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aCenter for Semantic Web Research &
Department of Computer Science, University of Chile

Beaucheff 851, Santiago, Chile, 837-0456

Abstract

Applications of graph databases are prone to inconsistency due to inter-
operability issues. This raises the need for studying query answering over
inconsistent graph databases in a simple but general framework. We follow
the approach of consistent query answering (CQA), and study its data com-
plexity over graph databases for conjunctive regular-path queries (CRPQs)
and conjunctive regular-path constraints (CRPCs). We deal with subset,
superset and symmetric-difference repairs. Without restrictions, CQA is un-
decidable for the semantics of superset- and symmetric-difference repairs, and
ΠP

2 -complete for subset-repairs. However, we identify restrictions on CRPCs
and databases that lead to decidability, and even tractability of CQA.

Keywords: graph databases; regular path queries; consistent query
answering; description logics; rewrite systems

1. Introduction

Query languages for graph databases are typically navigational, in the
sense that they allow for recursively traversing the labeled edges while check-
ing for the existence of a path whose label satisfies a particular regular con-
dition (see, e.g., [42, 5]). The basic building block for navigational languages
over graph databases is the class of regular path queries, or RPQs [15]. Each
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RPQ is a regular expression L, and its evaluation L(G) over a graph database
G corresponds to a binary relation that contains all pairs of nodes in G that
are linked by some path whose label matches L. The RPQs are often ex-
tended with the ability to traverse edges in both directions and expressing
joins and projections. This gives rise to the class of conjunctive two-way
RPQs, or C2RPQs [14]. The evaluation problem for C2RPQs can be solved
in NLogspace in data complexity; i.e., when the C2RPQ is fixed (cf., [5]).

Although graph databases are schema-less, it is possible to enforce data
consistency over them using path constraints [1, 10]. These constraints have
been used in several scenarios that are based on the graph database paradigm,
e.g., to express local knowledge about semi-structured data [1]; to enforce
restrictions over object-oriented databases, XML and RDF [38, 13, 24, 3, 32];
and to capture ontological hierarchies in the context of description logics
(DLs) [17, 18, 19]. The simplest class of path constraints are those based
on RPQs. They were introduced by Abiteboul and Vianu under the name
of regular path constraints, or RPCs [1]. These are expressions of the form
L1 ⊆ L2, where L1 and L2 are RPQs. In the graph database and DL contexts,
a graph database G satisfies L1 ⊆ L2 if and only if L1(G) ⊆ L2(G) [28, 17, 18]
(but we also consider a more restrictive semantics for RPCs, motivated by
their application in semistructured data, following the original proposal of
Abiteboul and Vianu). RPCs are a constituent part of the semantics of graph
data and can be used in the query optimization process [1].

RPCs are rather limited in expressive power, and thus have been recently
extended with the ability to traverse edges in both directions [19]. We con-
centrate here an even more expressive constraint language that is based on
the class of C2RPQs. In particular, we study the constraint language of
C2RPCs, which are expressions of the form q ⊆ q′, for CRPQs q and q′.

An important problem when dealing with dependencies is that databases
might be inconsistent, i.e., they might fail to satisfy its integrity constraints.
In the case of graph database applications, high levels of inconsistency appear
due to interoperability and distribution; e.g., in RDF and social/scientific
networks [29, 43]. As an example, inconsistency might arise while integrat-
ing several sources into a single RDF graph, or while performing statistical
inference on a scientific or social network. This raises the need for developing
an inconsistency-tolerant semantics in a simple yet general framework that
abstracts away from its many implementations. In order to tackle this prob-
lem, we use the widespread approach of consistent query answering (as first
introduced in the seminal work of Arenas et al [2]), which we now describe.
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The approach is based on the notion of repair, which represents a possible
minimal way in which consistency over the data could be restored. More
formally, a repair is a database that satisfies the constraints and “minimally
differs” from the original database. In general, a database does not admit a
unique repair. This leads to an inconsistency-intolerant semantics based on
the consistent answers of a query, i.e., the answers that hold in every possible
repair. The problem of computing consistent answers to a query is known as
consistent query answering (CQA).

Here we study the data complexity of CQA over graph databases in the
scenario in which queries are C2RPQs and constraints are C2RPCs. That is,
we study the complexity of evaluating consistent answers over an inconsistent
graph database G for a fixed C2RPQ L under a fixed set Γ of C2RPCs. We
explain next the context and main contributions of our work.

The context. The complexity of CQA has received considerable attention
over different data models, notions of repairs and classes of constraints. Un-
der the relational model, for instance, this problem has been studied for
set-based [2, 20, 26], cardinality-based [31], and attribute-based repairs [40];
for constraints expressed as traditional functional dependencies, inclusion de-
pendencies and denial constraints (see, e.g., [12, 21, 27, 41, 30, 26]); and for
constraints expressed as tuple-generating dependencies (tgds) and equality-
generating dependencies (egds) that arise in the context of data integration
and data exchange [20].

CQA has also been studied in depth in the DL context, starting from the
work of Lembo and Ruzzi [33]. The DL semantics is open-world in nature,
meaning that the non-presence of a fact is not sufficient to ensure that the
negation of the fact holds. This implies that in the DL context the only
meaningful set-based repairs are the subset repairs; i.e., those that allow to
restore consistency with respect to the DL constraints (i.e., the ones in the
TBox) only by deleting facts from the database (i.e., the ABox). It is worth
mentioning that the notion of DL repair is slightly different to its relational
counterpart: A DL repair is not a subinstance that satisfies the constraints
in the TBox, but one that does not lead to a contradiction in conjunction
with those constraints [33, 34].

Some applications of graph databases, such as RDF, are open-world in
nature. However, graph databases are not tied to this interpretation and may
also accommodate closed-world applications. Therefore, there should be no
a priori restriction on the class of set-based repairs one allows in this context.

3



We thus study CQA for graph databases under the three usual notions of
set-based repairs: subset, superset, and symmetric difference repairs [20].

Our contributions. We start by looking at the data complexity of CQA over
graph databases under subset repairs. The problem is in ΠP

2 in general. We
prove that:

• It is complete for this class in restricted cases; namely, for RPQs under a
simple class of RPCs known as word constraints. These are expressions
of the form w1 ⊆ w2, for words w1 and w2 [1].

• It remains intractable even by forcing RPCs to be read from a particular
node in the graph database, called the origin (which corresponds to the
original semantics Abiteboul and Vianu defined for these constraints).

In order to deal with this high complexity, we provide tractable cases by
restricting the class of RPCs or the class of graph databases allowed.

• In the first case, we prove that the problem is tractable if C2RPCs are
in LAV form, i.e., if they are of the form a ⊆ q, where a is a single letter
and q is an arbitrary C2RPQ. This expresses that every time that two
nodes are linked by an edge labeled a, these two nodes also satisfy the
C2RPQ q.

• We show that the previous result is, in a sense, tight, since allowing
a single RPC of the form ab ⊆ c, for symbols a, b and c, leads to
intractability.

• In the case of restrictions on graph databases, by applying a deep result
of Courcelle [22] we obtain that the data complexity of CQA under
subset repairs is tractable over graph databases of bounded treewidth.

We then move to study CQA under superset and symmetric difference
repairs. As a main contribution:

• We prove that in both cases the problem is undecidable. This again
holds even for RPQs under word constraints.

On the other hand, we obtain decidability by restricting the class of C2RPCs
allowed or their semantics. We start with the restrictions on C2RPCs.
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• We prove that if C2RPCs are in LAV form then the data complexity
of CQA is tractable when dealing with symmetric difference repairs.

We leave open whether CQA is also decidable in this case under the
semantics of superset repairs, but prove that at least tractability in
data complexity is not preserved.

• We then prove that if C2RPCs are in GAV form, i.e., if they are of the
form q(x, y) ⊆ (x, a, y), where a is a single letter, our CQA problem is
tractable under the semantics of superset repairs, but intractable under
symmetric difference repairs.

With respect to restrictions on the semantics of RPCs, as a main contribu-
tion:

• We prove that by forcing RPCs to be read from the origin, the problem
can be solved in coNP under superset repairs.

Comparison with previous results. The main difference between the query
and constraint languages we study here (C2RPQs and C2RPCs) and the
ones studied in the relational context, is that our languages allow recursion
while CQA has been studied in the relational world mostly in the absence
of it. Interestingly, our results show that recursion does not add to the
complexity of the problems studied. In fact, almost all of our lower bounds
hold in the restricted setting in which queries are defined as RPQs that do
not mention the Kleene-star and RPCs correspond to word constraints.

If we interpret graph databases as relational databases, word constraints
can be represented as tgds. The tgds corresponding to word constraints have
a special restricted structure and are called chain tgds. On the other hand,
CQA under tgds has been intensively studied [20], and it is tempting to think
that lower bounds obtained in such setting could be adapted to work in our
scenario. This is not the case, however, as those proofs do not apply to the
class of chain tgds. Actually, the proofs of our lower bounds are considerably
more involved than the ones for arbitrary tgds. As a side-effect, we obtain
that several of our lower bounds extend to CQA in the relational case for
queries defined as unions of CQs under chain tgds.

DL databases are (essentially) graph databases. In such scenario, ΠP
2 -

hardness results have been obtained by Rosati for the data complexity of
CQA under subset repairs, in particular, for the case when queries are unions
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of CQs and constraints are expressed in the logic ALC [37]. However, con-
straints in this logic cannot be directly expressed as C2RPCs due to the
presence of negation. Furthermore, their notion of repair is different to ours.

Organization of the paper. Preliminaries are in Section 2. Results about the
subset repair semantics are in Section 3, and those about the semantics of
superset and symmetric difference repairs are in Section 4. Comparison with
previous work is in Section 5 and conclusions in Section 6.

2. Preliminaries

Graph databases. As it is customary in the graph database literature [15, 16,
42, 5], we consider graph databases to be finite, edge-labeled and directed
graphs. Formally, let Σ be a finite alphabet. A graph database G = (V,E)
over Σ consists of a finite set V of nodes and a set of labeled edges E ⊆
V × Σ × V . We interpret each tuple (u, a, v) ∈ E, for u, v ∈ V and a ∈ Σ,
as an edge from node u to node v whose label is a. If G = (V,E) and
G′ = (V ′, E ′) are graph databases over Σ, we write G ⊆ G′ to denote that
V ⊆ V ′ and E ⊆ E ′. If, in addition, it is not the case that G′ = G, we write
G ( G′. Moreover, given a graph database G = (V,E) and a letter a ∈ Σ,
we denote by aG the relation:

{(u, v) : (u, a, v) ∈ E}.

If G is clear from the context, we may speak of a as a relation.

Conjunctive regular path queries. Navigational languages for graph databases
express properties of paths. Formally, a path π in G = (V,E) from node v0

to node vm is a sequence of the form:

(v0, a1, v1)(v1, a2, v2) . . . (vm−1, am, vm),

for m ≥ 0, where (vi−1, ai, vi) is an edge in E, for each 1 ≤ i ≤ m. The label
of π, denoted λ(π), is the string a1a2 . . . am ∈ Σ∗. When m = 0, i.e., when
π = v, for some v ∈ V , the label λ(π) is the empty string ε.

The simplest navigational language for graph databases are regular path
queries, or RPQs [15]. An RPQ is a regular expression L over Σ. The
evaluation L(G) of L over a graph database G = (V,E) is the set of pairs
(u, v) of nodes in V for which there is a path π in G from u to v such that

6



λ(π) satisfies L. If L does not mention the Kleene-star (i.e., if L defines a
finite language) then we say that L is non-recursive.

RPQs are typically extended with the ability to traverse edges in both
directions, yielding the class of two-way RPQs, or 2RPQs [15]. Formally, let
Σ be a finite alphabet. We denote by Σ± the language that extends Σ with
the inverse a− of each symbol a ∈ Σ. A 2RPQ L over Σ is then nothing else
than an RPQ over Σ±. Let G be a graph database over Σ. The evaluation
L(G) of the 2RPQ L over G corresponds then to the evaluation of L (now
seen as an RPQ over Σ±) over the completion G± of G. The latter is the
graph database that is obtained from G by adding all edges of the form
(u, a−, v), for (v, a, u) an edge in G.

The class of conjunctive 2RPQs (C2RPQs) is obtained by closing 2RPQs
under joins and existential quantification [14]. More formally, a C2RPQ over
Σ is a formula q of the form:

∃z̄
(
(x1, L1, y1) ∧ · · · ∧ (xm, Lm, ym)

)
, (1)

where for each 1 ≤ i ≤ m we have that the xi’s and yi’s, are (not necessarily
distinct) variables and Li is a 2RPQ over Σ. Moreover, z̄ is a tuple of
variables among the xi’s and yi’s. If each Li is an RPQ, then q is a CRPQ.
We typically write this formula as q(x̄) to denote that x̄ are the free variables
of q, i.e., those that are not existentially quantified in z̄.

As usual, we define the semantics of C2RPQ in terms of homomorphisms.
Assume that q(x̄) is a C2RPQ of the form (1) and G is a graph database over
Σ. A homomorphism from q to G is a mapping from the variables mentioned
in q to the nodes of G such that for each 1 ≤ i ≤ m it is the case that
(h(xi), h(yi)) ∈ Li(G). The evaluation q(G) of q(x̄) over G corresponds then
to the set of all tuples of the form h(x̄), for h a homomorphism from q to G.

The following result is considered to be folklore (cf., [5]):

Proposition 1. The problem of evaluating C2RPQs is in NLogspace in
data complexity. More formally, let q be a fixed C2RPQ. The problem of
checking if ā ∈ q(G), given a graph database G and a tuple ā of nodes in G,
is in NLogspace.

Regular path constraints. Graph database constraints based on the class of
RPQs are known as regular path constraints [1, 28], or RPCs. Formally, an
RPC over Σ is an expression of the form L1 ⊆ L2, where L1 and L2 are RPQs
over Σ. A word constraint is an RPC in which both L1 and L2 are words.
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An RPC L1 ⊆ L2 expresses that the evaluation of the RPQ L1 is contained
in the evaluation of the RPQ L2 [28]. Formally, a graph database G satisfies
L1 ⊆ L2, denoted G |= L1 ⊆ L2, if and only if L1(G) ⊆ L2(G). If Γ is a finite
set of constraints, we write G |= Γ to denote that for each RPC L1 ⊆ L2 in
Γ it is the case that G |= L1 ⊆ L2.

Example 1. Let Γ be the following set of RPCs:

1. child of ⊆ son of ∪ daughter of.

2. brother of · (brother of ∪ sister of) ⊆ brother of.

3. sister of · (brother of ∪ sister of) ⊆ sister of.

4. child of · (brother of ∪ sister of) ⊆ nephew of ∪ niece of.

Intuitively, the first RPC expresses that if u is a child of v, then u is a son or
a daughter of v. The second and third RPCs express that if u is a brother
(resp., sister) of v and v is a sibling of w, then v is a brother (resp., sister) of
w. The forth RPC states that each child of a person v is the niece or nephew
of every sibling of v.

The extension of RPCs with inverses has been recently studied in the
literature [19]. Formally, a 2RPC is an expression of the form L1 ⊆ L2,
where both L1 and L2 are 2RPQs. Similarly, it is natural to define conjunctive
2RPCs, or C2RPCs, which are expressions of the form q1(x̄) ⊆ q2(x̄), where
q1 and q2 are C2RPQs with the same tuple x̄ of free variables. The semantics
of these extensions is naturally inherited from the previous definitions. It is
clear that allowing such extensions increases the ability to express constraints
in an important way.

The next proposition easily follows from Proposition 1:

Proposition 2. Let Γ be a fixed set of C2RPCs. The problem of checking
whether G |= Γ, for a given graph database G, is in NLogspace.

Proof. NLogspace is closed under complement by Immerman-Szelepcsényi’s
Theorem. It is thus sufficient to show that it is possible to check G 6|= Γ
in NLogspace. The logarithmic size witness corresponds to a C2RPC
q1(x̄) ⊆ q2(x̄) in Γ and a tuple ā in G such that ā ∈ q1(x̄) and ā 6∈ q2(x̄). The
latter can be checked in NLogspace from Proposition 1 and the fact that
NLogspace is closed under complement.
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Repairs. A repair of a database D under a set of constraints Γ is a database
D′ that satisfies Γ but “minimally” differs from D [2]. We formalize this idea
for graph databases and RPCs below, following closely its formalization in
the relational context [2].

The symmetric difference between two relational databases D and D′

is defined as a database D ⊕ D′ that contains those “facts” that belong
to (a) D but not to D′, or (b) to D′ but not to D. We can analogously
define the symmetric difference between two graph databases G = (V,E)
and G′ = (V ′, E ′) over the same alphabet Σ, as the graph database:

G⊕G′ :=
(
V ′′, (E ⊕ E ′)

)
,

where E ⊕ E ′ := (E \ E ′) ∪ (E ′ \ E) and V ′′ are the nodes mentioned in
E⊕E ′. That is, the edges of G⊕G′ are those edges that appear in either G
or G′ but not in both. Notice that G⊕G′ is also a graph database over Σ.

Three notions of set-based repairs have been studied in the literature [20]:
the subset, superset and symmetric difference repairs (⊆–, ⊇–, and ⊕–repairs,
respectively). We introduce them below in the context of graph databases.
Let G = (V,E) and G′ = (V ′, E ′) be two graph databases over Σ, and assume
that Γ is a finite set of RPCs over Σ. Then:

1. G′ is a ⊕-repair (i.e., symmetric difference repair) of G under Γ, if (1)
G′ |= Γ, and (2) there is no graph database G′′ over Σ such that G′′ |= Γ
and G⊕G′′ ( G⊕G′.

2. G′ is a ⊆-repair (i.e., subset repair) of G under Γ, if G′ ⊆ G and G′ is
a ⊕-repair of G. Equivalently, if (1) G′ ⊆ G, (2) G′ |= Γ, and (3) there
is no graph database G′′ over Σ such that G′′ |= Γ and G′ ( G′′ ⊆ G.

