 �sw w2 and w2 ∈ R2, the structure of R2 im-
plies that w2 must be of the form s0$s1$s2$. . . sm, for some
nonempty word s0 over Σ. Similarly, w3 must be of the form
$s1$s2$. . . smsm+1, for some nonempty word sm+1 over Σ.
Now, since w2 �sw w4 and w4 ∈ R4, the structure of R4 implies
that w4 must be of the form $s0$s1$s2$. . . sm. Similarly, since
w3 �sw w4 and w4 ∈ R4, the structure of R4 implies that w4

must be of the form $s1$s2$. . . smsm+1$. But the only way in
which this can happen is if s0 = s1 = s2 = · · · = sm = sm+1.
This concludes the proof.

An important corollary to the proof of Proposition 4.11 is that
there exists a fixed word equation e such that solving e under
regular constraints is PSPACE-complete.

Corollary 4.12. There is a word equation e and a finite alphabet
Σ such that the problem Weq(e) is PSPACE-complete, even if
restricted to inputs over Σ.

Proof. The word equation e is of the form:

w2#w3#w4#w4 =

u12w1u
′
12#u13w1u

′
13#u24w2u

′
24#u34w3u

′
34,

where # is a constant and all other symbols are variables. In fact,
it follows from the proof of Proposition 4.11 that there is a finite
alphabet Σ such that GENINTI✸,Σ$,λ✸

(�sw) is PSPACE-complete.
This problem can be reduced in polynomial time to Weq(e), even
if restricted to inputs over Σ$ ∪ {#}.

The logic CRPQ(�pref ∪ �suff) It is not hard to see that each

formula in CRPQ(�sw) can be expressed in the logic CRPQ(�pref

∪ �suff). This is because an atom of the form χ �sw χ′ can
be rewritten as the formula ∃χ′′(χ′′ �pref χ′ ∧ χ �suff χ′′)
in CRPQ(�pref ∪ �suff). From Theorem 4.10 we obtain the
following:

Proposition 4.13. Evaluation of CRPQ(�pref ∪ �suff) is PSPACE-
hard in data complexity.

This result shows how fragile tractability in data complexity
is in this context. In fact, extending CRPQs with either �pref or
�suff preserves tractability in data complexity; in the first case this
follows from Theorem 3.1 (since �pref is in REG2), and in the
second one from Theorem 4.9. But adding both relations at the
same time destroys such tractability.

5. The logic CRPQ(�ss)

We now study the complexity of evaluation for CRPQ(�ss). We
prove that the NP and NEXPTIME upper bounds for the data and
combined complexity of the logic, respectively, that were obtained
in [4] (see Corollary 3.5), cannot be improved further.

Recall that �ss cannot be defined by word equations, and, there-
fore, we cannot apply for this logic the techniques used in the previ-
ous chapter. Instead, we apply different word combinatorics tech-
niques based on the notion of shuffling to obtain a matching NP
lower bound for the data complexity of CRPQ(�ss). Using a suit-
able succinct version of the longest common subsequence problem
we also provide a matching NEXPTIME lower bound for its com-
bined complexity.

5.1 The data complexity of CRPQ(�ss)

We prove here that evaluation of CRPQ(�ss) is NP-complete in
data complexity. In order to obtain the lower bound it is convenient
to use a reduction from the interesting problem of unshuffling a
square, which has been recently proved to be NP-complete. We
define this problem below.

Let u and v be words over Σ. A shuffle of u and v is formed
by interleaving the symbols of u and v, keeping the symbols of
each word in order. Formally, w is a shuffle of u and v if there
are (possibly empty) words ui and vi, for 1 ≤ i ≤ k, such that
u = u1 . . . uk, v = v1 . . . vk, and w = u1v1 . . . ukvk.

A word w is a square if there is a word u such that w is a shuffle
of u with itself. The problem SQUARE takes as input a word w
over Σ, and asks whether w is a square. We write SQUAREΣ if Σ
is fixed. It has been independently proved in [8, 21] that there is
a finite alphabet Σ such that SQUAREΣ is NP-complete. We use
a reduction from this problem to pinpoint the data complexity of
evaluation for CRPQ(�ss).

