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We study the complexity of various fundamental counting problems that arise in the context of incomplete
databases, i.e., relational databases that can contain unknown values in the form of labeled nulls. Specifically,
we assume that the domains of these unknown values are finite and, for a Boolean query q, we consider the
following two problems: Given as input an incomplete database D, (a) return the number of completions of D
that satisfy q; or (b) return the number of valuations of the nulls of D yielding a completion that satisfies q.
We obtain dichotomies between #P-hardness and polynomial-time computability for these problems when q
is a self-join–free conjunctive query and study the impact on the complexity of the following two restrictions:
(1) every null occurs at most once in D (what is called Codd tables); and (2) the domain of each null is the same.
Roughly speaking, we show that counting completions is much harder than counting valuations: For instance,
while the latter is always in #P, we prove that the former is not in #P under some widely believed theoretical
complexity assumption. Moreover, we find that both (1) and (2) can reduce the complexity of our problems.
We also study the approximability of these problems and show that, while counting valuations always has a
fully polynomial-time randomized approximation scheme (FPRAS), in most cases counting completions does
not. Finally, we consider more expressive query languages and situate our problems with respect to known
complexity classes.
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1 INTRODUCTION

Context. In the database literature, incomplete databases are often used to represent missing
information in the data; see, e.g., References [1, 37, 52]. These are traditional relational databases
whose active domain can contain both constants and nulls, the latter representing unknown val-
ues [30]. There are many ways in which one can define the semantics of such a database, each
being equally meaningful depending on the intended application. Under the so-called closed-world
assumption [1, 45], a standard, complete database ν (D) is obtained from an incomplete database D
by applying a valuation ν that replaces each null ⊥ in D with a constant ν (⊥). The goal is then to
reason about the space formed by all valuations ν and completions ν (D) of D.

Decision problems related to querying incomplete databases have been well studied already.
Consider for instance the problem Certainty(q(x̄ )) that, for a fixed query q(x̄ ), takes as input
an incomplete database D and a tuple ā and asks whether ā is an answer to q for every possible
completion ofD. By now, we have a deep understanding of the complexity of these kind of decision
problems for different choices of query languages, including conjunctive queries (CQs) and FO
queries [2, 30]. However, having the answer to this question is sometimes of little help: What if
it is not the case that q is certain on D? Can we still infer some useful information? This calls for
new notions that could be used to measure the certainty with which q holds, notions that should
be finer than those previously considered. This is for instance what the recent work in Reference
[38] does by introducing a notion of best answer, which are those tuples ā for which the set of
completions of D over which q(ā) holds is maximal with respect to set inclusion.

A fundamental complementary approach to address this issue can be obtained by considering
some counting problems related to incomplete databases; more specifically, determining the num-
ber of completions/valuations of an incomplete database that satisfy a query q. These problems
are relevant, as they tell us, intuitively, how close is q from being certain over D, i.e., what is
the level of support that q has over the set of completions/valuations of D. Surprisingly, such
counting problems do not seem to have been studied for incomplete databases. A reason for this
omission in the literature might be that, in general, it is assumed that the domain over which
nulls can be interpreted is infinite, and thus incomplete databases might have an infinite number
of completions/valuations. However, in many scenarios it is natural to assume that the domain
over which nulls are interpreted is finite, in particular when dealing with uncertainty in prac-
tice [4, 6, 7, 11, 23, 46]. By assuming this, we can ensure that the number of completions and
valuations are always finite, and thus that they can be counted. This is the setting that we study.

Problems studied. We focus on the problems #Comp(q) and #Val(q) for a Boolean query q,
which take as input an incomplete database D together with a finite set dom(⊥) of constants for
every null ⊥ occurring in D, and ask the following: How many completions, respectively, valu-
ations, of D satisfy q? More formally, a valuation of D is a mapping ν that associates to every
null ⊥ of D a constant ν (⊥) in dom(⊥). Then, given a valuation ν of D, we denote by ν (D) the
database that is obtained from D after replacing each null⊥with ν (⊥), and we call such a database
a completion. Besides, in this article, we consider set semantics, that is, we remove repeated tuples
from ν (D). For #Comp(q), we count all databases of the form ν (D) such that q holds in ν (D). In-
stead, for #Val(q), we count the number of valuations ν such that q holds in ν (D). It is easy to see
that these two values can differ, as a completion might be obtained from two different valuations,
i.e., there might exist two distinct valuations ν ,ν ′ such that ν (D) = ν ′(D). We think that both
problems are meaningful: While #Comp(q) determines the support for q over the databases repre-
sented by D, we have that #Val(q) further refines this by incorporating the support for a particular
completion that satisfies q over the set of valuations for D.
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Table 1. Our Dichotomies for Counting Valuations and Completions of sjfBCQs

Counting valuations Counting completions

Non-uniform Uniform Non-uniform Uniform

Naïve
R (x ,x )
R (x ) ∧ S (x )

R (x ,x )
R (x ) ∧ S (x ,y) ∧T (y)
R (x ,y) ∧ S (x ,y)

R (x )
R (x ,x )
R (x ,y)

Codd R (x ) ∧ S (x )
R (x ) ∧ S (x ,y) ∧T (y)
R (x ,y) ∧ S (x ,y)

R (x )
R (x ,x )
R (x ,y)

For each of the eight cases, if an sjfBCQ q contains a pattern mentioned in that case, then the problem is #P-hard
(and #P-complete for counting valuations, as well as for counting completions over Codd tables). In turn, for
each case, if an sjfBCQ q does not have any of the patterns mentioned in that case, then the problem is in FP.

We deal with the data complexity of the problems #Comp(q) and #Val(q), focusing on obtain-
ing dichotomy results for them in terms of counting complexity classes, as well as studying the
existence of randomized algorithms that approximate their results under probabilistic guarantees.
For the dichotomies, we concentrate on self-join-free Boolean conjunctive queries (sjfBCQs).
This assumption simplifies the mathematical analysis, while at the same time defines a setting
that is rich enough for many of the theoretical concepts behind these problems to appear in full
force. Notice that a similar assumption is used in several works that study counting problems over
probabilistic and inconsistent databases; see, e.g., References [18, 40]. To simplify further the pre-
sentation, in the bulk of the article, we mainly consider self-join–free Boolean conjunctive queries
that do not contain constants; however, we explain later (in Section 7) how our results can be
extended to queries that can contain constants and free variables.

To refine our analysis, we study two restrictions of the problems #Comp(q) and #Val(q) based
on natural modifications of the semantics and analyze to what extent these restrictions simplify
our problems. For the first restriction, we consider incomplete databases in which each null oc-
curs exactly once, which corresponds to the well-studied setting of Codd tables—as opposed to
naive tables where nulls are allowed to have multiple occurrences. We denote the corresponding
problems by #ValCd (q) and #CompCd (q). For the second restriction, we consider uniform incom-
plete databases in which all the nulls share the same domain—as opposed to the basic non-uniform
setting in which all nulls come equipped with their own domain. We denote the corresponding
problems by #Valu (q) and #Compu (q). When both restrictions are in place, we denote the prob-
lems by #Valu

Cd
(q) and #Compu

Cd
(q).

Our dichotomies for exact counting. We provide complete characterizations of the complex-
ity of counting valuations and completions satisfying a given sjfBCQ q when the input is a Codd
table or a naive table and is a non-uniform or a uniform incomplete database (hence, we have eight
cases in total). Our eight dichotomies express that these problems are either tractable or #P-hard,
and that the tractable cases can be fully characterized by the absence of certain forbidden patterns
in q. In essence, a pattern is simply an sjfBCQ that can be obtained from q by deleting atoms and
occurrences of variables (the exact definition of this notion is given in Section 3). Our characteri-
zations are presented in Table 1. By analyzing this table, we can draw some important conclusions
as explained next.

#Comp(q) and #Val(q) are computationally difficult: For very few sjfBCQs q, the aforementioned
problems can be solved in polynomial time. Take as an example the uniform setting over naive
tables. Then #Valu (q) is #P-hard as long as q contains the pattern R (x ,x ), or R (x ) ∧ S (x ,y) ∧T (y),
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Table 2. Our Results on the Existence of FPRAS for Solving the Problems Studied in the Article
(Assuming NP � RP)

FPRAS for counting valuations FPRAS for counting completions

Non-uniform Uniform Non-uniform Uniform

Naïve Always Always Never
Only when q has
only unary atoms

Codd Always Always Never ?

or R (x ,y) ∧ S (x ,y). That is, as long as there is an atom in q that contains a repeated variable x , or
a pair (x ,y) of variables that appear in an atom and both x and y appear in some other atoms in q.
By contrast, for this same setting, #Compu (q) is #P-hard as long as q contains the pattern R (x ,y)
or R (x ,x ), that is, as long as there is an atom in q that is not of arity one.

#Val(q) is always easier than #Comp(q): In all of the possible versions of our problem, the tractable

cases for #Val(q) are a strict superset of the ones for #Comp(q). For instance, #Compu
Cd

(∃x
∃y R (x ,y)) is hard, while #Valu

Cd
(∃x∃y R (x ,y)) is tractable.

Even counting completions is hard: While counting the total number of valuations for an incom-
plete database can always be done in polynomial time, observe from Table 1 that the problem
#Compu

Cd
(∃x∃y R (x ,y)) is #P-hard, and thus that simply counting the completions of a uniform

Codd table with a single binary relation R is #P-hard. Moreover, we show that in the non-uniform
case a single unary relation suffices to obtain #P-hardness.

Codd tables help but not much: We show that counting valuations is easier for Codd tables than
for naive tables. In particular, there is always an sjfBCQ q such that counting the valuations that
satisfy q is #P-hard, yet it becomes tractable when restricted to the case of Codd tables. However,
for counting completions, both in the uniform and non-uniform setting, the sole restriction to Codd
tables presents no benefits: For every sjfBCQ q, we have that #Comp(q) (respectively, #Compu (q))
is #P-hard if and only if #CompCd (q) (respectively, #Compu

Cd
(q)) is #P-hard.

Non-uniformity complicates things: All versions of our problems become harder in the non-
uniform setting. This means that in all cases there is an sjfBCQ q for which counting valuations
is tractable on uniform incomplete databases, but becomes #P-hard assuming non-uniformity, and
the same holds for counting completions.

Our dichotomies for approximate counting. Although #Val(q) can be #P-hard, we prove
that good randomized approximation algorithms can be designed for this problem. More precisely,
we give a general condition under which #Val(q) admits a fully polynomial-time randomized

approximation scheme (FPRAS) [33]. This condition applies in particular to all unions of Boolean
conjunctive queries. Remarkably, we show that this no longer holds for #Comp(q); more precisely,
there exists an sjfBCQ q such that #Comp(q) does not admit an FPRAS under a widely believed
complexity theoretical assumption. More surprisingly, even counting the completions of a uniform
incomplete database containing a single binary relation does not admit an FPRAS under such an
assumption (and in the non-uniform case, a single unary relation suffices). Generally, for sjfBCQs,
we obtain seven dichotomies for our problems between polynomial-time computability of exact
counting and non-admissibility of an FPRAS. The only case that we did not completely solve is
that of #Compu

Cd
(q). Our dichotomies for approximate counting are illustrated in Table 2.

Beyond #P. It is easy to see that the problem of counting valuations is always in #P, provided
that the model checking problem for q is in P. This is no longer the case for counting completions,
and in fact, we show that, under a complexity theoretical assumption, there is an sjfBCQ q for
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which #Compu (q) is not in #P. This does not hold if restricted to Codd tables, however, as we
prove that #CompCd (q) is always in #P when the model checking problem for q is in P.

For reasons that we explain in the article, a suitable complexity class for the problem #Comp(q)
is SpanP, which is defined as the class of counting problems that can be expressed as the number
of different accepting outputs of a nondeterministic Turing machine running in polynomial time.
While we have not managed to prove that there is an sjfBCQ q for which #Comp(q) is SpanP-
complete, we show that this is the case for the problem of counting completions for the negation
of an sjfBCQ, even in the uniform setting; that is, we show that #Compu (¬q) is SpanP-complete
for some sjfBCQ q. Finally, we also show that SpanP is the right complexity class for counting
valuations of queries for which model checking is in NP.

Extension to queries with constants and free variables. As we said already, for ped-
agogical reasons, we mostly present our results by considering queries that are Boolean and
that do not have constants. In Section 7, however, we explain how to extend these results to
the case of queries that have free variables and that can contain constants. For the case of
a query q(x̄ ) with free variables x̄ , our counting problems are defined in the expected way;
for instance, the problem #Val(q(x̄ )) takes as input an incomplete database D, a tuple of con-
stants ā of same arity as x̄ , and it outputs the number of valuations ν of D such that ā in an
answer to q(x̄ ) on ν (D). We then extend our dichotomies and approximation results in this setting.

The current article extends the conference article cited in Reference [8] in the following ways:

• In Reference [8], we left open the dichotomy for #Valu
Cd

(q), i.e., for counting valuations
of sjfBCQs for Codd tables under the uniform setting. We close this case here, by finding
one more hard pattern (namely, the pattern ∃x ,y R (x ,y) ∧ S (x ,y)) and showing that the
problem can be solved in polynomial time for all other queries.
• We added Section 7, which explains how our framework can be extended to handle queries

with constants and free variables;
• Proposition 6.3, which establishes the NP-completeness of checking if a set of facts is a

possible completion of an incomplete database, is new;
• Finally, full proofs of most results are included in the body of the article.

Organization of the article. We start with the main terminology used in the article in
Section 2, and then present in Section 3 our four dichotomies on #Val(q) when q is an sjfBCQ,
and the input incomplete database can be Codd or not, and the domain can be uniform or not. We
then establish the four dichotomies on #Comp(q) in Section 4. In Section 5, we study the approx-
imability complexity of our problems. We then give in Section 6 some general considerations about
the exact complexity of the problem #Comp(q) going beyond #P. We explain in Section 7 how to
extend our results to queries with constants and free variables. In Section 8, we discuss related
work and explain the differences with the problems considered in this article. Last, we provide
some conclusions and mention possible directions for future work in Section 9.

2 PRELIMINARIES

Relational databases and conjunctive queries. A relational schema σ is a finite non-empty
set of relation symbols written R, S , T , . . . , each with its associated arity, which is denoted by
arity(R). Let Consts be a countably infinite set of constants. A database D over σ is a set of facts
of the form R (a1, . . . ,aarity(R ) ) with R ∈ σ , and where each element ai ∈ Consts. For R ∈ σ ,
we denote by D (R) the subset of D consisting of facts over R. Such a set is usually called a relation
of D.
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21:6 M. Arenas et al.

A Boolean queryq is a query that a databaseD can satisfy (writtenD |= q) or not (writtenD � |= q).
If q is a Boolean query, then ¬q is the Boolean query such that D |= ¬q if and only if D � |= q. A
Boolean conjunctive query (BCQ) over σ is an FO formula of the form

∃x̄
(
R1 (x̄1) ∧ . . . ∧ Rm (x̄m )

)
, (1)

where all variables are existentially quantified, and where for each i ∈ [1,m], we have that Ri is
a relation symbol in σ and x̄i is a tuple of variables with |x̄i | = arity(Ri ). To avoid trivialities, we
will always assume thatm � 1, i.e., the query has at least one atom, and also that arity(Ri ) � 1 for
all atoms. Observe that we do not allow constants to appear in the query (but we will come back
to this issue in Section 7). For simplicity, we typically write a BCQ q of the form (1) as

R1 (x̄1) ∧ . . . ∧ Rm (x̄m ),

and it will be implicitly understood that all variables in q are existentially quantified. As usual,
we define the semantics of a BCQ in terms of homomorphisms. A homomorphism from q to
a database D is a mapping from the variables in q to the constants used in D such that
{R1 (h(x̄1)), . . . ,Rm (h(x̄m ))} ⊆ D. Then, we have D |= q if there exists a homomorphism from q
to D. A self-join–free BCQ (sjfBCQ) is a BCQ such that no two atoms use the same relation symbol.

Incomplete databases. Let Nulls be a countably infinite set of nulls (also called labeled or
marked nulls in the literature), which is disjoint with Consts. An incomplete database over
schema σ is a pair D = (T , dom), where T is a database over σ whose facts contain elements
in Consts ∪ Nulls, and where dom is a function that associates to every null ⊥ occurring in D a
subset dom(⊥) of Consts. Intuitively, T is a database that can mention both constants and nulls,
while dom tells us where nulls are to be interpreted. Following the literature, we call T a naive
table [30].

An incomplete database D = (T , dom) can represent potentially many complete databases, via
what are called valuations. A valuation of D is simply a function ν that maps each null⊥ occurring
in T to a constant ν (⊥) ∈ dom(⊥). Such a valuation naturally defines a completion of D, denoted
by ν (T ), which is the complete database obtained from T by substituting each null ⊥ appearing
inT by ν (⊥). It is understood, since a database is a set of facts, that ν (T ) does not contain duplicate
facts. By paying attention to completions of incomplete databases that are generated exclusively by
applying valuations to them, we are sticking to the so-called closed-world semantics of incomplete-
ness [1, 45]. This means that the databases represented by an incomplete database D = (T , dom)
are not open to adding facts that are not “justified” by the facts in T .

Example 2.1. Let D = (T , dom) be the incomplete database consisting of the naive table T =
{S (⊥1,⊥1), S (a,⊥2)}, and where dom(⊥1) = {a,b} and dom(⊥2) = {a, c}. Let ν1 be the valuation
mapping ⊥1 to b and ⊥2 to c . Then ν1 (T ) is {S (b,b), S (a, c )}. Let ν2 be the valuation mapping
both ⊥1 and ⊥2 to a. Then ν2 (T ) is {S (a,a)}. However, the function ν mapping ⊥1 and ⊥2 to b is
not a valuation of D, because b � dom(⊥2).

When every null occurs at most once inT , thenD is what is called a Codd table [16]; for instance,
the incomplete database in Example 2.1 is not a Codd table, because ⊥1 occurs twice. We also
consider uniform incomplete databases in which the domain of every null is the same. Formally, a
uniform incomplete database is a pair D = (T , dom), where T is a database over σ and dom is a
subset of Consts. The difference now is that a valuation ν of D must simply satisfy ν (⊥) ∈ dom
for every null of D.

We will often abuse notation and use D instead ofT ; for instance, we write ν (D) instead of ν (T ),
or R (a,a) ∈ D instead of R (a,a) ∈ T , or again D (R) instead of T (R).
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Counting problems on incomplete databases. We will study two kinds of counting prob-
lems for incomplete databases: problems of the form #Val(q), which count the number of valua-
tions ν that yield a completion ν (D) satisfying a given BCQ q, and problems of the form #Comp(q),
which count the number of completions that satisfy q. The query q is assumed to be fixed, so each
query gives rise to different counting problems, and we are considering the data complexity [53]
of these problems.

Before formally introducing our problems, let us observe that they are well defined if we assume
that the set of constants to which a null can be mapped to is finite. Hence, for the (default) case of
an incomplete database D = (T , dom), we assume that dom(⊥) is always a finite subset of Consts.
Similarly, for the case of a uniform incomplete database D = (T , dom), we assume that dom is a
finite subset of Consts. Finally, given a Boolean query q, we use notation sig(q) for the set of rela-
tion symbols occurring in q. With these ingredients, we can define our problems for the (default)
case of incomplete naive tables and a Boolean query q.

PROBLEM : #Val(q)
INPUT : An incomplete database D over sig(q)
OUTPUT : Number of valuations ν ofD with ν (D) |= q

PROBLEM : #Comp(q)
INPUT : An incomplete database D over sig(q)
OUTPUT : Number of completions ν (D) of D with

ν (D) |= q

We also consider the uniform variants of these problems, in which the input D is a uniform
incomplete database over sig(q), and the restriction of these problems where the input is a Codd
table instead of a naive table. We then use the terms #Valu (q), #Compu (q) when restricted to the
uniform case, #ValCd (q), #CompCd (q) when restricted to Codd tables, and #Valu

Cd
(q), #Compu

Cd
(q)

when both restrictions are applied.
As we will see, even though the problems #Val(q) and #Comp(q) look similar, they are of a differ-

ent computational nature; this is because two distinct valuations can produce the same completion
of an incomplete database. We illustrate this phenomenon in the following example:

Example 2.2. Let q be the Boolean conjunctive query ∃x S (x ,x ), and D be the (non-uniform)
incomplete database D = (T , dom), with T = {S (a,b), S (⊥1,a), S (a,⊥2)}, dom(⊥1) = {a,b, c}
and dom(⊥2) = {a,b}. We have depicted in Figure 1 the six valuations of D together with the
completions that they define. Out of these six valuations ν , only four are such that ν (D) |= q, so we
have #Val(q) (D) = 4. Moreover, there are only 3 distinct completions of D that satisfy q—because
the first two are the same—so #Comp(q) (D) = 3.

Counting complexity classes. Given two problems A,B, we write A �p
T B when A reduces

to B under polynomial-time Turing reductions. When both A and B are counting problems, we
write A �p

par B when A can be reduced to B under polynomial-time parsimonious reductions, i.e.,
when there exists a polynomial-time computable function f that transforms an input x of A to an
input f (x ) of B such that A(x ) = B ( f (x )). We say that a counting problem is in FP when it can be
solved in polynomial time. We will consider the counting complexity class #P [50] of problems that
can be expressed as the number of accepting paths of a nondeterministic Turing machine running
in polynomial time. Following Reference [50, 51], we define #P-hardness using Turing reductions.
It is clear that FP ⊆ #P. Moreover, this inclusion is widely believed to be strict. Therefore, proving
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Fig. 1. The six valuations of the (non-uniform) incomplete database D = (T , dom) with T = {S (a,b),
S (⊥1,a), S (a,⊥2)} from Example 2.2, and their corresponding completions. The Boolean conjunctive query q
is ∃x S (x ,x ).

that a counting problem is #P-hard implies that it cannot be solved in polynomial time under such
an assumption.