3. G′ is a ⊇-repair (i.e., superset repair) of G under Γ, if G ⊆ G′ and G′ is
a ⊕-repair of G. Equivalently, if (1) G ⊆ G′, (2) G′ |= Γ, and (3) there
is no graph database G′′ over Σ such that G′′ |= Γ and G ⊆ G′′ ( G′.

Example 2. (Example 1 cont.) Consider a graph database G whose set of
edges is:

{(a, child of, b), (b, sister of, c), (c, brother of, d)}.

Then G has two ⊆-repairs under Γ:

1. {(b, sister of, c)}, and

2. {(c, brother of, d)}.
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On the other hand, G has eight ⊇-repairs under Γ. One of them is the one
that extends G with edges:

{(a, son of, b), (b, sister of, d), (a, nephew of, c), (a, nephew of, d)}.

Finally, G has seven ⊕-repairs under Γ that are neither ⊆-repairs nor ⊇-
repairs. One of them is:

{(b, sister of, c), (c, brother of, d), (b, sister of, d)}.

Repairs might not exist in some situations. Consider an RPC of the form
L ⊆ ε, where ε is the empty word, and a graph database G that consists of
nodes u and v linked by a path labeled in L. Assume that G has a ⊇-repair
H. Then it must be the case that u = v in H, which is impossible. As the the
next lemma shows, on the other hand, ⊗- and ⊇-repairs exist in all possible
situations, while for ⊆-repairs it is sufficient to forbid C2RPCs q1 ⊆ q2 that
contain an atom of the form (x, ε, y) in q2 (this, in particular, forbids all
RPCs of the form L ⊆ ε).

Lemma 1. Let G = (V,E) be a graph database and Γ a finite set of C2RPCs
over Σ. Then:

1. There is a ⊆-repair and a ⊕-repair of G under Γ.

2. If Γ contains no C2RPC q1 ⊆ q2 such that q2 contains an atom of the
form (x, ε, y), then there is a ⊇-repair of G under Γ.

Proof. Let G = (V,E) be a graph database and Γ a finite set of C2RPCs.
The empty graph database G∅ = (∅, ∅) satisfies Γ. Hence, there is an ⊆-
repair H of G under Γ such that G∅ ⊆ H ⊆ G. By definition, H is also a
⊕-repair of G under Γ.

Assume now that Γ contains no C2RPC q1 ⊆ q2 such that q2 contains an
atom of the form (x, ε, y). Consider the graph database Gc = (V, V ×Σ×V )
that extends G with all possible edges between nodes. Therefore, if w is a
nonempty word over Σ and (u, v) is a pair of nodes in V , there is a path
from u to v in Gc labeled w. It is easy to see that Gc satisfies Γ. In fact,
by construction ā ∈ q2(Gc) for every tuple ā of nodes in G of the same
arity than x̄. Since G ⊆ Gc, there is a ⊇-repair H of G under Γ such that
G ⊆ H ⊆ Gc.
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Consistent query answering. We are now ready to define our most important
notion, that of a consistent answer to an C2RPQ. The consistent answers are
the pairs of nodes that belong to the evaluation of the C2RPQ over every
single repair of the original graph database.

Definition 1 (Consistent answers). Assume that ? ∈ {⊕,⊆,⊇}. Let G =
(V,E) be a graph database, Γ a set of C2RPCs, and q a C2RPQ, all of them
over Σ. We define the set ?-Cons(G, q,Γ) of ?-consistent answers of q over
G under Γ as follows:

?-Cons(G, q,Γ) =
⋂
{q(G′) : G′ is a ?-repair of G under Γ}.

Example 3. (Example 2 cont.) Consider the RPQ L = child of·sister of.
The pair (a, d) belongs to ⊇-Cons(G,L,Γ). This pair also belongs to ⊇-
Cons(G,L′,Γ), for L′ = nephew of ∪ niece of.

On the other hand, the only way in which a pair (u, v) can belong to
⊆-Cons(G,L′′,Γ), for an RPQ L′′, is when both u and v correspond to the
constant c. This is because the only element of G that belongs to both
⊆-repairs of G under Γ is c. Notice that this can only happen if L′′ = ε.

Here we study the data complexity of the problem of computing certain
answers. We formalize this decision problem as follows. Assume that q is a
C2RPQ and Γ is a finite set of C2RPCs over Σ. We denote by ?-CQA(q,Γ)
the problem of, given a graph database G = (V,E) over Σ and a tuple ā of
nodes in V , checking whether ā ∈ ?-Cons(G, q,Γ).

3. CQA under Subset Repairs

We start by proving that under the subset repair semantics our CQA
problem is ΠP

2 -complete. This holds even in the case in which all RPCs are
word constraints and the query is a non-recursive RPQ, i.e., an RPQ that
does not mention the Kleene-star.

Theorem 1. 1. For each C2RPQ q and finite set Γ of C2RPCs over the
same alphabet Σ, it is the case that ⊆-CQA(q,Γ) is in ΠP

2 .

2. There exist a finite alphabet Σ, a non-recursive RPQ L, and a finite set
Γ of word constraints over Σ, such that ⊆-CQA(L,Γ) is ΠP

2 -complete.

Proof. We start with the first part of the theorem, i.e., the upper bound. Fix
a C2RPQ q and a set Γ of C2RPCs. Let G be a graph database over Σ and
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ā a tuple of nodes in G. By definition, ā belongs to ⊆-Cons(G, q,Γ) if and
only if for each graph database H that is contained in G:

ā ∈ q(H) or there exists H ′ such that H ( H ′ ⊆ G and H ′ |= Γ.

Then the following ΣP
2 -algorithm checks if ā 6∈ ⊆-Cons(G, q,Γ): It guesses a

graph database H ′ that is contained in G, and then it checks that ā 6∈ q(H) –
which can be solved in polynomial time from Proposition 1 – and that there
is no H ′ such that H ( H ′ ⊆ G and H ′ |= Γ. The latter is in coNP since
H ′ is of polynomial size and checking whether H ′ |= Γ is in polynomial time
from Proposition 2. We conclude that ⊆-CQA(q,Γ) is in ΠP

2 .

Now we prove the second part of the theorem, i.e., the lower bound.
That is, we prove that there are an RPQ L0 and a set Γ0 of RPCs such that
⊆ -CQA(L0,Γ0) is ΠP

2 -hard. We do so by providing a reduction from the
quantified boolean satisfaction problem for ΠP

2 to ⊆-CQA(L0,Γ0).
But before doing so, we state the following lemma, which will be used

several times in this and other proofs.

Lemma 2. Let Γ be a set of RPCs. Suppose that H is a ?-repair of a graph
database G = (V,E) with respect to Γ, where ? ∈ {⊆,⊇,⊕}. Then:

• If a ∈ Σ is such that for all constraints L1 ⊆ L2 in Γ the symbol a does
not occur in L2, then aH ⊆ aG.

• If a ∈ Σ is such that for all constraints L1 ⊆ L2 in Γ the symbol a does
not occur in L1, then aG ⊆ aH .

Proof. We only prove the first item, the second one is similar. Let us assume
that for each L1 ⊆ L2 in Γ the symbol a does not occur in L2. Let H ′ be the
database obtained from H by removing the edges with labels a from u to v,
where (u, a, v) does not belong to E. Since for all constraints L1 ⊆ L2 in Γ
the symbol a does not occur in L2, this implies that if Γ is true in H, then
Γ remains true in H ′. Since H ′⊕G ⊆ H ⊕G, it follows from the minimality
condition of the repair H that H = H ′. In particular, aH ⊆ aG.

Let φ be a quantified boolean formula of the form ∀X0∃Y0ψ, where X0, Y0

are disjoint sets of variables and ψ is of the form:

(z11 ∨ z12 ∨ z13) ∧ · · · ∧ (zm1 ∨ zm2 ∨ zm3),
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where zij ∈ {x,¬x, y,¬y : x ∈ X0, y ∈ Y0} (1 ≤ i ≤ m, 1 ≤ j ≤ 3). For all
i, j, we define uij to be the propositional variable that is naturally associated
with the literal zij, i.e.,

uij =

{
zij if zij ∈ X0 ∪ Y0

u if zij is of the form ¬u.

Without loss of generality, we may assume that in each clause Ci := zi1 ∨
zi2 ∨ zi3, for 1 ≤ i ≤ m, there is at least one variable in Y0. Suppose for
example that the clause C1 of ψ contains only variables in X0. We construct
a new formula ψ′ defined by (z11∨z12∨y)∧ (¬y∨z12∨z13)∧C2∧· · ·∧ . . . Cn,
where y is a new fresh variable. We define Y ′0 as Y0 ∪ {y}. Then ∀X0 ∃Y0 ψ
is satisfiable iff ∀X0 ∃Y ′0 ψ is satisfiable.

We will define the RPQ L0, the constraints Γ0, and associate a graph
database Gφ with φ in such a way that:

φ is true iff (ns, ns) ∈ ⊆-Cons(Gφ, L0,Γ0),

where ns is a distinguished node of Gφ. The set V of nodes of the graph Gφ

is the following:

{nij : 1 ≤ i ≤ m, 1 ≤ j ≤ 3} ∪ {nt, nf , ns}.

We associate the node nij, for 1 ≤ i ≤ m and 1 ≤ j ≤ 3, with the occurrence
of propositional variable uij in literal zij. Observe that even if uij = ukl (with
(i, j) 6= (k, l)), the associated nodes nij and nkl, respectively, are distinct. We
also have three distinguished nodes ns, nt and nf .

For the definition of the graph database Gφ, we consider available an
arbitrary strict linear order on each equivalence class defined by the relation
{(nij, nkl) | uij = ukl} over the set V \ {ns, nt, nf}. In other words, we
assume the existence of an arbitrary linear order over each maximal subset
of {nij : 1 ≤ i ≤ m, 1 ≤ j ≤ 3} that is associated with the same propositional
variable from X0 ∪ Y0. Thus, we can naturally refer to a node in any such
set S as being the successor of another node in S.

The graph database Gφ. We define now the graph database Gφ in the the
following way:

• There is an empty relation e and a total relation s, i.e.:

eGφ = ∅ and sGφ = V × V.
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• There are loops labeled t and f over every node of the form nij ∈ V ,
that is:

tGφ = fGφ = {(nij, nij) : 1 ≤ i ≤ m, 1 ≤ j ≤ 3}.

• There are loops labeled t0 and t′0 on node nt and loops labeled f0 and
f ′0 on node nf :

t
Gφ
0 = (t′0)Gφ = {(nt, nt)} and f

Gφ
0 = (f ′0)Gφ = {(nf , nf )}.

• There is a loop labeled g on ns, i.e.:

gGφ = {(ns, ns)}.

• There are edges labeled w from ns to nt and nf :

wGφ = {(ns, nt), (ns, nf )}.

• There is a loop labeled w′ on ns:

(w′)Gφ = {(ns, ns)}.

• There is an edge labeled y from ns to each node representing an occur-
rence of a variable in Y0; that is:

yGφ = {(ns, nij) : uij ∈ Y0}.

• There are edges labeled z from nt and nf to each node representing an
occurrence of a variable in Y0; that is:

zGφ = {(nt, nij), (nf , nij) : uij ∈ Y0}.

• There is a loop labeled y′ on each node representing an occurrence of
variable in Y0:

(y′)Gφ = {(nij, nij) : uij ∈ Y0}.

• For each pair (nij, nkl) of nodes associated with the same propositional
variable such that nkl is the succesor of nij, there is an edge labeled d
from nij to nkl and an edge labeled d′ from nkl to nij:

dGφ = {(nij, nkl) : uij = ukl and nkl is the successor of nij}
and (d′)Gφ = (dGφ)−1.
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• For each pair of nodes representing consecutive literals in a clause of
ψ, there is an edge from the first to the second one representing the
polarity of such literals. Formally, we use symbols r++, r+−, r−+, and
r−− such that:

r
Gφ
++ = {(nij, ni(j+1)) : zij = uij, zi(j+1) = ui(j+1), 1 ≤ i ≤ m, 1 ≤ j ≤ 2},
r
Gφ
+− = {(nij, ni(j+1)) : zij = uij, zi(j+1) = ¬ui(j+1), 1 ≤ i ≤ m, 1 ≤ j ≤ 2},
r
Gφ
−+ = {(nij, ni(j+1)) : zij = ¬uij, zi(j+1) = ui(j+1), 1 ≤ i ≤ m, 1 ≤ j ≤ 2},
r
Gφ
−− = {(nij, ni(j+1)) : zij = ¬uij, zi(j+1) = ¬ui(j+1), 1 ≤ i ≤ m, 1 ≤ j ≤ 2}.

• Each sink node of an edge labeled rab, for a, b ∈ {+,−}, has a loop
labeled r′ab. Formally, we use symbols r′ab, for a, b ∈ {+,−}, such that:

(r′ab)
Gφ = {(ni(j+1), ni(j+1)) :

(nij, ni(j+1)) ∈ r
Gφ
ab for 1 ≤ i ≤ m and 1 ≤ j ≤ 2}.

The intuition behind Gφ is the following: Relation e is empty and s is the
full relation V ×V . Therefore, e remains empty in each ⊆-repair. Moreover,
the constraints in Γ0 will not mention s, and thus s remains being the full
relation in each such repair. For relations t and f , each node nij associated
with a variable from φ has loops labeled t and f . The ⊆-repairs will be such
that each such node has at most one loop, either with label t or f . This
allows us to define a partial map associating a truth value with each node
nij (true or > if the loop has label t, and false or ⊥ if the loop has label f).

The special node nt has a loop with label t0 and the special node nf has
a loop with label f0. The repairs will be such that if one of those two loops
“disappears”, then the answer of the RPQ L0 will trivially contain (ns, ns).

The relations r++, r−+, r+− and r−− express which variables occur in
the same clause and whether each variable occur positively or negatively.
The relation d specifies which nodes correspond to the same variable. The
constraints will be such that in a ⊆-repair, two nodes linked by d (thus
corresponding to the same variable) have loops with the same label (t or f).
Hence, the partial map associating a truth value to each node (> if the loop
has label t and ⊥ if the loop has label f), corresponds to a partial valuation
over the variables in X0 ∪ Y0.

The special node ns has a loop with label g. Such loop acts as a “witness”.
If such witness appears in a ⊆-repair, we say that ns gets activated. When
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ns is activated in a repair, the idea is that each node nij associated with a
variable in Y0 has a loop with label t or f . That is, each such node receives
a truth value (> if the loop has label t and ⊥ otherwise). Conversely, if in a
⊆-repair, one node associated with a variable in Y0 has a loop with label t or
f , then the presence of such loop “activates” the witness on ns (i.e. ns has
a loop with label g). As a consequence, all nodes associated with variables
in Y0 will have a loop. Basically, the node ns guarantees that either all the
nodes associated with variables in Y0 have a loop, or none of them has a loop.

In order to encode in the graph database Gφ which variables belong to
Y0, we add an edge with label y from the distinguished node ns to each node
of the form nij, for uij ∈ Y0. In such case, we also add edges labeled z from
the distinguished nodes nt and nf to nij.

We use the nodes nt and nf in the following way. Recall that in a given
⊆-repair, the (possible) truth value of a node is given by the label (either
t or f) of its loop. Now, for the nodes associated with a variable in Y0 we
have an extra way of encoding the truth value. If the truth value of a node
nij (with uij ∈ Y0) is true, this will also be witnessed by an arrow with label
z from the special node nt to nij (while the other arrow with label z from
nf to nij is deleted). If the truth value is false, this will be witnessed by an
arrow with label z from nf to nij.

Finally, we also have a set of relations of the form r′ with r ∈ R and

R := {d, y, w, t0, f0, r++, r−+, r+−, r−−}.

The role of those relations is as follows. Basically, each relation r ∈ R encodes
a type of information that we do not want to lose in a repair. The idea is
that if in a ⊆-repair H we “lose” one edge with label r, then we make sure
that (ns, ns) immediately belongs to the answer of the RPQ L0 in the repair.
Such a repair is called irrelevant; that is, a repair H such that rH 6= rGφ for
some r ∈ R. The RPCs in Γ0 will be defined in such a way that for each
⊆-repair H of Gφ and symbol r ∈ R, it is the case that rH = rGφ iff (r′)H

is empty. Or to say it differently, a repair is irrelevant iff it contains a loop
with label r′ for some r ∈ R.

The constraints in Γ0. We have six sets of constraints defined as follows:
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1. The first set of constraints (C1) is given by:

dd′ ⊆ e, t0t
′
0 ⊆ e,

f0f
′
0 ⊆ e, yy′ ⊆ e,

rabr
′
ab ⊆ e, w′w ⊆ e,

where a, b ∈ {+,−}. Basically, (C1) contains all the constraints ensur-
ing that a repair is irrelevant iff it contains an edge with label r′ for
some r ∈ R. If H is a ⊆-repair of Gφ and rH = rGφ , then using the
constraints (C1) and the fact that e is empty, we can show that (r′)H

must be empty. Moreover, if rH 6= rGφ , using the minimality property
of repairs we can show that H must contain an edge with label r′.

2. The second set of constraints (C2) is given by:

tf ⊆ e.

Since e is empty, it says that a node cannot have both a loop with label
t and f in a ⊆-repair.

3. The third set of constraints (C3) is given by:

td ⊆ dt and fd ⊆ df.

It expresses that if two nodes are linked by d (hence, they are associated
with the same variable), then they must have a loop with the same label
(in case they have a loop). This guarantees that the map associating a
truth value to each node (depending on the label of the loop), can be
transformed into a valuation over the variables.