Theorem 5.1. The evaluation problem for CRPQ(�ss) is NP-
complete in data complexity.

The upper bound follows from Corollary 3.5. We prove hard-
ness next. Due to Lemma 3.3, we only need to prove the following:

Proposition 5.2. There is an index set I ⊆ [m]2, a finite alphabet

Σ, an and a mapping λ : I → 2{�ss}, such that the problem
GENINTI,Σ,λ(�ss) is NP-hard.

Proof. We again use the index set

I✸ = {(1, 2), (1, 3), (2, 4), (3, 4)}

from Example 4.2. We know that there is a finite alphabet Σ such
that SQUAREΣ is NP-complete. We show that this problem can be
reduced in polynomial time to GENINTI✸,Σb,r,λ✸

(�ss), where Σb,r

is the extension of Σ with fresh symbols b and r, and λ✸ : I✸ →

2{�ss} is such that λ((i, j)) =�
Σb,r
ss , for each (i, j) ∈ I✸.

Let w be a word in Σ∗. We assume w.l.o.g. that the length of w
is 2n, for n ≥ 0 (otherwise we immediately declare that w is not a
square). Assumew = a1 . . . a2n, where each ai ∈ Σ. We construct
an instance (R1, R2, R3, R4) of GENINTI✸,Σb,r,λ✸

(�ss) such that
the Ri’s are NFAs over Σ that define the following languages:

1. R1 := Σn, i.e., R1 are all words of length n over Σ.

2. R2 := (bΣ b)n, i.e., R2 consists of all words of the form
b c1 b . . . b cn b such that c1 . . . cn ∈ Σ∗.

3. R3 := (rΣ r)n, i.e., R3 consists of all words of the form
r c1 r . . . r cn r such that c1 . . . cn ∈ Σ∗.

4. R4 := (b a1 b ∪ r a1 r) . . . (b a2n b ∪ r a2n r), i.e., R consists
of all words that are obtained from w by replacing each ai with
either b ai b or r ai r.

Clearly, (R1, R2, R3, R4) can be constructed in polynomial time
from w.

We explain next why w ∈ SQUAREΣ iff (R1, R2, R3, R4) is in
GENINTI✸,Σb,r,λ✸

(�ss). Intuitively, words u accepted by R1 are
candidates for squaring w. We then take two copies of u, one ac-
cepted by R2 and the other one accepted byR3, and we distinguish
such copies using the special symbols b and r. Finally, a word v
accepted by R4 makes a choice about which copy of u is synchro-
nizing with. Since both copies of u have to be a subsequence of v,
we can ensure that w is a square whenever (R1, R2, R3, R4) is in
GENINTI✸,Σb,r,λ✸

(�ss). The other direction is even simpler, since
we can easily extract a witness for the fact that (R1, R2, R3, R4)
is in GENINTI✸,Σb,r,λ✸

(�ss) if we know that w is a square.

5.2 The combined complexity of CRPQ(�ss)

The evaluation problem for CRPQ(�ss) is known to be in NEXP-
TIME. We prove that such bound is tight.

Theorem 5.3. The evaluation problem for CRPQ(�ss) is complete
for NEXPTIME.

Due to Lemma 3.2, for hardness we only need to prove the
following:

Proposition 5.4. GENINT(�ss) is NEXPTIME-hard.

We start by proving that the following succinct version of the
longest common subsequence problem, which we call SUCCINCT-
LCS, is NEXPTIME-hard: Given a finite alphabet Σ, regular ex-
pressions L1, . . . , Lm over the alphabet that extends Σ with a fresh
symbol $, and binary integers k, p ≥ 0, we want to know whether
there is a word w ∈

⋂

1≤i≤m
Li of the form $u1$u2$. . . up,

where the ui’s are words over Σ, and a word u over Σ with exactly
k symbols, such that u �ss ui for each 1 ≤ i ≤ p.

Proposition 5.5. SUCCINCT-LCS is NEXPTIME-hard.