3 DICHOTOMIES FOR COUNTING VALUATIONS

In this section, for a fixed sjfBCQ q, we study the complexity of the problem of computing, given as
input an incomplete database D, the number of valuations ν of D such that ν (D) satisfies q. Recall
that we have four cases to consider for this problem depending on whether we focus on naive or
on Codd tables, where nulls are restricted to appear at most once, and whether we focus on non-
uniform or uniform incomplete databases, where nulls are restricted to have the same domain.
Our specific goal then is to understand whether the problem is tractable (in FP) or #P-hard in
these scenarios, depending on the shape of q.

To this end, the shape of an sjfBCQ q will be characterized by the presence or absence of certain
specific patterns. In the following definition, we introduce the necessary terminology to formally
talk about the presence of a pattern in a query:

Definition 3.1. Let q,q′ be sjfBCQs. We say that q′ is a pattern of q if q′ can be obtained from q
by using an arbitrary number of times and in any order the following operations: deleting an atom,
deleting an occurrence of a variable, renaming a relation to a fresh one, renaming a variable to a
fresh one, and reordering the variables in an atom.1

Example 3.2. Recall that we always omit existential quantifiers in Boolean queries. Then, we
have that q′ = R′(u,u,y) ∧ S ′(z) is a pattern of q = R (u,x ,u) ∧ S ′(y,y) ∧ T (x , s, z, s ). Indeed,
q′ can be obtained from q by deleting atom T (x , s, z, s ), renaming R (u,x ,u) as R′(u,x ,u) to ob-
tain R′(u,x ,u) ∧ S ′(y,y), reordering the variables in R′(u,x ,u) to obtain R′(u,u,x ) ∧ S ′(y,y), re-
naming variable y into z to obtain R′(u,u,x ) ∧ S ′(z, z), deleting the second variable occurrence
in S ′(z, z) to obtain R′(u,u,x ) ∧ S ′(z), and finally renaming variable x into y to obtain q′.

We point out that in Definition 3.1, the important parts are those about deleting atoms and
variable occurrences. The parts about reordering variable occurences inside an atom and about
renaming relations and variables to fresh ones have obviously no effect on the complexity of the
problem2; these are only here to allow us to formally say, for instance, that “R (x ) is a pattern
of R (y),” or that “S (x ,u,x ) is a pattern of T (w, z, z)” (as these are, in essence, the same queries).

1We remind the reader that we assume all sjfBCQs to contain at least one atom and that all atoms must contain at least
one variable.
2This is, in particular, because the conjunctive queries we consider have no self-joins (otherwise, reordering variables inside
an atom could change the complexity).
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In the following general lemma, we show that if q′ is a pattern of q, then each of the problems
considered in this section is as hard for q as it is for q′. Recall in this result that unless stated
otherwise, our problems are defined for naive tables under the non-uniform setting.

Lemma 3.3. Let q,q′ be sjfBCQs such that q′ is a pattern of q. Then, we have #Val(q′) �p
par #Val(q).

Moreover, the same results hold if we restrict to Codd tables, and/or to the uniform setting.

Proof. We first present the proof for #Val(q′) �p
par #Val(q), that is, for naive tables in the non-

uniform setting. First, observe that we can assume without loss of generality that we did not re-
order the variables in the atoms nor renamed relation names or variables by fresh ones, because,
as mentioned above, this does not change the complexity of the problem.3 We can then write q as
R1 (x1) ∧ . . . ∧ Rm (xm ) and q′ as R j1 (x ′j1

) ∧ . . . ∧ R jp
(x ′jp

), where 1 � j1 < . . . < jp � m and x ′jk

is obtained from x jk
by deleting some variable occurrences but not all,4 and the other atoms have

been deleted. Let D ′ be an incomplete database input of #Val(q′). Let A be the set of constants that
are appearing in D ′ or are in a domain of some null occurring in D ′. For 1 � k � p, we construct
the relation D (R jk

) from the relation D ′(R jk
). Let us assume that x jk

is the tuple (x1, . . . ,xr ) (with
some variables possibly being equal). We initialize D (R jk

) to be empty, and then for every tuple t ′

in D ′(R jk
), we add to D (R jk

) all the tuples t that can be obtained from t ′ in the following way for
1 � i � r :

(a) If xi is a variable occurrence that has not been deleted from x jk
, then copy the element

(constant or null) of t ′ corresponding to that variable occurrence to the ith position of t ;
(b) Otherwise, if xi is a variable occurrence that has been deleted from x jk

, then fill the ith
position of t with every possible constant from A.

Then, we construct the relations D (Ri ) where Ri does not appear in q′ (this can happen if we have
deleted the atom Ri (xi )) by filling it with every possible Ri -fact over A. We leave the domains of
all nulls unchanged. The whole construction can be performed in polynomial time (this uses the
fact that q is assumed to be fixed, so the arities of the relations mentioned in q are fixed). Hence, it
only remains to be checked that #Val(q′) (D ′) = #Val(q) (D), that is, that the reduction works and is
indeed parsimonious. It is clear that the valuations ofD ′ are exactly the same as the valuations ofD
(because they have the same sets of nulls). Hence, it is enough to verify that for every valuation ν ,
we have ν (D ′) |= q′ if and only if ν (D) |= q. Leth′ be a homomorphism from q′ to ν (D ′) witnessing
that ν (D ′) |= q′ (i.e., we have h′(q) ⊆ ν (D ′)). Then h′ can clearly be extended in the expected way
into a homomorphism h from q to ν (D); this is, in particular, thanks to the fact that we filled the
missing columns with every possible constant. Conversely, let h be a homomorphism from q to
ν (D) witnessing that ν (D) |= q. Then the restriction h′ of h to the variables occurring in q′ is such
that h(q′) ⊆ ν (D ′), hence, we have ν (D ′) |= q′. This concludes the proof for the case of naive
tables in the non-uniform setting. For the cases of Codd tables and/or for the uniform setting, the
reduction is exactly the same. Indeed, the domains of the nulls are unchanged, and it is clear that
the presented construction preserves the property of being a Codd table. �

The idea is then to show the #P-hardness of our problems for some simple patterns, which we
then combine with Lemma 3.3 and some tractability proofs to obtain the desired dichotomies. Our

3Formally, one can first check that we can assume without loss of generality that q′ was obtained from q by first deleting
some atoms and variable occurrences to obtain a query q′′, and then performing some renamings and variable reorderings
to obtain q′ (that is, we can always push the renaming and reordering parts at the end of the transformation). But then,
since #Val(q′′) and #Val(q′) are obviously the same problem, we can assume q′ = q′′.
4See Footnote 1.
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findings are summarized in the first two columns of Table 1 in the introduction. We first focus on
the two dichotomies for the non-uniform setting in Section 3.1, and then we move to the case of
uniform incomplete databases in Section 3.2. We explicitly state when a #P-hardness result holds
even in the restricted setting in which there is a fixed domain over which nulls are interpreted.
In other words, when there is a fixed domain A such that the incomplete databases used in the
reductions are of the form D = (T , dom) and dom(⊥) ⊆ A, for each null ⊥ of T .

3.1 The Complexity on the Non-uniform Case

In this section, we study the complexity of the problems #Val(q) and #ValCd (q), providing di-
chotomy results in both cases. We start by proving the #P-hardness results needed for these di-
chotomies. We first show that #Val(R (x ,x )) is #P-hard by actually proving that hardness holds
already in the uniform case.

Proposition 3.4. #Valu (R (x ,x )) is #P-hard. This holds even in the restricted setting in which all
nulls are interpreted over the same fixed domain {1, 2, 3}.

Proof. We reduce from the problem of counting the number of 3-colorings of a graph G =
(V ,E), which is #P-hard [32]. For every nodev ∈ V , we have a null ⊥v , and for every edge {u,v} ∈
E, we have the facts R (⊥v ,⊥u ) and R (⊥u ,⊥v ). The domain of the nulls is {1, 2, 3}. It is then clear
that the number of valuations of the constructed database that do not satisfy R (x ,x ) is exactly the
number of 3-colorings of G. Since the total number of valuations can be computed in PTIME, this
concludes the reduction. �

The next pattern that we consider is R (x ) ∧ S (x ). This time, we can show #P-hardness of the
problem even for Codd databases.

Proposition 3.5. #ValCd (R (x ) ∧ S (x )) is #P-hard.

Proof. We start by recalling the setting of consistent query answering under key constraints.
Intuitively, in this case, we are given a set Σ of keys and a database D that does not necessarily
satisfy Σ. Then the task is to reason about the set of all repairs of D with respect to Σ [9]. In our
context, this means that one wants to count the number of repairs ofD with respect to Σ that satisfy
a given CQ q. When q and Σ are fixed, we call this problem #Repairs(q, Σ); see, e.g., Reference [40].
We formalize these notions below.

Here, we focus on the case when Σ is a set of primary keys. Recall that this means that each
relation name R ∈ σ of arity n comes equipped with its own key, i.e., key(R) = A, where A = ∅ or
A = [1, . . . ,p] for some p ∈ {1, . . . ,n}. Henceforth, D is inconsistent with respect to Σ if there is a
relation name R ∈ σ and facts R (ā),R (b̄) ∈ D with ā � b̄ such that

key(R) = A and πA (ā) = πA (b̄).

In this case, we say that the pair (R (ā),R (b̄)) is key-violating. Let us define a block in a database D
with respect to a set Σ of primary keys to be any maximal set B of facts from D such that the facts
in B are pairwise key-violating. A repair of D with respect to Σ is a subset D ′ of D that is obtained
by choosing exactly one tuple from each block of D with respect to Σ.

Let us consider a schema σ with two binary relations R′ and S ′, such that key(R′) = key(S ′) =
{1}. That is, the first attribute of both R′ and S ′ defines a key over such relations. We define this
set of keys over σ to be Σ. Also, let q = ∃x ,y, z (R′(y,x ) ∧ S ′(z,x )). For simplicity, we write the
pair (q, Σ) as R′(y,x ) ∧ S ′(z,x ). The problem #Repairs(R′(y,x ) ∧ S ′(z,x )), which given a database
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D ′ over schema σ aims at computing the number of repairs of D ′ under Σ that satisfy q, is known
to be #P-complete [40].5

Now, observe that the #P-hardness of #ValCd (R (x ) ∧ S (x )) easily follows from the hardness of
the problem #Repairs(R′(y,x )∧S ′(z,x )). In fact, letD ′ be a database with binary relation R′, S ′. We
construct an incomplete Codd databaseD with unary relationsR, S as follows: For every constant a
that appears in the first attribute of R′, we have a tuple R (⊥) in D, where ⊥ is a fresh null, and
we set dom(⊥) = {b | R′(a,b) ∈ D ′}. For every constant a that appears in the first attribute of S ′,
we have a tuple S (⊥) in D, where ⊥ is a fresh null, and we set dom(⊥) = {b | S ′(a,b) ∈ D ′}. It is
then clear that the number of repairs of D ′ that satisfy R′(y,x ) ∧ S ′(z,x ) is equal to the number of
valuations of D that satisfy R (x )∧S (x ), thus concluding the proof. We point out here that another
proof of Proposition 3.5, which uses different techniques, can be found in the conference version
of the article [8] (the proof that we presented here is shorter). �

Already with Propositions 3.5 and 3.4, we have all the relevant hard patterns for the non-uniform
setting. We start by proving our dichotomy result for naive tables, which is our default case.

Theorem 3.6 (Dichotomy). Let q be an sjfBCQ. If R (x ,x ) or R (x ) ∧ S (x ) is a pattern of q, then
#Val(q) is #P-complete. Otherwise, #Val(q) is in FP.

Proof. The #P-hardness part of the claim follows from the last two propositions and from
Lemma 3.3. We explain why the problems are in #P right after this proof. When q does not have
any of these two patterns, then all variables have exactly one occurrence in q. This implies that
every valuation ν of D is such that ν (D) satisfies q (except when one relation is empty, in which
case the result is simply zero). We can then compute the total number of valuations in FP by simply
multiplying the sizes of the domains of every null in D. �

Notice that in this theorem, the membership of #Val(q) in #P can be established by consider-
ing a nondeterministic Turing Machine M that, with input a non-uniform incomplete database D,
guesses a valuation ν of D and verifies whether ν (D) satisfies q. This machine works in polynomial
time, as we can verify whether ν (D) satisfies q in polynomial time (since q is a fixed FO query).
Then, given that #Val(q) (D) is equal to the number of accepting runs of M with input D, we con-
clude that #Val(q) is in #P. Obviously, the same idea works for Codd tables, that is, #ValCd (q) is
also in #P. But with this restriction, we obtain more tractable cases, as shown by the following
dichotomy result:

Theorem 3.7 (Dichotomy). Let q be an sjfBCQ. If R (x ) ∧ S (x ) is a pattern of q, then #ValCd (q) is
#P-complete. Otherwise, #ValCd (q) is in FP.

Proof. We only need to prove the tractability claim, since hardness follows from Proposition 3.5
and Lemma 3.3. We will assume without loss of generality that D contains no constants, as we can
introduce a fresh null with domain {c} for every constant c appearing in D, and the result is again
a Codd table, and this does not change the output of the problem. Let q be R1 (x̄1) ∧ . . . ∧ Rm (x̄m ).
Observe that, since q does not have R (x ) ∧ S (x ) as a pattern, then any two atoms cannot have a
variable in common. But then, since D is a Codd table, we have

#ValCd (q) (D) =
m∏

i=1

#ValCd (Ri (x̄i )) (D (Ri )).

5To see that Reference [40] establishes the hardness of q = R′(y, x ) ∧ S ′(z, x ), first apply their rewrite rule R7 (from
Figure 6) to obtain q′ = R′(y, x ) ∧ S ′(x, x ), then apply rewrite rule R10 to obtain q′′ = R′(y, x ) ∧ S ′(x, a). Then, q′′ is
#P-hard by Lemma 19, and so is q by Lemma 7.
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Hence, it is enough to show how to compute #ValCd (Ri (x̄i )) (D (Ri )) for every 1 � i � m.
Let t̄1, . . . , t̄n be the tuples of D (Ri ). Let us write ρ (t̄j ) for the number of valuations of the nulls ap-
pearing in t̄j that do not match x̄i . Clearly, #ValCd (Ri (x̄i )) (D (Ri )) =

∏
⊥ appears in D (Ri ) |dom(⊥) | −∏n

j=1 ρ (t̄j ), so we only have to show how to compute ρ (t̄j ) for 1 � j � n. Since we can easily
compute the total number of valuations of t̄j , it is enough to show how to compute the number
of valuations of t̄j that match x̄i . For every variable x that appears in x̄i , compute the size of the
intersection of the domains of the corresponding nulls in t̄j , and denote it sx . Then the number of
valuations of t̄j that match x̄i is simply

∏
x appears in x̄i

sx . This concludes the proof. �

At this stage, we have completed the first column of Table 1, and we also know that R (x ,x ) is a
hard pattern in the uniform setting for naive tables (but not for Codd tables, by Theorem 3.7). In
the next section, we treat the uniform setting.

3.2 The Complexity on the Uniform Case

In this section, we study the complexity of the problems #Valu (q) and #Valu
Cd

(q), again providing
dichotomy results in both cases.

3.2.1 Naïve Tables. We start our investigation with the case of naive tables. In Proposition 3.4,
we already showed that #Valu (R (x ,x )) is #P-hard. In the following proposition, we identify two
other simple queries for which this problem is still intractable.

Proposition 3.8. #Valu (R (x )∧S (x ,y)∧T (y)) and #Valu (R (x ,y)∧S (x ,y)) are both #P-hard. This
holds even in the restricted setting in which all nulls are interpreted over the same fixed domain {0, 1}.

Proof. We reduce both problems from the problem of counting the number of independent sets
in a graph (denoted by #IS), which is #P-complete [44]. We start with #Valu (R (x ) ∧ S (x ,y) ∧T (y)).
Let q = R (x ) ∧ S (x ,y) ∧T (y) and G = (V ,E) be a graph. Then, we define an incomplete database
D as follows: For every nodev ∈ V , we have a null ⊥v , and the uniform domain is {0, 1}. For every
edge {u,v} ∈ E, we have facts S (⊥u ,⊥v ) and S (⊥v ,⊥u ) in D. Finally, we have facts R (1) and T (1)
in D. For a valuation ν of the nulls, consider the corresponding subset Sν of nodes of G, given
by Sν = {t ∈ V | ν (⊥t ) = 1}. This is a bijection between the valuations of the database and the
node subsets of G. Moreover, we have that ν (D) � |= q if and only if Sν is an independent set of G.
Since the total number of valuations of D is 2 |V | , we have that the number of independent sets
of G is equal to 2 |V | − #Valu (q) (D). Hence, we conclude that #IS �p

T #Valu (q). The idea is similar
for #Valu (R (x ,y) ∧ S (x ,y)): We encode the graph with the relation S in the same way, and this
time, we add the fact R (1, 1). �

As shown in the following result, it turns out that the three aforementioned patterns are enough
to fully characterize the complexity of counting valuations for naive tables in the uniform setting.

Theorem 3.9 (Dichotomy). Let q be an sjfBCQ. If R (x ,x ) or R (x ) ∧ S (x ,y) ∧ T (y) or R (x ,y) ∧
S (x ,y) is a pattern of q, then #Valu (q) is #P-complete. Otherwise, #Valu (q) is in FP.

The #P-completeness part of the claim follows directly from what we have proved already. Here,
the most challenging part of the proof is actually the tractability part. We only present a simple
example to give an idea of the proof technique, and we defer the full proof to Appendix A.1. We
will use the following definition: Given n,m ∈ N, let us write surjn→m for the number of surjec-
tive functions from {1, . . . ,n} to {1, . . . ,m}. By an inclusion–exclusion argument, one can show
that surjn→m =

∑m−1
i=0 (−1)i ( m

i
) (m − i )n (for instance, see Reference [3]). It is clear that this can be

computed in FP when n andm are given in unary.

ACM Transactions on Computational Logic, Vol. 22, No. 4, Article 21. Publication date: September 2021.



The Complexity of Counting Problems Over Incomplete Databases 21:13

Example 3.10. Let q be the sjfBCQ R (x ) ∧ S (x ), and D be an incomplete database over rela-
tions R, S . Notice that q does not have any of the patterns mentioned in Theorem 3.9. We will
show that #Valu (q) is in FP. Since q contains only two unary atoms, we can also assume without
loss of generality that the input D is a Codd table (otherwise all valuations are satisfying).

Since we can compute in FP the total number of valuations, it is enough to show how to compute
the number of valuations of D that do not satisfy q. Let dom be the uniform domain, d be its size,
nR (respectively, nS ) be the number of nulls in D (R) (respectively, in D (S )) and CR (respectively,
CS ) be the set of constants occurring in D (R) (respectively, in D (S )), with cR (respectively, cS ) its
size. We can assume without loss of generality thatCR ∩CS = ∅, as otherwise all the valuations are
satisfying, and this is computable in PTIME. Furthermore, we can also assume thatCR∪CS ⊆ dom,
since we can remove the constants that are not in dom, as these can never match.

Let M := dom \ (CR ∪CS ), and m its size (i.e., with our assumptions, we have m = d − cR − cS ).
Fix some subsets M ′ ⊆ M and R′ ⊆ CR . The quantity surjnR→|M ′ |+ |R′ | then counts the number of
valuations of the nulls of D (R) that span exactly M ′ ∪R′. Moreover, letting νR be a valuation of the
nulls of D (R) that spans exactly M ′ ∪ R′, the quantity (d − cR − |M ′ |)nS is the number of ways to
extend νR into a valuation ν of all the nulls of D so ν (D) � |= q: Indeed, every null of D (S ) can take
any value in dom \ (CR ∪M ′). The number of valuations of D that do not satisfy q is then (keeping
in mind that a null in D (R) cannot take a value in CS ):∑

M ′ ⊆M
R′ ⊆CR

surjnR→|M ′ |+ |R′ | × (d − cR − |M ′ |)nS

and, since the summands only depends on the sizes of M ′ and R′, this is equal to

∑
0�m′�m
0�r ′�cR

(
m

m′

) (
cR

r ′

)
surjnR→m′+r ′ × (d − cR −m′)nS .

This last expression can clearly be computed in PTIME.6

3.2.2 Codd Tables. We conclude this section by turning our attention to the case of Codd tables.
Notice that none of the results proved so far provides a hard pattern in this case. We identify in
the following proposition a simple query for which the problem is intractable.

Proposition 3.11. #Valu
Cd

(R (x ) ∧ S (x ,y) ∧T (y)) is #P-hard.

