
Foundations of Symbolic Languages
for Model Interpretability

Anonymous Author(s)
Affiliation
Address
email

Abstract

Several queries and scores have recently been proposed to explain individual1

predictions over ML models. Given the need for flexible, reliable, and easy-to-2

apply interpretability methods for ML models, we foresee the need for developing3

declarative languages to naturally specify different explainability queries. We4

do this in a principled way by rooting such a language in a logic, called FOIL,5

that allows for expressing many simple but important explainability queries, and6

might serve as a core for more expressive interpretability languages. We study the7

computational complexity of FOIL queries over two classes of ML models often8

deemed to be easily interpretable: decision trees and OBDDs. Since the number of9

possible inputs for an ML model is exponential in its dimension, tractability of the10

FOIL evaluation problem is delicate, but can be achieved by either restricting the11

structure of the models, or the fragment of FOIL being evaluated. We also present12

a prototype implementation of FOIL wrapped in a high-level declarative language,13

and perform experiments showing that such a language can be used in practice.14

1 Introduction15

Context. The degree of interpretability of a machine learning (ML) model seems to be intimately16

related with the ability to “answer questions” about it. Those questions can either be global (behavior17

of the model as a whole) or local (behavior regarding certain instances/features). Concrete examples of18

such questions can be found in the recent literature, including, e.g., queries based on “anchors”, which19

are parts of an instance that are sufficient to justify its classification [4, 10, 13, 23], and numerical20

scores that measure the impact of the different features of an instance on its result [17, 22, 26].21

It is by now clear that ML interpretability admits no silver-bullet, and that in many cases a combination22

of different queries may be the most effective way to understand a model’s behavior. Also, model23

interpretability takes different flavors depending on the application domain one deals with. This24

naturally brings to the picture the need for general-purpose specification languages that can provide25

flexibility and expressiveness to practitioners specifying interpretability queries. An even more26

advanced requirement for these languages is to be relatively easy to use in practice. This tackles the27

growing need for bringing interpretability methods closer to users with different levels of expertise.28

One way in which these requirements can be approached in a principled way is by developing a29

declarative interpretability language, i.e., one in which users directly express the queries they want to30

apply in the interpretability process (and not how these queries will be evaluated). This is of course31

reminiscent of the path many other areas in computer science have followed, in particular by using32

languages rooted in formal logic; so has been the case, e.g., in data management [1], knowledge33

representation [3], and model checking [12]. One of the advantages of this approach is that logics34

have a well-defined syntax and clear semantics. On the one hand, this ensures that the obtained35

explanations are provably sound and faithful to the model, which avoids a significant drawback of36

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.



Stable job
> 40yo

Previous loans
Owns a house

Has kids
Married

Criminal Record



0
1
1
0
0
1
1


Black Box
Model

Application
Rejected

(a) Diagram of a particular loan decision.

> load("mlp.np") as MyModel;
> show features;
(stableJob, >40yo, prevLoan, ownsHouse,
hasKids, isMarried, crimRecord): Boolean
> show classes;
Rejected (0), Accepted (1)

> exists person,
person.isMarried
and not person.hasKids
and MyModel(person) = Accepted;

YES

(b) Example of a possible concrete syntax for a language
tailored for interpretability queries.

Figure 1: Example of a bank that uses a model to decide whether to accept loan applications
considering binary features like “does the requester has a stable job” and “are they older than 40”?

several techniques for explaining models in which the explanations can be inaccurate, or require37

themselves to be further explained [24]. On the other hand, a logical root facilitates the theoretical38

study of the computational cost of evaluation and optimization for the queries in the language.39

Our proposal. Our first contribution is the proposal of a logical language, called FOIL, in which40

many simple yet relevant interpretability queries can be expressed. For reasons we explain along the41

paper, we believe that FOIL can further serve as a basis over which more expressive interpretability42

languages can be built. In a nutshell, given a decision modelM that performs classification over43

instances e of dimension n, FOIL can express properties over the set of all partial and full instances44

of dimension n. A partial instance e is a vector of dimension n in which some features are undefined.45

Such undefined features take a distinguished value ⊥. An instance is full if none of its features is46

undefined. The logic FOIL is simply first-order logic with access to two predicates on the set of all47

instances (partial or full) of dimension n: A unary predicate POS(e), stating that e is a full instance48

thatM classifies as positive, and a binary predicate e ⊆ e′, stating that instance e′ potentially fills49

some of the undefined features of instance e; e.g., (1, 0, ⊥) ⊆ (1, 0, 1), but (1, 0, ⊥) 6⊆ (1, 1, 1).50

As an overview of our proposal, consider the case of a bank using a binary model to judge applications51

for loans. Figure 1a illustrates the problem with concrete features, and Figure 1b presents an example52

of a concrete interactive syntax. In Figure 1b, after loading and exploring the model, the interaction53

asks whether the model could give a loan to a person who is married and does not have kids. Assuming54

that the “Accepted” class is the positive one, this interaction can easily be formalized in FOIL by55

means of the query ∃x
(
POS(x) ∧ (⊥,⊥,⊥,⊥, 0, 1,⊥) ⊆ x

)
.56

Theoretical contributions. The evaluation problem for a fixed FOIL query ϕ is as follows. Given57

a decision modelM, is it true that ϕ is satisfied under the interpretation of predicates ⊆ and POS58

defined above? An important caveat about this problem is that, in order to evaluate ϕ, we need59

to potentially look for an exponential number of instances, even if the features are Boolean, thus60

rendering the complexity of the problem infeasible in some cases. Think, for instance, of the query61