Proof (idea): The original LCS problem takes as input words
w1, ..., wp over Σ and an integer ℓ ∈ N, and asks whether the wi’s
have a common subsequence of length ℓ. It is known that LCS is
NP-hard even over a fixed alphabet. In our proof, we will make use
of a particular polynomial-time reduction from independent set to
LCS over a binary alphabet that can be found in [7].

In order to prove that SUCCINCT-LCS is NEXPTIME-hard, we
compose three reductions. The first one is the standard reduction
from the acceptance problem for a nondeterministic Turing ma-
chine M on input x to satisfiability of Cook’s formula ϕ(M,x).
In our case, M is a nondeterministic machine that works in expo-
nential time, and, thus, ϕ(M,x) is of exponential size. We then use
a standard reduction from satisfiability of ϕ(M,x) to the problem
of determining if a graph G(M,x) has an independent set of size
kM,x ≥ 0. (In particular, G(M, x) contains a node for each lit-
eral in each clause, and there is an edge between nodes q and q′

iff q and q′ are in the same clause, or the literal represented by q
is the negation of the one represented by q′. The size kM,x of the
desired independent set corresponds to the number of clauses of
ϕ(M,x)). Finally, we apply on (GM , kM,x) the reduction to LCS
over a binary alphabet that we mentioned in the previous paragraph.
In our case, this reduction yields an exponential number of words

S �suff �sw �ss (REG2 ∪ �suff) (REG2 ∪ �sw) (REG2 ∪ �ss)

comb. comp. PSPACE PSPACE NEXPTIME undecidable undecidable nonelementary
of CRPQ(S) (Thm 4.4) (Thm 4.4) (Thm 5.3) (Coroll. 5.2 in [4]) (Coroll. 5.2 in [4]) (Coroll. 5.13 in [4])
data comp. NLOGSPACE PSPACE NP undecidable undecidable nonelementary

of CRPQ(S) (Thm 4.9) (Thm 4.10) (Thm 5.1) (Coroll. 5.2 in [4]) (Coroll. 5.2 in [4]) (Coroll. 5.13 in [4])

Figure 1: Combined and data complexity of graph logics.

w1, . . . , wp, each of exponential size, such that M accepts input x
iff w1, . . . , wp share a subsequence of exponential length ℓ ≥ 0.

By looking at the composition of these three reductions, it can
be observed that the words w1, ..., wp are highly uniform. They are
constructed from simple recurring patterns that grow and shrink in a
synchronised way. This allows to encode the word $w1$. . . wp
as the unique word accepted by the intersection of polynomially
many regular languages R1, ..., Rt over {0, 1, $}. Furtheremore,
the Ri’s can be constructed in polynomial time from M and x.
This encoding uses similar techniques as those used to encode
valid sequences of computations performed by a polynomial space
Turing machine as intersection of regular expressions [16]. The
correctness of the reduction is implied by the composition of the
preceding ones.

We now show that SUCCINCT-LCS problem can be reduced
in polynomial time to GENINT(�ss), by using techniques devel-
oped in the proofs of Theorems 4.10 and 5.1. Consider an input to
SUCCINCT-LCS consisting of regular expressions L1, ..., Lm over
the alphabet Σ$ that extends Σ with fresh symbol $, and binary in-
tegers k, p ≥ 0. Let S1, S2, S3 be the following regular languages
over Σ$:

S1 = {($u)p$: u ∈ Σk}; S2 =
⋂

1≤i≤m

Li; S3 = ($Σ∗)p$.

It is not hard to see that our input belongs to SUCCINCT-LCS (i.e.,
there is a word of the form $w1$ · · · wp in S2, with each wi

being a word over Σ, such that the wi’s have a common subse-
quence u over Σ of length exactly k) if and only if there are words
s1, s2, s3 over Σ$ such that si ∈ Si, for each i = 1, 2, 3, and
s1 �ss s2 and s2 �ss s3 (in particular, s2 = $w1$ · · · wp). Al-
though the regular languages S1, S2 and S3 cannot be constructed
directly in polynomial time, it is possible to encode each one of
them as a generalized intersection problem that can be constructed
in polynomial time from our input. We explain this below.