Proof. We reduce from the problem of counting the number of independent sets of a bipar-
tite (simple) graph, written #BIS, which is #P-hard [44]. Let G = (X  Y ,E) be a bipartite graph.
Without loss of generality, we can assume that |X | = |Y | = n; Indeed, if |X | < |Y |, then we could
simply add |Y | − |X | isolated nodes to complete the graph, which simply multiplies the number of
independent sets by 2 |Y |− |X | . Also, observe that counting the number of independent sets of G is
the same as counting the number of pairs (S1, S2) with S1 ⊆ X , S2 ⊆ Y , such that (S1 × S2) ∩ E = ∅.
We will call such a pair an independent pair. For 0 � i, j � n, let Zi, j be the number of independent
pairs (S1, S2) such that |S1 | = i and |S2 | = j. It is clear that (�) the number of independent sets ofG
is then #BIS(G ) =

∑
0�i, j�n Zi, j . The idea of the reduction is to construct in polynomial time (n+1)2

incomplete databases Da,b for 0 � a,b � n such that, letting Ca,b be the number of valuations ν
of Da,b with ν (Da,b ) � |= R (x ) ∧ S (x ,y) ∧T (y), the values of the variables Zi, j andCi, j form a linear
system of equations AZ = C, with A an invertible matrix. This will allow us, using (n+ 1)2 calls to
an oracle for #Valu

Cd
(R (x )∧S (x ,y)∧T (y)), to recover the Zi, j values, and then to compute #BIS(G )

6Note that, in the sum, we do not need to specify that m′ + r ′ � nR , as when a < b , we have surja→b = 0.
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using (�). We now explain how we construct Da,b from G for 0 � a,b � n, and define A. First, we
fix an arbitrary linear order x1, . . . ,xn of X , and similarly y1, . . . ,yn for Y . The database Da,b has
constants ai for 1 � i � n, and has a fact S (ai ,aj ) whenever (xi ,yj ) ∈ E. It has nulls ⊥1, . . . ,⊥a

and facts R (⊥i ) for 1 � i � a (if a = 0 there are no such nulls and facts), and nulls ⊥′1, . . . ,⊥′b
and facts T (⊥′i ) for 1 � i � b; in particular, this is a Codd table. The uniform domain of the nulls
is {ai | 1 � i � n}. Given a valuation ν of Da,b , let P (ν ) be the pair of subsets of V defined by

P (ν )
def
= ({xi | ∃1 � k � a s.t. ν (⊥k ) = ai }, {yi | ∃1 � k � b s.t. ν (⊥′k ) = ai }).

One can then easily check that the following two claims hold:

• For every valuation ν of Da,b , we have that ν (Da,b ) � |= R (x ) ∧ S (x ,y) ∧ T (y) iff P (ν ) is an
independent pair of G7;
• For every independent pair (S1, S2) ofG, there are exactly surja→|S1 | ×surjb→|S2 | valuations ν

such that P (ν ) = (S1, S2).

But then, we have Ca,b =
∑

0�i, j�n (surja→i × surjb→j )Zi, j . In other words, we have the linear

system of equations AZ = C, where A is the (n + 1)2 × (n + 1)2 matrix defined by A(a,b ), (i, j )
def
=

surja→i × surjb→j . This matrix is the Kronecker product A′ ⊗A′ of the (n+ 1)× (n+ 1) matrix with

entries A′a,i
def
= surja→i . Since A′ is a triangular matrix with non-zero coefficients on the diagonal,

it is invertible, hence, so is A, which concludes the proof. �

Note that in Proposition 3.8, we proved that #Valu (R (x ) ∧ S (x ,y) ∧ T (y)) is #P-hard in
the general case where naive tables are allowed. Hence, the hardness of that query for naive
tables was in fact a consequence of Proposition 3.11. However, we decided to provide a
separate proof for Proposition 3.8, because in this case intractability holds already when nulls
are interpreted over the fixed domain {0, 1}, whereas we do not know if this is true for Codd tables.

The second pattern that we show is hard for #Valu for Codd tables is R (x ,y) ∧ S (x ,y). Again,
notice that we already showed this query to be hard in the case of naive tables (as Proposition 3.8),
even for a fixed domain of {0, 1}. In the case of Codd tables, hardness still holds, but the proof is
more complicated and uses domains of unbounded size (which is why we provide separate proofs).
We show:

Proposition 3.12. #Valu
Cd

(R (x ,y) ∧ S (x ,y)) is #P-hard.

Proof. Let q be the query R (x ,y)∧S (x ,y). We reduce from the problem of counting the number
of matchings of a 2–3–regular bipartite graph, which is #P-complete [14, 55]. LetG = (AB,E) be
a 2–3–regular bipartite graph, with the nodes inA having degree 3 and those in B having degree 2,

and let nA
def
= |A|, and nB

def
= |B |. Notice that, since G is 2-3–regular, we have that nB =

3nA

2 .
We say that a set S ⊆ E of edges of G is an A-semimatching if every node a of A is adjacent to
at most 1 edge of S ; formally, for every a ∈ A, we have |{e ∈ S | a ∈ e}| � 1. The type of an
A-semimatching S is the number c of nodes in B that are adjacent to exactly 2 edges of S ; formally,

c
def
= |{b ∈ B | |{e ∈ S | b ∈ e}| = 2}|. For 0 � c � nB , we write Tc for the number of A-

semimatchings of G of type c . Observe then that T0 is simply the number of matchings of G. The
idea of the reduction is then as follows: We will construct databases Dk for 0 � k � nB such that,
lettingCk be the number of valuations ν of Dk such that ν (Dk ) � |= q, the values of the variablesTk

and Ck form a system of linear equations AT = C, with A and invertible matrix. This will allow

7This observation, and in fact the idea of reducing from #BIS, is due to Antoine Amarilli.
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us, using nB + 1 calls to and oracle for #Valu
Cd

(q), to recover the values Tk , and thus to obtain T0

in polynomial time, that is, the number of matchings of G. We now explain how to construct the
databaseDk for 0 � k � nB . In what follows, we use the convention that {1, . . . ,k } = ∅when k = 0.
The database Dk contains the following facts:

(1) One fact R (a,⊥a ) for every a ∈ A;
(2) One fact S (⊥b ,b) for every b ∈ B;
(3) One fact S (⊥a′,a

′) for every a ∈ A where a′ is a fresh constant. In particular, observe that

there are nA such facts. In what follows, we will write A′
def
= {a′ | a ∈ A}:

(4) One fact S (a1,a
′
2) for every (a1,a2) ∈ A ×A with a1 � a2;

(5) One fact S (a, i ) for every (a, i ) ∈ A × {1, . . . ,k };
(6) One fact S (u,v ) for every (u,v ) ∈ (A ∪ B)2 such that {u,v} is not in E;
(7) One fact R (u,v ) for every (u,v ) ∈ (A′ ∪ B)2.

And finally, the (uniform) domain for all the nulls is dom
def
= A ∪ B ∪A′ ∪ {1, . . . ,k }. Note that

this is indeed a Codd database. Now, let us compute Ck , the number of valuations ν of Dk such
that ν (Dk ) � |= q. For such a valuation ν of Dk such that ν (Dk ) � |= q, observe that (�) for every a ∈ A
it holds that ν (⊥a ) is either a′ or is one of the nodes in B that is a neighbor of a; this is because
otherwise, the facts from (4–6) would make the query be satisfied. Then, for a valuation ν of Dk

such that ν (Dk ) � |= q, let us define SM(ν )
def
= {{a,b} | (a,b) ∈ (A × B) ∩ R (ν (Dk ))}. Because of (�),

observe that SM(ν ) is a subset of E, and that it is in fact an A-semimatching. We can then partition
the valuations ν of Dk with ν (Dk ) � |= q according to the type of SM(ν ) as follows:

{ν | ν is a valuation of Dk with ν (Dk ) � |= q} =
⊔

0�c�nB

⊔
S : S is an A-semimatching

of G of type c

⊔
ν : ν valuation of Dk

ν (Dk ) � |=q
SM(ν )=S

{ν }.

(2)
Fix an A-semimatching S of G of type c ∈ {0, . . . ,nB }, and let us count how many valuations ν

of Dk there are such that ν (Dk ) � |= q and SM(ν ) = S . First, observe that for such a valuation ν , the
value of ν (⊥a ) for every a ∈ A is forced: It is a′ if a is adjacent to no edge of S , and otherwise it
is b for the unique {a,b} ∈ S . Therefore, we have to count how many possibilities there are for the
remaining nulls, those of the form ⊥a′ and ⊥b from facts (2–3). We have:

• For a null ⊥b such that b is adjacent to two edges of S , there are nA + k − 2 possible values
to not satisfy the query. Note that there are c such nulls ⊥b .
• For a null ⊥a′ such that a is not adjacent to an edge in S (so we know that ν (⊥a ) = a′), there

are nA + k − 1 possible values to not satisfy the query. For a null ⊥b such that b is adjacent
to exactly one edge {a,b} of S (i.e., we have ν (⊥a ) = b) there are again nA + k − 1 possible
values to not satisfy the query. Observe that in total there are nA − 2c such nulls ⊥a′ or ⊥b ,
because S is an A-semimatching.
• For a null ⊥a′ such that a is adjacent to an edge in S (so we know that ν (⊥a ) � a′) there

are nA +k possibilities, and similarly for a null ⊥b such that b is not adjacent to an edge in S
there are nA + k possible values. By the previous two items, in total there are nA + nB − c −
(nA − 2c ) = nB + c such nulls ⊥a′ or ⊥b .

Therefore, there are exactly (nA +k − 2)c (nA +k − 1)nA−2c (nA +k )nB+c valuations ν of Dk such
that ν (Dk ) � |= q and SM(ν ) = S . Since this depends only on the type of the A-semimatching S (and
not on S itself), we obtain from Equation (2) that
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Ck = |{ν | ν is a valuation of Dk with ν (Dk ) � |= q}|

=
∑

0�c�nB

Tc × (nA + k − 2)c (nA + k − 1)nA−2c (nA + k )nB+c .

That is, we have the linear system of equations AT = C, with Ak,c = (nA + k − 2)c (nA +

k − 1)nA−2c (nA + k )nB+c for 0 � c,k � nB . But observe that we have A = DV, with D being
the diagonal (nB + 1) × (nB + 1) matrix with entries (nA + k − 2)nA (nA + k )nB , and V being

the (nB + 1) × (nB + 1) Vandermonde matrix with coefficients (nA+k−2)(nA+k )
(nA+k−1)2 for 0 � k � nB .

Hence, to show that A is invertible, we only need to argue that the coefficients of this Vandermonde

matrix V are all distinct. But for the function fnA
(x )

def
=

(nA+x−2)(nA+x )
(nA+x−1)2 , one can check that f ′nA

(x ) =
2

(nA+x−1)3 , so fnA
is strictly increasing on [0,nB] (we assume nA � 2 without loss of generality), so

all the coefficients are indeed distinct. This concludes the proof. �

As we show next, the patterns from Propositions 3.12 and 3.11 are the only hard patterns
for #Valu

Cd
. The following is then the last dichotomy of this section.

Theorem 3.13 (Dichotomy). Let q be an sjfBCQ. If R (x ) ∧ S (x ,y) ∧T (y) or R (x ,y) ∧ S (x ,y) is
a pattern of q, then #Valu

Cd
(q) is #P-complete. Otherwise, #Valu

Cd
(q) is in FP.

We only need to show the tractability part of that claim, as hardness follows from Proposi-
tions 3.12 and 3.11 and Lemma 3.3. First, observe that we can assume without loss of generality
that the sjfBCQ q is connected. This is because q has no self-join and the database D is Codd, so,
letting q1, . . . ,qt be the connected components of q, and letting Di be the database D restricted to
the relations appearing in qi , we have that

#ValuCd (q) (D) =
t∏

i=1

#ValuCd (qi ) (Di ).

Second, notice that, for a connected sjfBCQ q, not containing any of these two patterns is equiv-
alent to the following: There exists a variable x such that all atoms of q contain variable x , and
for any two atoms of q, the only variable that they have in common is x . In other words, x
is in every atom and every other variable occurs in only one atom. For instance R1 (x ,y,y) ∧
R2 (x ,x , z, z, z,u,u) ∧ R3 (x ,x ,v, t , t ) is such a query. We now provide an example of a connected
query with only two atoms.

Example 3.14. We consider the query q = R (x ,x ,y,y) ∧ S (x ,x ). Let D be an incomplete Codd
database over relations R, S , with uniform domain dom of size d . In this proof, we will use sym-
bols a,a1,a2, . . . to denote a constant or a null, and symbols c, c1, c2, . . . to denote constants. More-
over, unless stated otherwise, these symbols can refer to the same constant (but not to the same
null, because D is a Codd database). A fact that contains only constants is called a ground fact. Fur-
thermore, since that database is Codd, we will always represent a null with ⊥, being understood
that they are all distinct.

We start with a few simplifications. First, we assume w.l.o.g. that D does not contain ground
facts that already satisfy the query. Second, we assume w.l.o.g. that D does not contain facts of the
formR (a,a′, c, c ′) orR (c, c ′,a,a′) or S (c, c ′) where c and c ′ are distinct constants. Indeed, becauseD
is Codd and such a fact f can never be part of a match, we could simply remove f from D and
multiply the end result by the appropriate value (namely, dt where t is the number of nulls of f ).
Last, we assume w.l.o.g. that for any fact of the form R (a,a′, c,⊥) or R (a,a′,⊥, c ) or R (⊥, c,a,a′)
or R (c,⊥,a,a′) or S (c,⊥) or S (⊥, c ), we have c ∈ dom; indeed otherwise, those facts can never be
part of a match and we could again remove them and multiply the result by the appropriate value.
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Next, we need to introduce some notation. For a fact f of D, the type of f is the word
in {0, 1}arity(f ) that has a 1 in position i iff the ith element of f is a null. For instance the type
of R (⊥,⊥, c,⊥) is 1, 101 and that of S (c, c ) is 00. Observe that there are a fixed number of possible
types, because the query is fixed. For a constant c and fact f of D, we say that f is c-determined
if f contains the constant c at a position for variable x . For instance R (⊥, c, c ′,⊥) is c-determined
and so is S (c, c ). A fact f that contains only nulls on the positions for x is called free. With the
simplifications of the last paragraph, a fact of D is either free or it is c-determined for a unique
constant c . Let t be a type of D (for R or for S). We say that t is free if it has only 1s in the positions
corresponding to variable x ; in other words, if it is the type of a free fact. Otherwise, we say that t

is determined. For a constant c and determined type t, we write nR,c,t (respectively, nR,c,t) the
number of R-facts (respectively, of S-facts) of D that are c-determined of type t. For a free type t

of R (respectively, of S), we write FR,t (respectively, FS,t) for the set of free R-facts (respectively, of
free S-facts) and fR,t (respectively,ft) for its size. Let f be a fact that is c-determined. We write αf

for the number of valuations ν of the nulls in f such that f matches the corresponding atom in q.
For instance if f is R (⊥, c, c ′,⊥) or again R (c, c, c ′, c ′), then αf = 1, while if f is R (c, c,⊥,⊥),
then αf = d .8 Similarly, we let βf denote the number of valuations ν of the nulls in f such that f
does not match the corresponding atom in q; which is then equal to dt − αf , for t the number of
nulls in f . Observe that αf and βf depend only on the type t of f . Hence, we will write αt and βt

instead. Let f be a free fact. We let αf be the number of valuations of the nulls in f that are not
on a position for variable x that match the corresponding part of the atom in q. For instance if f

is R (⊥,⊥, c ′,⊥), then αf = 1 and if f is R (⊥,⊥,⊥,⊥), then αf = d . We also define βf
def
= dt − dαf

where t is the number of nulls, which correspond to the number of valuations of the nulls in f
such that the ground fact obtained does not match its corresponding atom. Again, since αf and βf

depend only on the free type t of f , we will write αt and βt instead. It is clear that we can compute
all values αf ,c and βf ,c , for every determined fact f and constant c of D, and values αf for every
free fact in polynomial time. Last, we fix a linear order c1, . . . , cn on the constants ci such that
there exists a fact of D that is ci -determined.

Next, we explain how we can compute in FP the number of valuations of D that do not satisfy q.
To do so, we will first define some quantities and then show that we can compute these quan-
tities in polynomial time using a dynamic programming approach. One of these quantities will
be the number of valuations of D that do not satisfy q, which is what we want to compute. The
quantities that we will define are of the form V (params), where params consist of the following
parameters (†):

(a) one parameter v whose range is 0 . . .n;
(b) one parameter qR,t for every free type t ∈ {0, 1}4 of R, with range 0 . . . fR,t;
(c) one parameter rR with range 0, . . . ,n;
(d) one parameter rS with range 0, . . . , rR .

We now explain what the quantityV (params) with these parameters represent. To that end, we
define the incomplete database D (params) to be the database that contains only

• all of the facts that are ci -determined for 1 � i � v (ifv = 0, then Dv contains no determined
facts);
• for every free type t of R, D (params) contains qR,t free R-facts of D of type t (it does not

matter which ones, say the first qR,t ones);
• D (params) contains all the free S-facts of D.

8When f is a ground fact—such as R (c, c, c′, c′)—we recall the mathematical convention that there exists a unique function
with empty domain, hence, a unique valuation of the nulls of f .
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(Note that parameters (c) and (d) are not used to define the database but we still
write D (params).)

The quantityV (params) is then defined to be the number of valuations ν of databaseD (params)
such that ν (D (params)) � |= q and such that the following holds: (1) for every 1 � i � rS and free
fact f of R or of S , the ground fact ν ( f ) does not match the corresponding atom in q with variable x
mapped to ci (this condition is empty if rS = 0); and (2) for every rS + 1 � i � rR and every free
fact f of R, the ground fact ν ( f ) does not match R (x ,x ,y,y) with variable x mapped to ci (this
condition is empty if rR = rS ). By definition, we then have that, when v = n, qR,t = fR,t for every
free type t of R—so D (params) is equal to D –, rR = 0 and rS = 0 then V (params) is then equal
to #Valu

Cd
(q) (D). Observe that there are a fixed number of parameters in params (because the query

is fixed), and that the possible values of these parameters are polynomial in the size of the input.
We explain how compute the values V (params) by dynamic programming.

Base case. Our base case will be whenv is equal to zero (and the other parameters are arbitrary as
in (†)); in other words, the database D (params) does not contain any determined facts, it contains
only free facts. We have to compute the number of valuations of D (params) that do not satisfy the
query and such that (1) and (2) hold. We do so as follows: We guess a subset SR of dom\{c1, . . . , crR

};
this will be the set of constants c such that R (c, c, c ′, c ′) ∈ ν (D (params)) for some c ′. We also guess
a subset SS of dom \

(
{c1, . . . , crS

} ∪ SR

)
; this will be the set of constants c such that S (c, c ) ∈

ν (D (params)) (observe that SR and SS are disjoint; this is to avoid satisfying the query). To “achieve”
these subsets, we for each free type t ofR guess a subsetWR,t of the free facts ofR of type t; these will
be the R-facts f of type t such that ν ( f ) matches R (x ,x ,y,y) with a constant in SR for variable x .
Similarly, we for each free type t of S guess a subset WS,t of the free facts of S of type t; these
will be the S-facts f of type t such that ν ( f ) matches S (x ,x ) with a constant in SS for variable x .
To ensure that these subsets are indeed enough to cover SR and SS , we surjectively assign each
of the corresponding facts a constant in SR (for R-facts) or SS (for S-facts). For such facts f , we
then choose one of the αt valuations of f that ensure that the ground fact obtained satisfies the
correspoinding atom of the query; crucially, this quantity depends only on the type of f . For the
remaining (free) facts f , we choose one of the βt valuations of f that ensure that the ground facts
obtained do not satisfy the corresponding atom of the query. In the end, we obtain thatV (params)
is equal to the following expression:∑

SR ⊆dom\{c1, ...,crR
}

∑
SS ⊆dom\

(
{c1, ...,crS

}∪SR

)
∑

WR, t1 ⊆QR, t1

· · ·
∑

WR, tJ
⊆QR, tJ

∑
WR, t′

1
⊆FS, t′

1

· · ·
∑

WR, t′
K
⊆FS, t′

K

γ , (3)

where t1 . . . tJ are all the free types of R, t′1 . . . t
′
K

are all the free types of S , QR,ti
is the set of the

first qR,ti
free R-facts of type ti, and where, letting z

def
=

∑J
i=1 |WR,ti

| and z ′
def
=

∑K
i=1 |WS,t′

i
|, we have

γ = surjz→|SR | × surjz′→|SS | × ��

J∏
i=1

α
|WR, ti

|
ti

β
|QR, ti

|− |WR, ti
|

ti

�
�
× �
�

K∏
i=1

α
|WS, t′

i
|

t′
i

β
|FS, t′

i
|− |WS, t′

i
|

t′
i

�
�
.

Obviously, we cannot compute the expression in Equation (3) in polynomial time, since we are
summing over subsets of the input facts. However, because γ depends only on the sizes of all these
sets, we can express V (params) as∑

0�sR�d−rR

∑
0�sS�d−rS−sR

∑
0�wR, t1�qR, t1

· · ·
∑

0�wR, tJ
�qR, tJ

∑
0�wR, t′

1
�fR, t′

1

· · ·
∑

0�wR, t′
K
�fR, t′

K

δ , (4)
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where, letting again z
def
=

∑J
i=1wR,ti

and z ′
def
=

∑K
i=1wS,t′

i
, we have

δ =surjz→sR
× surjz′→sS

× �
�

J∏
i=1

α
wR, ti

ti
β

qR, ti
−wR, ti

ti

�
�
× �
�

K∏
i=1

α
wS, t′

i

t′
i

β
fS, t′

i
−wS, t′

i

t′
i

�
�

×
(
d − dR

sR

) (
d − rS − sR

sS

)
× �
�

J∏
i=1

(
qR,ti

wR,ti

)
�
�
× �
�

K∏
i=1

(
fS,t′

i

wS,t′
i

)
�
�
.