∃x POS(x), which asks ifM has at least one positive instance. Then this query is intractable for every62

class of models for which this problem is intractable; e.g., for the class of propositional formulas in63

CNF (notice that this is nothing but the satisfiability problem for the class at hand).64

The main theoretical contribution of our paper is an in-depth study of the computational cost of FOIL65

on two classes of Boolean models that are often deemed to be “easy to interpret”: decision trees66

and ordered binary decision diagrams (OBDDs) [8, 11, 15, 19, 24]. An immediate advantage of67

these models over, say, CNF formulas, is that the satisfiability problem for them can be solved in68

polynomial time; i.e., the problem of evaluating the query ∃xPOS(x) is tractable. Our study aims to69

(a) “measure” the degree of interpretability of said models in terms of the formal yardstick defined by70

the language FOIL; and (b) shed light on when and how some simple interpretability queries can be71

evaluated efficiently on these decision models.72

We start by showing that, in spite of the aforementioned claims on the good level of interpretability73

for the models considered, there is a simple query in FOIL that is intractable over them. In fact, such74

an intractable query has a natural “interpretability” flavor. As such, we believe this proof to be of75

independent interest.76

2



However, these intractability results should not immediately rule out the use of FOIL in practice. In77

fact, it is well known that a logic can be intractable in general, but become tractable in practically78

relevant cases. Such cases can be obtained by either restricting the syntactic fragment of the logic79

considered, or the structure of the models in which the logic is evaluated. We obtain positive results80

in both directions for the models we mentioned above. We explain them next.81

Syntactic fragments. It can be shown that queries in ∃FOIL, the existential fragment of FOIL,82

admit tractable evaluation over the models we study. However, this language lacks expressive83

power for capturing several interpretability queries of practical interest. We then introduce ∃FOIL+,84

an extension of ∃FOIL with a finite set of unary queries from FOIL that are of importance when85

expressing practical queries. We show that the problem of evaluating ∃FOIL+ is tractable for both86

decision trees and OBDDs. More precisely, first we provide a characterization of the tractability of87

this fragment, over any class of Boolean decision models, in terms of the tractability of two fixed and88

specific FOIL queries. Then we prove that such queries are tractable for decision trees and OBDDs.89

Structural restrictions. We restrict the models allowed in order to obtain tractability of evaluation90

for arbitrary FOIL queries. In particular, we show that evaluation of ϕ, for ϕ a fixed FOIL query,91

can be solved in polynomial time over the class of OBDDs as long as they are complete, i.e., any path92

from the root to a leaf of the OBDD tests every feature from the input, and have bounded width, i.e.,93

there is a constant bound on the number of nodes of the OBDD in which a feature can appear.94

Practical implementation. We designed FOIL with a minimal set of logical constructs and tailored95

for models with binary input features. These decisions are reasonable for a detailed theoretical96

analysis but may hamper FOIL usage in more general scenarios, in particular when models have97

(many) categorical or numerical input features, and queries are manually written by non-expert users.98

To tackle this we introduce a more user-friendly language with a high-level syntax (à la SQL in the99

spirit of the query in Figure 1b) that can be compiled into FOIL queries. Moreover, we present a100

prototype implementation that can be used to query decision trees trained in standard ML libraries by101

binarizing them into models (a subclass of binary decision diagrams) over which FOIL queries can102

be efficiently evaluated. We also test the performance of our implementation over synthetic and real103

data giving evidence of the usability of FOIL as a base for practical interpretabilty languages.104

2 A Logic for Interpretability Queries105

Background. An instance of dimension n, with n ≥ 1, is a tuple e ∈ {0, 1}n. We use notation106

e[i] to refer to the i-th component of this tuple, or equivalently, its i-th feature. Moreover, we107

consider an abstract notion of a model of dimension n, and we define it as a Boolean function108

M : {0, 1}n → {0, 1}. That is,M assigns a Boolean value to each instance of dimension n, so109

that we focus on binary classifiers with Boolean input features. Restricting inputs and outputs to be110

Boolean makes our setting cleaner while still covering several relevant practical scenarios. We use111

notation dim(M) for the dimension of a modelM.112

A partial instance of dimension n is a tuple e ∈ {0, 1,⊥}n. Intuitively, if e[i] = ⊥, then the value of113

the i-th feature is undefined. Notice that an instance is a particular case of a partial instance where all114

features are assigned value either 0 or 1. Given two partial instances e1, e2 of dimension n, we say115

that e1 is subsumed by e2 if for every i ∈ {1, . . . , n} such that e1[i] 6= ⊥, it holds that e1[i] = e2[i].116

That is, e1 is subsumed by e2 if it is possible to obtain e2 from e1 by replacing some unknown values.117

Notice that a partial instance e can be thought of as a compact representation of the set of instances118

e′ such that e is subsumed by e′, where such instances e′ are called the completions of e.119

Models. A binary decision diagram (BDD [28]) over instances of dimension n is a rooted directed120

acyclic graphM with labels on edges and nodes such that: (i) each leaf is labeled with true or121

false; (ii) each internal node (a node that is not a leaf) is labeled with a feature i ∈ {1, . . . , n}; and122

(iii) each internal node has two outgoing edges, one labeled 1 and the another one labeled 0. Every123

instance e ∈ {0, 1}n defines a unique path πe = u1 · · ·uk from the root u1 to a leaf uk ofM such124

that: if the label of ui is j ∈ {1, . . . , n}, where i ∈ {1, . . . , k − 1}, then the edge from ui to ui+1125

is labeled with e[j]. Moreover, the instance e is positive, denoted byM(e) = 1, if the label of uk126

is true; otherwise the instance e is negative, which is denoted byM(e) = 0. A binary decision127

diagramM is free (FBDD) if for every path from the root to a leaf, no two nodes on that path have128

the same label. Besides,M is ordered (OBDD) if there exists a linear order < on the set {1, . . . , n}129

of features such that, if a node u appears before a node v in some path inM from the root to a leaf,130