4. The fourth set of constraints (C4) is given by:

F (a)rabF (b)rbcF (c) ⊆ e,

where a, b, c ∈ {+,−}, F (+) = f and F (−) = t. In a relevant ⊆-repair
of Gφ, such constraints state that the formula ψ is not false under the
valuation associated with the repair.

5. The fifth set of constraints (C5) corresponds to:

t0z ⊆ zt, f0z ⊆ zf.

They express that if nt is linked to a node nij associated with a variable
in Y0, then nij has a loop with label t. Similarly, if nf is linked to such
a node nij, then it has a loop with label f .
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Indeed, let us look for example at the constraint t0z ⊆ zt. Suppose
that there is a path with label t0z from a node u to a node v. Since
in Gφ the interpretation of t0 only contains the pair (nt, nt) and the
interpretation of z contains all pairs of the form nij, for uij ∈ Y0, it
follows that u = nt and v is a node of the form nij (with uij ∈ Y0).
Now, since t0z ⊆ zt, this implies that nij has a loop with label t.
In combination with constraint (C6b) below, this means that if ns is
activated, then each node nij associated with a variable in Y0 has a
loop with label t or f .

6. The sixth set of constraints is divided as (C6a) and (C6b). The con-
straints in (C6a) are given by:

yt ⊆ gy and yf ⊆ gy,

while the constraint (C6b) is given by:

gy ⊆ wz.

The constraints (C6a) express that if one node associated with a vari-
able in Y0 has a loop with label t or f , then the node ns is activated
(i.e. it has a loop with label g). Indeed, if there is a path with label
yt from a node u to a node v, then u must be ns and v a node of the
form nij with uij ∈ Y0 . Since yt ⊆ gy, the presence of the loop with
label t and the fact that uij is in Y0, imply that there is an edge with
label g. That is, ns is activated.
The constraint (C6b) expresses that if the node ns is activated (i.e., it
has a loop with label g), then each node nij associated with a variable
in Y0 is linked via the inverse of z to either to the node nt or to the
node nf . Together with the constraints (C5), this means that if ns is
activated, then each node nij associated with a variable in Y0 has a
loop with label t or f .

The RPQ L0. Finally, the RPQ L0 is defined as:

s · (y′ + d′ + r′++ + r′−+ + r′+− + r′−− + t′ + f ′ + w′ + g) · s.

We can think of L0 as the union of the RPQ sgs and the RPQ L′0 given by:

s · (y′ + d′ + r′++ + r′−+ + r′+− + r′−− + t′0 + f ′0 + w′) · s.
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The answer of L′0 is V × V in all the irrelevant repairs, that is, the repairs
admitting an edge with label r′ for some r ∈ R. The answer of sgs is V × V
in the repairs admitting an edge with label g, that is, the repairs in which
ns is activated. Recall that this means that the partial valuation associated
with the repair assigns a truth value to all the variables in Y0.

The proof. We prove next that:

φ is true iff (ns, ns) ∈ ⊆-Cons(Gφ, L,Γ0). (2)

Implication from left to right. Suppose that φ holds and H is an arbitrary
⊆-repair of Gφ with respect to Γ0. We have to prove that (ns, ns) belongs to
the answer of L0 in H. Suppose for contradiction that this is not the case.
In order to derive a contradiction, we proceed in the following way.

(a) We first prove a preliminary result establishing that for each r in:

R = {d, y, r++, r−+, r+−, r−−, w, t0, f0},

it is the case that rH = rGφ .

(b) Next we show that there is a valuation VX defined over the variables in
X0, such that for each uij ∈ X0 it is the case that VX(uij) = > (resp.
VX(uij) = ⊥) iff in H there is a loop labeled t (resp., f) on nij.

(c) Using the fact that φ is true, we know that there must be a valuation VY
for the variables in Y0 such that ψ is satisfied by the valuation VX ∪VY .

(d) We use the valuation VY to define a graph database HY such that (1)
H ( HY ⊆ Gφ, and (2) HY |= Γ0. This contradicts the fact that H is
a ⊆-repair of Gφ.

We start by proving (a).

Claim 1. For each relation r in R = {d, y, r++, r−+, r+−, r−−, w, f0, t0}, it
is the case that rH = rGφ.

Proof. We only prove the claim for the relation y. The other proofs are
similar. Intuitively, the claim holds for the following reason. If yH ( yG

φ
,

then using the minimality of H and the constraints (C1), we can show that
(y′)H is not empty. This would imply that (ns, ns) belongs to the answer of
L0 in H, which is a contradiction.
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Formally, suppose for contradiction that yH 6= yGφ . That is, there is a
pair (ns, nij) that belongs to yGφ but not to yH . We let H ′ be the database
obtained from H by adding a loop with label y′ to the node nij. Using the
facts that Γ0 holds in H and (ns, nij) does not belong to yH , we can prove
that Γ0 remains true in H ′. Indeed, this is clear for all the constraints, except
for the only constraint that mentions y′, i.e. the following RPC in (C1):

yy′ ⊆ e.

We added an edge with label y′ from nij to nij to obtain H ′. However, the
constraint above remains true, as the path (ns, y, nij) does not belong to H ′.

Since H is a ⊆-repair of Gφ and H ⊆ H ′ ⊆ Gφ, we have H = H ′.
Moreover, the RPCs in Γ0 do not mention the symbol s, and therefore sH =
sGφ = V ×V . In particular, the path (ns, s, nij)(nij, y

′, nij)(nij, s, ns) belongs
to H. This implies that (ns, ns) belongs to the answer of L0 in H, which is
a contradiction.

We prove (b). To show that such a valuation VX exists, we have to prove
that for all uij, ukl ∈ X0:

(i) nij has exactly one loop, either with label t or with label f ,

(ii) if uij = ukl, then nij has a loop labeled t iff nkl has a loop labeled t.

We prove (i). Since e is empty in Gφ and H is a subset of Gφ, we have
that eH = ∅. Since H is a ⊆-repair of Gφ, the constraint tf ⊆ e in (C2)
holds in H. As e is empty in H, this means that no node nij representing
an occurrence of a variable uij in X0 has loops labeled t and f , respectively.
Moreover, using the maximality condition of repairs, we can show that each
node has at least one loop with label t or f .

Now we prove (ii). Intuitively, this comes from the fact that the con-
straints td ⊆ dt and fd ⊆ df hold in H. Take any pair of nodes nij and nkl
such that uij = ukl and nkl is the successor of nij. We prove that:

If nij has a loop with label t, then nkl has a loop with label t. (3)

Similarly, we can show that:

If nij has a loop with label f , so does nkl. (4)

Notice that (3) and (4) are sufficient to prove that (ii) holds. Indeed, (3)
establishes the direction from left to right of (ii). For the direction from right
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to left, suppose that nkl has a loop with label t. Suppose for contradiction
that nij does not have a loop with label t. By (i), this implies that nij has
a loop with label f . Hence, from (4), nkl has a loop with label f . This
contradicts (i) and the fact that nkl has a loop with label t.

We only prove (3), as (4) is analogous. It follows from Claim 1 that
dH = dGφ . Since uij = ukl and nkl is the successor of nij, this implies that
there is an edge with label d from nij to nkl in H. Since nij has a loop with
label t in H, it follows that there is a path with label td from nij to nkl.
Recall that the constraint td ⊆ dt in (C3) holds in H. Hence, there must be
a path with label dt from nij to nkl. Since H is a subset of Gφ and given
the definition of Gφ, the existence of such a path implies that nkl has a loop
with label t. This finishes the proof of (ii) and (b).

Using the fact that φ is true, we know that exists a valuation VY over
the variables in Y0 such that ψ is satisfied by the valuation VX ∪ VY . This
establishes (c).

Now we establish (d); that is, we construct a graph database HY such that
H ( HY ⊆ Gφ and HY |= Γ0. We construct HY in the following way. For
each relation r /∈ {g, t, f, z}, we define rHY as rH . The relations in {g, t, f, z}
are as follows:

gHY = {(ns, ns)},
tHY = {(nij, nij) : VX(uij) = > or VY (uij) = >},
fHY = {(nij, nij) : VX(uij) = ⊥ or VY (uij) = ⊥},
zHY = {(nt, nij) : VY (uij) = >} ∪ {(nf , nij) : VY (uij) = ⊥}.

We start by checking that the constraints in Γ0 hold in HY . The con-
straints in (C1) are true because they were true in H and our changes do
not affect them. The constraint tf ⊆ e in (C2) holds by definition of t and f
and because VX and VY are valuations (i.e., no node has loops labeled both
t and f). The constraints in (C3) are true because nodes associated with
occurrences of the same variable have the same loops by definition of t and
f and because VX and VY are valuations.

The constraints in (C4), i.e., those of the form F (a)rabF (b)rbcF (c) ⊆ e,
where a, b, c ∈ {+,−}, F (+) = f and F (−) = t, also hold in HY . This is by
definition of t and f and because ψ is satisfied by the valuation VX∪VY (that
is, at least one literal in each clause has a loop with label t under VX ∪ VY ).
The constraints in (C5), i.e., t0z ⊆ zt and f0z ⊆ zf hold in HY by definition
of t, f , t0, f0 and z. The constraints yt ⊆ gy and yf ⊆ gy in (C6a) hold
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because in HY the node ns has a loop labeled g. Finally, the constraint
gy ⊆ wz in (C6b) holds because by definition of HY , if uij ∈ Y0 then there
is a path with label z from nt or nf to nij, and there are edges with label w
from ns to nt and nf .

Since HY ⊆ Gφ by definition, in order to prove (d) it only remains to
show that H is a strict subset of HY . Clearly, H 6⊆ HY since H does not
have a loop labeled g in ns; otherwise, there would be a path labeled sgs
from ns to itself in H, implying that (ns, ns) belongs to L0(H). This is a
contradiction. Therefore, we only need to prove that H ⊆ HY . By definition,
for each r /∈ {g, t, f, z} we have that rH ⊆ rHY . Moreover, since gHY = gGφ ,
we also have gH ⊆ gHY . In the following we prove this for r ∈ {z, t, f}.

To start with, we prove the following statement:

(†) For each uij ∈ Y0, it is the case that nij does not have loops in H.

Intuitively, this comes from the fact that we are assuming for contradiction
that (ns, ns) does not belong to the answer of L0 in H. In fact, this implies
that the “witness loop” with label g does not appear in H. Hence, no node
associated with a variable in Y0 gets a value. We formalize this below.

Let uij be a variable in Y0. Assume for the sake of contradiction that nij
has a loop labeled t in H (the case when the loop is labeled f is analogous).
Notice that yH = yGφ by (a). In particular, there is an edge with label y in
H from ns to nij. Together with the fact that that nij has a loop labeled
t, this means that there is a path with label yt from ns to nij. Since the
constraint yt ⊆ gy holds in H, there is path from ns to nij with label gy. In
particular, there is a loop labeled g on ns. Therefore, there is a path from
ns to itself labeled sgs, i.e., (ns, ns) belongs to the answer of L0 in H. This
is a contradiction. This finishes the proof of (†).

To finish the proof it is sufficient to show that:

(I) zH = ∅,

(II) tH = {(nij, nij) : VX(uij) = >}, and

(III) fH = {(nij, nij) : VX(uij) = ⊥}.

We prove (I), that is zH = ∅. Assume for the sake of contradiction that
there is a pair in zH . Since H ⊆ Gφ, this pair must be of the form (v, nij),
where v = nt or v = nf and uij belongs to Y0. We treat the case v = nt,
as the other case is analogous. By (a), the node nt has a loop with label t0
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in H. Hence, there is a path with label t0z from nt to nij. Now, since the
constraint t0z ⊆ zt holds in H, there is a path with label zt from nt to nij.
By definition of Gφ, if there is an outgoing edge from nij with label t, this
can only happen if nij has a loop labeled t. This contradicts (†) and the fact
that uij belongs to Y0.

Next we prove (II), the proof of (III) is similar. The inclusion from right
to left follows from (b). For the inclusion from left to right, consider an
arbitrary pair in tH . Since H ⊆ Gφ, this pair must be of the form (nij, nij).
By (†), we have that uij does not belong to Y0, i.e., it belongs to X0. From
(b) we conclude that VX(uij) = >. This finishes the proof of (II) and the
proof of (d). It also finishes the left-to-right direction of the proof.

Implication from right to left. Suppose that for every ⊆-repair H of Gφ it is
the case that (ns, ns) belongs to the answer of L0 in H. We prove that φ
is satisfiable. Let VX be an arbitrary valuation defined over the variables in
X0. We will define a valuation VY over the variables in Y0 such that ψ is true
under the valuation VX ∪ VY .

The idea is as follows:

(a) Using the valuation VX , we define a graph database HX satisfying the
constraints Γ0.

(b) We pick an arbitrary ⊆-repair H ′X of Gφ such that HX ⊆ H ′X ⊆ Gφ.

(c) By assumption, (ns, ns) belongs to the answer of L0 in H ′X . We prove
that this implies that g is not empty in H ′X .

(d) Using the fact that g is not empty in H ′X , we define a valuation VY
such that ψ is true under the valuation VX ∪ VY .

We start by defining the graph database HX as follows. For each:

r ∈ {e, g, t′0, f ′0, y′, d′, w′, r′++, r
′
−+, r

′
+−, r

′
−−, z},

we define rHX as the empty set. Further, for each:

r ∈ {s, y, d, w, r++, r−+, r+−, r−−, t0, f0},

we define rHX as rGφ . For the remaining relations, namely, t and f , we have
the following:

tHX = {(nij, nij) : VX(uij) = >}
fHX = {(nij, nij) : VX(uij) = ⊥}.
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We can check that all constraints in Γ0 hold in HX . Indeed, the con-
straints in (C1) vacuously hold because the relations d′, t′0 f

′
0, y′, w′, and

r′ab, for a, b ∈ {+,−}, are empty. The constraint tf ⊆ e in (C2) and the
constraints td ⊆ dt and fd ⊆ df in (C3) hold because VX is a valuation. In
addition, the constraints in (C4) of the form F (a)rabF (b)rbcF (c) ⊆ e vacu-
ously hold because we have assumed that every clause of ψ contains at least
one variable from Y0 and relations t and f in HX are not defined in nodes
representing occurrences of variables in Y0. The constraints t0z ⊆ zt and
f0z ⊆ zf in (C5) vacuously hold because z is empty in HX . The constraints
yt ⊆ gy and yf ⊆ gy in (C6a) hold because no node nij, with uij ∈ Y0, has
loops. Finally, the constraint gy ⊆ ww in (C6b) holds because g is empty.
In conclusion, HX |= Γ0.

Hence, there is a ⊆-repair H ′X of Gφ such that HX ⊆ H ′X ⊆ Gφ. By
assumption, (ns, ns) belongs to the answer of L0 in H ′X . We prove that g is
not empty in H ′X . We start by proving the following preliminary result.

Claim 2. For each r ∈ {y′, d′, t′0, f ′0, w′, r′++, r
′
−+, r

′
+−, r

′
−−}, it is the case

that rH
′
X is empty.

Proof. We only prove the claim for y′, the other proofs are similar. Suppose
for contradiction that there is an edge with label y′ from nij to nij in H ′X .
By definition of y′, it is the case that uij ∈ Y0. Since yHX = yGφ and
HX ⊆ H ′X ⊆ Gφ, we also have yH

′
X = yGφ . In particular, there is an edge

with label y from ns to nij . Together with the fact that nij has a loop with
label y′, this implies that there is a path with label yy′ from ns to nij. But
H ′X satisfies the constraint yy′ ⊆ e in (C1), and thus (ns, nij) ∈ e. This
contradicts the fact that eH

′
X ⊆ eGφ = ∅.

Recall now that (ns, ns) belongs to the answer of the RPQ:

L0 = s · (y′ + d′ + t′0 + f ′0 + w′ + r′++ + r′−+ + r′+− + r′−− + g) · s.

Together with the previous claim, this implies that there is an edge with
label g in H ′X . This finishes the proof of (c).

We define now a valuation VY using the database H ′X . The valuation VY
is such that for all uij ∈ Y0:

nij has a loop with label t (resp. f) iff VY (uij) = > (resp. ⊥). (5)

Intuitively, there is such a valuation because there is a “witness” loop with
label g in H ′X . The existence of such loop, together with the constraint (C6b),
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guarantee that for each node nij, with uij ∈ Y0, there is an edge labeled z
from nt or nf to nij. Using the constraints in (C5), we can see that this
implies the existence of a loop with label t or f at the node nij. A node
cannot have both because of constraint (C2). Moreover, nodes associated
with the same variable have loops with the same labels because of (C3).

Formally, in order to prove that such a valuation VY exists, it is enough
to show that for all uij, ukl ∈ Y0, the following holds:

(α) nij has a loop labeled t or one labeled f ,

(β) if uij = ukl, the node nij has a loop with label t (resp. f) iff nkl has a
loop with label t (resp. f).

We prove (α). By definition of yHX and since g is not empty in H ′X , there
is a path labeled gy from ns to nij. Since gy ⊆ wz holds in H ′X , there is an
edge labeled z from nt or nf to the node nij. Suppose that the edge starts
at the node nt, the other case is analogous. Since nt has a loop with label t0
in H ′X , there is a path with label t0z from nt to nij in H ′X . As the constraint
t0z ⊆ zt holds in H ′X , there is a path with label zt from nt to nij. This
implies that nij has a loop with label t in H ′X . Thus, in order to prove (α),
it remains to show that nij cannot have both loops with label t and f . This
follows easily from the fact that tf ⊆ e holds in H ′X and e is empty in H ′X .

The proof that (β) is true comes from the fact that the constraints td ⊆ dt
and fd ⊆ df are true. We do not give details here as it is essentially the
same proof as the proof of (b)(ii) in the implication from left to right. This
finishes the proof that there is a valuation VY satisfying (5) for all uij ∈ Y0.