But then, because the expression (4) contains a fixed number of nested sums (this number de-
pends only on the query q), and because indices and summands are polynomial, this quantity can
be computed in polynomial time. This concludes the base case (i.e., when v = 0).

Inductive case. Next, we explain how we can compute the quantities V (params) (with the pa-
rameters params as in (†)) in polynomial time from quantities V (params′) with a strictly smaller
value for parameter (a). Hence, we assume that parameter v is � 1. The idea is to get rid of the cv -
determined facts of D (params) by partitioning the valuations of D (params) that do not satisfy q
and satisfy (1) and (2) into

(A) those valuations ν that do not satisfy the query and satisfy (1) and (2) and such that no cv -
determined R-fact or free R-fact f of D (params) is such that ν ( f ) matches R (x ,x ,y,y) with
variable x mapped to cv ; and

(B) those valuations ν that do not satisfy the query and satisfy (1) and (2) and such that at least one
cv -determined R-fact or free R-fact f of D (params) is such that ν ( f ) matches R (x ,x ,y,y)
with variablex mapped to cv (and thus, no cv -determined S-fact or free S-fact f ofD (params)
is such that ν ( f ) matches S (x ,x ) with variable x mapped to cv ).

To compute valuations in (A), we choose for each R-fact f that is cv -determined one of the βf ,cv

valuations of its nulls that is such that ν ( f ) does not match R (x ,x ,y,y), we disallow the free facts
of R to have valuations that would match on cv by increasing rR by one, and we choose any
valuation for the cv -determined facts of S (since we know that they will not be part of a match).
Formally, letting tf be the number of nulls of a fact f , we have the expression

A =
�����
�

∏
cv -determined

R-fact f

βf

�����
�
×
�����
�

∏
cv -determined

S -fact f

dtf

�����
�
×V (params′),

where params′ is equal to params except that v ′ = v − 1 and r ′R = r ′R + 1. This can be computed
in polynomial time if we know the value V (params′). For valuations in (B), we do as follows:
We choose exactly which subset of the cv -determined and free facts of R will match R (x ,x ,y,y)
with x = cv by partitioning according to the types; for the remaining cv -determined R-facts, we
choose one of the β valuations that do not match on cv ; for the remaining free facts of R, we
disallow to match on cv by increasing rR by one; for each cv -determined fact f of S , we choose
one of the βf ,cv

valuations of f that are such that ν ( f ) is not S (cv , cv ); and for the free facts of S ,
we disallow matching on cv by increasing rS by one. Formally, letting t1, . . . , tJ be the types of
the cv -determined R-facts and t′1, . . . , t

′
J

be the free types of R, we obtain an expression of the form

B =
∑

0�ht1
�nR,cv , t1

· · ·
∑

0�htJ
�nR,cv , tJ

∑
0�h′

t′
1

�qR, t′
1

· · ·
∑

0�h′
t′
K

�qR, t′
K

γ × δ ×V (params′), (5)
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where γ is equal to 1 if
∑J

i=1 hti
+

∑K
i=1 ht′

i
� 1 and to 0 otherwise (to match on cv in R), δ is

�
�

J∏
i=1

(
nR,cv ,ti

hti

)
α

hti

ti
β

nR,cv , ti
−hti

ti

�
�
× ��
�

J∏
i=1

(
qR,t′

i

h′
t′
i

)
α

h′
t′
i

t′
i

��
�
×
�����
�

∏
cv -determined

S -fact f

βf

�����
�
,

and where params′ is equal to params except that:

• we have v ′ = v − 1;
• for every free type t of R, we have q′R,t = q

′
R,t − h

′
t;

• we have r ′R = rR + 1;
• we have r ′S = rS + 1.

The crucial point to see that expressions A and B indeed compute what we want is that we
do not need to remember exactly which susbsets of constants are disallowed to match for the
free facts, but we only need to remember their numbers (this is what allows us to use a dynamic
programming approach); and similarly for the free facts of R, we only need to remember how
many we have left at each stage of each type, but not their precise subsets. Again, if we know the
values of V (params′) where in params′ parameter v ′ is equal to v − 1, then we can compute in
polynomial time the value V (params) = A + B. Thus, we can compute all values V (params) in
polynomial time, and this concludes this example.

The proof in this example can be extended as-is to any connected sjfBCQ containing only two
atoms and having only one variable (x ) that joins. We claim that the same idea works for an
arbitrary number of atoms, which concludes Theorem 3.13. Since a full proof is technically tedious
and does not provide new insights, we omit it here.

4 DICHOTOMIES FOR COUNTING COMPLETIONS

In this section, we study the complexity of the problems of counting completions satisfying
an sjfBCQ q, in the four cases that can be obtained by considering naive or Codd tables and non-
uniform or uniform domains. We will again use the notion of pattern as introduced in Definition 3.1.
Our first step is to observe that Lemma 3.3, which we used in the last section for the problems or
counting valuations, extends to the problems of counting completions.

Lemma 4.1. Let q,q′ be sjfBCQs such that q′ is a pattern of q. Then, we have that #Comp(q′) �p
par

#Comp(q). Moreover, the same results hold if we restrict to the case of Codd tables, and/or to the
uniform setting.

Proof. The reduction is exactly the same as the one of Lemma 3.3. To show that this reduc-
tion works properly for counting completions, it is enough to observe that for every pair of
valuations ν1,ν2 of D ′ (or of D, since D and D ′ have exactly the same set of nulls), we have
that ν1 (D ′) = ν2 (D ′) iff ν1 (D) = ν2 (D). �

We will then follow the same general strategy as in the last section, i.e., prove hardness for some
simple patterns and combine these with Lemma 4.1 and tractability proofs to obtain dichotomies.
Our findings are summarized in the last two columns of Table 1 in the introduction. We start in
Section 4.1 with the non-uniform cases and continue in Section 4.2 with the uniform cases. Again,
we explicitly state when a #P-hardness result holds even in the restricted setting in which there is
a fixed domain over which nulls are interpreted.
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4.1 The Complexity on the Non-uniform Case

Here, we study the complexity of the problems #Comp(q) and #CompCd (q), providing dichotomy
results in both cases. In fact, it turns out that these problems are #P-hard for all sjfBCQs. To prove
this, it is enough to show that the problem #CompCd (R (x )) is hard, that is, even counting the
completions of a single unary table is #P-hard in the non-uniform setting.

Proposition 4.2. #CompCd (R (x )) is #P-hard.

Proof. We provide a polynomial-time parsimonious reduction from the problem of counting
the vertex covers of a graph, which we denote by #VC. Let G = (V ,E) be a graph. We construct
a Codd table D using a single unary relation R such that the number of completions of D equals
the number of vertex covers of G. For every edge e = {u,v} of G, we have one null ⊥e with
dom(⊥e ) = {u,v} and the fact R (⊥e ). Let a be a fresh constant. For every node u ∈ V , we have a
null ⊥u with dom(⊥u ) = {u,a} and the fact R (⊥u ). Last, we add the fact R (a). We now show that
the number of completions of D equals the number of vertex covers of G.

Let VC(G ) be the set of vertex covers of G. For a valuation ν of D, define the set Sν := {u ∈ V |
R (u) ∈ D}. Since the factR (a) is in every completion ofD, it is clear that the number of completions
of D is equal to |{Sν | ν is a valuation of D}|. We claim that VC(G ) = {Sν | ν is a valuation of D},
which shows that the reduction works. (⊆) Let C ∈ VC(G ), and let us show that there exists a
valuation ν of D such that Sν = C . For a null of the form ⊥e with e = {u,v} ∈ E, assuming w.l.o.g.
that u ∈ C , we define ν (⊥e ) to be u. For a null of the form ⊥u with u ∈ V , we define ν (⊥u ) to
be u if u ∈ C and a otherwise. It is then clear that Sν = C . (⊇) Let ν be a valuation of D, and let
us show that Sν is a vertex cover. Assume by contradiction that there is an edge e = {u,v} such
that e ∩ Sν = ∅. By definition of D, we must have ν (⊥e ) ∈ {u,v}, so one of u or v must be in Sν ,
hence, a contradiction. Therefore, we conclude that #VC �p

par #CompCd (R (x )). �

Recall from Section 2 that, to avoid trivialities, we assume all sjfBCQs to contain at least one
atom and that all atoms have at least one variable. Using Lemma 4.1, this allows us to obtain the
following dichotomy result:

Theorem 4.3 (Dichotomy). For every sjfBCQ q, it holds that #Comp(q) and #CompCd (q) are #P-
hard.

Notice here that we do not claim membership in #P; in fact, we will come back to this issue in
Section 6 to show that this is unlikely to be true for naive tables. However, we can still show that
membership in #P holds for Codd tables. We then obtain:

Theorem 4.4 (Dichotomy). For every sjfBCQ q, the problem #CompCd (q) is #P-complete.

Proof. Hardness is from Theorem 4.3. To show membership in #P we will actually prove a more
general result in Section 6.1. There, we show that for every Boolean query q such that q has model
checking in P the problem #CompCd (q) is in #P. This in particular applies to all sjfBCQs. �

4.2 The Complexity on the Uniform Case

We now investigate the complexity of #Compu (q) and #Compu
Cd

(q). Recall that in the non-uniform
case, even counting the completions of a single unary table is a #P-hard problem. This no longer
holds in the uniform case, as we will show that #Compu (q) is in FP for every sjfBCQ that is defined
over a schema consisting exclusively of unary relation symbols.

Such a positive result, however, cannot be extended much further. In fact, we show next
that R (x ,x ) and R (x ,y) are hard patterns, both for naive and Codd tables (and, thus, we also con-
clude that the problem of counting the completions of a single binary Codd table is a #P-hard
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problem). We start with the case of naive tables, for which hardness even holds when nulls are
interpreted over the fixed domain {0, 1}.

Proposition 4.5. The problems #Compu (R (x ,x )) and #Compu (R (x ,y)) are both #P-hard, even
when nulls are interpreted over the same fixed domain {0, 1}.

Proof. We reduce from #IS, the problem of counting the number of independent sets of a graph.
Let G = (V ,E) be a graph. We will construct an incomplete database D containing a single binary
predicate R such that each completion of D satisfies R (x ,x ) and the number of completions of D
is 2 |V | + #IS(G ), thus establishing hardness for the two queries. For every node u ∈ V , we have a
null ⊥u with dom(⊥u ) = {0, 1}. We then construct the naive table D as follows:

• for every node u ∈ V , we add to D the fact R (u,⊥u );
• then for every edge {u,v} ∈ E, we add the facts R (⊥u ,⊥v ) and R (⊥v ,⊥u ) to D; and
• last, we add the facts R (0, 0), R (0, 1), R (1, 0), and R (⊥,⊥), where ⊥ is a fresh null.

It is clear that every completion of D satisfies R (x ,x ) (thanks to the fact R (⊥,⊥)). Let us now count
the number of completions of D. First, we observe that, thanks to the facts of the form R (u,⊥u ), for
u ∈ V , for every two valuations ν ,ν ′ that do not assign the same value to the nulls of the form ⊥u ,
it is the case that ν (D) � ν (D ′). We then partition the completions of D into those that contain
the fact R (1, 1) and those that do not contain R (1, 1). Because of the facts of the form R (u,⊥u ), for
u ∈ V , and thanks to the fact R (⊥,⊥), which becomes R (1, 1) when we assign 1 to ⊥, there are
exactly 2 |V | completions of D that contain R (1, 1). Moreover, it is easy to see that there are #IS(G )
valuations ν of D that assign 0 to ⊥ and that yield a completion not containing R (1, 1). Indeed, one
can check that a valuation of D that assigns 0 to ⊥ yields a completion not containing R (1, 1) if
and only if the set {u ∈ V | ν (⊥u ) = 1} is an independent set ofG. Therefore, we conclude that the
number of completions of D is indeed 2 |V |+#IS(G ), and therefore that #IS �p

T #Compu (q), where q
can be R (x ,x ) or R (x ,y). �

Next, we prove hardness of the same queries for Codd tables (but in this case we do not know
if hardness holds when nulls are interpreted over a fixed domain, as our proof will use domains of
unbounded size). We will reduce from the problem of counting the number of induced pseudoforests
of a graph, as defined next.

Definition 4.6. A graph G is a pseudoforest if every connected component of G contains at most
one cycle. Let G = (V ,E) be a graph. For S ⊆ E, let us denote by G[S] the graph (V ′, S ), where V ′

is the set of nodes of G that appear in some edge of S . The problem #PF is the problem that takes
as input a graph G = (V ,E) and outputs the number of edge sets S ⊆ E such that G[S] is a
pseudoforest.

Using techniques from matroid theory, the authors of Reference [26] have shown that #PF is
#P-hard on graphs. We explain in Appendix B.1 how their proof actually shows hardness of this
problem for bipartite graphs (which we need); formally, we have:

Proposition 4.7 (Implied by [26]). The problem #PF restricted to bipartite graphs is #P-hard.

To prove that the reduction that we will present is correct, we will also need the following
folklore lemma about pseudoforests. We recall that an orientation of an undirected graphG = (V ,E)
is a directed graph that can be obtained from G by orienting every edge of G. Equivalently, one
can see such an orientation as a function f : E → V that assigns to every edge in G a node to
which it is incident. We then have:

Lemma 4.8. A graph G is a pseudoforest if and only if there exists an orientation of G such that
every node has outdegree at most 1.
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Proof. Folklore, see, e.g., References [22, 27, 36]. �

Using the hardness of #PF on bipartite graphs, we are able show hardness of #Compu
Cd

(R (x ,x ))
and #Compu

Cd
(R (x ,y)) as follows:

Proposition 4.9. The problems #Compu
Cd

(R (x ,x )) and #Compu
Cd

(R (x ,y)) are both #P-hard.

Proof. We reduce both problems from #PF on bipartite graphs. Let G = (U V ,E) be a bipar-
tite graph. We will construct a uniform Codd table D over binary relation R such that (1) all the
completions of D satisfy both queries; and (2) the number of completions of D is equal to #PF(G ),
thus establishing hardness. For every (t , t ′) ∈ (U ∪ V )2 \ E, we add to D the fact R (t , t ′); we
call these the complementary facts. For every u ∈ U , we add to D the fact R (u,⊥u ) and for ev-
ery v ∈ V the fact R (⊥v ,v ). Finally, we add to D a fact R ( f , f ) where f is a fresh constant. The
uniform domain of the nulls if dom = U ∪ V . It is clear that D is a Codd table and that every
completion of D satisfies both queries (thanks to the fact R ( f , f )), so (1) holds. We now prove
that (2) holds. First, observe that a completion ν (D) of D is uniquely determined by the set of
edges {(u,v ) ∈ E | R (u,v ) ∈ ν (D)}; this is because ν (D) already contains all the complementary
facts. For a set S ⊆ E of edges, let us define DS to be the complete database that contains all the
complementary facts and all the facts R (u,v ) for (u,v ) ∈ S (note that DS is not necessarily a com-
pletion of D). We now argue that for every set S ⊆ E, we have that DS is a completion of D if
and only if G[S] is a pseudoforest, which would conclude the proof. By Lemma 4.8, we only need
to show that DS is a completion of D if and only if G[S] admits an orientation with maximum
outdegee 1. We show each direction in turn. (⇒) Assume DS is a completion of D, and let ν be a
valuation witnessing this fact, i.e., such that ν (D) = DS . First, observe that we can assume without
loss of generality that (�) for every e = (u,v ) ∈ S , we have either ν (⊥u ) = v or ν (⊥v ) = u but not
both. Indeed, if we had both, then we could modify ν into ν ′ by redefining, say, ν ′(⊥u ) to be u, and
we would still have that ν ′(D) = DS (because R (u,u) is already present in D: It is a complementary
fact). We now define an orientation fν : S → U ∪V of G[S] from ν as follows: Let e = (u,v ) ∈ S .
Then: if we have ν (⊥u ) = v,we define fν ((u,v )) to bev , i.e., we orient the (undirected) edge (u,v )
from u to v . Else, if we have ν (⊥v ) = u, then we define fν ((u,v )) to be u, i.e., we orient the (undi-
rected) edge (u,v ) from v to u. Observe that by (�) fν is well defined. It is then easy to check that
the maximal outdegree of the directed graph defined by fν is 1; this is because for every u ∈ U
(respectively, v ∈ V ), there is only one fact in D of the form R (u, null) (respectively, R (null,v )),
namely, the fact R (u,⊥u ) (respectively, R (⊥v ,v )). (⇐) Let f : S → U ∪V be an orientation ofG[S]
with maximum outdegree 1. Let νf be the valuation ofD defined from f as follows: For everyu ∈ U
(respectively, v ∈ V ), if there is an edge (u,v ) ∈ S such that f ((u,v )) = v (respectively, such that
f ((u,v )) = u), then define νf (⊥u ) to be v (respectively, define νf (⊥v ) to be u). Observe that there
can be at most one such edge, because f has maximum outdegree 1, so this is well defined. If there
is no such edge, define νf (⊥u ) to be u (respectively, define νf (⊥v ) to be v). Since all edges in S are
given an orientation by f , it is clear that for every (u,v ) ∈ S , we have R (u,v ) ∈ νf (D). Moreover,
since νf (D) contains all the complementary facts, we have that νf (D) = DS , which shows that DS

is a completion of D and concludes this proof. �

As we show next, these two patterns suffice to characterize the complexity of #Compu (q)
and #Compu

Cd
(q).

Theorem 4.10 (Dichotomy). Let q be an sjfBCQ. If R (x ,x ) or R (x ,y) is a pattern of q, then
#Compu (q) and #Compu

Cd
(q) are #P-hard. Otherwise, these problems are in FP.

From what precedes, we only have to prove the tractability part of that claim, and this for
naive tables. To this end, we define a conjunction of basic singletons sjfBCQ to be an sjfBCQ of
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the formC1 (x1) ∧ . . . ∧Cm (xm ), where eachCi (xi ) is a conjunction of unary atoms over the same
variable xi (here, the xi are pairwise distinct). Since q does not contain the pattern R (x ,x ) nor the
pattern R (x ,y), observe that q must in fact be a conjunction of basic singletons sjfBCQ. The main
difficulty is to decompose the computation in such a way that we do not count the same comple-
tion twice. Moreover, the fact that the database is naive and not Codd, and the fact that constants
can appear everywhere, complicate a lot of the description of the algorithm. For these reasons, we
provide in the next section an example that gives the intuition of the general proof, and defer the
general proof to Appendix B.2.

Note that, as in the last section, we do not claim membership in #P in the statement of Theo-
rem 4.10. However, and also as in the last section, we can show that these problems are in #P for
Codd tables, which allows us to obtain our last dichotomy for exact counting.

Theorem 4.11 (Dichotomy). Let q be an sjfBCQ. If R (x ,x ) or R (x ,y) is a pattern of q, then
#Compu

Cd
(q) is #P-complete. Otherwise, this problem is in FP.

Proof. Hardness follows from Theorem 4.10, while membership in #P follows from the result
proven in Section 6.1. �

4.3 Example of Tractability for Theorem 4.10

In this section, we prove that for the query q
def
= R (x ) ∧ S (y), the problem #Compu

Cd
(q) is in FP.

Observe that q is a conjunction of basic singletons query and that it is always satisfied (as long as
the database is not empty). We will show that #Compu (q) is in FP. Let CRS ,CR ,CS (respectively,
NRS ,NR ,NS ) be the sets of constants (respectively, nulls) that occur respectively: inR and in S , only
in R, only in S , and denote cRS , cR , cS (respectively, nRS ,nR ,nS ) their sizes. Let dom be the uniform
domain of the nulls, and letd be its size. First, observe that we can assume without loss of generality

that C
def
= CRS ∪ CR ∪ CS ⊆ dom, as, otherwise, we could simply remove the facts of D that are

over constants that are not in dom and this would not change the result. Let c = cRS +cR +cS . The
next two claims explain how we can decompose the computation in a way that we do not count a
same completion twice (Claim 4.12) and that we count all the possible completions (Claim 4.13).

Claim 4.12. For a triplet (IR , IS , IRS ) of subsets of dom satisfying the conditions (�) IR ⊆ dom \C ,
IS ⊆ dom \ (C ∪ IR ), and IRS ⊆ dom \ (CRS ∪ IR ∪ IS ), let us define P (IR , IS , IRS ) to be the complete
database consisting of the following facts:

(1) R (a) and S (a) for a ∈ CRS ∪ IRS ;
(2) R (a) for a ∈ IR ∪ (CR \ IRS );
(3) S (a) for a ∈ IS ∪ (CS \ IRS ).

Then, for any two such triplets of sets (IR , IS , IRS ) and (I ′R , I
′
S , I
′
RS ) that are different, the complete

databases P (IR , IS , IRS ) and P (I ′R , I
′
S , I
′
RS ) are distinct.

Proof. To help the reader, we have drawn in Figure 2 how the sets can intersect. If we
have IRS � I ′RS with a ∈ IRS and a � I ′RS , then P (IR , IS , IRS ) contains both facts R (a) and S (a),
while P (I ′R , I

′
S , I
′
RS ) does not. So let us assume now that IRS = I ′RS . If we have IR � I ′R with a ∈ IR

and a � I ′R , then one can check that P (IR , IS , IRS ) contains the fact R (a) while P (I ′R , I
′
S , I
′
RS ) does

not. Hence, let us assume that IR = I ′R . Using the same reasoning, we obtain that IS = I ′S , thus
completing the proof. �

Our next step is to show that every completion of D is of the form P (IR , IS , IRS ) for some
triplet (IR , IS , IRS ) satisfying (�):
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Fig. 2. How the sets dom, IR , IS , IRS ,CRS ,CR and CS from Claim 4.12 are allowed to intersect when they
satisfy (�). The sets themselves and the intersections can be empty.