Let us consider S1 = {($u)p$: u ∈ Σk} first. Using standard
techniques, it is possible to construct in polynomial time regular
expressions R1, . . . , Rt over Σ$ such that

⋂

1≤i≤t
Ri = ($Σk)p$.

In order to force the words over Σ between successive $ symbols
to be equal, we use an index set I1 constructed as follows: Take
the index set I⋄ = {(1, 2), (1, 3), (2, 4), (3, 4)} used in the proof
of Theorem 4.10, and replace each element i = 1, 2, 3, 4 by a
directed cycle with O(t) elements. We then define a mapping λ1

that assigns {�ss} to each pair in I1. Using the regular expressions
R1, . . . , Rt and ideas similar to the ones in the proof of Theorem
4.10, it is possible to construct a generalized intersection problem
over I1 and λ1 such that its solutions encode S1. Notice, however,
that in this case we are using the more loose relation subsequence
instead of subword. This causes no trouble, since we already know
that words over Σ between succesive $ symbols are of equal length.

The two other cases are simpler. For S2 =
⋂

1≤i≤m
Li, we

just consider the index set I2 = {(1, 2), ..., (m − 1, m), (m, 1)}
and the mapping λ2 that associates with each edge in I2 the
set {�ss}. It is clear then that the solutions to the instance
(L1, . . . , Lm, I2, λ2) of GENINT(�ss) are precisely the words in

S2. For S3 = ($Σ∗)p$, we use the fact that it is possible to con-
struct in polynomial time regular expressions T1, ..., Tℓ over Σ$

such that
⋂

1≤i≤ℓ Ti = S3. In this case we consider the directed

cycle I3 = {(1, 2), ..., (1, ℓ), (ℓ, 1)}, and the mapping λ3 that as-
sociates the set {�ss} with each edge of I3. Therefore, solutions
to the instance (T1, . . . , Tℓ, I3, λ3) of GENINT(�ss) are precisely
the words in S3.

By starting from I1, I2, I3 and λ1, λ2, λ3, it is easy to construct
in polynomial time an instance I of the generalized intersection
problem such that I belongs to GENINT(�ss) if and only if there
are words s1 ∈ S1, s2 ∈ S2 and s3 ∈ S3 such that s1 �ss s2 and
s2 �ss s3. As we mentioned below, this is equivalent to checking
that the original input belongs to SUCCINT-LCS.

6. Final Remarks

Motivated by applications of graph databases that require compar-
ing labels of paths based on rational relations, we have studied
the complexity of evaluation for logics that extend CRPQs with
practical relations such as suffix, subword and subsequence. This
complements previous results from [4], which established the pro-
hibitive complexity of evaluation for logics that allow, in addition,
path comparisons based on arbitrary regular relations. Figure 1
summarizes the precise combined and data complexity of evalu-
ation for the logics we consider in the paper.

Our results show that by disallowing comparisons based on reg-
ular relations, but by admitting comparisons based on rational re-
lations from {�suff ,�sw,�ss}, the complexity of evaluation be-
comes much more reasonable (it is always decidable, and elemen-
tary). On the other hand, the data complexity of evaluation for two
of these logics (CRPQ(�sw) and CRPQ(�ss)) continues being in-
tractable, and, therefore, further restrictions need to be imposed on
them in order to obtain fragments that can be evaluated in practice.

One such restriction was identified in [4]: data complexity of
evaluation becomes tractable when index sets I are acyclic; i.e.,
when the undirected graph defined by the pairs of I is acyclic.
Our lower bounds for the data complexity of CRPQ(�sw) and
CRPQ(�ss) show that lifting this restriction immediately leads to
intractability. In fact, both lower bounds are proved for the index set
I✸ = {(1, 2), (1, 3), (2, 4), (3, 4)}, which is a very simple DAG
that is not acyclic. Our goal is identifying less restrictive conditions
than acyclicity that yield efficient evaluation for our logics.

In the future we plan to study the decidability of the logic
CRPQ(�suff,�sw,�ss), which allows comparing paths based on
the three relations we study in the paper. It is also of interest to
study whether there are suitable decidable extensions of the logics
we have studied in this paper that allow to compare paths based on
lenghts or numbers of occurences of labels (in the style of [5]).