It remains to prove that ψ is true under VX ∪ VY . This basically comes
from the following facts: (1) if uij is true (resp. false) under VX ∪ VY ,
then nij has a loop with label t (resp. f) in H ′X , and (2) the constraint
F (a)rabF (b)rbcF (c) ⊆ e holds in H ′X , for each a, b, c ∈ {+,−} where F (+) =
f and F (−) = t.

Formally let zi1 ∨ zi2 ∨ zi3 be a clause in ψ. We only prove it for the
case when the clause is of the form ui1 ∨ ¬ui2 ∨ ¬ui3; the other cases are
analogous. Suppose for the sake of contradiction that this clause is not
satisfied by VX ∪VY . That is, ui1 is false and both ui2 and ui3 are true under
VX ∪ VY . If ui1 belongs to Y0, we have by (5) that ni1 has a loop with label
f in H ′X . If ui1 belongs to X0, by definition of HX we have that ni1 has a
loop with label f in HX . Since HX ⊆ H ′X , it is the case that ni1 has a loop
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with label f in H ′X , regardless of whether uij belongs to X0 or Y0. Similarly,
we can show that ni2 and ni3 have loops with label t in H ′X .

Now, since ui1 ∨¬ui2 ∨¬ui3 is a clause, we have by definition of r+− and
r−− that the path (ni1, r+−, ni2)(ni2, r−−, ni3) belongs to H ′X . Together with
the facts that ni1 has a loop with label f and ni2 and ni3 have loops with
label t, we obtain that fr+−tr−−t is the label of a path from ni1 to ni3 in
H ′X . Since e is empty, this contradicts the fact that the constraints (C4) are
true in H ′X . This finishes the proof that ψ is satisfied by VX ∪ VY .

3.1. Interpreting RPCs from the origin

In the original proposal of Abiteboul and Vianu, RPQs, and therefore
RPCs, are only evaluated from a particular node called the origin. This is
motivated by their application over semistructured data. Such interpretation
has also been studied recently for 2RPCs in [19]. Formally, let o be a fixed
node id that we identify as the origin. A graph database G = (V,E) satisfies
the 2RPC L1 ⊆ L2 from the origin, denoted G |=o L1 ⊆ L2, if and only if
the origin o belongs to V and the following holds:

{v ∈ V : (o, v) ∈ L1(G)} ⊆ {v ∈ V : (o, v) ∈ L2(G)}.

If Γ is a set of 2RPCs, we write G |=o Γ if G |=o L1 ⊆ L2 for each 2RPC
L1 ⊆ L2 in Γ. (We restrict our attention to constraints given as 2RPCs only,
as the origin semantics is specially tailored for them).

We can now modify the definition of repairs and consistent answers with
respect to the restricted |=o interpretation of 2RPCs. Assume ? ∈ {⊆,⊇,⊕}.
An {o, ?}-repair of a graph database G under a set of 2RPCs Γ is defined
exactly as an ?-repair of G under Γ, except that now the satisfaction of the
2RPCs in Γ is defined with respect to the relation |=o. (For safety reasons,
we assume that G contains the origin o in this case). For instance, G′ is a
{o,⊆}-repair of G under Γ, if (1) G′ ⊆ G, (2) G′ |=o Γ, and (3) there is no
graph database G′′ such that G′ ( G′′ ⊆ G and G′′ |=o Γ.

Furthermore, if q is a C2RPQ and Γ is a finite set of 2RPCs, we define
{o, ?}-CQA(q,Γ) as the problem of, given a graph database G = (V,E) and
a tuple ā of nodes in V , checking whether ā is an {o, ?}-consistent answer of
q over G under Γ, i.e., if ā ∈ q(G′), for each {o, ?}-repair G′ of G under Γ.

We show next that interpreting RPCs under the origin semantics does
not help lowering the complexity of the CQA problem under ⊆-repairs. This
is relevant, since we show on the other hand in Section 4.1 that the origin
semantics does help when computing certain answers under ⊇-repairs.
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In particular, we establish the following:

Proposition 3. 1. For each C2RPQ q and finite set Γ of 2RPCs over the
same alphabet Σ, it is the case that {o,⊆}-CQA(q,Γ) is in ΠP

2 .
2. There exist a finite alphabet Σ, a non-recursive RPQ L, and a finite

set Γ of word constraints over Σ, such that checking whether (o, o) is
an {o, ?}-consistent answer of L over G under Γ is ΠP

2 -complete.

Proof. The upper bound is obtained in exactly the same way than the upper
bound in Theorem 1. We prove the lower bound next, i.e., there are an RPQ
L1 and a set Γ1 of word constraints such that ⊆-CQA(L1,Γ1) is ΠP

2 -hard. In
particular, we define an RPQ L1, a set Γ1 of word constraints, and construct
in polynomial time a graph database G′φ from φ in such a way that:

φ is satisfiable ⇐⇒ (o, o) ∈ {o,⊆}-Cons(G′φ, L1,Γ1). (6)

(Recall that φ is a quantified boolean formula of the form ∀X0∃Y0ψ, where
X0, Y0 are disjoint sets of variables and ψ is of the form:

(z11 ∨ z12 ∨ z13) ∧ · · · ∧ (zm1 ∨ zm2 ∨ zm3),

where zij ∈ {x,¬x, y,¬y : x ∈ X0, y ∈ Y0}, for 1 ≤ i ≤ m and 1 ≤ j ≤ 3).
To do this, we provide a slight modification of the reduction used in the

proof of the lower bound of Theorem 1. Recall that in such proof we defined
an RPQ L0, word constraints Γ0, and constructed in polynomial time a graph
database Gφ from φ in such a way that:

φ is satisfiable ⇐⇒ (ns, ns) ∈ ⊆-Cons(Gφ, L0,Γ0). (7)

Our modification is as follows:

• Recall that V is the set of nodes in Gφ. The graph database G′φ extends
the graph database Gφ in the following way: We add an extra node,
namely, the origin o. We add edges with label b from o to all nodes in
V , and edges with label b′ from all nodes in V to o. Finally, we extend
relation s with all pairs of nodes in (V ∪ {o})× (V ∪ {o}).

• The set Γ1 of constraints modifies Γ0 as follows. We replace each word
constraint of the form w1 ⊆ w2 in Γ0 with the word constraint:

bw1 ⊆ bw2.

Also, we add the word constraint:

bb′ ⊆ e.
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• Finally, we replace the RPQ L0 by the RPQ:

L1 := L0 + sb′s.

The following claim is the crux of our proof:

Claim 3. 1. Let G ⊆ Gφ such that G |= Γ0. Assume that H is the
extension of G that adds all edges labeled b in G′φ (i.e., all edges from
the origin o to the nodes in V ). Then H |=o Γ1.

2. Let G ⊆ G′φ such that G |=o Γ1 and G contains all edges labeled b from
G′φ (i.e., all edges from the origin o to the nodes in V ). Assume that
H is the graph database that is obtained by removing the origin o (and
thus all edges labeled b) from G. Then H |= Γ0.

Proof. We start with (1). Take first an arbitrary word constraint of the form
bw1 ⊆ bw2 in Γ1 such that w1 ⊆ w2 is in Γ0. By definition of Γ0, the word
w1 must be nonempty. Assume then that there is a path labeled bw1 in H.
This path starts in o and then follows a nonempty path π labeled w1 from
a node u to a node v. By construction of H, the path π must belong to G.
But G |= Γ0, and, therefore, G |= w1 ⊆ w2. Thus the nodes u and v are
also linked by a path labeled w2 in G. Then by the way H is constructed
from G, there is a path labeled bw2 from o to v in H. This proves that
H |=o bw1 ⊆ bw2. Moreover, it is also the case that H |=o bb

′ ⊆ e since there
is no edge labeled b′ in H. We conclude that H |=o Γ1.

Now we prove (2). There are two classes of word constraints in Γ0: Those
in (C1), (C2), and (C4), which are of the form w1 ⊆ e, and those in (C3),
(C5), and (C6), which are of the form w1 ⊆ w2, for w2 a word different from
e. We show first that each constraint of the form w1 ⊆ e in (C1), (C2), or
(C4) holds in H. By assumption, G |=o Γ1, and thus G |=o bw1 ⊆ be. This
implies that if a pair of the form (o, v) is linked by a path labeled bw1 in G,
it is also linked by a path labeled be. But e is empty in G′φ, and thus there
is no path labeled be in G. We conclude then that there is no path labeled
bw1 in G. By construction, this can only happen if there is no path labeled
w1 in H. Therefore, H |= w1 ⊆ e.

Consider now the constraints in (C3), (C5), and (C6). We only consider
the word constraint gy ⊆ wz in (C6b), since all other cases are proved using
exactly the same reasoning. Assume then that there is a pair of nodes in
H that is linked by a path labeled gy. By definition of Gφ, this path must
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start in node ns, where it witnesses the loop g, and then continue via an
edge labeled y to a node of the form nij such that uij ∈ Y0. By assumption,
G |=o Γ1, and thus G |=o bgy ⊆ bwz. Since there is a path labeled bgy from
o to nij in G, it must be the case then that there is a path labeled bwz from
o to nij in G. But by definition of Gφ and G′φ, this path must go from o to
ns via an edge labeled b, and then continue from ns to nij via a path labeled
wz. Therefore, there is a path labeled wz from ns to nij in H. We conclude
then that H |= gy ⊆ wz.

We now prove (6); that is:

φ is satisfiable ⇐⇒ (o, o) ∈ {o,⊆}-Cons(G′φ, L1,Γ1).

Implication from right to left. Assume that (o, o) ∈ {o,⊆}-Cons(G′φ, L1,Γ1).
We prove next that (ns, ns) ∈ ⊆-Cons(Gφ, L0,Γ0). This implies that φ is
satisfiable from (7).

In fact, assume for contradiction that (ns, ns) 6∈ ⊆ -Cons(Gφ, L0,Γ0).
Then there is a ⊆-repair H of Gφ under Γ0 such that (ns, ns) 6∈ L0(H). Let
H ′ be the graph database that extends H with all edges labeled b connecting
the origin o with the nodes in V . We prove next that H ′ is an {o,⊆}-repair
of G′φ under Γ1 such that (o, o) 6∈ L1(H ′). This contradicts the fact that
(o, o) ∈ {o,⊆}-Cons(G′φ, L1,Γ1), thus finishing the proof.

We start by proving that H ′ is an {o,⊆}-repair of G′φ under Γ1. It follows
from the first part of Claim 3 that H ′ |=o Γ1. This is because H ⊆ Gφ, it is
the case that H |= Γ0, and H ′ is the extension of H with all edges labeled b
from G′φ. Assume now for the sake of contradiction that there is an H ′′ such
that H ′ ( H ′′ ⊆ G′φ and H ′′ |=o Γ1. Then all edges in H ′′ that do not belong
to H ′ must belong to Gφ. Assume otherwise. Then H ′′ extends H ′ with (i)
an edge labeled s, (ii) an edge labeled b, or (iii) an edge labeled b′. Case (i)
is impossible. This is because H ′ is an {o,⊆}-repair of G′φ under Γ1, and

Γ1 does not mention s. Therefore, sH
′

= sG
′
φ . Case (ii) is also impossible,

since all edges labeled b are already in H ′ by definition. Finally, case (3) is
impossible. Otherwise H ′′ 6|=o bb

′ ⊆ e, which is a contradiction.
Therefore, the restriction H0 of H ′′ to the edges in Gφ satisfies that H (

H0 ⊆ Gφ. Moreover, H0 |= Γ0. This follows directly from the second part of
Claim 3, since H ′′ |=0 Γ1 and H ′′ contains all edges labeled b from G′φ. We
conclude that H is not a ⊆-repair of Gφ under Γ0, which is a contradiction.

We finally prove that (o, o) 6∈ L1(H ′). Assume otherwise. Then it must
be the case that there is a path labeled L1 in H ′. But H ′ contains no
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edge labeled b′, which implies that there is a path labeled L0 in H ′. By
construction, this path is labeled sas, where a is a symbol different from b
and s. This means that there is an edge labeled a also in H. Moreover,
since Γ0 does not mention the symbol s and H is a ⊆-repair of Gφ under
Γ0, it is the case that sH = sGφ = V × V . We conclude that there is a path
labeled sas from ns to ns in H, and thus that (ns, ns) ∈ L0(H). This is a
contradiction.

Implication from left to right. Assume that φ is satisfiable, and for the sake
of contradiction that (o, o) 6∈ {o,⊆}-Cons(G′φ, L1,Γ1). We prove next that
(ns, ns) 6∈ ⊆-Cons(Gφ, L0,Γ0), thus contradicting (7).

Since (o, o) 6∈ {o,⊆}-Cons(G′φ, L1,Γ1), there is an {o,⊆}-repair H ′ of G′φ
under Γ1 such that (o, o) 6∈ L1(H ′). Therefore, H ′ ⊆ G′φ and H ′ |=o Γ1.
Moreover, H ′ contains all edges labeled b from Gφ. Assume otherwise, i.e.,
there is a node v ∈ V such that there is no edge labeled b from o to v. By
the maximality property of ⊆-repairs, it must be the case then that there
is an edge labeled b′ from v to o (as, otherwise, we could extend H ′ with
such an edge without violating Γ1). Moreover, since Γ1 does not mention
the symbol s and H ′ is an {o,⊆}-repair of G′φ under Γ1, it is the case that

sH
′
= sG

′
φ = (V ∪{o})× (V ∪{o}). We conclude that there is a path labeled

sb′s from o to o in H ′, and thus that (o, o) ∈ L1(H ′). This is a contradiction.
We obtain then from the previous paragraph and the second part of Claim

3, that removing the origin o from H ′ (and thus all nodes labeled b) yields
an H such that H ⊆ Gφ and H |= Γ0. We show next that H is a ⊆-repair of
Gφ under Γ0 such that (ns, ns) 6∈ L0(H). This is our desired contradiction.

Assume first, for the sake of contradiction, that H is not a ⊆-repair of
Gφ under Γ0. Since H |= Γ0, it must be the case that there is an H0 such
that H ( H0 ⊆ Gφ and H0 |= Γ0. Let H ′0 be the extension of H0 with all
edges labeled b from the origin o to the nodes in V . Then H ′0 |=o Γ1 from
the first part of Claim 3. Moreover, since H ( H0 ⊆ Gφ it must be the
case by construction that H ′ ( H ′0 ⊆ G′φ. We conclude that H ′ is not an
{o,⊆}-repair of G′φ under Γ1, which is a contradiction.

We finally prove that (ns, ns) 6∈ L0(H). Assume otherwise. Then it must
be the case that there is a path labeled L0 in H. By definition of L0, this
path is labeled sas, where a is a symbol mentioned in Gφ. Now, since Γ1

does not mention the symbol s and H ′ is an {o,⊆}-repair of G′φ under Γ1, it

is the case that sH
′
= sG

′
φ = (V ∪{o})× (V ∪{o}). Therefore, there is also a

path labeled sas from o to o in H ′. We conclude that (o, o) ∈ L0(H ′), which
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implies that (o, o) ∈ L1(H ′). This is a contradiction.

3.2. Tractable restrictions

Due to the inherent high complexity of our CQA problem under the subset
repair semantics, it is important to look for meaningful restrictions leading
to tractability. We provide two such restrictions in this section. The first
one is based on the class of LAV RPCs, and the second one on the class of
graph databases of bounded treewidth.

Restricting RPCs. In the relational case, the data complexity of CQA for
CQs under the class of LAV tgds (i.e., tgds with a single atom in the left-
hand side [35]) is tractable. This actually holds for any of the three repair
semantics [20]. The direct analogue of LAV tgds in our setting is the class of
LAV C2RPCs, which are C2RPCs with a single symbol in the left-hand side.
Formally, a LAV C2RPC over Σ is a C2RPC of the form (x, a, y) ⊆ q(x, y),
where a is a symbol in Σ or the inverse of a symbol in Σ, and q is a C2RPQ
over Σ with free variables x, y. Correspondingly, a LAV RPC is a constraint
of the form a ⊆ L, for a ∈ Σ and L a RPQ. We can leverage the techniques
used to study CQA under LAV tgds to prove tractability in data complexity
for the CQA problem for C2RPQs under LAV C2RPCs.

Theorem 2. For each C2RPQ q and finite set Γ of LAV C2RPCs over the
same alphabet Σ, it is the case that ⊆-CQA(q, Γ) is in NLogspace.

Proof. The proof is an immediate adaption of the proof of Theorem 4.4
in [20]. We still provide it, as it is short. Let Γ be a set of constraints of the
form (x, a, y) ⊆ q′(x, y), where a ∈ Σ± and q′ is a C2RPQ. The result follows
from the fact that in this case any graph database G admits a unique ⊆-repair
H0 which can be computed in NLogspace. We can then compute the certain
answers to q by evaluating q over H0. This can be done in NLogspace from
Proposition 1. The whole process can be carried out in NLogspace since
NLogspace computable functions are closed under composition.

We show how to compute H0 and its unicity. We define the following
procedure P0. Given a graph database G = (V,E), for each constraint
(x, a, y) ⊆ q(x, y) (resp., (x, a−, y) ⊆ q′(x, y)) in Γ, where a ∈ Σ, we do
the following: For each edge (u, a, v) in G (resp., edge (v, a, u) in G), if (u, v)
does not belong to q′(G), remove (u, a, v) from G (resp., (v, a, u) from G).

Starting with G, we respectively apply the procedure P0 until we stop
removing tuples. We let H0 be the obtained graph database. Clearly, H0
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can be computed in NLogspace. This is because the edges in E ∪ E−
can be enumerated in logarithmic space and C2RPQs can be evaluated in
NLogspace. The claim then follows from the fact that NLogspace com-
putable functions are closed under composition. We show next that H0 is
the unique ⊆-repair of G. First, we observe that Γ holds in H0. This follows
from the fact that when applying the procedure P0 to H0, we obtain H0.