Claim 4.13. For every completion D ′ of D, there exists a triplet (IR , IS , IRS ) satisfying (�) such
that D ′ = P (IR , IS , IRS ).

Proof. We define:

• IR
def
= D ′(R) \ (CR ∪D ′(S )), where we see D ′(R) as the set of constants occurring in relation R

of D ′;

• IS
def
= D ′(S ) \ (CS ∪ D ′(R));

• IRS
def
= (D ′(R) ∩ D ′(S )) \CRS .

Then one can easily check that (IR , IS , IRS ) satisfies (�) and that D ′ = P (IR , IS , IRS ). �

By combining these two claims, we have that the result that we wish to compute (which, we
recall, is simply the total number of completions of D, because any valuation satisfies the query)
is equal to ∑

IR ⊆dom\C

∑
IS ⊆dom\(C∪IR )

∑
IRS ⊆dom\(CRS∪IR∪IS )

check(IR , IS , IRS ),

where check(IR , IS , IRS )
def
=

⎧⎪⎨⎪⎩
1 if P (IR , IS , IRS ) is a possible completion of D

0 otherwise
.

Next, we show that the value of check(IR , IS , IRS ) can be computed in polynomial time and
actually only depends on the sizes of these sets. To show this, we will use the following:

Claim 4.14. We have check(IR , IS , IRS ) = 1 if and only if the following conditions hold:

(1) If nR � 1 and |CR ∪CRS ∪ IRS | = 0, then we have |IR | � 0. Intuitively, this means that the value
of a null in NR cannot be “absorbed” by CR ∪CRS ∪ IRS .

(2) If nS � 1 and |CS ∪CRS ∪ IRS | = 0, then we have |IS | � 0. (Same reasoning for nulls in NS .)
(3) If nRS � 1 and |CRS | = 0, then we have |IRS | � 0. (Same reasoning for nulls in NRS .)
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(4) The following system of equations, whose variables are natural numbers between 0 and d , has
a solution:

z {NR }
NR
+ z {NR,CS }

NR
+ z {NR,NS }

NR
� nR

z {NS }
NS
+ z {NS ,CR }

NS
+ z {NS ,NR }

NS
� nR

z {CR,NS }
CR

� cR

z {CS ,NR }
CS

� cS

z {NR }
NR

� |IR |

z {NS }
NS
� |IS |

nRS +min(z {NR,CS }
NR

, z {CS ,NR }
CS

) +min(z {NR,NS }
NR

, z {NS ,NR }
NS

) +min(z {NS ,CR }
NS

, z {CR,NS }
CR

) � |IRS |.

Proof. We prove the claim informally by explaining the main ideas, because a formal proof
would be too long and not that interesting. Conditions (1–3) are easily checked to be necessary.
We now explain why condition (4) is also necessary. Suppose that P (IR , IS , IRS ) is a completion
of D. Observe that (†) to obtain the constants in IRS , we had to use some or all of the following:

• the nulls in NRS ; or
• the nulls in NR together with those in NS ; or
• the nulls in NR together with the constants in CS ; or
• the nulls in NS together with the constants in CR .

But then, to obtain P (IR , IS , IRS ) as a completion, we must have used three disjoint (possibly
empty) sets Z {NR }

NR
,Z {NR,CS }

NR
,Z {NR,NS }

NR
of the nulls in NR of sizes 0 � z {NR }

NR
, z {NR,CS }

NR
, z {NR,NS }

NR
� d ,

we have done the same for the nulls in NS and we also used a subset of the constants ofCR (andCS )
in such a way that, according to (†):

• The nulls inZ {NR }
NR

have been used to obtain the set IR (which, we recall, is the set of constants
that occur only in R and that are not in CR ). Note that only the nulls in NR could have been
used to obtain constants in IR . This is what the fifth equation expresses.
• The nulls in Z {NR,CS }

NR
have values in Z {CS ,NR }

CS
, which gives us constants in IRS . Observe that

at maximum, we could obtain min(z {NR,CS }
NR

, z {CS ,NR }
CS

) constants in this manner.

• The nulls in Z {NR,NS }
NR

and those in Z {NR,NS }
NR

have common values, which gives us constants

in IRS . Again, observe that we can get at most min(z {NR,NS }
NR

, z {NS ,NR }
NS

) constants using these.

• The nulls in Z {NS ,CR }
NS

have values in Z {CR,NS }
CR

, which gives us constants in IRS . Observe that

at maximum, we could obtain min(z {NS ,CR }
NS

, z {CR,NS }
CR

) constants in this manner.

The first four equations express the partitioning process, and the last equation then expresses that
by combining all these constants, we indeed obtained the whole set IRS .

We now explain why conditions (2–4) are sufficient. If |IR |, |IS | and IRS are all � 1, then con-
dition (4) is sufficient, because we can use the nulls and constants as explained above, and we
have enough of them to obtain the sets IR , IS , IRS . We explain what happens when IR = ∅ for in-
stance. In that case, condition (1) ensures us that we have either nR = 0 or CR ∪ CRS ∪ IRS � ∅.
If we have nR = 0, then it is fine, since the only nulls that could be used to fill IR are those in NR .
If we have nR � 1 andCR ∪CRS ∪ IRS � ∅, then we can use these to absorb the values of the nulls
in NR , and we are fine (i.e., we will be able to obtain IR = ∅). We leave it to the reader to complete
the small gaps in this proof. �
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Using this, we have that the value of check(IR , IS , IRS ) only depends on the sizes of IR , IS , IRS ,
and moreover can be computed in polynomial time

Claim 4.15. The value of check(IR , IS , IRS ) only depends on |IR |, |IS |, |IRS |,nR ,nS ,nRS , cR , cS , cRS ,
and can be computed in FP.

Proof. The fact that this value only depends on the sizes of these sets is simply by inspection
of the conditions in Claim 4.14. Conditions (1–3) can obviously be checked in PTIME. The fact that
condition (4) can be checked in PTIME is because we can test all possible assignments between 0
and d for all these variables and see if there is one assignment that satisfies the equations; indeed,
observe that the number of variables is fixed because the query is fixed. �

But then, we can express the result as follows:
∑

0�iR,iS ,iRS�d

(
d − c
iR

) (
d − c − iR

iS

) (
d − cRS − iR − iS

iRS

)
× check(iR , iS , iRS ),

and we can evaluate this expression as-is in FP, because computing check(IR , IS , IRS ) ∈ {0, 1} is in
PTIME by the last claim. This concludes this (long) example.

5 APPROXIMATING THE NUMBERS OF VALUATIONS AND COMPLETIONS

As we saw in the previous sections, counting valuations and completions of an incomplete data-
base are usually intractable problems. However, this does not necessarily rule out the existence
of efficient approximation algorithms for such counting problems, in particular if some source of
randomization is allowed. In this section, we investigate this question by focusing on the well-
known notion of Fully Polynomial-time Randomized Approximation Scheme (FPRAS) for
counting problems [33]. Formally, let Σ be a finite alphabet and f : Σ∗ → N be a counting problem.
Then f is said to have an FPRAS if there is a randomized algorithm A : Σ∗ × (0, 1) → N and a
polynomial p (u,v ) such that, given x ∈ Σ∗ and ε ∈ (0, 1), algorithm A runs in time p ( |x |, 1/ε ) and
satisfies the following condition:

Pr
(
| f (x ) − A (x , ε ) | � ε f (x )

)
�

3

4
.

Observe that the property of having an FPRAS is closed under polynomial-time parsimonious
reductions, that is, if we have an FPRAS for a counting problem A and for counting problem B, we
have that B �p

par A, then we also have an FPRAS for B.
In the following sections, we investigate the existence of FPRAS for the problems of counting

valuations and completions of an incomplete database. The overall picture that we obtain is shown
in Table 2. We first deal with counting valuations in Section 5.1, where we show a general condition
under which this problem has an FPRAS (which will apply, in particular, to all Boolean conjunctive
queries). Then, in Section 5.2, we show that the situation is quite different for counting completions,
as in most cases this problem does not admit an FPRAS.

5.1 Approximating the Number of Valuations

To prove the main result of this section, we need to consider the counting complexity class
SpanL [5]. Given a finite alphabet Σ, an NL-transducer M over Σ is a nondeterministic Turing Ma-
chine with input and output alphabet Σ, a read-only input tape, a write-only output tape (where
the head is always moved to the right once a symbol in Σ is written on it, so the output cannot be
read by M), and a work-tape of which, on input x , only the first c · log( |x |) cells can be used for
a fixed constant c > 0 (so the space used by M is logarithmic). Moreover, y ∈ Σ∗ is said to be an
output of M with input x if there exists an accepting run of M with input x such thaty is the string
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in the output tape when M halts. Then a function f : Σ∗ → N is said to be in SpanL if there exists
an NL-transducer M over Σ such that for every x ∈ Σ∗, the value f (x ) is equal to the number of
distinct outputs of M with input x . In Reference [5], it was proved that SpanL ⊆ #P, and also this
inclusion is strict unless NL = NP.

Very recently, the authors of Reference [10] have shown that every problem in SpanL has
an FPRAS.

Theorem 5.1 ([10, Corollary 3]). Every problem in SpanL has an FPRAS.

By using this result, we can give a general condition on a Boolean query q under which #Val(q)
has an FPRAS, as this condition ensures that #Val(q) is in SpanL. More precisely, a Boolean query q
is said to be monotone if for every pair of (complete) databases D, D ′ such that D ⊆ D ′, if D |= q,
then D ′ |= q. Moreover, q is said to have bounded minimal models if there exists a constantCq (that
depends only on q) satisfying that for every (complete) database D, if D |= q, then there exists D ′ ⊆
D such that D ′ |= q and the number of facts in D ′ is at mostCq . Finally, the model checking problem
for q, denoted by MC(q), is the problem of deciding, given a (complete) database D, whether D |=
q. Then q is said to have a model checking in a complexity class C if MC(q) ∈ C. With this
terminology, we can state the main result of this section.

Proposition 5.2. Assume that a Boolean query q is monotone, has model checking in nondeter-
ministic linear space, and has bounded minimal models. Then #Val(q) is in SpanL.

Proof. Let D be the input incomplete database, with the domains for each null. First, the ma-
chine guesses a subset D ′ ⊆ D of size � Cq , such that each fact of D ′ is over a relation symbol
that appears in q. Observe that D ′ contains at most |D ′ | × arity(q) � Cq × arity(q) distinct nulls
and that this is a constant. The machine then guesses and remembers a valuation ν of D ′ and
computes ν (D ′). The encoding size | |ν (D ′) | | of ν (D ′) is O (log |D |), so the machine can check in
nondeterministic linear space whether ν (D ′) |= q and stops and rejects in the branches that fail
the test. Then, the machine reads the input tape left to right and for every occurrence of a null ⊥
(appearing in D) that it finds, it does the following:

• It checks whether ⊥ appears before on the input tape and if so, then it simply continues;
• Else, if ⊥ does not appear before on the input tape but appears in D ′, then the machine

writes ν (⊥) on its output tape;
• Else, if ⊥ does not appear before on the input tape and does not appear in D ′, then it guesses

a value for it and writes that value on the output tape (but it does not remember that value).

It is easy to see that this procedure can be carried out by a logspace nondeterministic transducer,
so we only need to show that the distinct outputs of the machine correspond exactly to the distinct
valuations ν of D such that ν (D) |= q. Since the machine writes values for nulls in order of first
appearance on the input tape, it is clear that every valuation is outputted exactly once. Let ν be a
valuation that is outputted, and let D ′ be the subdatabase such that ν (D ′) |= q. Since ν (D ′) ⊆ ν (D)
and q is monotone, we have ν (D) |= q. Inversely, let ν be a valuation of D such that ν (D) |= q, and
let us show that it must be outputted. Since ν (D) |= q and q has bounded minimal models, there
exists Dν ⊆ ν (D) of size � Cq such that Dν |= q. But Dν is ν (D ′) for some D ′ ⊆ D of size � Cq .
Then it is clear that one of the branches of the machine has guessed D ′ and then ν |D′ and then has
written ν on the output tape. �
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In particular, given that a union of Boolean of conjunctive queries satisfies the three properties
of the previous proposition, we conclude from Theorem 5.1 that #Val(q) can be efficiently approx-
imated by using a randomized algorithm if q is a union of BCQs.9

Corollary 5.3. Ifq is a union of BCQs, then #Val(q) has an FPRAS (and the same holds if restricted
to the uniform setting and/or to Codd tables).

We prove in the next section that the good properties stated in Proposition 5.2 do not hold for
counting completions.

5.2 Approximating the Number of Completions

In this section, we prove that the problem of counting completions of an incomplete database is
much harder in terms of approximation than the problem of counting valuations. In this inves-
tigation, two randomized complexity classes play a fundamental role. Recall that RP is the class
of decision problems L for which there exists a polynomial-time probabilistic Turing Machine M
such that: (a) if x ∈ L, then M accepts with probability at least 3/4; and (b) if x � L, then M
does not accept x . Moreover, BPP is defined exactly as RP but with condition (b) replaced by: (b’)
if x � L, then M accepts with probability at most 1/4. Thus, BPP is defined as RP but allowing
errors for both the elements that are and are not in L. It is easy to see that RP ⊆ BPP. Besides, it
is known that RP ⊆ NP, and this inclusion is widely believed to be strict. Finally, it is not known
whether BPP ⊆ NP or NP ⊆ BPP, but it is widely believed that NP is not included in BPP.

The non-uniform case. Recall that #IS is the problem of counting the number of independent
sets of a graph. This problem will play a fundamental role when showing non-approximability of
counting completions in the non-uniform case. More precisely, the following is known about the
approximability of #IS:

Theorem 5.4 ([20, Theorem 3.1]). The problem #IS does not admit an FPRAS unless NP = RP.

In the proof of Proposition 4.2, we considered the problem #VC of counting the number of
vertex covers of a graph G = (V ,E) and showed that #VC �p

par #CompCd (R (x )). By observing
that S ⊆ V is an independent set of G if and only if V \ S is a vertex cover of G, we can conclude
that #IS(G ) = #VC(G ) and, thus, the same reduction from the proof of Proposition 4.2 establishes
that #IS �p

par #CompCd (R (x )). Therefore, from the fact that the reduction in Lemma 4.1 is also
parsimonious and preserves the property of being a Codd table, and the fact that the existence
of an FPRAS is closed under polynomial-time parsimonious reductions, we obtain the following
result from Theorem 5.4:

Theorem 5.5 (Dichotomy). For every sjfBCQ q, it holds that #CompCd (q) does not admit an
FPRAS unless NP = RP (and, hence, the same holds for #Comp(q)).10

The uniform case. Recall that from Theorem 4.10, we know that if an sjfBCQq contains neither
R (x ,x ) nor R (x ,y) as a pattern, then #Compu (q) is in FP. Thus, the question to answer in this
section is whether #Compu (q) and #Compu

Cd
(q) can be efficiently approximated if q contains any

of these two patterns. For the case of naive tables, we will give a negative answer to this question.
Notice that, this time, our reduction from #IS in Proposition 4.5 is not parsimonious, so we cannot

9As a matter of fact, this holds even for the larger class of unions of BCQs with inequalities (that is, atoms of the form
x � y), as such queries also satisfy the aforementioned three properties.
10Again, we remind the reader that, to avoid trivialities, we assume all sjfBCQs to contain at least one atom and all atoms
to have at least one variable.
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use Theorem 5.4 as we did for the non-uniform case. Instead, we will rely on the following well-
known fact: If there exists a BPP algorithm for a problem that is NP-complete, then NP ⊆ BPP,
which in turn implies that NP = RP [34].

Proposition 5.6. Neither #Compu (R (x ,x )) nor #Compu (R (x ,y)) admits an FPRAS unless NP =
RP. This holds even in the restricted setting in which all nulls are interpreted over the same fixed
domain {1, 2, 3}.

Proof. Let G = (V ,E) be a graph. First, we explain how to construct an incomplete database D
containing a single binary relation R, with uniform domain {1, 2, 3}, and such that (a) all comple-
tions of D satisfy both queries; (b) if G is 3-colorable, then D has eight completions; and (c) if G
is not 3-colorable, then D has seven completions. For every node u ∈ V , we have a null ⊥u . The
database D consists of the following three disjoint sets of facts:

• For every edge {u,v} ∈ E, we have the two facts R (⊥u ,⊥v ) and R (⊥v ,⊥u ); we call these the
coding facts.
• We have the facts R (1, 2),R (2, 1),R (2, 3),R (3, 2),R (1, 3), and R (3, 1); we call these the triangle

facts;
• We have six fresh nulls ⊥1,⊥′1,⊥2,⊥′2,⊥3,⊥′3 and the facts R (⊥i ,⊥′i ) and R (⊥′i ,⊥i ) for 1 �
i � 3; we call these the auxiliary facts;
• Last, we have a fact R (c, c ), where c is a fresh constant.

It is clear that all the completions of D satisfy both queries (thanks to the fact R (c, c )), so we only
need to prove (b) and (c). Observe that a candidate completion of D can be equivalently seen as
an undirected graph, possibly with self-loops, over the nodes {1, 2, 3} (we omit the fact R (c, c ), since
it is in every completion) and that contains the triangle. Thanks to the auxiliary facts, it is easy
to show that all such graphs with at least one self-loop can be obtained as a completion of D. For
instance, the completion that is triangle with a self-loop only on 1 can be obtained by assigning 1
to all the nulls in the coding facts, assigning 1 to ⊥1, ⊥′1, ⊥2 and ⊥3 and assigning 2 to ⊥′2 and ⊥′3.
There are seven such completions in total. Then, the completion whose graph is the triangle with
no self-loops is obtainable if and only ifG is 3-colorable (we assign a 3-coloring to the nulls in the
coding facts, and assign 1 to ⊥i and 2 to ⊥′i for every i ∈ {1, 2, 3}). This indeed proves (b) and (c).
Next, we show that any FRPAS with ε = 1/16 for counting the number of completions of D would
yield a BPP algorithm to solve 3-colorability, thus implying NP = RP, since 3-colorability is an
NP-complete problem.

Let A be an FPRAS for #Compu (q), with q being R (x ,x ) or R (x ,y), and let us define a BPP
algorithm B for 3-colorability using A. On input graph G, algorithm B does the following. First,
it computes in polynomial time the naive table D as described above. Then B calls A with in-
put (D, 1/16), and if A (D, 1/16) � 7.5, then B accepts, otherwise B rejects. We now prove that B is
indeed a BPP algorithm for 3-colorability. Assume first thatG is 3-colorable. Then by (b) and by def-
inition of what is an FPRAS, we have that Pr( |8−A (D, 1/16) | � 8/16) � 3

4 . This implies in particular
that Pr(A (D, 1/16) � 8 − 8/16) � 3

4 . Since 8− 8/16 = 7.5, we conclude that if G is 3-colorable, then B
accepts with probability at least 3/4. Next, assume that G is not 3-colorable. Then by (c), we have
that Pr( |7 − A (D, 1/16) | � 7/16) � 3

4 . This implies in particular that Pr(A (D, 1/16) � 7 + 7/16) � 3
4 .

Since 7+ 7/16 < 7.5, this implies in particular that Pr(A (D, 1/16) < 7.5) � 3
4 . From this, we conclude

that if G is not 3-colorable, then B rejects with probability at least 3/4. This concludes the proof of
the proposition. �

By observing again that the reduction in Lemma 4.1 is parsimonious, and that the existence of an
FPRAS is closed under parsimonious reductions, we obtain that #Compu (q) cannot be efficiently
approximated if q contains R (x ,x ) or R (x ,y) as a pattern.
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Theorem 5.7 (Dichotomy). Let q be an sjfBCQ. If q has R (x ,x ) or R (x ,y) as a pattern, then
#Compu (q) does not admit an FPRAS unless NP = RP. Otherwise, this problem is in FP (by Theo-
rem 4.10).

We do not know if this result still holds for Codd tables, or if it is possible to design an FPRAS
in this setting. We leave this question open for future research.

6 ON THE GENERAL LANDSCAPE: BEYOND #P

Recall that, when studying the complexity of counting completions for sjfBCQs in Section 4, we did
claim that these problems are in #P for Codd tables, but that we did not claim so for naive tables.
The goal of this section is then threefold. First, we want to prove that the problem of counting
completions is indeed in #P for Codd tables. Second, we want to give formal evidence that we
indeed could not show membership in #P for naive tables. Third, we want to identify a counting
complexity class that is more appropriate to describe the complexity of #Comp(q). We deal with
these three objectives in the next three sections.

6.1 Membership in #P of #CompCd (q)

In this section, and as promised in the proofs of Propositions 4.4 and 4.11, we show that for any
Boolean query q, if the model checking problem for q (denoted MC(q); recall the definition from
Section 5.1) is in P, then the problem of counting completions for q under Codd tables is in #P.

Proposition 6.1. If a Boolean query q has the property that model checking is in P, then we have
that #CompCd (q) is in #P.