3



then u is labeled with i and v is labeled with j for features i, j such that i < j. Finally, a decision131

tree is simply an FBDD whose underlying DAG is a tree.132

In this paper, we focus on the following classes of models: OBDD, the class of ordered BDDs, and133

DTree, the class of decision trees. None of these classes directly subsume the other: decision trees134

are not necessarily ordered, while the underlying DAG of an OBDD is not necessarily a tree. In fact,135

it is known that neither OBDDs can be compiled into polynomial-size decision trees nor decision136

trees into polynomial-size OBDDs [6, 14].137

The logic FOIL. We consider first-order logic over a vocabulary consisting of a unary predicate138

POS and a binary predicate ⊆. This logic is called first-order interpretability logic (FOIL), and it139

is our reference language for defining conditions on models that we would like to reason about. In140

particular, predicate POS is used to indicate the value of an instance in a model, while predicate ⊆ is141

used to represent the subsumption relation among partial instances. In what follows, we show that142

many natural properties can be expressed in a simple way in FOIL, demonstrating the suitability of143

this language for the purpose of expressing explainability queries.144

We assume familiarity with the syntax and semantics of first-order logic (see the appendix for a review145

of these concepts). In particular, given a vocabulary σ consisting of relations R1, . . ., R`, recall that146

a structure A over σ consists of a domain, where quantifiers are instantiated, and an interpretation for147

each relation Ri. Moreover, given a first-order formula ϕ defined over the vocabulary σ, we write148

ϕ(x1, . . . , xk) to indicate that {x1, . . . , xk} is the set of free variables of ϕ. Finally, given a structure149

A over the vocabulary σ and elements a1, . . ., ak in the domain of A, we use A |= ϕ(a1, . . . , ak) to150

indicate that formula ϕ is satisfied by A when each variable xi is replaced by element ai (1 ≤ i ≤ k).151

Our goal when introducing FOIL is to have a logic that allows to specify natural properties of models152

in a simple way. In this sense, we still need to define when a modelM satisfies a formula in FOIL,153

as M is not a structure over the vocabulary {POS, ⊆} (so we cannot directly use the notion of154

satisfaction of a formula by a structure). More precisely, assuming that dim(M) = n, the structure155

AM associated toM is defined as follows. The domain of AM is the set {0, 1,⊥}n of all partial156

instances of dimension n. An instance e ∈ {0, 1}n is in the interpretation of predicate POS in AM if157

and only ifM(e) = 1. Finally, a pair (e1, e2) is in the interpretation of predicate ⊆ in AM if and158

only if e1 is subsumed by e2. Then, given a formula ϕ(x1, . . . , xk) in FOIL and partial instances e1,159

. . ., ek of dimension n, modelM is said to satisfy ϕ(e1, . . . , ek), denoted byM |= ϕ(e1, . . . , ek),160

if and only if AM |= ϕ(e1, . . . , ek).161

Evaluation problem. FOIL is our main tool in trying to understand how interpretable is a class of162

models. In particular, the following is the main problem studied in this paper, given a class C of163

models and a formula ϕ(x1, . . . , xk) in FOIL.164

Problem: EVAL(ϕ, C)
Input: A modelM∈ C of dimension n, and instances e1, . . . , ek of dimension n

Output: YES, ifM |= ϕ(e1, . . . , ek), and NO otherwise
165

For example, assume that CNF, DNF are the classes of models given as propositional formulae in CNF166

and DNF, respectively. If ϕ = ∃x POS(x), then EVAL(ϕ,CNF) is NP-complete and EVAL(ϕ,DNF)167

can be solved in polynomial time, as such problems correspond to the satisfiability problems for the168

propositional formulae in CNF and DNF, respectively.169

Given a modelM, it is important to notice that the size of the structure AM can be exponential in the170

size ofM. Hence, AM is a theoretical construction needed to formally define the semantics of FOIL,171

but that should not be built when verifying in practice if a formula ϕ is satisfied byM. In fact, if we172

are aiming at finding tractable algorithms for FOIL-evaluation, then we need to design an algorithm173

that uses directly the encoding ofM as a model (for example, as a binary decision tree) rather than174

as a logical structure. This is the main technical challenge behind the results presented in this paper.175

3 Expressing Properties in the Logic176

Basic queries. We provide some formulas in FOIL to gain more insight into this logic. Fix a model177

M of dimension n. We can ask whetherM assigns value 1 to some instance by using FOIL-formula178

∃x POS(x). Similarly, formula ∃y (FULL(y) ∧ ¬POS(y)) can be used to check whetherM assigns179

4



value 0 to some instance, where180

FULL(x) = ∀y (x ⊆ y → x = y) (1)

is used to verify whether all values in x are known (that is, M |= FULL(e) if and only if e is181

an instance). Notice that formula FULL(y) has to be included in ∃y (FULL(y) ∧ ¬POS(y)) since182

M |= ¬POS(e) for each partial instance e with unknown values.183

Given an instance e such thatM(e) = 1, we can ask if the values assigned to the first two features184

are necessary to obtain a positive classification. Formally, define e{1,2} as a partial instance such that185

e{1,2}[1] = e{1,2}[2] = ⊥ and e{1,2}[i] = e[i] for every i ∈ {3, . . . , n}, and assume that186

ϕ(x) = ∀y ((x ⊆ y ∧ FULL(y))→ POS(y)).