Next we prove that for all repairs H, we have H = H0. Let H be a
⊆-repair of G. We can inductively show that after each application of P0

over G, the repair H is a subset of the obtained database. In particular, H
is a subset of H0. Since H ⊆ H0, the graph H is a ⊆-repair, and Γ holds in
H0, it follows from the maximality condition of ⊆-repairs that H = H0.

It is interesting to also consider C2RPCs based on the class of GAV tgds
[35], that only allow for one symbol on the right-hand side. That is, a GAV
C2RPC over Σ is of the form q(x, y) ⊆ (x, a, y), for q a C2RPQ over Σ and
a a symbol in Σ or the inverse of a symbol in Σ. Correspondingly, a GAV
RPC is of the form L ⊆ a, for a ∈ Σ and L and RPQ. While this restriction
improves the complexity of the CQA problem, it does not lead to tractability.

Proposition 4. 1. For each C2RPQ q and finite set Γ of GAV C2RPCs
over the same alphabet Σ, it is the case that ⊆-CQA(L,Γ) is in coNP.

2. There exist a finite alphabet Σ, a non-recursive RPQ L over Σ, and
a single GAV RPC γ of the form ab ⊆ c, where a, b, c ∈ Σ, such that
⊆-CQA(L,γ) is coNP-complete.

Proof. We show that for each C2RPQ q and finite set Γ of GAV C2RPCs
over the same alphabet Σ, it is the case that ⊆-CQA(q,Γ) is in coNP. Let q
be a C2RPQ and Γ a set of constraints of the form q′(x, y) ⊆ (x, a, y), where
q′ is an C2RPQ and a belongs to Σ±. Let also G be a graph database. First,
we recall that the subset repair checking problem for a fixed set of GAV tgds
over relational databases is in polynomial time [39]. If we fix a set of GAV
tgds Γ′, the subset repair checking problem is the following problem: given
two relational databases D′ and D, check whether D′ is a subset repair of
D under Γ′. The proof in [39] extends immediately to the setting of graph
databases and GAV C2RPCs. That is, checking whether a graph database
H is a ⊆-repair of G under a set Γ of C2RPCs, is in polynomial time.

Hence, we have the following coNP procedure to check whether a tuple
ā belongs to ⊆-Cons(G, q,Γ). We nondeterministically pick a subset H of G.
We then check in polynomial time whether H is a ⊆-repair of G with respect
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to Γ. We can then check in polynomial time whether ā belongs to q(G) from
Proposition 1. This finishes the proof of the first part of the theorem.

We prove now the second part of the theorem concerning the hardness.
We provide a reduction from Monotone 1-in-3 Sat to ⊆ -CQA(L0, γ0),
where γ0 is the constraint tf ⊆ e and L0 will be defined later. Recall that
Monotone 1-in-3 Sat is the problem of checking whether a formula in
3-CNF, without negative literals, admits a satisfying assignment that makes
true exactly one propositional variable per clause. Let φ be a boolean formula
in conjunctive normal form C1∧· · ·∧Cm, where each clause Ci is of the form:

xi1 ∨ xi2 ∨ xi3.

We associate with φ a graph database Gφ and a node u0 in such a way that:

φ ∈Monotone 1-in-3 Sat iff (u0, u0) /∈ ⊆-Cons(Gφ, L0, γ0). (8)

The graph database Gφ is defined as follows. Its set V of nodes is:

{nij : 1 ≤ i ≤ m, 1 ≤ j ≤ 3}.

That is, we associate a node nij with each occurence of a variable xij in φ.
Note that even if xij = xkl the nodes nij and nkl associated with xij and
xkl, respectively, are distinct. We define the node u0 as the node n11. The
schema is equipped with relations e, s, d, r, t and f , which are interpreted in
the following way:

eGφ = ∅,
sGφ = V × V,
dGφ = {(nij, nkl) : xij = xkl},
rGφ = {(ni1, ni2), (ni2, ni3), (ni3, ni1) : 1 ≤ i ≤ m},
tGφ = fGφ = {(n, n) : n ∈ V }.

Intuitively, the relation d specifies which nodes correspond to the same vari-
able. The relation r specifies which variables occur in the same clause. The
relations t and f are loops on each node. The intuition is as follows. Since e
is empty in Gφ, the relation e is also empty in any ⊆-repair H of Gφ. Hence,
the constraint γ0 specifies that a node in a repair H cannot have a loop with
label t and a loop with label f . This allows us to define a boolean assignment
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VH associated with H in the following way: If nij has a loop with label t, we
map nij to >, otherwise, nij is mapped to ⊥.

Note that VH might not define a valuation as there might variables xij
and xkl such that xij = xkl, the node nij has a loop with label t and nkl has
a loop with label f . By definition of d, this is equivalent to say that there
might be a path with label tdf , between the nodes nij and nkl. In fact, the
map VH is a valuation iff there is no path with label tdf in the repair H.

So, informally, each ⊆-repair of Gφ with no such path corresponds to a
valuation. Now we want to define the query L0 in such a way that if L0

is true in a repair H with an associated valuation VH , then VH is not a
“witness” for the membership of φ in Monotone 1-in-3 Sat (we say that
a valuation is a witness if exactly one variable in each clause of φ is true
under the valuation). But a valuation VH associated with a repair H is not
a witness for the membership of φ in Monotone 1-in-3 Sat if and only if
there exists an 1 ≤ i ≤ m such that:

(†) VH takes value > in at least two elements of {xi1, xi2, xi3}, or

(††) VH(xi1) = VH(xi2) = VH(xi3) = ⊥.

By definition of r and VH , condition (†) means that trt is the label of a path
in H, while (††) means that frfrf is the label of a path in H. We let W be
the RPQ:

trt+ frfrf.

So if H is a ⊆-repair of Gφ, either it is not associated with a valuation
(that is, there is a path with label tdf) or it is associated with a valuation
and, in that case, it must admit a path with label W (in order to ensure that
the valuation is not a witness). Intuitively, this suggests us to define L0 as
the RPQ:

stdfs+ sWs.

We prove now that equivalence (8) holds. First we show the implication
from left to right. Suppose that φ belongs to Monotone 1-in-3 Sat. Let
V0 be a valuation such that for all clauses of φ, exactly one variable is true
under the valuation V0. We need to find a repair H0 such that (u0, u0) does
not belong to the answer of L0. We let H0 be the following graph database.
For all u ∈ {e, s, d, r}, we define uH0 as uGφ , while tH0 and fH0 are given by:

tH0 = {nij : V0(xij) = >},
fH0 = {nij : V0(xij) = ⊥}.
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It is easy to check that H0 is a ⊆-repair of Gφ with respect to γ0. Now it
remains to show that (u0, u0) does not belong to L0(H0). By definition of L0

and sH0 , this is equivalent to proving that:

There is no path with label tdf or label W . (9)

First we show that there is no path with label tdf . Intuitively, this simply
comes from the fact that nodes corresponding to the same variable admit
the same loops. Suppose for contradiction that there is such a path. By
definition of H0, there must be nodes nij and nkl such that nij has a loop
with label t, the node nkl has a loop with label f and (nij, nkl) ∈ dH0 . By
definition of d, this means that xij = xkl. Moreover, since nij has a loop
with label t in H0, this means that V0(xij) = >. Similarly, we can infer that
V0(xkl) = ⊥. This contradicts the fact that xij = xkl.

In order to prove (9), it remains to show that there is no path in H0 with
label satisfying W . This comes from the fact that V0 is a witness valuation.
Suppose for contradiction that there is such a path. Its label is either trt or
frfrf . We only treat the case where the label is frfrf , as the other case is
analogous. By definition of r and t, if there is a path with label frfrf , this
means that there are nodes ni1, ni2 and ni3, all of them with a loop with label
f . By definition of f in H0, this means that V0(xi1) = ⊥, V0(xi2) = ⊥ and
V0(xi3) = ⊥. This contradicts the fact that V0 makes at least one variable
true in each clause of φ.

Next we prove the implication from right to left of (8). Suppose that
(u0, u0) does not belong to the answer of L0 in a ⊆-repair H of Gφ. Since
there is no edge with label e in Gφ and H is a subset of Gφ, we also have
that eH = ∅. Since H is a repair, the constraint tf ⊆ e holds in H. As there
is no edge with label e in H, this means that no node has loops both with
labels t and f . Moreover, using the maximality condition of ⊆-repairs, we
can show that each node has at least one loop with label t or f . This allows
us to define a map F over the set of nodes of Gφ in the following way:

F (nij) =

{
> if nij has a loop with label t,

⊥ if nij has a loop with label f.

We would like now to define a valuation VF such that VF (xij) = F (nij).
In order to do that we need to show that VF is well-defined, i.e., that the
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following does not hold:

There are nodes nij and nkl such that F (nij) 6= F (nkl) and xij = xkl.
(10)

Using the fact (u0, u0) does not belong to the answer of L0 in H, we prove
that (10) does not happen. Intuitively, this comes from the fact that H does
not have a path with label tdf .

Suppose then, for the sake of contradiction, that there are nodes nij and
nkl such that F (nij) 6= F (nkl) and xij = xkl. Since F (nij) 6= F (nkl), either
(a) nij has a loop with label t and nkl has a loop with label f , (b) or nij has a
loop with label f and nkl has a loop with label t. Suppose that (a) happens,
the other case is identical. Since xij = xkl, by definition of d there is an edge
with label d from nij to nkl in Gφ. By Lemma 2, dH = dGφ . Hence, there
is an edge with label d from nij to nkl in H. Together with (a), this implies
that there is a path with label tdf .

Again, by Lemma 2, we have sH = sG, that is, sH = V × V . Together
with the fact that there is a path with label tdf , this implies that there is a
path with label stdfs from u0 to u0, which contradicts the fact that (u0, u0)
does not belong to L0(H). This finishes the proof that (10) does not happen.
Hence, we can define a valuation VF such that VF (xij) = F (nij). That is,

VF (xij) =

{
> if nij has a loop with label t

⊥ if nij has a loop with label f.

In order to finish the proof, we need to prove that VF is a valuation
such that exactly one variable is satisfied in each clause of φ. Suppose for
contradiction that VF is not such a valuation. That is, there is a clause
xi1 ∨ xi2 ∨ xi3 such that either two variables are true or all variables are false
under VF . We treat the second case, the other case is analogous.

Suppose then that VF (xi1) = ⊥, VF (xi2) = ⊥ and VF (xi3) = ⊥. By
definition of VF , this means that in H the nodes ni1, ni2 and ni3 have loops
with label f . By Lemma 2, we have that rH = rGφ . Together with the
definition of rGφ , we obtain that (ni1, ni2) ∈ rH and (ni2, ni3) ∈ rH . Since
ni1, ni2 and ni3 have loops with label f , this means that there is a path
with label frfrf between the nodes ni1 and ni3. Recall that by Lemma 2,
sH = sG, that is, sH = V × V . Together with the fact that there is a path
with label frfrf , this implies that there is a path with label sfrfrfs from u0

to u0. This contradicts the fact that (u0, u0) does not belong to L0(H0).
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As before, interpreting GAV RPCs from the origin does not help CQA
under ⊆-repairs. In particular:

Proposition 5. 1. For each C2RPQ q and finite set Γ of GAV 2RPCs
over the same alphabet Σ, we have that {o,⊆}-CQA(q,Γ) is in coNP.

2. There exist a finite alphabet Σ, a non-recursive RPQ L, and a finite set
Γ of GAV word constraints over Σ, such that checking whether (o, o) is
an {o, ?}-consistent answer of L over G under Γ is coNP-complete.

Proof. The upper bound uses exactly the same line of reasoning that the
upper bound in the proof of Proposition 4. For the hardness, we apply the
techniques developed in the proof of the lower bound of Proposition 3, and
correspondingly modify the reduction used in the proof of the lower bound
of Proposition 4. The main reason why such modification works in this case
is because the only word constraint used in the proof of the lower bound of
Proposition 4 is of the form tf ⊆ e, and the interpretation of e is empty
in the underlying graph database used in such proof. This helps proving
that Claim 3 continues to hold, which was the main ingredient used in the
reduction given in the proof of Proposition 3.

Note that in the setting of relational databases, the data complexity of
consistent query answering for unions of conjunctive queries with respect to
GAV constraints, was also shown to be complete for the class coNP.

Notice that the second part of the previous proposition shows that, in a
sense, the tractability result for LAV C2RPCs in Theorem 2 is optimal: Al-
lowing two-letter words on the left-hand side of RPCs leads to intractability,
even if the right-hand side consists of a single letter.

Restricting graph databases. Our CQA problem under the subset re-
pair semantics can be reformulated as a monadic second-order logic (MSO)
evaluation problem over a relational representation of graph databases. This
allows us to apply results establishing the tractability of MSO over structures
of bounded treewidth [22]. From those results, we obtain tractability for the
CQA problem over graph databases of bounded treewidth.

Formally, let G = (V,E) be a graph database. A tree decomposition of G
is a pair (T, λ), where T is a tree and λ : T → 2V maps each node t in T to
a nonempty set λ(t) of nodes in V , that satisfies the following conditions:

• For each v ∈ V the set {t ∈ T : v ∈ λ(t)} is a connected subset of T .
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• For each edge (u, a, v) ∈ E, it is the case that {u, v} ⊆ λ(t), for some
t ∈ T .

The width of the tree decomposition (T, λ) is max {|λ(t)| − 1 : t ∈ T}. The
treewidth of G is the minimum width of a tree decomposition of G. For
instance, the treewidth of G is one if and only if the underlying undirected
graph of G is a tree.

We then obtain the following:

Theorem 3. Let q be a C2RPQ and Γ a set of C2RPCs over the same alpha-
bet Σ. Then ⊆-CQA(q,Γ) can be solved in linear time over graph databases
of treewidth ≤ k, for each k ≥ 1.

Proof. Let G be a graph database over Σ. We assume without loss of gen-
erality that each symbol in Σ is mentioned either in q or in Γ. Otherwise
we can safely remove edges labeled with such symbol from G, as they affect
neither the satisfaction of the constraints nor the satisfaction of the query.
Thus, we can assume |Σ| to be fixed.

Consider now the following two-sorted relational representation T (G) =
(A,N, (Ei

a, E
o
a)a∈Σ) of G. The domain A of T (G) consists of elements repre-

senting each node and each edge in G. The interpretation of unary relation
N consists of all elements in A that represent nodes. The interpretation of
the binary relation Ei

a, for a ∈ Σ, is the set of all pairs (e, v) such that e
corresponds to an edge of the form (v′, a, v) ∈ E. Finally, the interpretation
of the binary relation Eo

a, for a ∈ Σ, is the set of all pairs (v, e) such that e
corresponds to an edge of the form (v, a, v′) ∈ E.

Tree decompositions of structures of the form T (G) are defined exactly
as tree decompositions of G, save for the fact that we now ask each pair (e, v)
in some Ei

a or (e, v) in some Eo
a to be contained in some set of the form λ(t),

for t ∈ T . It can be proved that if the treewidth of G is at most k, for k ≥ 1,
then the treewidth of the relational structure T (G) is at most (k+1)2 ·|Σ|−1.
In fact, consider a tree decomposition (T, λ) of G of width at most k. We
can obtain a tree decomposition of T (G) by doing the following: For each
edge e = (v, a, v′) ∈ E we arbitrarily pick an element t ∈ T such that λ(t)
contains v and v′. Such t must exist by tree decomposition properties. Then
we add e to this bag. Clearly, each node in the resulting tree decomposition
contains at most (k+ 1) nodes and (k+ 1)2 · |Σ| edges from G. We conclude
that the treewidth of T (G) is also fixed.
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It is easy to prove that for every C2RPQ q and finite set Γ of C2RPCs,
there is an MSO formula Φ over the vocabulary 〈N, (Ei

a)a∈Σ, (E
o
a)a∈Σ〉, such

that for each graph database G and tuple ā of nodes in G:

ā ∈ ⊆-Cons(G, q,Γ) ⇐⇒ T (G) 6|= Φ.

The formula Φ expresses that there is a subset of A that represents a graph
database G′ that is contained in G, for which the following holds:

(1) G′ is a ⊆-repair of G. That is, we need to express that G′ satisfies
Γ (which can be done in MSO over this representation using standard
automata techniques), and that for every subset G′′ of G that satisfies
Γ we have that G′′ 6|= Γ or it is false that G′ ( G′′. It is clear that this
can be expressed in MSO over T (G).

(2) It is not the case that ā ∈ q(G′). This can again be expressed in MSO
over this representation using standard automata techniques.

Now the result follows from the fact that MSO formulas can be evaluated
in linear time over structures of bounded treewidth [22].

4. CQA under Superset and Symmetric Difference Repairs

We prove in this section that our CQA problem is undecidable under
the semantics of ⊇- and ⊕-repairs. This holds even for queries defined as
non-recursive and word constraints:

Theorem 4. Assume ? ∈ {⊇,⊕}. There exist a finite alphabet Σ, a non-
recursive RPQ L, and a set Γ of word constraints over Σ, such that ?-
CQA(L,Γ) is undecidable.

In order to prove this theorem we establish a connection with the impli-
cation problem for RPCs [1, 28]. Recall that this is the problem of, given a
finite set Γ of RPCs and an RPC L1 ⊆ L2, checking whether Γ |= L1 ⊆ L2,
i.e., if G |= Γ implies G |= L1 ⊆ L2, for every graph database G. Grahne and
Thomo proved this problem to be undecidable, even for word constraints,
using a reduction from the word rewrite problem [28]. We develop nontrivial
adaptations of such reduction to prove Theorem 4. The reason why we have
to develop such adaptations is that there exist differences in nature between
CQA and the implication problem for constraints. First, in the CQA problem
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we do not reason about all graph databases that satisfy the constraints (as
in the case of the implication problem), but only about those that minimally
differ from the original graph database. (Note, however, that in the special
case of the superset semantics, this problem does not apply. Indeed, given
a graph database G, the intersection of the answers of a monotone query L
over all the ⊇-repairs is equal to the the intersection of the answers of L over
all the databases containing G and satisfying the constraints).