We recall that a fact that contains only constants is a ground fact. To show Proposition 6.1,
we first prove that we can check in polynomial time if a given set of ground facts is a possible
completion of an incomplete database:

Lemma 6.2. Given as input an incomplete Codd table D and a set S of ground facts, we can decide
in polynomial time whether there exists a valuation ν of D such that ν (D) = S .

Proof. For every fact f of D, let us denote by P ( f ) the set of ground facts that can be obtained
from f via a valuation (P ( f ) can be { f } if f is already a ground fact). The first step is to check that
for every fact f of D, it holds that (�) P ( f ) ∩ S � ∅. If this is not the case, then we know for sure
that for every valuation ν of D, we will have ν (D) � S , so we can safely reject. Next, we build the
bipartite graph GD,S defined as follows: The nodes in the left partition of GD,S are the facts of D,
the nodes in the right partition are the facts in S , and we connect a fact f of D with all the ground
facts in the right partition that are in S ∩P ( f ). It is clear that we can constructGD,S in polynomial
time. We then compute in polynomial time the sizem of a maximum-cardinality matching ofGD,S ,
for instance using Reference [21]. It is clear that we havem � |S |. At this stage, we claim that there
exists a valuation ν of D such that ν (D) = S if and only ifm = |S |. We prove this by analyzing the
two possible cases:

• If m < |S |, then let us show that there is no such valuation. Indeed, assume by way of
contradiction that such a valuation ν exists. Let B be a subset of D of minimal size such
that ν (B) = S . It is clear that such a subset exists, and moreover that its size is exactly |S |.
But then, consider the set M of edges of GD,S defined by M

def
= {( f ,ν ( f )) | f ∈ B}. Then M

is a matching of GD,S of size |S |, contradicting the fact that m is the size of a maximum-
cardinality matching.
• If m = |S |, then let us show that such a valuation exists. Let M be a matching of GD,S

of size |S |. It is clear that every node corresponding to a ground fact f ∈ S is incident to
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(exactly) one edge of M ; let us denote that edge by ef . Moreover, since M is a matching, the
mapping that associates to a ground fact f ∈ S the fact f ′

f
at the other end of ef is injective.

Hence, we can define ν (⊥) of every null ⊥ occurring in such a fact f ′
f
∈ D to be the unique

constant such that ν ( f ′
f

) = f holds, and for every other fact f ′ in D not incident to an edge

in M , we choose a value for its nulls so ν ( f ′) ∈ S , which we can do thanks to (�). It is then
clear that we have ν (D) = S .

But then, we can simply accept ifm = |S | and reject otherwise. �

We can now prove Proposition 6.1:

Proof of Proposition 6.1. We define a non-deterministic Turing machine Mq such that, given
as input an incomplete Codd tableD, its number of accepting computation paths is exactly the num-

ber of completions of D that satisfy q. First, compute in polynomial time the set A
def
=

⋃
f ∈D P ( f ),

where P ( f ) is defined just as in Lemma 6.2. Then, the machine Mq guesses a subset S of A. It then
checks in polynomial time if S , when seen as a database, satisfies q, and rejects if it is not the case.
Then, using Lemma 6.2, it checks in polynomial time whether there exists a valuation ν of D such
that ν (D) = S , and accepts iff this is the case. It is then clear that Mq satisfies the conditions, which
shows that #CompCd (q) is in #P. �

In the next two sections, all upper bounds will be proved for the most general scenario of non-
uniform naive tables, while all lower bounds will be proved for the most restricted scenario of
uniform naive tables with a fixed domain.

6.2 Non-membership in #P of #Comp(q)

We now want to show that #P is not the right complexity class for problems of the form #Comp(q),
over naive tables. One could try to show membership in #P of #Comp(q) as we did in the proof of
Proposition 6.1; that is, guess a set of ground facts, then check in polynomial time that it satisfies
the query and that it is a possible completion of the incomplete database. However, this proof
strategy does not work, as we show next that checking if a set of ground fact is a completion of an
incomplete database is an NP-complete problem. Moreover, this holds already for a fixed schema
containing only a binary relation and for a fixed set of ground facts.

Proposition 6.3. There exists a set S of ground facts over binary relation R such that the following
is NP-complete: Given as input an incomplete database D over R, decide if S is a completion of D.

Proof. We reduce from 3-colorability. Given a graph G, we build the same incomplete data-
base D as in the proof of Proposition 5.6, and the (fixed) set of ground facts is the triangle, that
is, S = {R (1, 2),R (2, 1),R (2, 3),R (3, 2),R (1, 3), R (3, 1)}. Then, as in that proof, we have that S is a
completion of D if and only if G is 3-colorable. �

This does not, however, constitute a proof that #Comp(q) is not in #P (but it is a good hint).
To prove that #Comp(q) is unlikely to be in #P, we need to define the complexity class SPP in-
troduced in References [24, 28, 42]. Given a nondeterministic Turing Machine M and a string x ,
let acceptM (x ) (respectively, rejectM (x )) be the number of accepting (respectively, rejecting) runs
of M with input x , and let gapM (x ) = acceptM (x ) − rejectM (x ). Then a language L is said to be
in SPP [24] if there exists a polynomial-time nondeterministic Turing Machine M such that: (a) if
x ∈ L, then gapM (x ) = 1; and (b) if x � L, then gapM (x ) = 0. It is conjectured that NP � SPP as,
for example, for every known polynomial-time nondeterministic Turing Machine M accepting an
NP-complete problem, the function gapM is not bounded. In the following proposition, we show
how this conjecture helps us to reach our second goal.
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Proposition 6.4. There exists an sjfBCQ q such that #Compu (q) is not in #P unless NP ⊆ SPP.

The proof of this result relies on the proof of Theorem 6.6, in the next section (we presented the
results in this order for narrative purposes). We will then defer its presentation until the proof of
Theorem 6.6 is given.

6.3 An Appropriate Counting Complexity Class for #Comp(q): SpanP

To meet our third goal, we need to introduce one last counting complexity class. The class
SpanP [35] is defined exactly as the class SpanL introduced in Section 5.1, but considering
polynomial-time nondeterministic Turing machines with output, instead of logarithmic-space non-
deterministic Turing machines with output. It is straightforward to prove that #P ⊆ SpanP. Besides,
it is known that #P = SpanP if and only if NP = UP [35].11 Therefore, it is widely believed that
#P is properly included in SpanP. The following easy observation can be seen as a first hint that
SpanP is a good alternative to describe the complexity of counting completions:

Observation 6.5. If q is a Boolean query such that MC(q) is in P, then #Comp(q) is in SpanP.

Notice that this result applies to all sjfBCQs and, more generally, to all FO Boolean queries.
In fact, this result applies to even more expressive query languages such as Datalog [1]. More
surprisingly, in the following theorem, we show that #Compu (q) can be SpanP-complete for an
FO query q and, in fact, already for the negation of an sjfBCQ.

Theorem 6.6. There exists an sjfBCQ q such that #Compu (¬q) is SpanP-complete under
polynomial-time parsimonious reductions.

To prove this result, we will use the problem of counting the number of satisfying assignments
of a 3-CNF formula that are distinct in the first k variables, that we denote by #k3SAT. Formally,
the problem #k3SAT takes as input a 3-CNF formula F on variables {x1, . . . ,xn } and an integer
1 � k � n, and outputs the number of assignments of the first k variables that can be extended to
a satisfying assignment of F . This problem is shown to be SpanP-complete in Reference [35]:

Proposition 6.7 ([35, Section 6]). #k3SAT is SpanP complete (under polynomial-time parsimo-
nious reductions).

We are ready to prove Theorem 6.6.

Proof of Theorem 6.6. Notice that we only need to show hardness for a fixed sjfBCQ q. We
reduce from #k3SAT to #Compu (¬q), for a fixed sjfBCQ q to be defined. Let F be a 3-CNF on
variables {x1, . . . ,xn }, and 1 � k � n. We first explain how we build the incomplete database D,
and we will define the sjfBCQ q after. For every variable xi , 1 � i � n, we have a null ⊥xi

, and
the (uniform) domain is {0, 1}. For (a,b, c ) ∈ {0, 1}3, we have a relation Cabc of arity 3, and we
fill it with every tuple of the form Cabc (a′,b ′, c ′) with (a′,b ′, c ′) ∈ {0, 1}3 such that a = a′ ∨
b = b ′ ∨ c = c ′ holds; hence, for every (a,b, c ) ∈ {0, 1}3 there are exactly seven facts of this
form. For every clause K = l1 ∨ l2 ∨ l3 of F with l1, l2, l3 being literals over variables y1,y2,y3,
letting (a1,a2,a3) ∈ {0, 1}3 be the unique tuple such that ai = 1 iff li is a positive literal, we add
to Ca1a2a3 the fact Ca1a2a3 (⊥y1 ,⊥y2 ,⊥y3 ). Last, we have a binary relation S that we fill with the
tuples S (i,⊥xi

) for 1 � i � k . The sjfBCQ q then simply says that there exists a tuple that appears

11Recall that UP is the class Unambiguous Polynomial-Time introduced in Reference [49], and that L ∈ UP if and only if
there exists a polynomial-time nondeterministic Turing Machine M such that if x ∈ L, then acceptM (x ) = 1, and if x � L,
then acceptM (x ) = 0.
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in all the relations Cabc :

q = ∃x∃y S (x ,y) ∧ ∃x∃y∃z
( ∧

(a,b,c )∈{0,1}3
Cabc (x ,y, z)

)
. (6)

Note that we added the seemingly useless query ∃x∃y S (x ,y) to q, because the set of relations in D
has to be a subset of the set of relations occurring in q (indeed, this is how we defined our problems
in Section 2). We now show that the number of completions of D that do not satisfy q is equal to
the number of assignments of the first k variables that can be extended to a satisfying assignment
of F , thus establishing that #Compu (¬q) is SpanP-hard (under polynomial-time parsimonious re-
ductions). First, observe that the assignments of the variables are in bijection with the valuations
of the nulls of D. One can then readily observe the following:

• If q is falsified in a completion of D, then it can only be because there does not exist a tuple
that occurs in all the relations; this is because the query ∃x∃y S (x ,y) is always satisfied by
any completion of D.
• For every assignment of the variables, letting ν be the corresponding valuation of the nulls,

there exists a tuple that is in all relations Cabc of ν (D) if and only if that assignment is
not satisfying for F . Indeed, this happens if and only if there exists a relation Cabc such
that ν (D) (Cabc ) contains exactly eight facts.
• For every two valuations ν ,ν ′ such that the corresponding assignments are not satisfying

the formula, we have that ν (D) � ν ′(D) if and only if ν and ν ′ differ on the first k variables.
This is because, by the previous item, each relation Cabc contains exactly the seven ground
tuples that we initially put in D.

By putting it all together, we obtain that the reduction works as expected. �

This theorem gives evidence that SpanP is the right class to describe the complexity of counting
completions for FO queries (and even for queries with model checking in polynomial time). It is
important to notice that SpanP-hardness is proved in Theorem 6.6 by considering parsimonious
reductions. This is a delicate issue, because from the main result in Reference [48], it is possible to
conclude that every counting problem that is #P-hard (even under polynomial-time parsimonious
reductions) is also SpanP-hard under polynomial-time Turing reductions, so a more restrictive
notion of reduction has to be used when proving that a counting problem is SpanP-hard [35].

Before continuing, we prove Proposition 6.4.

Proof of Proposition 6.4. Let q be the sjfBCQ defined in Equation (6) in the proof of
Theorem 6.6. Its schema σ = {S } ∪ {Cabc | (a,b, c ) ∈ {0, 1}3} consists of 10 relation sym-
bols, with S being binary and each Cabc being ternary. Let us denote by #Compu (σ ) the prob-
lem that takes as input an incomplete database over schema σ and outputs its number of com-
pletions. The first part of our proof is to reduce #Compu (σ ) to #Compu (q); formally, we claim
that #Compu (σ ) �p

par #Compu (q). Indeed, let D be an incomplete database over schema σ , that is
an input of #Compu (σ ). We construct in polynomial time an incomplete databaseD ′ over the same
schema such that #Compu (σ ) (D) = #Compu (q) (D ′), thus establishing the parsimonious reduction.
Let f be a fresh constant that does occurs neither inD nor in the domain of some null. Then the rela-
tionD ′(S ) is the same as the relationD (S ), plus a fact S ( f , f ). Moreover, for every (a,b, c ) ∈ {0, 1}3,
the relation D ′(Cabc ) consists of all the facts in D (Cabc ), plus a fact Cabc ( f , f , f ). It is easy to
see that D and D ′ have the same number of completions. Moreover, thanks to the facts that
use the constant f , we have that every completion of D ′ satisfies q. Therefore, we indeed have
that #Compu (σ ) (D) = #Compu (q) (D ′). This proves that #Compu (σ ) �p

par #Compu (q).
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For the second part of the proof, we need to introduce the complexity class GapP. This class
consists of function problems that can be expressed as the difference of two functions in #P [24, 29].
It is known that if the inclusion SpanP ⊆ GapP holds, then we have that NP ⊆ SPP [39].12 With
this, we are able to prove the proposition. Assume that #Compu (q) is in #P. Then, by the first part
of the proof, we have that #Compu (σ ) ∈ #P as well (because #P is closed under polynomial-time
parsimonious reductions). Now, observe that for every incomplete databaseD overσ , the following
holds:

#Compu (¬q) (D) = #Compu (σ ) (D) − #Compu (q) (D).

But then this means that #Compu (¬q) is in GapP (since both problems in the right-hand side are
in #P). Since #Compu (¬q) is SpanP-complete by Theorem 6.6 under polynomial-time parsimonious
reductions and, since GapP is closed under polynomial-time parsimonious reductions, this would
indeed imply that SpanP ⊆ GapP and, hence, that NP ⊆ SPP. �

We conclude this section by considering an even more general scenario where queries have
model checking in NP. Interestingly, in this case, SpanP is again the right class to describe the
complexity not only of counting completions, but also of counting valuations.

Theorem 6.8. If q is a Boolean query with MC(q) ∈ NP, then both #Val(q) and #Comp(q) are
in SpanP. Moreover, there exists such a Boolean query q for which #Valu (q) is SpanP-complete under
polynomial-time parsimonious reductions (and for #Compu (q), we can even take q to be the negation
of an sjfBCQ, hence, with model checking in P, as given by Theorem 6.6).

Proof. It is straightforward to prove that these problems are in SpanP. The part in between
parentheses has been shown in Theorem 6.6. Thus, we need to prove that #Valu (q) is SpanP-hard
for a fixed Boolean query q such that MC(q) ∈ NP, under polynomial-time parsimonious reduc-
tions. To do this, we will reduce from the SpanP-complete problem #HamSubgraphs, defined as
follows:

Let G = (V ,E) be a undirected graph, and let S ⊆ V . The subgraph of G induced by S , denoted
by G[S], is the graph with set of nodes S and set of edges {{u,v} ∈ E | u,v ∈ S }. We recall that a
graphG is Hamiltonian when there exists a cycle inG that visits every node ofG exactly once. The
problem #HamSubgraphs takes as input a simple graph G = (V ,E) and an integer k , and outputs
the number of induced subgraphs G[S] with |S | = k such that G[S] is Hamiltonian.

Proposition 6.9 ([35, Section 6]). #HamSubgraphs is SpanP-complete (under polynomial-time
parsimonious reductions).

Next, we show that #HamSubgraphs �p
par #Valu (q), for a fixed Boolean query q (to be de-

fined). Let G = (V ,E) be an undirected graph. We first explain how we construct the incomplete
database D, and we will then define the query q. The schema contains two binary relation sym-
bols R,T and one unary relation symbolK . Fix a linear order a1, . . . ,an of the nodes ofG. For every
edge {u,v} ∈ E, we have the facts R (u,v ) and R (v,u). For 1 � i � n, we have a fact T (ai ,⊥i ), and
the domain of the nulls is {0, 1}. For 1 � j � k , we have a fact K (j ). Observe that D is a Codd table.
We now define the Boolean query q, which will be a sentence in existential second-order logic
(∃SO) over relational signature R,T ,K . Before doing so, we explain the main idea: Intuitively, q
will check that there are exactly k facts of the form T (ai , 1) in the relation T and that, letting S

12In fact, the class GapSpanP is defined in Reference [39], where it is proved that a function f is in GapSpanP if and only
if f = д − h, where h, д are functions in SpanP. Then it is shown in Reference [39, Corollary 3.5] that the inclusion
GapSpanP ⊆ GapP implies that NP ⊆ SPP. But if we have that SpanP ⊆ GapP, then we also have that GapSpanP ⊆ GapP
as GapP is closed under subtraction and, therefore, we conclude that NP ⊆ SPP, as desired.
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be the set of nodes v such that T (v, 1) is in relation T , the induced subgraph G[S] is Hamiltonian.
This will indeed ensure that we have #Valu (q) (D) = #HamSubgraphs(G,k ), thus completing this
reduction, which is parsimonious and can be performed in polynomial-time. The query is

q = ∃S ψ1 (S ) ∧ψ2 (S ),

where S is a unary second order variable and the formula ψ1 (S ) states that (a) the elements s of S
are exactly all the elements such thatT (s, 1) holds, and that (b) there are exactly the same number
of elements in S as there are elements j for which K (j ) holds. It is clear that (a) can be expressed
in FO. Moreover, (b) can be expressed in ∃SO by asserting the existence of a binary second-order
relationU that represents a bijective function from S to the elements in K . Thenψ2 (S ) is a formula
that asserts thatG[S] is Hamiltonian. Since this is a property in NP,ψ2 (S ) can be expressed in ∃SO
by Fagin’s theorem (see, e.g., Reference [31]). This shows that the reduction is correct. Finally, the
fact that MC(q) is in NP again follows from Fagin’s theorem. This concludes the proof. �

7 EXTENSIONS TO QUERIES WITH CONSTANTS AND FREE VARIABLES

So far, we have only considered our counting problems for queries that are Boolean and that do not
contain constants. In this section, we explain how our framework can be adapted to queries with
constants and with free variables. Specifically, we will explain how one can obtain dichotomies for
self-join–free conjunctive queries with constants and free variables.

Before that, we have to formally define our counting problems for a query with free variables.
Let q(x̄ ) be a query with free variables x̄ . For a tuple of constants t̄ of appropriate arity, we
write q(t̄ ) the Boolean query obtained by substituting the variables x̄ with the constants t̄ . The
problem #Val(q(x̄ )) then takes as input an incomplete database D over relations sig(q(x̄ )), a tuple
of constants t̄ , and returns the number of valuations ν of D such that ν (D) |= q(t̄ ). We write this
output #Val(q(x̄ )) (D, t̄ ). The problem #Comp(q(x̄ )) is defined similarly.

We first explain in Section 7.1 how to obtain dichotomies for self-join-free conjunctive query
with free variables and constants, assuming we have dichotomies for self-join–free Boolean con-
junctive queries with constants. In Section 7.2, we then explain how to obtain dichotomies for the
later case.

7.1 Dealing with Free Variables

Suppose in this section that we have a dichotomy between #P-hardness and FP of our counting
problems for every sjfBCQ that is allowed to contain constants. We then show how to obtain di-
chotomies for every self-join–free CQ that is allowed to have constants and free variables. To this
end, we will need the following definition: Let q(x̄ ) be a self-join-free CQ with free variables x̄ ,
and let t̄ and t̄ ′ be two tuples of constants with appropriate arity. We say that t̄ and t̄ ′ are equiv-
alent with respect to q(x̄ ) if one can go from q(t̄ ) to q(t̄ ′) by iteratively renaming constants into
fresh constants. For instance, if q(x1,x2) is ∃y R (y, c,x1,x2) ∧ S (c ′,x ), then (c, c ′′) is equivalent
to (c, c ′′′), and (c ′′, c ′′′) and (c ′′′, c ′′) are also equivalent. It is clear that, if q(x̄ ) is fixed, then this
defines an equivalence relation that has only finitely many classes. Furthermore, it is also clear
that if t̄ and t̄ ′ are equivalent with respect to q(x̄ ), then the problems #Val(q(t̄ )) and #Val(q(t̄ ′))
(respectively, #Comp(q(t̄ )) and #Comp(q(t̄ ′))) have the same complexity. We can now show what
we wanted. In what follows, hardness refers to #P-hardness (but it is not important for the proof):

Lemma 7.1. Assume that the following is true: for every sjfBCQ q that is allowed to have constants,
the problem #Val(q) is either hard or is tractable. Then the following is also true: For every self-join–
free conjunctive query q(x̄ ), the problem #Val(q(x̄ )) is either hard or is tractable. This holds also for
counting completions, and when restricted to Codd tables and/or to the uniform setting.
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Proof. We only deal with counting valuations for the naive and non-uniform case, as the other
cases are similar. We prove the following for any self-join–free CQ q(x̄ ), which implies the claim:
If there exists a tuple of constants t̄ such that #Val(q(t̄ )) is hard, then #Val(q(x̄ )) is hard as well,
otherwise #Val(q(x̄ )) is tractable. We start with the “if” direction. Let t̄ be a tuple of constants
such that #Val(q(t̄ )) is hard. By definition, it is clear that, for any incomplete database D, we have
that #Val(q(t̄ )) (D) = #Val(q(x̄ )) (D, t̄ ); this shows hardness of #Val(q(x̄ )). Now for the “otherwise”
direction: Let t̄1, . . . , t̄k be representatives of the finitely many equivalence classes of the equiv-
alence relation defined above. We have access to oracles for #Val(q(t̄1)), . . . , #Val(q(t̄k )). Let D, t̄
be an input of #Val(q(x̄ )). We then simply recognize (in constant time, since the query is fixed) to
which t̄i the tuple t̄ is equivalent with respect to q(x̄ ), and call the appropriate oracle. �

(Notice that this idea actually works for conjunctive queries (with self-joins), or even unions of
conjunctive queries.) Hence, the problem becomes that of obtaining dichotomies for self-join–free
Boolean conjunctive queries that can contain constants. We explain in the next section how this
can be done.