IfM |= ϕ(e{1,2}), then the values assigned in e to the first two features are not necessary to obtain a187

positive classification. Notice that the use of unknown values in e{1,2} is fundamental to reason about188

all possible assignments for the first two features, while keeping the remaining values of features189

unchanged. Besides, observe that a similar question can be expressed in FOIL for any set of features.190

As before, we can ask if there is a completion of a partial instance e that is assigned value 1, by using191

FOIL-formula ψ(x) = ∃y (x ⊆ y ∧ FULL(y) ∧ POS(y)); that is,M |= ψ(e) if and only if there is192

an assignment for the unknown values of e that results in an instance classified positively.193

Minimal sufficient reasons. Given an instance e and a partial instance e′ that is subsumed by e,194

consider the problem of verifying whether e′ is a sufficient reason for e in the sense that every195

completion of e′ is classified in the same way as e [4, 25]. The following query express this:196

SR(x, y) = FULL(x) ∧ y ⊆ x ∧ ∀z [(y ⊆ z ∧ FULL(z))→ (POS(x)↔ POS(z))], (2)

given thatM |= (e, e′) if and only if e′ is a sufficient reason for e. Finally, it can also be expressed197

in FOIL the condition that y is a minimal sufficient reason for x:198

MSR(x, y) = SR(x, y) ∧ ∀z ((z ⊆ y ∧ SR(x, z))→ z = y).

That is,M |= (e, e′) if and only if e′ is a sufficient reason for e, and there is no partial instance e′′199

such that e′′ is a sufficient reason for e and e′′ is properly subsumed by e′.200

Bias detection queries. Let us consider an approach to fairness based on protected features, i.e.,201

features from a set P that should not be used for decision taking (e.g., gender, age, marital status, etc).202

We use as follows a formalization of this notion proposed in [13]. Given a modelM of dimension n,203

and a set of protected features P ⊆ {1, . . . , n}, an instance e is said to be a biased decision ofM204

if there exists an instance e′ such that e and e′ differ only on features from P andM(e) 6=M(e′).205

A modelM is biased if and only if there is an instance e that is a biased decision ofM. In what206

follows, we show how to encode queries relating to biased decisions in FOIL.207

Let S = {1, . . . , n}, and assume that 0S is an instance of dimension n such that 0S [i] = 0 for every208

i ∈ S, and 0S [j] = ⊥ for every j ∈ {1, . . . , n} \ S. Moreover, define 1S in the same way but209

considering value 1 instead of 0, and define210

MATCH(x, y, u, v) = ∀z [(z ⊆ u ∨ z ⊆ v)→ (z ⊆ x↔ z ⊆ y)].
When this formula is evaluated replacing u by 0S and v by 1S , it verifies whether x and y have the211

same value in each feature in S. More precisely, given a modelM and instances e1, e2 of dimension212

n, we have thatM |= MATCH(e1, e2,0S ,1S) if and only if e1[i] = e2[i] for every i ∈ S. Notice that213

the use of free variables u and v as parameters allows us to represent the matching of two instances214

in the set of features S, as, in fact, such matching is encoded by the formula MATCH(x, y,0S ,1S).215

The use of free variables as parameters is thus a useful feature of FOIL.216

With the previous terminology, we can define a query217

BIASEDDECISION(x, u, v) = FULL(x) ∧
∃y [FULL(y) ∧MATCH(x, y, u, v) ∧ (POS(x)↔ ¬POS(y))].

To understand the meaning of this formula, assume that N = {1, . . . , n} \ P is the set of non-218

protected features. When BIASEDDECISION(x, u, v) is evaluated replacing u by 0N and v by 1N , it219

verifies whether there exists an instance y such that x and y have the same values in the non-protected220

features but opposite classification, so that x is a biased decision. Hence, the formula221

BIASEDMODEL(u, v) = ∃xBIASEDDECISION(x, u, v)

5



can be used to check whether a modelM is biased with respect to the set P of protected features, as222

M satisfies this property if and only ifM |= BIASEDMODEL(0N ,1N ).223

A query of the form ∃x
(
POS(x) ∧ (⊥,⊥,⊥,⊥, 0, 1,⊥) ⊆ x

)
was included as an initial example224

in Section 1. According to the formal definition of FOIL, such a query corresponds to ϕ(u) =225

∃x
(
POS(x) ∧ u ⊆ x

)
, and the desired answer is obtained when verifying whether ϕ(e) is satisfied226

by a model, where e[1] = e[2] = e[3] = e[4] = ⊥, e[5] = 0, e[6] = 1 and e[7] = ⊥. Again, notice227

that the use of free variables as parameters is an important feature of FOIL.228

4 Limits to Efficient Evaluation229

Several important interpretability tasks have been shown to be tractable for the decision models we230

study in the paper, which has justified the informal claim that they are “interpretable”. But this does231

not mean that all interpretability tasks are in fact tractable for these models. We try to formalize232

this idea by studying the complexity of evaluation for queries in FOIL over them. We show next233

that the evaluation problem over the models studied in the paper can become intractable, even for234

some simple queries in the logic with a natural interpretability flavor. This intractability result is of235

importance, in our view, as it sheds light on the limits of efficiency for interpretability tasks over the236

models studied, and hence on the robustness of the folklore claims about them being “interpretable”.237

Theorem 1. There exists a formula ψ(x) in FOIL for which EVAL(ψ(x),DTree) and238

EVAL(ψ(x),OBDD) are NP-hard.239

This result tell us that there exists a concrete property expressible in FOIL that cannot be solved in240

polynomial time for decision trees and OBDDs (unless P = NP). In what follows, we describe this241

property, and how it is represented as a formula ψ(x) in FOIL (the complete proof of Theorem 1 is242

provided in the appendix).243

Assume that x ⊂ y is the formula x ⊆ y ∧ x 6= y that verifies whether x is properly subsumed by y.244

We first define the following auxiliary predicates:245

ADJ(x, y) = x ⊂ y ∧ ¬∃z (x ⊂ z ∧ z ⊂ y),
DIFF(x, y) = FULL(x) ∧ FULL(y) ∧ x 6= y ∧ ∃z (ADJ(z, x) ∧ ADJ(z, y)).