Second, we study the data complexity of the CQA problem, and, there-
fore, our goal is to prove undecidability of CQA for a fixed set of RPCs and a
fixed RPQ. This is different to the case of the implication problem in which
RPCs and RPQs define the input, and, therefore, cannot be fixed.

Proof of Theorem 4 in the case when ? is ⊇: We start by recalling the
basic notions of rewrite systems. Let ∆ be a finite alphabet. A semi-Thue
rewrite system R over ∆ is a finite subet of ∆∗ × ∆∗. A rewrite system R
induces a single-step reduction relation →R over ∆∗ defined as:

→R = {(v, w) : v = xty, w = xuy, for some (t, u) ∈ R and x, y ∈ ∆∗}.

We let →∗R be the reflexive transitive closure of →R. If R is clear from the
context, we simply write→ instead of→R and→∗ instead of→∗R. We define
Anc(v), the set of ancestors of v, as the set:

{u ∈ ∆∗ : u→∗R v}.

The problem of testing whether a pair (u, v) belongs to →∗R is called the
rewrite problem for R. It is well known that there is a fixed semi-Thue
rewrite system such that its rewrite problem is undecidable (see e.g., [9]).

The construction. Let R be a fixed semi-Thue rewrite system over alphabet
∆ such that its rewrite problem is undecidable. We define a set Γ of RPCs
and a non-recursive RPQ L0 such that for all words w1 and w2 over ∆, there
is a graph database G with a node n0 satisfying:

w1 →∗ w2 iff (n0, n0) ∈ ⊇-Cons(G,L0,Γ).

In our construction, only G depends on (w1, w2), while L0 and Γ are fixed.
Let w1 and w2 be two words in ∆∗. We assume that

w1 = w11w12 . . . w1k,

w2 = w21w22 . . . w2l,
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where w1i, w2j ∈ ∆ for each 1 ≤ i ≤ k and 1 ≤ j ≤ l. Therefore k is
the length of w1 and l is the length of w2. We start by defining the graph
database G. We let V , the set of nodes of G, to be defined as follows:

{ni : 0 ≤ i ≤ k} ∪ {mi : 0 < i < l}.

We define m0 as n0 and ml as nk. Now, for each a ∈ ∆, we have edges with
label a and â. We also have special edges with label $. The graph database
G is defined by the following binary relations:

aG = {(ni−1, ni) : w1i = a, 1 ≤ i ≤ k}
âG = {(mi,m(i−1)) : w2i = a, 1 ≤ i ≤ l},
$G = {(nk, nk)},

where a ∈ ∆. Thus, G consists of a path with label w1 from n0 to nk and a
path with label ŵ2lŵ2(l−1) . . . ŵ21 from nk to n0.

We now define Γ as the following set of RPCs:

u ⊆ v,

a$â ⊆ $,

where (u, v) ∈ R and a ∈ ∆. (Recall that R is fixed, and thus Γ is fixed).
We define L0 as the symbol $.

The intuition. Basically we start with the path with label w1 in G. The idea
is that if w1 →∗ w2, then applying the constraints of the form u ⊆ v, we will
construct a path with label w2. Now the query is $ and we have to check
whether n0 has a loop with label $.

The idea is that the presence of a path with label w2 from n0 to nk is
witnessed by a loop with label $ at n0, using the constraints of the form
a$â ⊆ $. Indeed, suppose that s0w21s1w22 . . . sl is a path with label w2 from
n0 to nk. Then, by induction on i, using the constraints a$â ⊆ $ and the
fact that nk has a loop with label $, we can prove that:

There is an edge with label $ from sl−i to ml−i.

In particular, there is an edge with label $ from s0 to m0. Since s0 = m0 = n0,
this implies that n0 has a loop with label $.

In order to obtain a reduction from the rewrite problem, we show that:

w1 →∗ w2 iff (n0, n0) ∈ ⊇-Cons(G,L0,Γ). (11)

This is what we do next.
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Implication from left to right. Suppose that w1 →∗ w2. We prove that
(n0, n0) ∈ ⊇ -Cons(G,L0,Γ). Let H be an arbitrary ⊇-repair of G with
respect to Γ. The proof that n0 has a loop with label $ in H is in two steps:

(A) We first show that there is a path with label w2 from n0 to nk. This
is proved by induction on the length of the derivation from w1 to w2

using the rules in R.

(B) We prove that the existence of that path implies the existence of a loop
at n0 with label $.

We start by proving (A). Since w1 →∗ w2, there is a sequence u1, . . . , up
such that u1 = w1, up = w2 and ui → ui+1, for all i < p. We can prove by
induction on i that:

For all 1 ≤ i ≤ p, there is a path with label ui from n0 to nk in H. (12)

If i = 1, it follows by definition of G that there is a path with label w1 from
n0 to nk. Since u1 = w1 and G ⊆ H, this suffices to prove the base case.
For the induction step, suppose there is a path with label ui, for 1 ≤ i < p,
from n0 to nk in H. Since ui → ui+1, there is a rule (x, y) ∈ R such that for
some v and v′ we have ui = vxv′ and ui+1 = vyv′. Since the constraint x ⊆ y
holds in H, the existence of a path with label vxv′ from n0 to nk implies
the existence of one with label vyv′ from n0 to nk. This finishes the proof
of (12). From (12) and the fact that up = w2, it follows that there is a path
with label w2 from n0 to nk in H.

Next we prove (B). Using the fact that in G there is path with label w2

from n0 to nk and using the constraints a$â ⊆ $, we are going to prove that
this implies the existence of a loop with label $ at the node n0.

Let s0w21s1w22s2 . . . w2lsl be the path from n0 to nk with label w2. We
prove by induction on i that:

For all 0 ≤ i ≤ l, there is an edge with label $ from sl−i to ml−i. (13)

For the base case, recall that sl = nk and ml = nk. As in G the node nk has
a loop with label $ and G ⊆ H, this proves the base case.

For the induction step, suppose that there is an edge with label $ from
sl−i to ml−i. By definition of the nodes s0, . . . , sl, there is an edge with
label w2(l−i) from sl−i−1 to sl−i. Moreover, by definition of G, there is an
edge with label ŵ2(l−i) from ml−i to ml−i−1. Putting everything together, we
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obtain that there is a path with label w2(l−i)$ŵ2(l−i) from sl−i−1 to ml−i−1.
Since the constraint w2(l−i)$ŵ2(l−i) ⊆ $ holds in H, there is an edge with
label $ from sl−i−1 to ml−i−1. This finishes the proof of (13).

Now, it follows from (13) that there is an edge with label $ from s0 to m0.
Recall that s0 = n0 and m0 = n0. It follows that n0 has a loop with label $.
That is, (n0, n0) ∈ L0(H). We conclude that (n0, n0) ∈ ⊇-Cons(G,L0,Γ).

Implication from right to left. Suppose that for all ⊇-repairs H of G, the
node n0 has a loop with label $. We have to prove that w1 →∗ w2. The
strategy is as follows.

(A) We construct a graph database H0 such that:

(i) G ⊆ H0,

(ii) H0 |= Γ, and

(iii) If there is a path with label w2 from n0 to nk in H0, then w1 →∗ w2.

(B) Since H0 |= Γ, there is a ⊇-repair H ′0 of G such that G ⊆ H ′0 ⊆ H0.
As the consistent answer of L0 contains the pair (n0, n0), this implies
that n0 has a loop with label $ in H ′0. In particular, n0 has a loop with
label $ in H0.

(C) We prove that if n0 has a loop with label $ in H0, then there is a path
with label w2 from n0 to nk in H0. Together with (A)(iii), this finishes
the proof that w1 →∗ w2.

The construction of the graph database H0 is similar to the graph constructed
in the undecidability proof of [28]. In fact, H0 is an extension of such graph
database and property (A)(iii) will immediately follow from Lemma 2 in the
proof of Theorem 2 in [28].

We start by defining H0. Let k0 be a natural number such that both the
sizes of w1 and w2 are bounded by k0. We define the set of nodes V0 of H0

as follows:
{[u] : u ∈ ∆∗, |u| ≤ k0} ∪ {mi : 0 < i < l}.

We identify n0 with [ε]. For all 1 ≤ i ≤ k, we identify ni with [w11 . . . w1i].
In particular, nk is [w1]. Note that this implies that the domain of H0 is a
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superset of the domain of G. Relations in H0 are defined as follows:

aH0 = {([u], [v]) ∈ V0 × V0 : v ∈ Anc(ua)},
âH0 = {(mi,m(i−1)) : w2i = a, 1 ≤ i ≤ l},
$H0 =

⋃
{Xi : 0 ≤ i ≤ l},

where Xi is given by:

{([u],m(l−i)) : there is a path with label w2(l−i+1) . . . w2l from [u] to nk}.

Recall that Anc(ua) is the set of ancestors of ua. If i = 0, we define
w2(l−i+1) . . . w2l as the empty word ε by convention. It is worth mention-
ing that if we consider the restriction of H0 to the relations {a : a ∈ ∆}, the
graph H0 is nothing but the graph DBC of the proof of Theorem 2 in [28].
Notice that H0 cannot be explicitly constructed since the predicate Anc(ua)
is a non-computable one. This does not affect the proof, however, as in this
direction we only need to show the existence of such an H0.

We prove that (A)(i), (A)(ii) and (A)(iii) hold. First, we prove that (A)(i)
is true. We already observed that the domain of G is a subset of the domain
of H0. It is clear that âG = âH0 , for all a ∈ ∆. For the relation $, we have to
prove that (nk, nk) belongs $H0 . It is enough to show that (nk, nk) belongs
to X0. The set X0 is given by:

{([u],ml) : there is a path with label ε from [u] to nk}.

Since ml = nk, there is an emtpy path from nk to nk, and [w1] = nk, the pair
(nk, nk) belongs to X0. Next we prove that aG ⊆ aH0 , for all a ∈ ∆. These
relations are interpreted in G in such a way that there is a path with label
w1 from n0 to nk, namely the path:

n0w11n1w12 . . . w1knk.

We have to show that this path also appears in H0. That is, for all 1 ≤ i ≤ k:

There is an edge with label w1i from ni−1 to ni in H0. (14)

Recall that:

ni−1 = [u], (15)

ni = [uw1i], (16)
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where u = w11 . . . w1i−1. By definition of H0, we have that:

([u], [uw1i]) ∈ wH0
1i ,

since uw1i →∗ uw1i. Together with (15) and (16), we obtain that (ni−1, ni)
belongs to wH0

1i , which finishes the proof of (14).
Next we prove that (A)(iii) follows from Lemma 2 in the proof of Theo-

rem 2 in [28]. So suppose that there is a path from n0 to nk with label w2.
In Lemma 2 in [28], it is shown that in the graph H0, for all words u ∈ ∆∗:

Reach([ε], u) = Anc[]([u]),

where Anc[]([u]) is defined as the set:

{[v] : v ∈ Anc(u), |v| ≤ k0}.

and Reach(n, u) is defined as the set

{n′ : there is a path in H0 with label u from n to n′}.

In particular:
Reach([ε], w2) = Anc[]([w2]). (17)

Since there is a path from n0 to nk with label w2 and n0 = [ε], the node nk
belongs to Reach([ε], w2). By (17), it follows that nk belongs to Anc[]([w2]).
Recall that nk = [w1]. Hence, [w1] belongs to Anc[]([w2]). That is, w1 →∗ w2.

Now we prove (A)(ii). It follows immediately from the proof of Theo-
rem (2) in [28] that each constraint of the form:

u ⊆ v,

where (u, v) ∈ R, holds in H0. Hence, it remains to show that each constraint
of the form:

a$â ⊆ $,

where a ∈ ∆, holds in H0. Let a be a letter in ∆. Suppose that there is a
path with label a$â. We assume that the path is of the form

o1ao2$o3âo4.

We have to prove that there is an edge with label $ from o1 to o4 in H0. By
definition of H0, the only edges with labels â are edges between the mi’s.
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Hence, for some i, the node o4 is equal to ml−i−1 and o3 is equal to ml−i.
Moreover, a must be equal to w2(l−i), as the only edge between ml−i and
ml−i−1 is the edge with label ŵ2(l−i).

By definition of $ in H0, if (o2, o3) ∈ $H0 and o3 is equal to ml−i, then
(o2, o3) belongs to Xi. Recall that Xi is given by:

{([u],m(l−i)) : there is a path with label w2(l−i+1) . . . w2l from [u] to nk}.

Hence, o2 is node of the form [u] and there is a path with label w2(l−i+1) . . . w2l

from [u] to nk. Since o1ao2 and a = w2(l−i), this implies that

There is a path with label w2(l−i) . . . w2l from o1 to nk.

By definition of Xi−1, this means that (o1,ml−i−1) belongs to Xi−1. It follows
from the definition of $ in H0 that (o1,ml−i−1) belongs to $H0 . Since o4 =
ml−i−1, this means that (o1, o4) belongs to $H0 , finishing the proof of (A)(ii).

Since (B) holds by definition, it only remains to prove (C). Assume that
n0 has a loop with label $ in H0. We have to prove that there is a path with
label w2 from n0 to nk. Recall that:

$H0 =
⋃
{Xi : 0 ≤ i ≤ l},

where Xi is given by:

{([u],m(l−i)) : there is a path with label w2(l−i+1) . . . w2l from [u] to nk}.

Since (n0, n0) belongs to $H0 , the pair (n0, n0) must belong to Xi0 for some
i0. Since n0 = m0 (and all the mi’s are pairwise distinct), the pair (n0, n0)
belongs to the set Xl. By definition of Xl, if (n0, n0) ∈ Xl, there is a path
with label w21 . . . w2l from n0 to nk. That is, there is a path with label w2

from n0 to nk. This finishes the proof of Theorem 4 when ? = ⊇.

Proof of Theorem 4 in the case when ? is ⊕: The proof is similar to
the proof in the case when ? = ⊇. As in that proof, we show undecidability
by reducing from the rewrite problem. Let R be a fixed rewrite system over
∆ such that its rewrite problem is undecidable. We define a set Γ1 of RPCs
and a non-recursive RPQ L1 such that for all words w1 and w2 over ∆, there
is a graph database G1 with a node n0 satisfying:

w1 →∗ w2 iff (n0, n0) ∈ ⊕-Cons(G1, L1,Γ1).
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The construction. Let w1 and w2 be two words in ∆∗. As before:

w1 = w11w12 . . . w1k,

w2 = w21w22 . . . w2l,

where w1i, w2j ∈ ∆ for each 1 ≤ i ≤ k and 1 ≤ j ≤ l. Thus, k is the length
of w1 and l is the length of w2. We start by defining the graph database G1.
We let V , the set of nodes of G1, to be defined as follows:

{ni : 0 ≤ i ≤ k} ∪ {mi : 0 < i < l}.

We define m0 as n0 and ml as nk. Note that the domain of G1 is equal to the
domain of the graph G in the proof of Theorem 4 for the case when ? = ⊇.

The edge relations over G1 are defined as follows, where a ranges over ∆:

1. aG1 = ∅.
2. (a′)G1 = {(ni−1, ni) : w1i = a, 1 ≤ i ≤ k}.
3. âG1 = {(mi,m(i−1)) : w2i = a, 1 ≤ i ≤ l}.
4. (r′)G1 = {(ni, ni−1) : 1 ≤ i ≤ k}.
5. (r̂)G1 = {(mi−1,mi) : 1 ≤ i ≤ l}.
6. $G1 = {(nk, nk)}.
7. ($′)G1 = {(nk, nk)}.
8. eG1 = ∅.
9. sG1 = V × V .

Thus, G1 contains a path with label w′11 . . . w
′
1k from n0 to nk and each edge

on that path has an “inverse” edge with label r′. It also contains a path with
label ŵ2l . . . ŵ21 from nk to n0 and each edge on that path has an “inverse”
edge with label r̂. The node nk has loops with label $ and $′. The relation
e is empty and s is the full relation.

The set of RPCs Γ1 consists of the following constraints:

u ⊆ v, a$â ⊆ $,

a′r′ ⊆ e, âr̂ ⊆ e,

$$′ ⊆ e, a′ ⊆ a,

for each a ∈ ∆ and (u, v) in R. The RPQ L1 is given by:

sr̂s+ sr′s+ s$′s+ $.
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The intuition. The basic idea is as follows. Suppose that w1 →∗ w2. We start
with the path with label w′11 . . . w

′
1k in G1. Now we apply the constraints of

the form a′ ⊆ a. Since we can add or remove edges, either we remove (at
least) one edge with label a′ or we obtain a path with label w1 (by only adding
edges). In the first case, using the constraint a′r′ ⊆ e and the minimality
property of the repairs, we can show that there must be an edge with label
r′. This guarantees that (n0, n0) belongs to the answer of L1. In the second
case, we have a path with label w1. Next we apply the constraints u ⊆ v
(where (u, v) ∈ R) and we use the fact that w1 →∗ w2. By induction on the
length of the derivation of w2 from w1, we can show that there is a path with
label w2 from n0 to nk.

Then there are three possibilities. Either: (I) we have deleted the loop
with label $ at the node nk, or (II) we have deleted an edge with label â, or
(III) we did not delete neither the loop with label $ nor any edge with label â.
In case (I), using the constraint $$′ ⊆ e and the minimality property of the
repairs, we can show that there must be an edge with label $′. This implies
that (n0, n0) belongs to the answer of L1. Case (II) is similar. Using the
constraint âr̂ ⊆ e and the minimality property of the repairs, we can show
that there must be an edge with label r̂. This means that (n0, n0) belongs
to the answer of L1. Case (III) is similar to what happens in the proof of
Theorem 4 for the case when ? = ⊇. We show that the presence of a path
with label w2 implies the existence of a loop with label $ at n0. In particular,
(n0, n0) belongs to the answer of L1.