7.2 Dealing with Constants

In this section, we simply write “an sjfBCQ” to mean an sjfBCQ that can contain some constants.
To the best of our knowledge, there is no general reduction that allows us to easily obtain di-
chotomies for the case with constants from the case where queries do not have constants. Hence,
the strategy to obtain dichotomies will be the same as in Section 3; namely, we will again use the
notion of pattern to find a set of hard patterns, and then show that when a query does not have
any of the hard patterns, then the problem is tractable. The notion of pattern for an sjfBCQ that
can contain constants is the same as the one we used in Definition 3.1, but we simply add the
possibility of deleting an occurrence of a constant. For instance, the query R (x , c ) is a pattern of
the query R (x ,x , c, c, c ′) (in this section all variables are existentially quantified, since we consider
only Boolean queries). The main property of patterns that we used then extends in this setting, as
shown next.

Lemma 7.2. Let q,q′ be sjfBCQs such that q′ is a pattern of q. Then, we have #Val(q′) �p
par #Val(q).

Moreover, the same results hold if we restrict to Codd tables, and/or to the uniform setting, and/or to
counting completions.

Proof. The reduction is exactly the same as that of Lemma 3.3, the only difference being that,
when we delete an occurrence of a constant c , we simply fill the corresponding columns of every
tuple with this constant. �

Next, we prove dichotomies for counting valuations for the non-uniform setting for naive and
Codd databases. For Codd databases, it turns out that there is no new hard pattern that involves
constants, so the dichotomy is the same as for sjfBCQs without constants. Formally:

Theorem 7.3 (Dichotomy). Let q be an sjfBCQ. If R (x ) ∧ S (x ) is a pattern of q, then #ValCd (q) is
#P-complete. Otherwise, #ValCd (q) is in FP.

Proof. The proof is exactly as the proof of Theorem 3.7, with the following modification: We
let ρ (t̄j ) be the number of valuations of the nulls appearing in t̄j that do not match the correspond-
ing atom of q; and clearly, this can again be computed in polynomial time. �

For naive tables, however, we find two new hard patterns that involve constants, as shown next.

Proposition 7.4. Let c, c ′ be two distinct constants. The problems #Val(R (c, c )) and #Val(R (c, c ′))
are both #P-hard.
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Proof. We only explain for #Val(R (c, c ′)), as the other case is analogous. The reduction is similar
to that used in Proposition 3.8, but we reduce from counting the number of independent sets in
bipartite graphs (in Proposition 3.8, we did not need the graphs to be bipartite). LetG = (U V ,E)
be a bipartite graph. We have one null ⊥u for every node u ∈ U with domain dom(⊥u ) = {0, c},
and one null ⊥v for every node u ∈ V with domain dom(⊥v ) = {0, c ′}. For every edge (u,v ) ∈ E,
we have a fact R (⊥u ,⊥v ) in D. Then it is clear that the number of valuations of D that do not
contain R (c, c ′) is equal to the number of independent sets ofG, thus establishing hardness. (Note
that for R (c, c ), we do not need the graph to be bipartite for the reduction to work.) �

We then claim that these are the only additional patterns that are necessary to obtain a di-
chotomy for #Val(q) for sjfBCQs with constants.

Theorem 7.5 (Dichotomy). Let q be an sjfBCQ. If R (x ,x ) or R (x ) ∧ S (x ) or R (c, c ) or R (c, c ′)
for c � c ′ is a pattern of q, then #Val(q) is #P-complete. Otherwise, #Val(q) is in FP.

The #P-hardness part of the claim follows from Lemma 7.2 and Propositions 3.4, 3.5, and 7.4. We
now show the tractability claim. First, observe that not having any of these patterns means the
following: every variable in q has exactly one occurrence and every atom of q contains at most
one constant (but notice that the same constant can appear in multiple atoms). But then, because
the database is Codd and because q has no self-joins, by multiplying by the appropriate factor,
the problem #Val(q) reduces to the problem #Val(q′) where q′ is an sjfBCQ of the form R1 (c1) ∧
R2 (c2) ∧ . . . ∧ Rk (ck ), where the constants c1, . . . ck are not necessarily distinct. We give next an
example proof that the problem is tractable for such a simple query.

Example 7.6. Let q be the query R (c ) ∧ S (c ′) with c � c ′ and D be an incomplete naive database.
We explain how to compute #Val(¬q) (D) (the number of valuations that do not satisfy the query)
in FP. This is enough, since the total number of valuations can clearly be computed in FP. First, we
can assume without loss of generality that D does not contain ground atoms that already satisfy

the query. Then, let BRS def
= {⊥RS

1 , . . . ,⊥RS
nRS
} be the set of nulls that occur in both D (R) and D (S ),

BR def
= {⊥R

1 , . . . ,⊥R
nR
} be the set of nulls that occur inD (R) but not inD (S ), andBS

def
= {⊥S

1 , . . . ,⊥S
nS
}

be the set of nulls that occur in D (S ) but not in D (R). Let D ′ be the database that contains only
the facts R (⊥) and S (⊥) for ⊥ ∈ BRS . Notice that the number of valuations of the nulls in BR such
that no null has value c is

∏nR

i=1 |dom(⊥R
i ) \ {c}| and that the number of valuations of the nulls

in BR such that some null has value c is then
∏nR

i=1 |dom(⊥R
i ) | −∏nR

i=1 |dom(⊥R
i ) \ {c}|, and a similar

expression can be obtained for the valuations of the nulls in BS and constant c ′. Then, by case
analysis of whether some null in BR has value c or not, and whether some null in BS has value c ′

or not, we obtain that #Val(¬q) (D) = A + B +C , where

A = �
�

nR∏
i=1

|dom(⊥R
i ) | −

nR∏
i=1

|dom(⊥R
i ) \ {c}|�

�
×

nS∏
i=1

|dom⊥S
i | \ {c ′}| ×

nRS∏
i=1

|dom⊥RS
i \ {c ′}|

is the number of valuations of D that do not satisfy q and such that some null in BR has value c ,

B =
nR∏
i=1

|dom(⊥R
i ) | \ {c}| × �

�

nS∏
i=1

|dom(⊥S
i ) | −

nS∏
i=1

|dom(⊥S
i ) \ {c ′}|�

�
×

nRS∏
i=1

|dom⊥RS
i \ {c})

is the number of valuations of D that do not satisfy q and such that no null in BR has value c and
some null in BS has value c ′, and

C =
nR∏
i=1

|dom(⊥R
i ) \ {c}| ×

nS∏
i=1

|dom(⊥S
i ) \ {c ′}| × #Val(¬q) (D ′)
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is the number of valuations of D that do not satisfy q and such that no null in BR has value c
and no null in BS has value c ′. Hence, we only have to explain how to compute #Val(¬q) (D ′) in
polynomial time. For k ∈ {0, . . . ,nRS }, let D ′

k
be the database containing only the facts of D ′′

over the nulls ⊥RS
1 , . . . ,⊥RS

k
. We then define the quantities V (S,k ), for S ∈ {{c}, {c ′}, {c, c ′}, ∅}

and k ∈ {0, . . . ,nRS } to be the number of valuations of Dk that do not satisfy q and such that no
null has a value that is in S . Notice then that V (∅,nRS ) = #Val(¬q) (D ′). For an element a and
set A, we write [a ∈ A] to mean 1 if a ∈ A and 0 otherwise. But then we can easily compute the
quantities V (S,k ) by dynamic programming using the following relations:

V (∅,k ) =[c ∈ dom(⊥RS
k )] ×V ({c},k − 1)

+ [c ′ ∈ dom(⊥RS
k )] ×V ({c ′},k − 1)

+ |dom(⊥RS
k ) \ {c, c ′}| ×V (∅,k − 1)

and

V ({c, c ′},k ) = |dom(⊥RS
k ) \ {c, c ′}| ×V ({c, c ′},k − 1)

and

V ({c},k ) =[c ′ ∈ dom(⊥RS
k )] ×V ({c, c ′},k − 1)

+ |dom(⊥RS
k ) \ {c, c ′}| ×V ({c, c ′},k − 1)

and a similar relation for V ({c ′},k ).

The proof for the general case is simply a tedious generalization of the proof for this example
and is not very interesting, so we omit it.

Therefore, by combining Theorems 7.3 and 7.5 with Lemma 7.1, we obtain dichotomies for count-
ing valuations of self-join–free conjunctive queries that can contain constants and free variable
for the non-uniform setting for both naive and Codd tables. It is likely that dichotomies can be
obtained for counting valuations in the uniform setting by using the same methodology, but we
do not pursue this further, as our goal in this section is not to be exhaustive but rather to give the
main ideas to be able to handle free variables and constants.

For counting completions, the reader can check that the pattern R (c ) is hard for #CompCd (so
in this case again all queries are hard), and that for #Compu

Cd
, any query that contains an atom

that is not unary is again hard (it is evident from the proof of Proposition 4.9). By combining these
observations with Lemma 7.1 and with the tractability proof for #Compu (which can be shown
to extend in this case), we obtain four dichotomies for counting completions for self-join–free
conjunctive queries that can contain constants and free variables.

Last, we point out that by using the same methodology, one also can extend our results on
approximations to the case of queries containing constants and free variables (since the relevant
reductions are parsimonious).

8 RELATED WORK

There are two main lines of work that must be compared to what we do in this article. In both cases
the goal is to go beyond the traditional notion of certain answers that so far had been used almost
exclusively to deal with query answering over uncertain data. We discuss them here, explain how
they relate to our problems, and what are the fundamental differences.

Best answers and 0-1 laws for incomplete databases. Libkin has recently introduced a
framework that can be used to measure the certainty with which a Boolean query holds on
an incomplete database, and also to compare query answers (for a non-Boolean query) [38].
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For a Boolean query q, incomplete database D, and integer k , he defines the quantity μk (q,D)

as |Suppk (q,D ) |
|V k (D ) | , where V k (D) denotes the set of valuations of D with domain {1, . . . ,k }, and

Suppk (q,D) denotes the set of valuations ν ∈ V k (D) such that ν (D) |= q; hence, μk (q,D) rep-
resents the relative frequency of valuations ν in {1, . . . ,k } for which the query is satisfied. He then
shows that, for a very large class of queries (namely, generic queries), the value μk (q,d ) always
tends to 0 or 1, as k tends to infinity (and the same results hold when considering completions
instead of valuations). This means that, intuitively, over an infinite domain, the query q is either
almost certainly true or almost certainly false.

He also studies the complexity of finding best answers for a non-Boolean query q. As mentioned
in the introduction, a tuple a is a better answer than another tuple b when for every valuation ν

of D, if we have b ∈ q(ν (d )), then we also have a ∈ q(ν (d )). A best answer is then an answer
such that there is no other answer strictly better than it (under inclusion of the sets of satisfying
valuations). He studies the complexity of comparing answers under this semantics and that of
computing the set of best answers (see also Reference [25]).

There are several crucial differences between this previous work and ours. First, Libkin does
not study the complexity of computing μk (q,d ). We do this under the name #Valu (q); moreover,
we also study the setting in which the domains are not uniform. Second, knowing that a tuple
is the best answer might not tell us anything about the size of its “support,” i.e., the number of
valuations that support it. In particular, a best answer is not necessarily an answer that has the
biggest support. Finally, under the semantics of better answers it does not matter if we look at the
completions or at the valuations (i.e., a tuple is a best answer with respect to inclusion of valuations
iff it is the best answer with respect to completions); while we have shown that it does matter for
counting problems.

Counting problems for probabilistic databases and consistent query answering. Re-
markably, counting problems have received considerable attention in other database scenarios
where uncertainty issues appear. As mentioned in the introduction, this includes the settings of
probabilistic databases and inconsistent databases. In the former case, uncertainty is represented
as a probability distribution on the possible states of the data [19, 47]. There, query answering
amounts to computing a weighted sum of the probabilities of the possible states of the data that
satisfy a query q. We call this problem Prob(q). In the case of inconsistent databases, we are given
a set Σ of constraints and a database D that does not necessarily satisfy Σ; cf. References [9, 12, 13].
Then the task is to reason about the set of all repairs of D with respect to Σ [9]. In our context, this
means that one wants to count the number of repairs of D with respect to Σ that satisfy a given
query q. When q and Σ are fixed, we call this problem #Repairs(q, Σ).

Both Prob(q) and #Repairs(q, Σ) have been intensively studied already. To start with, counting
complexity dichotomies have been obtained for the problem #Repairs(q, Σ); e.g., Reference [40]
gives a dichotomy for this problem when q is an sjfBCQ and σ consists of primary keys, and Ref-
erence [41] extends this result to CQs with self-joins but only for unary keys constraints. We also
mention Reference [15], where the problem of counting repairs such that a particular input tuple
is in the result of the query on the repair is studied. A seemingly close counting problem for prob-
abilistic databases is the problem Prob(q) over block independent disjoint (BIDs) databases. We
do not define it formally here, but counting repairs under primary keys can be seen as a special
case of this problem, where the tuples in a “block” all have the same probability, and where the
sum of the probabilities sum to 1 (and in BIDs this sum is allowed to be < 1, meaning that a block
can be completely erased). Dichotomies for this problem have been obtained in Reference [18] for
sjfBCQs. Counting complexity dichotomies for other models of probabilistic databases also exist;
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e.g., for tuple-independent probabilistic databases in which each fact is assigned an independent
probability of being part of the actual dataset. Interestingly, dichotomies in this case hold for arbi-
trary unions of BCQs, and thus not just for sjfBCQs [19].

In some cases, one can use a problem of the form #Repairs(q, Σ) (or Prob(q)) to show the hard-
ness of a problem of the form #Val(q′). For instance, in Section 3.1, we used the #P-hardness of
#Repairs(R′(y,x ) ∧ S ′(z,x )) to prove that of #ValCd (R (x ) ∧ S (x )). In general, however, the prob-
lems #Repairs(q, Σ) and Prob(q) seem to be unrelated to our problems for the following reasons:
First, in our setting, the nulls can appear anywhere, so there is no notion of primary keys here;
hence, it seems unlikely that one can design a generic reduction from the problem of counting val-
uations/completions to the problem of counting repairs. In fact, it would perfectly make sense to
study our counting problems where we add constraints such as functional dependencies. Second,
in the BID and counting repairs problems, each “valuation” (repair) gives a different complete data-
base, while in our case, we have seen that this is not necessarily the case. In particular, problems of
the form #Comp(q) have no analogues in these settings, whereas we have seen that they behave
very differently in our setting.

Concerning approximation results, it is known that the problems #Repairs(q, Σ) and Prob(q) ad-
mit an FPRAS in some important settings. In particular, when q is a union of BCQs, this holds
for #Repairs(q, Σ) when Σ is a set of primary keys [15], and for Prob(q) over BID and tuple-
independent probabilistic databases [18]. We observe here that this is reminiscent of our Corol-
lary 5.3, which shows that problems of the form #Val(q) have an FPRAS for every union of BCQs.

9 FINAL REMARKS

Our work aims to be a first step in the study of counting problems over incomplete databases.
The main conclusion behind our results is that the counting problems studied in this article are
particularly hard from a computational point of view, especially when compared to more positive
results obtained in other uncertainty scenarios; e.g., over probabilistic and inconsistent databases.
As we have shown, a particularly difficult problem in our context is that of counting completions,
even in the uniform setting where all nulls have the same domain. In fact, Proposition 4.9 shows
that this problem is #P-hard even in very restricted scenarios, and Proposition 5.6 that it cannot be
approximated by an FPRAS. It seems, then, that the only way in which one could try to tackle this
problem is by developing suitable tractable heuristics, without provable quantitative guarantees,
but that works sufficiently well in practical scenarios. An example of this could be developing
algorithms that compute “under-approximations” for the number of completions of a naive table
satisfying a certain sjfBCQ q. Notice that a related approach has been proposed by Console et al.
for constructing under-approximations of the set of certain answers by applying methods based
on many-valued logics [17].

We plan to continue working on several interesting problems that are left open in this article.
First, we would like to pinpoint the complexity of #Comp(q) when q is an sjfBCQ; in particular,
whether this problem is SpanP-complete for at least one such a query. We also want to study
whether the non-existence of FPRAS for #Compu (q) established in Proposition 5.6 continues to
hold over Codd tables. We would also like to develop a more thorough understanding of the role of
fixed domains in our dichotomies. In several cases, that we have explicitly stated, our lower bounds
hold even if nulls in tables are interpreted over a fixed domain. Still, in some cases, we do not
know whether this holds. These include, e.g., Proposition 3.11, Proposition 4.2, and Proposition 4.9.
Finally, it would also be interesting to study these counting problems under bag semantics (instead
of the set semantics used in this article), or consider arbitrary conjunctive queries as opposed to
only self-join–free ones.
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APPENDICES

A PROOFS FOR SECTION 3 (DICHOTOMIES FOR COUNTING VALUATIONS)

A.1 Proof of Theorem 3.9

In this section, we prove the tractability claim of the following dichotomy theorem.

Theorem 3.9 (dichotomy). Let q be an sjfBCQ. If R (x ,x ) or R (x ) ∧ S (x ,y) ∧ T (y) or R (x ,y) ∧
S (x ,y) is a pattern of q, then #Valu (q) is #P-complete. Otherwise, #Valu (q) is in FP.

First, to characterize the queries that do not have these patterns, we will use the notion of
connectivity graph of an sjfBCQ q:

Definition A.1. Let q be an sjfBCQ. The connectivity graph of q is the graph Gq = (V ,E) with
labeled edges, where V is the set of atoms of q, and for every two atoms R (x̄i ), S (ȳi ) of q, if they
share a variable then we have an edge between the corresponding nodes of Gq , that edge being
labeled with the variables in x̄i ∩ ȳi .

Example A.2. Figure 3 shows the connectivity graph of the query

R1 (x1,x1,y1, t1),R2 (x1,y1, t2), S1 (x2, t3), S2 (x2, t4), S3 (x2),T1 (x3),T2 (x3),T3 (x3),T4 (x3, t5).

Fig. 3. The connectivity graph Gq of the sjfBCQ q from Example A.2.

The following is then readily observed:

Lemma A.3. Letq be an sjfBCQ that does not contain any of the patterns mentioned in Theorem 3.9.
Then for every connected component C of Gq , C is a clique and there exists a variable such that all
edges of C are labeled by exactly that variable.

Proof. First, observe that every edge ofGq must be labeled by exactly one variable, as otherwise
the query q would contain the pattern R (x ,y) ∧ S (x ,y). Let C be a connected component of Gq .
Then, we have:

• C is a clique. Indeed, assume by contradiction thatC is not a clique. Then, sinceC is connected
and is not a clique, we can find 3 nodes A1 (x ),A2 (x ′),A3 (x ′′) such that A1 (x ) is adjacent
to A2 (x ′), A2 (x ′) is adjacent to A3 (x ′′), and A1 (x ) is not adjacent to A3 (x ′′). Let X be x ∩ x ′
and Y be x ′ ∩ x ′′, i.e., the labels on the two corresponding edges of C . By definition of Gq

and, since A1 (x ) is not adjacent to A3 (x ′′), we must have X ∩ Y = ∅. But X and Y are not
empty (again by definition of Gq ), so by picking x in X and y in Y , we see that q contains
the pattern R (x ) ∧ S (x ,y) ∧T (y), a contradiction.
• There exists a variable that labels every edge of C . Indeed, since every edge of Gq is labeled

by exactly one variable and, since C is a clique, if it was not the case, then again we could
find the pattern R (x ) ∧ S (x ,y) ∧T (y) in q.

This concludes the proof. �
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For instance, the query from Example A.2 does not satisfy this criterion, since the edge in the
first connected component of Gq is labeled by two variables. However, if we consider the query
S1 (x2, t3), S2 (x2, t4), S3 (x2),T1 (x3),T2 (x3),T3 (x3),T4 (x3, t5) (i.e., we remove the first connected com-
ponent), then it satisfies the criterion.

We will also use the general fact that for an sjfBCQ q, we can assume wlog that q does not
contain variables that occur only once:

Lemma A.4. Let q be an sjfBCQ, and let q′ be the sjfBCQ obtained from q by deleting all the
variables that have only one occurrence in q. Then #Valu (q) �p

T #Valu (q′).

Proof. Let D be an incomplete database input of #Valu (q). Let S be set of nulls ⊥ such that:

• ⊥ occurs in a column corresponding to a variable that has been deleted; and
• ⊥ does not occur in a column corresponding to a variable that has not been deleted.