More precisely, ADJ(x, y) is used to check whether a partial instance x is adjacent to a partial instance246

y, in the sense that x is properly subsumed by y and there is no partial instance z such that x is247

properly subsumed by z and z is properly subsumed by y. Moreover, DIFF(x, y) is used to verify248

whether two instances x and y differ exactly in the value of one feature. By using these predicates,249

we define the following notion of stability for an instance:250

STABLE(x) = ∀y [DIFF(x, y)→ (POS(x)↔ POS(y))].

That is, an instance x is said to be stable if and only if any change in exactly one feature of x leads to251

the same classification. Then the formula ψ(x) in Theorem 1 is defined as follows:252

ψ(x) = ∃y (x ⊆ y ∧ POS(y) ∧ STABLE(y)).

Hence, given a partial instance x, formula ψ(x) is used to check if there is a completion of x that is253

stable and positive. Theorem 1 states that checking this for decision trees and OBDDs is an intractable254

problem. Observe that the notion of stability used in ψ(x) has a natural interpretability flavor: it255

identifies positive instances whose classification is not affected by the perturbation of a single feature.256

5 Tractable Restrictions257

Theorem 1 tells us that evaluation of FOIL queries can be an intractable problem, but of course this258

does not completely rule out the applicability of the logic. In fact, as we show in this section one259

can obtain tractability by either restricting the analysis to a useful syntactic fragment of FOIL, or by260

considering a structural restriction on the class of models over which FOIL queries are evaluated.261

5.1 A tractable fragment of FOIL262

We present a fragment of FOIL that is simple enough to yield tractability, but which is at the same263

time expressive enough to encode natural interpretability problems. This is not a trivial challenge,264

6



though, as the proof of Theorem 1 shows intractability of queries in a syntactically simple fragment265

of FOIL (in fact, only two quantifier alternations suffice for the result to hold).266

Our starting point in this search is ∃FOIL, which is the fragment of FOIL consisting of all formulae267

where no universal quantifier occurs and no existential quantifier appears under a negation (each268

such a formula can be rewritten into a formula of the form ∃x1 · · · ∃xk α, where α does not mention269

any quantifiers). However, such a fragment has a limited expressive power since, for example, the270

predicate FULL(x) defined in (1) cannot be expressed in it. To remedy this, we extend ∃FOIL by271

including predicate FULL(x) and two other unary predicates that are common in interpretability272

queries. More precisely, let ALLPOS(x) and ALLNEG(x) be unary predicates defined as follows:273

ALLPOS(x) = ∀y
(
(x ⊆ y ∧ FULL(y)

)
→ POS(y)),

ALLNEG(x) = ∀y
(
x ⊆ y → ¬POS(y)

)
.

Then ∃FOIL+ is defined as the fragment of FOIL consisting of all formulae where no universal274

quantifier occurs and no existential quantifier appears under a negation, and which are defined over275

the extended vocabulary {POS, ⊆, FULL, ALLPOS, ALLNEG}. In the same way, we define ∀FOIL+
276

by exchanging the roles of universal and existential quantifiers. Notice that the formula defining the277

notion of sufficient reason in (2) is in ∀FOIL+. Similarly, the notion of minimal sufficient reason278

introduced in Section 3 can be expressed in ∀FOIL+:279

MSR(x, y) = SR(x, y) ∧ ∀u [(u ⊆ y ∧ u 6= y ∧ POS(x))→ ¬ALLPOS(u)] ∧
∀v [(v ⊆ y ∧ v 6= y ∧ ¬POS(x))→ ¬ALLNEG(v)].

In what follows, we investigate the tractability of the fragments ∃FOIL+ and ∀FOIL+. In particular,280

in the case of ∃FOIL+, we show that the tractability for a class of models C can be characterized in281

terms of the tractability in C of two specific query in ∃FOIL+:282

PARTIALALLPOS(x, y, z) = ∃u [x ⊆ u ∧ ALLPOS(u) ∧
∃v (y ⊆ v ∧ u ⊆ v) ∧ ∃w (z ⊆ w ∧ u ⊆ w)],

and PARTIALALLNEG(x, y, z) that is defined exactly as PARTIALALLPOS(x, y, z) but replacing283

ALLPOS(u) by ALLNEG(u). More precisely, we have the following:284

Theorem 2. For every class C of models, the following conditions are equivalent: (a) EVAL(ϕ, C)285

can be solved in polynomial time for each query ϕ in ∃FOIL+; (b) EVAL(PARTIALALLPOS, C) and286

EVAL(PARTIALALLNEG, C) can be solved in polynomial time.287

This theorem gives us a concrete way to study the tractability of ∃FOIL+ over a class of models.288

Besides, as the negation of a query in ∀FOIL+ is a query in ∃FOIL+, Theorem 2 also provides us289

with a tool to study the tractability of ∀FOIL+. In fact, it is possible to prove the following.290