Acknowledgments

We are grateful to C. Gutiérrez and V. Diekert for helpful insights
on the nature of word equations, and to L. Libkin for his comments
on an earlier version of this paper. Barceló is funded by the Mil-
lennium Nucleus Center for Semantic Web Research under Grant
NC120004 and Muñoz by CONICYT Ph.D. Scholarship.

References

[1] H. Abdulrab, J.-P- Pécuchet. Solving word equations. J. Symb. Com-

put. 8(5), pages 499-521, 1989.

[2] R. Angles, C. Gutiérrez. Survey of graph database models. ACM
Computing Surveys 40(1): (2008).

[3] P. Barceló. Querying graph databases (Invited Tutorial). In Symposium

on Principles of Database Systems (PODS) 2013, pages 175-188.

[4] P. Barceló, D. Figueira, L. Libkin. Graph logics with rational relations.
Logical Methods in Computer Science 9(3), 2013.

[5] P. Barceló, L. Libkin, A. W. Lin, P. T. Wood. Expressive languages
for path queries over graph-structured Data. ACM Transactions on

Database Systems 37(4), 2012.

[6] J. Berstel. Transductions and Context-Free Languages. B. G. Teubner,
1979.

[7] G. Blin, L. Bulteau, M. Jiang, P. J. Tejada, S. Vialette. Hardness of
Longest Common Subsequence for Sequences with Bounded Run-
Lengths. In Symposium on Combinatorial Pattern Matching (CPM)
2012, pages 138-148.

[8] S. Buss, M. Soltys. Unshuffling a square is NP-hard. Journal of Com-

puter and System Sciences, 2014.

[9] D. Calvanese, G. de Giacomo, M. Lenzerini, M. Y. Vardi. Contain-
ment of conjunctive regular path queries with inverse. In Principles of

Knowledge Representation and Reasoning (KR), pages 176–185.

[10] E. Clarke, O. Grumberg, D. Peled. Model checking. MIT Press, 1999.

[11] I. Cruz, A. Mendelzon, P. Wood. A graphical query language support-
ing recursion. In SIGMOD 1987, pages 323-330.

[12] V. Diekert, C. Gutiérrez, Ch. Hagenah. The existential theory of equa-
tions with rational constraints in free groups is PSPACE-complete. In-

formation and Computation 202(2), pages 105-140, 2005.

[13] S. Eilenberg, C.C. Elgot, J.C. Shepherdson. Sets recognized by n-tape
automata. Journal of Algebra, 13:447, 1969.

[14] L. Ilie. Subwords and power-free words are not expressible by word
equations. Fundamenta Informaticae, 38(1), pages 109-118, 1999.

[15] J. Karhumäki, F. Mignosi, W. Plandowski. The expressibility of lan-
guages and relations by word equations. Journal of the ACM 47(3),
pages 483-505, 2000.

[16] D. Kozen. Lower bounds for natural proof systems. In Symposium on

Foundations of Computer Science (FOCS) 1977, pages 254-266.

[17] A. Lentin. Equations in free monoids. In Intl. Colloquium on Au-

tomata, Languages, and Programming (ICALP) 1972, pages 67-85.

[18] M. Lothaire. Combinatorics on words. Cambridge University Press,
1997.

[19] G.S. Makanin. The problem of solvability of equations in free semi-
groups. Math USSR Sbornik 32, pages 129-198, 1977.

[20] W. Plandowski. Satisfiability of word equations with constants is in
PSPACE. Journal of the ACM 51(3), pages 483-496, 2004

[21] R. Rizzi, S. Vialette. On recognizing words that are squares for the
shuffle product. In International Computer Science Symposium in

Russia (CSR) 2013 pages 235-245.

[22] M. Y. Vardi. The complexity of relational query languages (Extended
abstract). In Symposium on the Theory of Computing (STOC) 1982,
pages 137-146.

[23] P. T. Wood. Query languages for graph databases. SIGMOD Record
41(1), pages 50-60, 2012.