We now give a formal proof of the reduction. We show that:

w1 →∗ w2 iff (n0, n0) ∈ ⊕-Cons(G1, L1,Γ1).

Implication from left to right. Assume that w1 →∗ w2. Let H be an ⊕-repair
of G1 with respect to Γ1. We have to prove that (n0, n0) belongs to the
answer of L1 in H. We make the following case distinction. Either:

(i) It is the case that nk has a loop with label $, that (a′)H = (a′)G1 , and
that âH = âG1 , for all a ∈ ∆, or

(ii) for some a0 ∈ ∆ we have (a′0)H 6= (a′0)G1 , or

(iii) for some a0 ∈ ∆ we have âH0 6= âG1
0 , or

(iv) nk does not have a loop with label $ in H.
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We first look at case (i). It follows from the constraint a′ ⊆ a that for all
1 ≤ i ≤ k, the pair (ni−1, ni) belongs to aH if w1i = a. That is, there is a
path with label w1 from n0 to nk. Then, using exactly the same proof as the
proof of the implication from left to right of equivalence (11) in the proof of
Theorem 4 for the case when ? = ⊇, we can show that (n0, n0) belongs to
the answer of $ in H. Hence, (n0, n0) belongs to the answer of L1 in H.

We only provide a sketch of this fact. As in the proof of Theorem 4 for
the case when ? = ⊇, we prove by induction on the length of the derivation
that for all words w such that w1 →∗ w, there is a path with label w from
n0 to nk. The base case is true since there is a path with label w1 from n0

to nk. For the induction step, we use the constraints u ⊆ v where (u, v) ∈
R. Since w1 →∗ w2, there is a path with label w2 from n0 to nk. Let
s0w21s1 . . . w2lsk be such path. Using the fact that nk has a loop with label
$ and the constraint a$â ⊆ $ holds in H, we can show by induction that for
all i, the pair (sl−i,ml−i) has an edge with label $ in H. In particular, there
is an edge with label $ from s0 to m0. That is, from n0 to n0. This shows
that (n0, n0) belongs to the answer of $, and thus of L1, in H.

Next we treat case (ii). The idea is that in this case, using the constraint
a′r′ ⊆ e together with the minimality property of repairs, there must be an
edge with label r′. This implies that (n0, n0) belongs to the answer of the
query sr′s; in particular, to the answer of L1.

Formally, suppose that (a′0)H 6= (a′0)G1 for some a0. Since relations of the
form a′, for a ∈ ∆, only appear in the left-hand side of the constraints, it
follows from Lemma 2 that (a′)H ⊆ (a′)G1 for every such a′. Together with
the fact that (a′0)H 6= (a′0)G1 , it follows that for some i with 1 ≤ i ≤ k the
pair (ni−1, ni) does not belong to any a′ in H.

Now we use this fact together with the constraint a′r′ ⊆ e. Let H ′ be
the graph database obtained from H by adding an edge with label r′ from ni
to ni−1. Using the fact that (ni−1, ni) does not belongs to any a′ in H, the
constraint a′r′ ⊆ e remains true in H ′. All other constraints continue to hold
in H ′ since r′ does not appear in any of them. Hence, H ′ |= Γ1. Moreover,
G1 ⊕H ′ ⊆ G1 ⊕H since there is an edge with label r′ from ni to ni−1 in G.
As H is an ⊕-repair, this implies that H = H ′. In particular, H has an edge
with label r′.

It follows from Lemma 2 that sH = sG1 since s does not occur in any
constraint. That is, sH = V ×V . Together with the fact that H has an edge
with label r′, this implies that (n0, n0) belongs to the answer of sr′s in H
and in particular to the answer of L1 in H. Case (iii) is similar to case (ii).
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Finally, we treat (iv). Suppose that nk does not have a loop with label
$ in H. Let H ′′ be the database obtained by adding an edge with label $′

from nk to nk and by removing all the edges with label $. Since nk does
not have a loop with label $ in H, we have G1 ⊕H ′′ ⊆ G1 ⊕H. Moreover,
H ′′ |= Γ1. In fact, the constraint $$′ ⊆ e holds in H ′′ as $H

′′
is empty. All

other constraints also hold in H ′′ since neither $′ nor $ is mentioned in them.
We then obtain H = H ′′. In particular, H has an edge with label $′. This
implies that (n0, n0) belongs to the answer of s$′s in H, and, in particular,
to the answer of L1 in H.

Implication from right to left. Suppose that (n0, n0) belongs to the answer of
L1 in all ⊇-repairs of G1. We prove that w1 →∗ w2. To do this, we construct
a graph database H1 satisfying the following:

(A) Γ1 holds in H1. Moreover, if there is a path with label w2 from n0 to
nk in H1, then w1 →∗ w2.

(B) Hence there is a repair H ′1 such that G1 ⊕H ′1 ⊆ G1 ⊕H1. As the con-
sistent answer of L1 contains (n0, n0), this implies that (n0, n0) belongs
to the answer of L1 in H ′1. We prove that this implies that n0 has a
loop with label $ in H1.

(C) We prove that if n0 has a loop with label $ in H1, then there is a path
with label w2 from n0 to nk in H1. Together with (a), this implies that
w1 →∗ w2.

The graph database H1 is a slight modification of the graph database H0

defined in the proof of Theorem 4 for the case when ? = ⊇ (in the proof of
the implication from right to left of equivalence (11)). Let H0 be the graph
database defined in such proof. We define H1 as the graph database obtained
by extending H0 in the following way:

We add an edge with label w′1i from ni−1 to ni for each 1 ≤ i ≤ k.

So H1 is obtained by adding a path with label w′11 . . . w
′
1k to the database

H0. Notice, in particular, that there is no edge with label r′, r̂ or $′ in H1.
We start by proving (A). Let us consider first the fact that if there is a

path with label w2 from n0 to nk in H1, then w1 →∗ w2. This is proved
exactly as in the case ? = ⊇, when we proved that if there is a path with
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label w2 from n0 to nk in H0, then w1 →∗ w2. The fact that H1 extends H0

with a path with label w′11 . . . w
′
1k does not change anything.

To finish the proof of (A), we have to show that Γ1 holds in H1. The fact
that the RPCs:

u ⊆ v and a$â ⊆ $,

hold in H1, where a ∈ ∆ and (u, v) ∈ R, is shown in the same way that we
prove that such constraints hold in the graph database H0 (in the proof for
the case ? =⊇). The constraints of the form:

a′r′ ⊆ r, âr̂ ⊆ r, and $$′ ⊆ r,

hold because r′, r̂ and $′ are empty inH1. It remains to look at the constraints
of the form:

a′ ⊆ a.

By definition of H1, if there is an edge with label a′, there is 1 ≤ i ≤ n such
that a′ = w′1i and the edge is from node ni−1 to ni. In order to check that
the constraint is verified, we have to show that there is an edge with label
w1i from ni−1 to ni. In the proof of Theorem 4, case ? = ⊇, we showed that
G (as defined in such proof) is contained in H0. Since in G there is an edge
with label w1i from ni−1 to ni, such edge also exists in H0, and, therefore, in
H1. This finishes the proof that Γ1 holds in H1.

Now we prove (B). We know that (n0, n0) ∈ L1(H ′1). We have to show
that n0 has a loop with label $. To do so, we show that:

Relations r′, r̂ and $′ are empty in H ′1. (18)

This implies that n0 has a loop with label $. Indeed, suppose that (18) holds.
Recall that (n0, n0) belongs to L1(H ′1), where L1 is given by (sr̂s + sr′s +
s$′s+ $). By (18), we have that the answer of L′1 := (sr̂s+ sr′s+ s$′s) over
H ′1 is empty. Hence, (n0, n0) must belong to the evaluation of $ over H ′1, i.e.,
n0 has a loop labeled $ in H ′1. Since G⊕H ′1 ⊆ G⊕H1 and n0 does not have
a loop labeled $ in G1, we conclude that n0 has a loop labeled $ in H1.

Hence, we are left with the proof of (18). We only prove that there
is no edge with label r′. The other proofs are similar. Suppose for the
sake of contradiction that there is an edge e with label r′ in H ′1. Since
G1 ⊕H ′1 ⊆ G1 ⊕H1 and there is no edge with label r′ in H1, this edge must
appear in G1. By definition of G1, the edge e must then go from ni to ni−1

for some 1 ≤ i ≤ k.
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Recall now that there is an edge with label w′1i from ni−1 to ni both in
H1 and in G1. Since G1 ⊕ H ′1 ⊆ G1 ⊕ H1, there must also be an edge with
label w′1i from ni−1 to ni in H ′1. We can then conclude that there is a path
with label w′1ir

′ from ni−1 to ni−1. Since the constraint w′1ir
′ ⊆ e holds in

H ′1, there is a loop labeled e on ni−1. In particular, e is not empty in H ′1.
This contradicts the facts that e is empty both in G1 and in H1 and that
G1 ⊕H ′1 ⊆ G1 ⊕H1.

The proof that (C) holds mimics the proof of the fact that if n0 has a
loop with label $ in H0, then there is a path with label w2 from n0 to nk in
H0 (from the case ? = ⊇).

4.1. Decidable restrictions

Since the CQA problem in this context is undecidable, it is crucial to
look for decidable (and, ideally, tractable) restrictions of it. We provide
three such restrictions in this section: The first one is based on the class of
LAV C2RPCs, while the second one is based on the class of GAV C2RPCs.
The third one is obtained by modifying C2RPC interpretation to be from the
origin. It is worth noticing that the restriction to classes of graph databases of
bounded treewidth, which leads to tractability under the semantics of subset
repairs, is not useful in this context: The undecidability result in Theorem 4
holds even over graph databases of treewidth two.

Restriction to the class of LAV C2RPCs. As mentioned before, in the
relational scenario the CQA problem for unions of CQs under LAV tgds is
tractable, no matter which repair semantics is used. We already stated a
similar result for CQA over graph databases under LAV C2RPCs and the
subset repair semantics (Theorem 2). We can further extend those techniques
to obtain tractability for our CQA problem under the semantics of ⊕-repairs.

Theorem 5. For each C2RPQ q and finite set Γ of LAV C2RPCs over the
same alphabet Σ, it is the case that ⊕-CQA(q,Γ) is in NLogspace.

Proof. The proof is an immediate adaptation of techniques in [20]. We still
provide it for the sake of completeness. Basically the result holds because
LAV C2RPCs, i.e., those of the form (x, a, y) ⊆ q′(x, y), are closed under
union (that is, if two graph databases satisfy the constraints, then so does
their union).

Let G be a graph database. It follows from the proof of Theorem 2 that
there is a unique ⊆-repair H0 of G with respect to Γ, which can be computed
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in NLogspace. We prove that for each C2RPQ q and tuple ā of nodes in
G it is the case that:

ā ∈ ⊕-Cons(G, q,Γ) iff ā ∈ q(H0). (19)

SinceH0 can be computed in NLogspace, and checking whether ā belongs to
the evaluation of q over H0 is in NLogspace from Proposition 1, this suffices
to prove that ⊕-CQA(L,Γ) is in NLogspace (as NLogspace computable
functions are closed under composition).

Now we prove (19). Since H0 is a ⊆-repair, and these are also ⊕-repairs,
the implication from left to right follows from the definition of consistent
answer. For the implication from left to right, suppose that a tuple ā belongs
to q(H0). LetH be a⊕-repair ofG with respect to Γ. We show that ā ∈ q(H).

Consider the graph database H0 ∪ H. Note that this a union, not a
disjoint union. Since H0 ⊆ G, we have that:

G⊕ (H0 ∪H) ⊆ G⊕H. (20)

Moreover, since the C2PRCs in Γ hold both in H0 and H and they are of the
form (x, a, y) ⊆ q′(x, y), for a ∈ Σ± and q′ a C2RPQ, they continue to hold
in H0 ∪H, that is:

H0 ∪H |= Γ.

Together with (20) and the fact that H is an ⊕-repair of G, we obtain that
H0 ∪H = H. That is, H0 ⊆ H, and thus q(H0) ⊆ q(H) since C2RPQs are
monotone. In particular, since ā belongs to q(H0), it is also in q(H).

The case of the ⊇-repair semantics is different: We do not know whether
LAV C2RPCs (not even LAV RPCs) yield decidability in this context, but
we prove next that at least they do not yield tractability in data complexity.
This establishes a first difference in complexity between CQA under LAV
tgds in the relational context and under LAV C2RPCs over graph databases.

Proposition 6. There exist a finite alphabet Σ, a non-recursive RPQ L,
and a finite set Γ of LAV RPCs (without Kleene-star) over Σ, such that
⊇-CQA(L,Γ) is coNP-hard.

Proof. We provide a reduction from Monotone 1-in-3 Sat to the problem
⊇-CQA(L, γ), where γ is the constraint a ⊆ t+f and L will be defined later.
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Let φ be a boolean formula in conjunctive normal form C1 ∧ · · · ∧Cm where
each clause Ci is of the form:

xi1 ∨ xi2 ∨ xi3.

We associate with φ a graph database Gφ and a node u0 in such a way that:

φ ∈Monotone 1-in-3 Sat iff (u0, u0) /∈ ⊇-Cons(Gφ, L,Γ). (21)

The graph Gφ is defined in the following way. Its set V of nodes is:

{nij : 1 ≤ i ≤ m, 1 ≤ j ≤ 3}.

That is, with each occurrence of a variable xij in φ we associate a node nij.
Note that even if xij = xkl, then the nodes associated with xij and xkl are
distinct. We define the node u0 as the node n11. The relations of Gφ are
defined as follows (the schema will be self-evident from the definition):

1. aGφ = {(nij, nij) : 1 ≤ i ≤ m, 1 ≤ j ≤ 3}
2. dGφ = {(nij, nkl) : xij = xkl}.
3. rGφ = {(ni1, ni2), (ni2, ni3), (ni3, ni1) : 1 ≤ i ≤ m}.
4. sGφ = V × V .

5. tGφ = fGφ = ∅.

Intuitively, the relation d specifies which nodes correspond to the same vari-
able. The relation r specifies which variables occur in the same clause. The
relation a is a loop on each node. The relations t and f are empty. The
relation s is the full relation.

As mentioned before, γ is the RPC:

a ⊆ t+ f.

The intuition is as follows. Since each node has a loop with label a, it will
also have such a loop in any ⊇-repair H with respect to γ. The constraint
enforces that it also has either a loop with label f or with label t. This allows
us to define a map VH associated with H in the following way: If nij has a
loop with label t, we map nij to >, otherwise, nij is mapped to ⊥.

Note that VH might not define a valuation on the xij’s as there might
variables xij and xkl such that xij = xkl, the node nij has a loop with label t,
and nkl has a loop with label f . By definition of d, this is equivalent to say
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that there is a path with label tdf between the nodes nij and nkl. In fact,
the map VH is a valuation if and only if there is no path with label tdf in the
repair H. So, informally, each ⊇-repair with no such path corresponds to a
valuation.

Now, we want to define the RPQ L in such a way that if (u0, u0) belongs
to L(H), where H is a ⊇-repair H of Gφ with respect to γ, and H has
associated valuation VH , then VH is not a “witness” for the membership of φ
in Monotone 1-in-3 Sat (as before, we say that a valuation is a witness
iff exactly one variable for each clause of φ is true under the valuation).

Notice that a valuation VH associated with a repair H is not a witness for
the membership of φ in Monotone 1-in-3 Sat if for there is an 1 ≤ i ≤ m
such that:

(†) VH takes value > in at least two elements from {xi1, xi2, xi3}, or

(††) VH(xi1) = VH(xi2) = VH(xi3) = ⊥.

By definition of s and VH , (†) implies that trt is the label of a path in H,
while (††) implies that frfrf is the label of a path in H. We let W be the
regular expression:

trt+ frfrf.

So if H is a repair, either it is not associated with a valuation (that is, there
is a path with label tdf) or it is associated with a valuation and, in that case,
it must admit a path with label W (in order to ensure that the valuation is
not a witness). This suggests us to define L as the RPQ:

stdfs+ sWs.

We prove now that equivalence (21) holds. The proof is similar to the
proof of Proposition 4. First we show the implication from left to right of
equivalence (21). Suppose that φ belongs to Monotone 1-in-3 Sat. Let
V0 be a valuation such that for all clauses of φ, exactly one variable receives
value > under V0. We need to find a repair H0 such that (u0, u0) does not
belong to L(H0). We let H0 be the graph database obtained from Gφ by
adding loops with labels t and f in the following way:

• If V0(xij) = >, we add a loop with label t at the node nij.

• If V0(xij) = ⊥, we add a loop with label f at the node nij.

55



Since each node has either a loop with label t or f , the constraint γ is true.
Moreover, as each node has exactly one loop with either label t or f , the
graph H0 is a ⊇-repair of G with respect to γ (as the minimality condition
of ⊇-repairs is satisfied).

It remains to show that (u0, u0) does not belong to L(H0). The proof is
almost identical to the proof that (u0, u0) does not belong to L0(H0) in the
proof of Proposition 4. So we only provide a sketch here. We have to show
that there is neither a path with label tdf nor a path with label W . First,
there is a path with label tdf in H if and only if there are two nodes that are
linked with an edge with label d and such that the first node has a loop with
label t and the other node has a loop with label f . The fact that two nodes
are linked with an edge with label d means that they correspond to the same
variable. Hence, by definition of H, they must have the same loops. So it
will never be the case that one node have a loop with label t while the other
one does not. We conclude that there is no path with label tdf in H.

The fact that there is no path with label W comes from the fact that V0

is a witness valuation. Recall that W is the RPQ trt + frfrf . If there is a
path with label trt, there are two nodes with loops labeled t that are linked
by an edge with label r. By definition of r, this means that the two nodes
correspond to variables appearing in the same clause. Since the two nodes
have a loop with label t, the variables corresponding to the two nodes receive
value > under the valuation V0. This contradicts the fact that V0 is a witness
valuation. Similarly we can show that there is no path with label frfrf .