Proposition 1. If C is the class of models DTree or OBDD, then EVAL(PARTIALALLPOS, C) and291

EVAL(PARTIALALLNEG, C) can be solved in polynomial time.292

And from this proposition and Theorem 2, it is possible to establish the following tractability results293

for ∃FOIL+ and ∀FOIL+.294

Corollary 1. Let ϕ be a query in ∃FOIL+ or ∀FOIL+. Then EVAL(ϕ,DTree) and EVAL(ϕ,OBDD)295

can be solved in polynomial time.296

In fact, a more general corollary holds: EVAL(ϕ,DTree) and EVAL(ϕ,OBDD) are tractable as long297

as ϕ is a Boolean combination of queries in ∃FOIL+ (which covers the case of ∀FOIL+).298

5.2 A structural restriction ensuring tractability299

We now look into the other direction suggested before, and identify a structural restriction on OBDDs300

that ensures tractability of evaluation for each query in FOIL. This restriction is based on the usual301

notion of width of an OBDD [5, 7]. An OBDDM over a set {1, . . . , n} of features is complete if302

each path from the root ofM to one of its leaves includes every feature in {1, . . . , n}. The width of303

M, denoted by width(M), is defined as the maximum value ni for i ∈ {1, . . . , n}, where ni is the304

number of nodes ofM labeled by feature i. Then, given k ≥ 1, k-COBDD is defined as the class of305

complete OBDDsM such that width(M) ≤ k. By building on techniques from [7], we prove that:306

Theorem 3. Let k ≥ 1 and query ϕ in FOIL. Then EVAL(ϕ, k-COBDD) can be solved in polyno-307

mial time.308

7



100 200 300

Input feature dimension

0.1

0.2

0.3

0.4

0.5

0.6

Ti
m

e
in

se
co

nd
s

100 leaves
500 leaves
1000 leaves

(a) Average time for 60 random
FOIL queries over Decision Trees
trained with random data.

100 200 300

Input feature dimension

0.0

0.5

1.0

1.5

2.0

2.5

Ti
m

e
in

se
co

nd
s

100 leaves
500 leaves
1000 leaves

(b) Maximum time for 60 random
FOIL queries over Decision Trees
trained with random data.

> exists student,
student.age <= 18 and
(student.internetAtHome or
student.male) and

goodGrades(student)

(c) Example of a query in our sys-
tem executed over a model trained
in the dataset in [20].

Figure 2: Execution time for FOIL queries and a high-level practical syntax.

6 Practical Implementation309

The FOIL language has at least two downsides from a usability point of view. First, in FOIL every310

query is constructed using a minimal set of basic logical constructs. Moreover, the variables in queries311

are instantiated by feature vectors that may have hundreds of components. This implies that some312

simple queries may need fairly long and complicated FOIL expressions. Second, FOIL is designed to313

only work over models with binary input features. These downsides are a consequence of our design314

decisions that were reasonable for a detailed theoretical analysis but may hamper FOIL usage in more315

general scenarios, in particular when models have (many) categorical or numerical input features.316

In this section, we describe a simple high-level syntax and implementation of a more user-friendly317

language (à la SQL) to query general decision trees, and we show how to compile it into FOIL queries318

to be evaluated over a suitable binarization of the queried model. The whole package needs of several319

pieces that we explain in this section: (i) a working and efficient query-evaluation implementation of a320

fragment of FOIL over a suitable sub-class of Binary Decision Diagrams (BDDs), (ii) a transformation321

from the high-level syntax to FOIL queries, and (iii) a transformation from a general decision tree to322

a BDD over which the FOIL query can be efficiently evaluated. We only present here the main ideas323

and intuitions of the implemented methods. A detailed exposition along with our implementation and324

a set of real examples can be found in the supplementary material.325

6.1 Implementing and testing core FOIL326

We implemented a version of the algorithm derived from Section 5.1 for evaluating existential and327

universal FOIL queries that is proven to work over a suitable sub-class of BDDs. The method receives328

a query as a plain text file and a BDD in JSON format. We tested the efficiency of our implementation329

controlling by three aspects: the number of input features, the number of leaves of the decision tree,330

and the size of the input queries. We created a set of trees trained with random input data with input331

feature dimensions in the range [10, 350], and of 100, 500 and 1000 leaves (24 different decision332

trees). We note that the best performing decision trees over standard datasets [27] rarely contain333

more than 1000 total nodes [18], thus the trees that we tested can be considered of standard size. We334

created a set of random queries with 1 to 4 quantified variables, and a varying number of operators335

(60 different queries). We run every query 5 times over each tree, and averaged the execution time to336

obtain the running time of one case. From all our tests no case required more than 2.5 seconds for its337

complete evaluation with a total average execution time of 0.213 seconds and standard deviation of338

0.169 in the whole dataset. Figure 2a shows the average time (average over different queries) for all339

settings. We observed that some queries where specially more time consuming than others. Figure 2b340

shows the maximum execution time over all queries for each setting. The most important factor when341

evaluating queries is the number of input features, which is consistent with a theoretical worst case342

analysis. All experiments where run on a personal computer with a 2.48GHz Intel N3060 processor343

and 2GB RAM. The exact details of the machine are presented in the supplementary material.344

6.2 Interpretability symbolic queries in practice345

High-level features. We designed and implemented a prototype system for user-friendly interpretabil-346

ity queries. Figure 2c shows a real example query that can be posed in our system for a model trained347

8



over the Student Performance Data Set [20]. Notice that our syntax allow named features, names348

for the target class (goodGrades in the example) and the comparison with numerical thresholds349

which goes beyond the FOIL formalization. Our current implementation allows for numerical and350

logical comparisons, as well as handy logical shortcuts such as implies and iff. Moreover we351

implemented a wrapper to directly import Decision Trees trained in the Scikit-learn [21] library.352