Then, letting D ′ be the database obtained from D by projecting out the columns corresponding
to the deleted variables, it is clear that we have #Valu (q) (D) = #Valu (q′) (D ′) ×∏

⊥∈S |dom(⊥) |,
where dom is the uniform domain of the nulls. We note here that this lemma is also true in the
non-uniform setting. �

By Lemma A.3 and Lemma A.4, it is enough to show the tractability of #Valu (q) when q is of
the form C1 (x1) ∧ . . . ∧Cm (xm ), where each Ci (xi ) is what we call a basic singleton query, i.e., is
a conjunction of unary atoms over the same variable xi . We call such an sjfBCQ a conjunction of
basic singletons. For instance,

S1 (x2), S2 (x2), S3 (x2),T1 (x3),T2 (x3),T3 (x3),T4 (x3)

is such a query, withm = 2. We will use the following:

Lemma A.5. Letq = C1 (x1)∧. . .∧Cm (xm ) be a conjunction of basic singletons sjfBCQ, and letD be

an incomplete database. For S ⊆ [m], we define NS (D)
def
= |{ν valuation of D | ν (D) � |= ∨

i ∈S Ci (xi )}|.
Then, we have #Valu (q) (D) =

∑
S ⊆[m] (−1) |S |NS (D).

Proof. Direct, by inclusion–exclusion. �

Hence, and remembering that we consider data complexity, it is enough to show how to com-
pute NS (D) for every S ⊆ [m]. The main difficulties in computing NS (D) is that the relations can
have nulls in common (since we consider naive tables), and that they may also have constants; this
makes it technically painful to express a closed-form expression for NS (D). We explain how to do
it next, thus finishing the proof of Theorem 3.9.

Proposition A.6. Let q = C1 (x1) ∧ . . . ∧ Cm (xm ) be a conjunction of basic singletons sjfBCQ
and S ⊆ [m]. Then, given an incomplete database D as input, we can compute NS (D) in polynomial
time.

Proof. First, observe that to compute NS (D), we can assume without loss of generality that
the input database D only contains facts over relation names that occur in some Ci (xi ), for i ∈ S .
Indeed, NS (D) counts the valuations ν of D that do not satisfy any of the Ci (xi ) for i ∈ S , so for
any j � S , we do not care if ν satisfiesCj (x j ) or not; hence, we could simply multiply the result by
the appropriate factor. Therefore, we can assume that S is [m]. We now need to fix some notation.
Let us write the conjunction of basic singleton sjfBCQ q as

R1 (x1) ∧ . . . ∧ Rm1 (x1) ∧ Rm1+1 (x2) ∧ . . . ∧ Rm1+m2 (x2) ∧ . . . ∧ R∑m−1
i=1 mi

(xm ) ∧ . . . ∧ R∑m
i=1 mi

(xm )
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and let K be the number of atoms in q, that is, K
def
=

∑m
i=1mi . Let dom be the uniform domain of

the nulls occurring in D and d its size. For s ⊆ [K], we write Cs the set of constants that occur in
each of the relations D (Ri ) for i ∈ s but in none of the others, and write cs the size of that set. We
call such a set a block of constants. Similarly for the nulls, we write Ns the set of nulls that occur
in each of the relations D (Ri ) for i ∈ s but in none of the others (and we call this a block of nulls),
and ns for its size. We can assume wlog that:

(a) For every 1 � i � m, there is no constant that occurs in every D (R) for R a relation name
in Ci (xi ). Indeed otherwise any valuation would satisfy Ci (xi ), thus N[m] (D) would simply
be 0.

(b) Every constant c appearing in D is in dom. Indeed otherwise, with the last item, this constant
would have no chance to be part of a match, so we could simply remove it (i.e., remove all
tuples of the form R (c ) from D).

For a subset A ⊆ dom, let us write A�
def
= dom \ A. Finally, for a set Z = {A1, . . . ,Al } of subsets

of dom, we denote by I (Z ) the set

I (Z )
def
=

⎧⎪⎨⎪⎩

l⋂
i=1

Bi | (B1, . . . ,Bl ) ∈ {A1,A
�
1 } × . . . × {Al ,A

�
l
}
⎫⎪⎬⎪⎭

We now explain informally how we can compute N[m] (D). Let L = s1, . . . , s2K be an arbitrary
linear order of the set of subsets of [K]. We will define by induction on i ∈ [2K ] an expression
computing N[m] (D), which will be a nested sum of the form

∑
sums1

fs1 ×
( ∑

sums2

fs2 ×
(
. . . (

∑
sums

2K

fs2K ) . . .
))

(7)

where each sumsi
sums over the possible images Asi

of the nulls in Nsi
by a valuation, and fsi

will simply be surjnsi→asi
, where asi

def
= |Asi

|, i.e., the number of valuations ν of Nsi
with image

exactly Asi
. But there are two technicalities:

• First, we need to ensure that each basic singleton query Ci (xi ) of q will not be satisfied. In

order to do that, sumsi
will actually sum over all the possible partitions (B1

si
, . . . ,B |I (Zi−1 |)

si
)

of Asi
, where each of the B j

si
is included in one of the sets in I (Zi−1), where Zi−1 contains

all the blocks of constants and all the other Br
sj

for j < i . We iteratively build that sum from

the outside to the inside, starting with Z0
def
= {dom} ∪ {Cs | s ⊆ [K]}. This will allow us to

avoid summing over the B j
si

that would render a basic singleton query true.
• Second, as is, such a sum is obviously not going to be computable in PTIME, as we are

summing over subsets of dom. To fix this, observe that the value of the subsum for si actually
only depends on the sizes of the sets in Zi−1. Hence, iterating from the outside to the inside,
whenever sumsi

contains a sum of the form, say,Bk
si
⊆ Bk ′

sj
for j < i , we can replace this with a

sum over 0 � bk
si
� bk ′

sj
, and add to fsi

a factor of
(bk′

sj

bk
si

)
. Now, because of howZ0 is defined, and

because of how I works, all the initial numbers in the first sum are either |dom \⋃K
i=1C {i } |

or one of the numbers cs for s ⊆ [K]. These can all be computed in polynomial time.

The resulting expression then indeed evaluates to N[m] (D), and is in a form that allows us to
directly compute it in polynomial time (but non-elementary in the query). This concludes the proof
of Proposition A.6. �
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B PROOFS FOR SECTION 4 (DICHOTOMIES FOR COUNTING COMPLETIONS)

B.1 Proof for Proposition 4.7

In this section, we explain how to obtain the following hardness result.

Proposition 4.7 (Implied by [26]). The problem #PF restricted to bipartite graphs is #P-hard.

This result is proven for (non-necessarily bipartite) graphs in [26] using techniques from matroid
theory, in particular using the notions of bicircular matroid of a graph and of Tutte polynomial of a
matroid. We did not find a way to show that the result holds on bipartite graphs without explaining
their proof for general graphs, and we did not find a way to explain the proof for general graphs
without introducing these concepts. Therefore, we need to define these concepts here. We have
tried to keep this exposition as brief as possible, but more detailed introductions to matroid theory
and to the Tutte polynomial can be found in [43, 54]. First, we define what is a matroid.

Definition B.1. A matroid M = (E,I) is a pair where E is a finite set (called the ground set) and I
is a set of subsets of E whose elements are called independent sets and that satisfies the following
properties:

Non emptiness. I � ∅;
Heritage. For every A′ ⊆ A ⊆ E, if A ∈ I then A′ ∈ I;
Independent set exchange. For every A,B ∈ I, if |A| > |B | then there exists x ∈ A \ B such

that B ∪ {x } ∈ I.

In a matroid M = (E,I), an independent set A ∈ I is called a basis if every strict superset A �
A′ ⊆ E is not in I. Notice that, thanks to the independent set exchange property, all bases of M
have the same number of elements. The rank of M is defined as the number of elements in any
basis of M . Given a matroid M = (E,I) and A ⊆ E, we can define the submatroid of M generated
by A to be MA = (A,I′), where for A′ ⊆ A, we have A′ ∈ I′ iff A′ ∈ I (one should check that this
is indeed a matroid). The rank function rkM : {A | A ⊆ E} → N of M is then defined with rkM (A)
being the rank of the matroid MA. We will now omit the subscript in rkM as this will not cause
confusion. We are ready to define the Tutte polynomial of a matroid.

Definition B.2. Let M = (E,I) be a matroid. The Tutte polynomial of M , denoted T(M ;x ,y), is
the two-variables polynomial defined by

T(M ;x ,y) =
∑
A⊆E

(x − 1)rk(M )−rk(A) (y − 1) |A |−rk(A)

We will use the following observation:

Observation B.3. Let M = (E,I) be a matroid. Then T(M ; 2, 1) = |I |, i.e., evaluating the Tutte
polynomial of a matroid at point (2, 1) simply counts its number of independent sets.

Proof. We have T(M ; 2, 1) =
∑

A⊆E 0 |A |−rk(A) . We recall the convention that 00 = 1, and the fact
that 0k = 0 for k > 0. Observe then that we always have rk(A) � |A|, and that we have rk(A) = |A|
if and only if A ∈ I, which proves the claim. �

Next, we define what is called the bicircular matroid of a graph G = (V ,E). Recall from Defini-
tion 4.6 the definition of the induced subgraph G[S] for S ⊆ E.

Definition B.4. Let G = (V ,E) be a graph and I = {S ⊆ E | G[S] is a pseudoforest}. Then one
can check that (E,I) is a matroid [56]. This matroid is called the bicircular matroid of G, and is
denoted by B (G ).
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Notice then that the problem #PF is exactly the same as the problem of computing, given as
input a graph G, the quantity T(B (G ); 2, 1). We now explain the steps used in [26] to prove that
computing T(B (G ); 2, 1) is #P-hard for graphs. The starting point of our explanation is that com-
puting T(B (G ); 1, 1) is #P-hard.

Proposition B.5 ([26, Corollary 4.3]). The problem of computing, given a graph G, the quan-
tity T(B (G ); 1, 1) is #P-hard.

Second, let us define the following univariate polynomial: for a graph G, let PG (x ) be

PG (x ) = T(B (G );x , 1).

Notice that this is indeed a polynomial and that its degree is at most |E | (the degree is exactly |E |
iffG is itself a pseudoforest). If we could compute efficiently the coefficients of PG , then we could in
particular compute the value PG (1) = T(B (G ); 1, 1), which is #P-hard by the previous proposition.
We recall that to compute the coefficients of a polynomial of degree n, it is enough to know its
value on n + 1 distinct points; in fact, given these values in n + 1 distinct points, it is possible to
efficiently compute the coefficients of the polynomial by using standard interpolation techniques
(for example, by using Lagrange polynomials).

We need one last definition.

Definition B.6. LetG be a graph. For k ∈ N, let sk (G ) be the graph obtained fromG by replacing
each edge of G by a path of lenght k ; this graph is called the k-stretch of G.

Then, using a result attributed to Brylawski (see Reference [32]), the authors of [26] obtain that,
“up to a trivial factor,” we have

T(B (sk (G )); 2, 1) � T(B (G ); 2k , 1).

A careful inspection of [32] reveals13 that, in fact, we have

T(B (sk (G )); 2, 1) = (2k − 1) |E |−rkB (G ) (E ) × T(B (G ); 2k , 1).

Notice that rkB (G ) (E) is the size (number of edges) of a pseudoforest of G that is maximal by
inclusion of edges, which we can compute in polynomial time.14

With this, the authors of [26] can conclude the proof that computing T(B (G ); 2, 1) is hard for
(non-necessarily bipartite) graphs, i.e., that #PF is #P-hard. Indeed, given as input G = (V ,E), we
can construct in polynomial time the graphs sk (G ) for |E | + 1 distinct values of k , then use oracle
calls to obtain the numbers T(B (sk (G )); 2, 1), which gives us the value of PG on |E | + 1 distinct
points. With that, we can recover the coefficients of PG and compute PG (1) = T(B (G ); 1, 1) as
argued above, thus proving hardness for general graphs. To obtain hardness for bipartite graphs,
it is enough to observe that when k is even then the k-stretch of G is bipartite (even if G is not
bipartite). Hence, to obtain a proof of Proposition 4.7 for bipartite graphs, we can simply change
that proof and specify that we make |E | + 1 calls to the oracle T(B (sk (G )); 2, 1) for |E | + 1 disctinct
even values of k .

13To be precise, we use Equations (7.1) and (7.2) of [32] with x = 1, y = 0, and Equation (2.2) with x = 2, y = 1.
14This is because, since B (G ) is a matroid, any two such pseudoforests have the same number of edges. We can then simply
start from the empty subgraph and iteratively add edges until it is not possible to add an edge such that the resulting graph
is a pseudoforest. This also relies on the fact that we can check in polynomial time whether a graph is a pseudoforest.
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B.2 Proof of Theorem 4.10

In this section, we prove the tractability part of the following:

Theorem 4.10 (Dichotomy). Let q be an sjfBCQ. If R (x ,x ) or R (x ,y) is a pattern of q, then
#Compu (q) and #Compu

Cd
(q) are #P-hard. Otherwise, these problems are in FP.

Let q be an sjfBCQ not containing any of these two patterns. Then, as observed in Section 4.2, q
is a conjunction of basic singletons query. Let σ = {R1, . . . ,Rl } be the set of relation symbols of q,
and D be an incomplete database over these relations, with dom the uniform domain of the nulls
and d its size. For every s ⊆ σ , s � ∅, let:

• Cs be the set of constants that occur in all relations of s and in none of the others; cs be its
size;
• Ns be the set of nulls that occur in all relations of s and in none of the others; ns be its size.

We also define c as
∑
∅�s⊆σ cs. We can assume w.l.o.g. that Cs ⊆ dom for all ∅ � s ⊆ σ , otherwise,

we can simply remove from D the corresponding facts. Let L
def
= 2l − 1, and let s1, . . . , sL be an

arbitrary linear order of {s ⊆ σ | s � ∅} (for instance, by non-decreasing size). We will follow the
same steps as in the example of Section 4.3. The following lemma is the generalization of Claim 4.12,
and explains how we can guide the computation so we do not count the same completion twice:

Lemma B.7. For a tuple (Is1 , . . . , IsL
) of subsets of dom satisfying (�)

Is ⊆ (dom \ (C ∪
⋃
∅�s′ ⊆σ

s′�s

Is′ )) ∪
⋃
∅�s′�s

Cs′

for every s ∈ (s1, . . . , sL ) (in other words, all the sets Is are mutually disjoint subsets of dom, and a
set Is can only contain a constant b ∈ C if b is in one of the sets Cs′ for which s′ is striclty included
in s), let us define P (Is1 , . . . , IsL

) to be the complete database consisting of the following facts, for
every ∅ � s ⊆ σ :

• R (a) for every R ∈ s and a ∈ Is or a ∈ Cs \
⋃

s�s′ Is′

Then, for every two such tuples (Is1 , . . . , IsL
) and (I ′s1

, . . . , I ′sL
) satisfying (�) and that are distinct, we

have that P (Is1 , . . . , IsL
) � P (I ′s1

, . . . , I ′sL
).

Proof. Let us write P = P (Is1 , . . . , IsL
) and P ′ = P (I ′s1

, . . . , I ′sL
). Assume that P = P ′, and let us

show that (Is1 , . . . , IsL
) = (I ′s1

, . . . , I ′sL
). Assume by way of contradiction that for some ∅ � s ⊆ σ

we have Is � I ′s . Then (w.l.o.g.) there exists a ∈ Is \ I ′s . By the definition of P , we have that P
contains all the facts R (a) for R ∈ s. Let us show that P does not contain any fact R (a) for R � s.
Otherwise, assume that P contains R (a) with R � s. Then there exists s′ ⊆ σ such that R ∈ s′

and such that a ∈ Is′ ∪ (Cs′ \
⋃

s′�s′′ Is′′ ). Since s does not contain R while s′ does, we have s′ � s.
But then by (�), we have that Is and Is′ ∪ Cs′ are disjoint, which is a contradiction because a is
supposed to be in both Is and Is′ ∪ (Cs′ \

⋃
s′�s′′ Is′′ ). Therefore, it is indeed the case that P does not

contain any fact R (a) for R � s. Now, if P ′ contains a fact R (a) for some R � σ , then we are done,
since this would imply P � P ′, a contradiction. Hence, we can assume that P ′ does not contain
any fact R (a) for R � σ . We will now prove that P ′ does not contain all the facts R (a) for R ∈ σ ,
thus establishing a contradiction (because P does, so we would have P � P ′) and concluding this
proof. Assume by contradiction that P ′ contains all the facts R (a) for R ∈ s. First, observe that we
have a � Cs because by (�), we have that Is and Cs are disjoint, and we know that a ∈ Is. Hence,
the only way in which P ′ could contain all the facts R (a) for R ∈ s is if there exist s′1, . . . , s

′
k

with k � 1 and s′j � s for 1 � j � k such that
⋃

1�j�k s′j = s and such that for every 1 � j � k , we
have that (i) a ∈ Is′ j ∪ (Cs′ j \

⋃
s′ j�s′′ Is′′ ). Observe that there must exist 1 � j1, j2 � k such that s′j1
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and s′j2 are incomparable by inclusion (otherwise, since all sj are strictly included in s, their union
could not be equal to s). Also observe that by (�), we have that the sets Is′ j1 ∪Cs′ j1

and Is′ j2 ∪Cs′ j2
must be disjoint. But then (i) applied to j1 and j2 gives a contradiction (namely, these two sets are
not disjoint, since they both contain a). This finishes the proof. �

This next Lemma generalizes Claim 4.13 and tells us that by summing over all such tu-
ples (Is1 , . . . , IsL

), we cannot miss a completion of D:

Lemma B.8. Let D ′ be a completion of D. Then there exists a tuple (Is1 , . . . , IsL
) of subsets of dom

satisfying (�) such that D ′ = P (Is1 , . . . , IsL
).

Proof. For ∅ � s ⊆ σ , let us define Ds to be the set of constants that occur in all relation of s

and in none of the others. Define the set Is for ∅ � s ⊆ σ as follows: Is
def
= Ds \Cs. It is then routine

to check that (Is1 , . . . , IsL
) satisfies (�) and is such that D ′ = P (Is1 , . . . , IsL

). �

Lemma B.7 and B.8 allows us to express the result as∑
Is1 ⊆dom\C

. . .
∑

Isj ⊆(dom\(C∪⋃1�k< j Isk
))∪⋃∅�s′�s Cs′

. . .
∑

IsL
⊆dom\(CsL

∪⋃1�k<L Isk
)

check(Is1 , . . . , IsL
) (8)

where check(Is1 , . . . , IsL
) ∈ {0, 1} is defined by

check(Is1 , . . . , IsL
)

def
=

{
1 if P (Is1 , . . . , IsL

) is a completion of D that satisfies q
0 otherwise

.

As such, we cannot evaluate this expression in P. The next step is to show that the value
of check(Is1 , . . . , IsL

) only depends on ( |Is1 |, . . . , |IsL
|), which would allow us to rewrite the result

as ∑
0�is1, ...,isL

�d

∏
1�j�L

(
d − c −∑

1�k<j isk
+

∑
∅�s′�sCs′

isj

)
× check(is1 , . . . , isL

) (9)

We give here the necessary and sufficient conditions for P (Is1 , . . . , IsL
) to be a completion of D

that satisfies q.

Lemma B.9. We have check(Is1 , . . . , IsL
) = 1 if and only if the following conditions hold:

(1) for every basic singleton queryCi (x ) of q, letting s be its sets of relation symbols, there exists s ⊆
s′ ⊆ σ such that we have |Is′ | � 1 or cs′ � 1.

(2) for every ∅ � s ⊆ σ , if ns � 1 and |⋃s′ ⊇sCs′ ∪
⋃

s′�s Is′ | = 0 then |Is | � 0.
(3) consider the following system of equations, with integer variables between 0 and d :

• for every two setsA,A′ of subsets of {∅ � s ⊆ σ }, we have a variable zA,A′

Ns
for every s ∈ A and

a variable zA,A′

Cs
for every s ∈ A′. For instance, if σ = {R, S,T ,U } and if A = {{R, S }, {S,T }}

and A′ = {{U }}, then we have the variables

z { {R,S }, {S,T } }, { {U } }
N{R,S }

and z { {R,S }, {S,T } }, { {U } }
N{S,T }

and z { {R,S }, {S,T } }, { {U } }
C{U }

.

The intuition is that we will use z { {R,S }, {S,T } }, { {U } }
N{R,S }

of the nulls in N {R,S } and combine them

with z { {R,S }, {S,T } }, { {U } }
N{S,T }

of the nulls in N {S,T } and with z { {R,S }, {S,T } }, { {U } }
C{U }

of the constants

in C {U } to obtain constants in I {R,S,T ,U } . Let us write V this set of variables. (we note here
that we are using sligthly different notation than for the example in Section 4.3; this is for
readability reasons only.)
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• Now, for every ∅ � s ⊆ σ we have the constraint∑
zA,A′

Ns
∈V

zA,A′

Ns
� ns

as well as the constraint ∑
zA,A′

Cs
∈V

zA,A′

Ns
� cs

intuitively expressing that we do not use more nulls and constants than there are available.
• for every ∅ � s ⊆ σ we have a constraint

∑
A,A′ ⊆{∅�s⊆σ }

A∪A′=s

min
zA,A′
∗ ∈V

zA,A′
∗ � Is

intuitively meaning that we have allocated the groups of nulls and constants in a way that
allows us to fill the set Is.

Then this system of equations must have a solution.

Proof. The idea is the same as in Claim 4.14. The only difference is that we added condition (1),
which ensures that the guessed completion indeed satisfies the query. �

As in the example of Section 4.3, this implies that the value of check(Is1 , . . . , IsL
) only depends

on ( |Is1 |, . . . , |IsL
|) and can be computed in FP (by testing all assignments of the z∗∗ variables; be-

cause the schema is fixed so there are only a fixed number of such variables). But then we can
compute the result in FP by evaluating the expression 9, which finishes the proof.
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