Next we prove the implication from right to left of (21). Suppose that
(u0, u0) does not belong to the answer of L in a ⊇-repair H of Gφ with respect
to γ. Since each node has a loop with label a in G and H is a ⊇-repair, each
node also has a loop with label a in H. Moreover, the constraint a ⊆ t + f
holds in H. Since each node has a loop with label a in H, this implies
that each node has at least one loop with label t or f . Moreover, using the
minimality condition of repairs, we can show that each node has at most one
loop with label t or f .

So each node in H has exactly one loop with label t or f . The proof that
this implies that φ belongs to Monotone 1-in-3 Sat is almost identical to
the proof of Proposition 4. So we only give a short sketch. We define a map
F assigning to each node the value ⊥ if it has a loop with label f , and the
value > otherwise. Using the fact that there is no path with label tdf , we can
prove that nodes corresponding to the same variables, are assigned the same
value by F . Hence, we can define a valuation V1 such that V1(xij) = F (nij)
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for all i, j. That is,

V1(xij) =

{
> if nij has a loop with label t

⊥ if nij has a loop with label f.

We can prove that V1 is a valuation such that exactly one variable receives
value > in each clause of φ. This comes from the fact that there is neither a
path with label frfrf nor a path with label trt (since by assumption there
is no path in H with label W ).

Notice that, unlike all previous lower bounds, the one in Proposition 6 is
not stated in terms of the class of word constraints. In fact, the techniques
developed for studying CQA under tgds in the relational case [20] can be
adapted to show that under a set Γ of LAV word constraints the problem
⊇-CQA(L,Γ) is tractable.

Restriction to the class of GAV RPCs. In the case of the symmetric
difference semantics, it is easy to adapt the proof of Proposition 4 in order
to show that when restricting to GAV C2RPCs, our CQA problem is coNP-
hard. Note that in the relational case, a similar result holds.

Proposition 7. 1. For each C2RPQ q and finite set Γ of GAV C2RPCs
over the same alphabet Σ, it is the case that ⊕-CQA(q,Γ) is in coNP.

2. There exist a finite alphabet Σ, a non-recursive RPQ L over Σ, and
a single GAV RPC γ of the form ab ⊆ c, where a, b, c ∈ Σ, such that
⊕-CQA(L,γ) is coNP-complete.

Proof. The proof is similar to the proof of Proposition 4. Membership in
coNP is identical. For the hardness proof, we have to modify the original
proof. The problem with the original proof under the symmetric difference
semantics, is that here, it is not always the case that there is no edge with
label e in a repair. So if L is the RPQ of the original proof, we modify it into
an RPQ L′ defined by:

L+ ses.

Recall that s is the full relation. In that way, we ensure that if e is non-empty,
then the answer of the RPQ contains all the pairs of nodes. Using a proof
similar to the proof of Proposition 4, we can show that for any formula φ:

φ ∈Monotone 1-in-3 Sat iff (u0, u0) /∈ ⊕-Cons(Gφ, L
′, γ),

where γ, Gφ and u0 are defined as in the proof of Proposition 4.
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In the case of the superset semantics, the restriction to GAV C2RPCs
leads to tractability. Given a graph database G and a set of GAV C2RPCs
Γ, using a classical chase argument, we can easily compute in Logspace
the unique superset repair of G with respect to Γ. This is identical to what
happens in the setting of relational databases.

Proposition 8. For each C2RPQ q and finite set Γ of GAV C2RPCs over
the same alphabet Σ, it is the case that ⊇-CQA(q,Γ) is in NLogspace.

Proof. Suppose that q is a C2RPQ and Γ is a set of GAV C2RPCs of the
form q′(x, y) ⊆ (x, a, y), for q′ a C2RPQ and a ∈ Σ±. Consider a graph
database G = (V,E). We show how to construct the unique superset repair
in NLogspace. We iteratively construct graph databases H0 ⊆ H1 ⊆ . . .
such that H0 = G, and for each i ≥ 0 we have that Hi+1 is constructed
from Hi as follows. For each pair (u, v) of nodes and for each constraint
q′(x, y) ⊆ (x, a, y) such that a ∈ Σ and the edge (u, a, v) is not in Hi, we
check whether (u, v) belongs to q′(Hi). If it does, then we add an edge with
label a from u to v in Hi+1. Similarly, for each pair (u, v) of nodes and for
each constraint q′(x, y) ⊆ (x, a−, y) such that a ∈ Σ and the edge (v, a, u) is
not in Hi, we check whether (u, v) belongs to q′(G). If it does, then we add
an edge with label a from v to u in Hi+1. Clearly, this process stops yielding
new edges after finitely many steps. We assume that m is the smallest integer
such that Hm = Hm+1. Notice that Hm can be constructed in NLogspace
from G. This is because each step can be constructed in NLogspace and
NLogspace computable functions are closed under composition.

By construction, Γ holds in H0. We prove next that if H is a ⊇-repair of
G under Γ, then Hm ⊆ H. Notice that these two facts show that Hm is the
unique ⊇-repair of G.

Let H be a ⊇-repair of G under Γ. We prove by induction on 0 ≤ i ≤ m
that Hi ⊆ H. By definition, G ⊆ H. Since G = H0, the base case follows.
Assume now by inductive hypothesis that Hi ⊆ H, for 0 ≤ i < m. Consider
an arbitrary edge (u, a, v) ∈ Hi+1 \ Hi. This edge has been added to Hi+1

by the application of a constraint in Γ. Suppose that such a constraint is of
the form q′(x, y) ⊆ (x, a, y), for a ∈ Σ (the case when the constraint is of the
form q′(x, y) ⊆ (x, a−, y) is analogous). Then by construction (u, v) ∈ q′(Hi).
Since Hi ⊆ H and C2RPQs are monotone, it is also the case that (u, v) ∈
q′(H). But H is a ⊇-repair of G, and thus it satisfies Γ. It follows that the
edge (u, a, v) belongs to H. We conclude that Hi+1 ⊆ H.
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Thus, to check whether ā ∈ ⊆-Cons(G, q,Γ), it suffices to construct H0

and check whether ā ∈ q(H0). Since the latter is in NLogspace, it follows
that the whole process can be done in NLogspace.

Modifying the interpretation of RPCs. By interpreting 2RPCs under
the relation |=o, we obtain decidability for the CQA problem for 2RPQs under
the semantics of ⊇-repairs. We do not know whether this can be extended to
the semantics of ⊕-repairs. Notice the difference with the restriction to LAV
2RPCs we studied before: For the latter we could only obtain decidability
under the ⊕-repairs semantics.

The difference here is that the implication problem for 2RPCs becomes
decidable if 2RPCs are interpreted under the relation |=o [1]. We adapt the
techniques used to prove this fact in order to obtain Theorem 6.

Recall that, G′ is a {o,⊇}-repair of G under Γ, if (1) G ⊆ G′, (2) G′ |=o Γ,
and (3) there is no graph database G′′ such that G ⊆ G′′ ( G′ and G′′ |=o Γ.
Furthermore, if L is a 2RPQ and Γ is a finite set of 2RPCs, we define {o,⊇}-
CQA(L,Γ) as the problem of, given a graph database G = (V,E) and a pair
(u, v) of nodes in V , checking whether (u, v) is an {o,⊇}-consistent answer
of L over G under Γ.

Theorem 6. 1. For each 2RPQ L and finite set Γ of 2RPCs over the
same alphabet Σ, it is the case that {o,⊇}-CQA(L,Γ) is in coNP.

2. There is a 2RPQ L and a LAV RPC γ such that checking whether (o, o)
is an {o,⊇}-consistent answer of L over G under Γ is coNP-hard.

Proof. We start by proving (1). Consider a graph database G = (V,E) over
Σ such that the origin o is in V , and a pair (u, u′) of nodes in V . We start
by proving the following:

Claim 4. If there is an {o,⊇}-repair G′ = (V ′, E ′) of G under Γ such that
(u, u′) 6∈ L(G′), then there is one such G′ of size at most polynomial in G.

In order to do this we apply standard “filtering” techniques on graph
databases (such as the ones used by Abiteboul and Vianu to prove that
implication of RPCs is decidable under the |=o-interpretation [1]). Assume
Γ = {Li ⊆ L′i | 1 ≤ i ≤ n}. Take the NFA A over Σ± that is equivalent to
the product of all Li’s, all L′i’s and the 2RPQ L. For each state q in A, we
denote by qo(V

′) the set of nodes v in G′ such that there is a path π from
o to v in (G′)± for which the following holds: There is a run of the NFA A
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over λ(π) that leads from the initial state to q. Equivalently, we define the
set qu(v), this time for paths that start in u.

Let V1 be the set V ′ \ V . We “filter” the nodes of V1 with respect to the
states of A. This is done as following: Define an equivalence relation ∼ over
V1 such that v ∼ v′, for nodes v, v′ ∈ V1, if and only if for every state q of A
it is the case that:

• v ∈ qo(V ′)⇔ v′ ∈ qo(V ′), and

• v ∈ qu(V ′)⇔ v′ ∈ qu(V ′).

We define a new graph database G′′ that is obtained from G′ by collapsing
all nodes in V1 that belong to the same equivalence class with respect to ∼.
Using standard techniques (see, e.g., [1]) one can prove the following:

Lemma 3. It is the case that G′′ |=o Γ and (u, u′) 6∈ L(G′′).

Since Γ and L are fixed, we have that the size of G′′ is polynomial (in
fact, linear) in the size of G′. The problem is that we do not know whether
G′′ is an {o,⊇}-repair of G under Γ. Suppose that this is not the case. Then
there is an {o,⊇}-repair G∗ of G under Γ such that G ⊆ G∗ ( G′′. Since
2RPQs are monotone, we have that (u, u′) 6∈ L(G∗). Clearly, G∗ is of size at
most polynomial (in fact, linear) on G. This proves Claim 4.

Therefore, in order to solve the complement of the {o,⊇}-CQA(L,Γ) prob-
lem, for an input given by a graph database G and a pair (u, u) of nodes in
G, it is possible to use the following NP algorithm: First guess a polyno-
mial size graph database G′ that extends G. Then check in polynomial time
that G′ |=o Γ and (u, u′) 6∈ L(G′). In fact, if the algorithm returns true for
some G′, then by using the same reasoning than in the previous paragraph
we can conclude that there is an {o,⊇}-repair G∗ of G under Γ such that
(u, u′) 6∈ L(G∗). On the other hand, if the algorithm does not find such G′

then we can conclude from Claim 4 that there is no {o,⊇}-repair G∗ of G
under Γ such that (u, u′) 6∈ L(G∗).

We now prove (2). We reduce from the problem of 3-colorability. Assume
we are given an undirected graph H. From H we construct a graph database
G = (V,E), such that (1) V corresponds to the set of nodes of H plus the
origin o, and (2) E contains edges (o, a, v), for each node v in H, and (u, e, v)
and (v, e, u), for each edge {u, v} in H. Assume that γ corresponds to the
RPC a ⊆ c1∪c2∪c3. Intuitively, this tells us that a ⊇-repair of G contains, for
each node v 6= o, one, and only one, edge of the form (o, ci, v), for 1 ≤ i ≤ 3.
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This edge represents the color assigned to node v by an assignment of three
colors to the nodes of H.

It is not hard to prove that H is 3-colorable if and only if there exists a
⊇-repair G′ of G such that no two nodes linked by an edge labeled e in G′

are assigned the same color. This is equivalent to checking that it is not the
case that there are paths labeled cie and ci in G′, for 1 ≤ i ≤ 3, that start in
the origin o and reach the same node v. This can be expressed as the 2RPQ
L :=

⋃
1≤i≤3 ciec

−
i . We then have that H is 3-colorable if and only if (o, o) is

not an {o,⊇}-consistent answer of L over G under γ.

Interestingly, we do not know whether the bound in Theorem 6 is also
tight for RPQs in the presence of RPCs.

5. Comparison with CQA in the relational context

We compare our results with previous results on CQA obtained in the
relational context. We assume familiarity with relational schemas and CQs.
Tuple-generating dependencies, or tgds, define one of the most important
classes of relational database constraints. They subsume several other classes
of interest, such as inclusion dependencies. In addition, they have important
applications in data integration, data exchange and ontological query an-
swering [35, 25, 11]. Formally, a tgd over a relational schema σ is a formula
of the form ∀x̄(φ(x̄) → ψ(x̄)), where both φ(x̄) and ψ(x̄) are CQs over σ
and each variable in x̄ is mentioned in φ(x̄). A relational database D over σ
satisfies this tgd if D |= φ(ā) implies D |= ψ(ā), for each tuple ā of elements
in D of the same length as x̄.

As mentioned in the introduction, each word constraint can be naturally
seen as a tgd over the standard relational representation of graph databases.
However, lower bounds for CQA under tgds in the relational setting, such
as the ones obtained by ten Cate et al. [20], cannot be used to obtain
lower bounds for CQA under word constraints (or even RPCs) in the graph
database context. This is because word constraints correspond to a restricted
class of tgds defined by chain CQs (which we call chain tgds). However, none
of the lower bounds developed for the data complexity of CQA under tgds
applies to this class.

We formalize the class of chain tgds as follows. Let σ be a relational
schema that contains only binary relation symbols. A chain CQ over σ is a
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CQ of the form

φ(x, y) := ∃u1u2 . . . um−1

(
R1(x, u1) ∧R2(u1, u2) ∧ · · · ∧Rm−1(um−1, y)

)
,

where each Ri is a relation symbol in σ [23]. That is, the underlying directed
graph of a chain CQ is a path. A chain tgd is one of the form ∀x∀y(φ(x, y)→
ψ(x, y)), where both φ(x, y) and ψ(x, y) are chain CQs. It is easy to see that
each word constraint can be represented as a chain tgd over the standard
relational representation of graph databases (in which, for each a ∈ Σ, there
is a binary relation symbol Ea that contains all pairs of nodes that are linked
by an a-labeled edge in the graph database). Conversely, each chain tgd is
the representation of a word constraint.

This allows us to use our proof techniques to obtain lower bounds for
CQA under the restricted class of chain tgds in the relational context:

Proposition 9. 1. Consider a semantics based on subset repairs of re-
lational databases. There is a relational schema σ that contains only
binary relation symbols, a finite set T of chain tgds and a union Q of
CQs over σ, such that the problem of evaluating certain answers for Q
under T is ΠP

2 -hard.

2. Consider a semantics based on superset repairs of relational databases.
There is a relational schema σ that contains only binary relation sym-
bols, a finite set T of chain tgds and a union Q of CQs over σ, such
that evaluating certain answers for Q under T is undecidable. The
same holds for the semantics of symmetric difference repairs.

6. Conclusions and Future Work

In this work we initiated the study of CQA over graph databases. The
data complexity of the problem is in general undecidable or highly intractable,
which motivated our search for decidable, and even tractable restrictions. In
the case of subset repair semantics we obtain tractability by either restricting
to the class of LAV C2RPCs or to the class of graph databases of bounded
treewidth. The class of LAV C2RPCs also yields tractability for our prob-
lem under the semantics of ⊕-repairs. On the other hand, for the semantics
of superset repairs we obtain decidability if we restrict to the class of GAV
C2RPCs, or if only consider 2RPQs and 2RPCs which are interpreted from
the origin. A picture of some of the complexity bounds obtained for the
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General C2RPCs word RPCs LAV (C2)RPCs GAV (C2)RPCs
⊆-repairs ΠP

2 -complete ΠP
2 -complete NLogspace coNP-complete

(Theorem 1) (Theorem 1) (Theorem 2) (Prop. 4)
⊇-repairs Undecid. Undecid. coNP-hard NLogspace

(Theorem 4) (Theorem 4) (Prop. 6) (Prop. 8)
⊕-repairs Undecid. Undecid. NLogspace coNP-complete

(Theorem 4) (Theorem 4) (Theorem 5) (Prop. 7)
{o,⊆}-repairs ΠP

2 -c ΠP
2 -c NLogspace coNP-c

(Prop. 3) (Prop. 3) (Theorem 2) (Prop. 5)
{o,⊇}-repairs coNP-complete coNP-complete coNP-complete coNP-complete

(Theorem 6) (Theorem 6) (Theorem 6) (Theorem 6)
{o,⊕}-repairs ? ? ? ?

Figure 1: Known complexity bounds for the CQA problem for C2RPQs over graph
databases under different classes of constraints and repair semantics. Lower bounds hold
even for RPQs, save for those for {o,⊇}-repairs that hold for 2RPQs.

problems studied in this paper (for different classes of C2RPCs and under
different semantics) is shown in Figure 1.

Several questions regarding CQA under the semantics of ⊇- and ⊕-repairs
remain open. For instance, we do not know whether CQA under ⊇-repairs is
decidable when C2RPCs are in LAV form. Neither we know whether CQA
under ⊕-repairs is decidable when 2RPCs are interpreted from the origin.
We plan to study this in the future.

It would also be interesting to look for different kinds restrictions that
yield decidability for our CQA problem. For instance, in the relational sce-
nario it is possible to obtain tractability in data complexity for CQA under⊇-
and ⊕-repair semantics if the set Γ of tgds is weakly acyclic [20]. The reason
is that in this case there is a polynomial that bounds the size of each repair
of a database D under Γ. We would like to develop a meaningful adaptation
of this notion to the scenario of RPCs in search for similar positive results.
However, this is more difficult than in the relational case, since the notion
of acyclicity will have to consider how regular expressions interact with each
other. Another way in which positive results for our CQA problem under
⊇- and ⊕-repair semantics could be obtained, is by restricting to classes of
RPCs for which the implication problem is decidable. This includes, for in-
stance, classes of word constraints for which the associated rewrite problem
is decidable [28].
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