Binarizing models and queries. One of the main issues when compiling these new queries into353

FOIL is how to binarize numerical features. Choi et al. [9] describe in extensive detail an approach354

to encode general decision trees into binary ones. The key observation is that one can separate355

numerical values into equivalence classes depending on the thresholds used by a decision tree. For356

example, assume a tree with an age feature that learns nodes with thresholds age ≤ 16 and age ≤ 24.357

It is clear that such a tree cannot distinguish an age = 17 from an age = 19. In general, every tree358

induces a finite number of equivalence classes for each numerical feature and one can take advantage359

of that to produce a binary version of the tree [9]. In our case, we also need to take the query into360

account. For instance, when evaluating a query with a condition student.age <= 18, ages 17 and361

19 become distinguishable. Considering all these thresholds we have intervals (−∞, 16], (16, 18],362

(18, 24], (24,∞) and we can use four binary features to encode in which interval an age value lies.363

It is worth noting that this process creates extra artificial features, and thus, the decision tree that364

learned real thresholds needs to be binarized in the new feature space accordingly. One can show that365

a naive implementation would imply an exponential blow up in the size of the new tree. To avoid this366

our binarization process transforms the real-valued decision tree into a particular subclass of BDDs,367

over which we prove that our polynomial algorithms from Section 5.1 are still applicable.368

Performance tests. We tested a set of 20 handcrafted queries over decision trees with up to 400369

leaves trained for the Student Performance Data Set [20], which combines Boolean and numerical370

features. Our results show that natural queries can be evaluated for medium size decision trees in less371

than a second on a standard personal machine, thus validating the practical usability of our prototype.372

7 Final Remarks and Future Work373

In several aspects the logic FOIL is limited in expressive power for interpretability purposes. This was374

a design decision for this paper, in order to start with a “minimal” logic that would allow highlighting375

the benefits of having a declarative language for interpretability tasks, and at the same time allowing376

to carry out a clean theoretical analysis of its evaluation complexity. However, a genuinely practical377

declarative language should include other functionalities that allow more sophisticated queries to378

be expressed. As an example, consider the notion of SHAP-score [17] that has a predominant379

place in the literature on interpretability issues today. In a nutshell, for a decision modelM with380

dim(M) = n and instance e ∈ {0, 1}n, this score corresponds to a weighted sum of expressions of381

the form #POSS(e), for S ⊆ {1, . . . , n}, where #POSS(e) is the number of instances e′ for which382

M(e′) = 1 and e′ coincides with e over all features in S. Expressing this query, hence, requires383

extending FOIL with a recursive mechanism that permits to iterate over the subsets S of {1, . . . , n},384

and a feature for counting the number of positive completions of a partial instance; e.g., in the form of385

a “numerical” query φ(x) := #y.(x ⊆ y ∧ POS(y)). Logics of this kind abound in computer science386

logic (c.f., [2, 16]), and one could use all this knowledge in order to build a suitable extension of387

FOIL for dealing with this kind of interpretability tasks. One can also envision a language facilitating388

the comparison of different models by providing separate POS predicates for each of them. Then, for389

example, one can ask whether two models are equivalent, or if they differ for a particular kind of390

instances. Such an extension can affect the complexity of evaluation in nontrivial ways.391

Arguably, interpretability measures the degree in which humans can understand decisions made by392

machines. One of our main calls in this paper is to build more symbolic interpretability tools, and thus,393

make them closer to how humans reason about facts and situations. Having a symbolic high-level394

interpretability language to inspect ML models and their decisions, is thus a natural and challenging395

way of pursuing this goal. We took a step further in this paper, presenting theoretical and practical396

results, but several problems remain open. A particularly interesting one is whether a logical language397

can effectively interact with intrinsically non-symbolic models, and if so, what mechanisms could398

allow for practical tractability without sacrificing provable correctness.399

9



References400

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.401

[2] M. Arenas, M. Muñoz, and C. Riveros. Descriptive complexity for counting complexity classes.402

Logical Methods in Computer Science ; Volume 16, pages Issue 1 ; 1860–5974, 2020.403

[3] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors. The404

Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University405

Press, 2003.406

[4] P. Barceló, M. Monet, J. Pérez, and B. Subercaseaux. Model interpretability through the lens of407

computational complexity. In NeurIPS, 2020.408

[5] B. Bollig. On the width of ordered binary decision diagrams. In COCOA, pages 444–458, 2014.409

[6] Y. Breitbart, H. Hunt, and D. Rosenkrantz. On the size of binary decision diagrams representing410

boolean functions. Theoretical Computer Science, 145(1-2):45–69, July 1995.411

[7] F. Capelli and S. Mengel. Tractable QBF by Knowledge Compilation. In STACS, pages412

18:1–18:16, 2019.413

[8] H. Chan and A. Darwiche. Reasoning about bayesian network classifiers. In UAI, pages414

107–115, 2003.415

[9] A. Choi, A. Shih, A. Goyanka, and A. Darwiche. On symbolically encoding the behavior of416

random forests. CoRR, abs/2007.01493, 2020.417

[10] A. Choi, R. Wang, and A. Darwiche. On the relative expressiveness of bayesian and neural418

networks. Int. J. Approx. Reason., 113:303–323, 2019.419

[11] K. Chubarian and G. Turán. Interpretability of bayesian network classifiers: OBDD approxima-420

tion and polynomial threshold functions. In ISAIM, 2020.421

[12] E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking. MIT Press, 2001.422

[13] A. Darwiche and A. Hirth. On the reasons behind decisions. In ECAI, pages 712–720, 2020.423

[14] A. Darwiche and P. Marquis. A knowledge compilation map. Journal of Artificial Intelligence424

Research, 17:229–264, Sept. 2002.425

[15] L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, and L. Kagal. Explaining explanations:426

An overview of interpretability of machine learning. In DSAA, pages 80–89, 2018.427

[16] L. Libkin. Elements of Finite Model Theory. Texts in Theoretical Computer Science. An EATCS428

Series. Springer, 2004.429

[17] S. M. Lundberg and S. Lee. A unified approach to interpreting model predictions. In NIPS,430

pages 4765–4774, 2017.431

[18] R. G. Mantovani, T. Horváth, R. Cerri, S. B. Junior, J. Vanschoren, and A. C. P. de Leon432

Ferreira de Carvalho. An empirical study on hyperparameter tuning of decision trees. CoRR,433

abs/1812.02207, 2018.434

[19] C. Molnar. Interpretable Machine Learning. 2019. https://christophm.github.io/435

interpretable-ml-book/.436

[20] F. Pagnotta and H. M. Amran. Using data mining to predict secondary school student alcohol437

consumption, 2016.438

[21] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,439

P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,440

M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine441

Learning Research, 12:2825–2830, 2011.442

10

https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/


[22] M. T. Ribeiro, S. Singh, and C. Guestrin. "why should I trust you?": Explaining the predictions443

of any classifier. In SIGKDD, pages 1135–1144, 2016.444

[23] M. T. Ribeiro, S. Singh, and C. Guestrin. Anchors: High-precision model-agnostic explanations.445

In AAAI, pages 1527–1535, 2018.446

[24] C. Rudin. Please stop explaining black box models for high stakes decisions. CoRR,447

abs/1811.10154, 2018.448

[25] A. Shih, A. Choi, and A. Darwiche. A symbolic approach to explaining bayesian network449

classifiers. In J. Lang, editor, Proceedings of the Twenty-Seventh International Joint Conference450

on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden, pages 5103–5111,451

2018.452

[26] E. Strumbelj and I. Kononenko. An efficient explanation of individual classifications using453

game theory. J. Mach. Learn. Res., 11:1–18, 2010.454

[27] J. Vanschoren, J. N. Van Rijn, B. Bischl, and L. Torgo. Openml: networked science in machine455

learning. ACM SIGKDD Explorations Newsletter, 15(2):49–60, 2014.456

[28] I. Wegener. BDDs: design, analysis, complexity, and applications. Discrete Applied Mathemat-457

ics, 138(1-2):229–251, 2004.458

11

https://www.sciencedirect.com/science/article/pii/S0166218X0300297X


Checklist459

1. For all authors...460

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s461

contributions and scope? [Yes]462

(b) Did you describe the limitations of your work? [Yes] We not only provide positive463

but also negative results (lower bounds) in Section 4. We also describe some practical464

limitations in Section 6.465

(c) Did you discuss any potential negative societal impacts of your work? [N/A] Our work466

is mostly theoretical, thus we do not forsee any direct or indirect societal impact of the467

results that we present in this paper.468

(d) Have you read the ethics review guidelines and ensured that your paper conforms to469

them? [Yes]470

2. If you are including theoretical results...471

(a) Did you state the full set of assumptions of all theoretical results? [Yes]472

(b) Did you include complete proofs of all theoretical results? [Yes] We include detailed473

proofs in the supplementary material.474

3. If you ran experiments...475

(a) Did you include the code, data, and instructions needed to reproduce the main exper-476

imental results (either in the supplemental material or as a URL)? [Yes] We include477

details as well as code and data for reproducing our results in the supplementary478

material.479

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they480

were chosen)? [N/A] Our paper is not about training or tuning hyperparameters.481

(c) Did you report error bars (e.g., with respect to the random seed after running experi-482

ments multiple times)? [Yes] We report the average and maximum execution time for483

the queries that we tested as well as the standard deviation from the mean taken over484

all queries and models in Section 6.485

(d) Did you include the total amount of compute and the type of resources used (e.g., type486

of GPUs, internal cluster, or cloud provider)? [Yes] We present most of the details in487

the supplementary material.488

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...489

(a) If your work uses existing assets, did you cite the creators? [Yes] We use some standard490

datasets (See Section 6.2) as well as standard ML libraries (Scikit-learn [21]) properly491

cited.492

(b) Did you mention the license of the assets? [Yes] Every license is in the citation of each493

asset.494

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]495

We did not introduce any new asset.496

(d) Did you discuss whether and how consent was obtained from people whose data you’re497

using/curating? [N/A] The assest that we use are standard and openly available online.498

(e) Did you discuss whether the data you are using/curating contains personally identifiable499

information or offensive content? [N/A]500

5. If you used crowdsourcing or conducted research with human subjects...501

(a) Did you include the full text of instructions given to participants and screenshots, if502

applicable? [N/A]503

(b) Did you describe any potential participant risks, with links to Institutional Review504

Board (IRB) approvals, if applicable? [N/A]505

(c) Did you include the estimated hourly wage paid to participants and the total amount506

spent on participant compensation? [N/A]507

12


	Introduction
	A Logic for Interpretability Queries
	Expressing Properties in the Logic
	Limits to Efficient Evaluation
	Tractable Restrictions
	A tractable fragment of FOIL
	A structural restriction ensuring tractability

	Practical Implementation
	Implementing and testing core FOIL
	Interpretability symbolic queries in practice

	Final Remarks and Future Work

