
Characterizing and Computing Semantically
Correct Answers from Databases with

Annotated Logic and Answer Sets

Pablo Barceló1, Leopoldo Bertossi2, and Loreto Bravo3

1 University of Toronto, Department of Computer Science, Toronto, Canada.
pablo@cs.toronto.edu

2 Carleton University, School of Computer Science, Ottawa, Canada.
bertossi@scs.carleton.ca

3 Pontificia Universidad Catolica de Chile, Departamento de Ciencia de
Computación, Santiago, Chile. lbravo@ing.puc.cl

Abstract. A relational database may not satisfy certain integrity con-
straints (ICs) for several reasons. However most likely most of the infor-
mation in it is still consistent with the ICs. The answers to queries that
are consistent with the ICs can be considered semantically correct an-
swers, and are characterized [2] as ordinary answers that can be obtained
from every minimally repaired version of the database. In this paper we
address the problem of specifying those repaired versions as the mini-
mal models of a theory written in Annotated Predicate Logic [27]. It is
also shown how to specify database repairs using disjunctive logic pro-
gram with annotation arguments and a classical stable model semantics.
Those programs are then used to compute consistent answers to general
first order queries. Both the annotated logic and the logic programming
approaches work for any set of universal and referential integrity con-
straints. Optimizations of the logic programs are also analyzed.

1 Introduction

In databases, integrity constraints (ICs) capture the semantics of the application
domain and help maintain the correspondence between that domain and its
model provided by the database when updates on the database are performed.
However, there are several reasons why a database may be or become inconsistent
wrt a given set of integrity constraints (ICs) [2]. This could happen due to the
materialized integration of several, possibly consistent data sources. We can also
reach such a situation when we need to impose certain, new semantic constraints
on legacy data. Another natural scenario is provided by a user who does not
have control on the database maintenance mechanisms and wants to query the
database through his/her own semantics of the database. Actually such a user
could be querying several data sources and needs to impose some semantics on
the combined information.

More generally speaking, we could think ICs on a database as constraints
on the answers to queries rather than on the information stored in the database

[32]. In this case, retrieving answers to queries that are consistent wrt the ICs
becomes a central issue in the development of DBMSs.

In consequence, in any of the scenarios above and others, we are in the pres-
ence of an inconsistent database, where maybe a small portion of the information
is incorrect wrt the intended semantics of the database; and as a an important
and natural problem we have to characterize and retrieve data that is still correct
wrt the ICs when queries are posed.

The notion of consistent answer to a first order (FO) query was defined in
[2], where also a computational mechanism for obtaining consistent answers was
presented. Intuitively speaking, a ground tuple t̄ to a first order query Q(x̄)
is consistent in a, possibly inconsistent, relational database instance DB , if it
is an (ordinary) answer to Q(x̄) in every minimal repair of DB , that is in ev-
ery database instance over the same schema and domain that differs from DB
by a minimal (under set inclusion) set of inserted or deleted tuples. In other
words, the consistent data in an inconsistent database is invariant under sensi-
ble restorations of the consistency of the database.

The mechanism presented in [2] has some limitations in terms of the ICs and
queries that can handle. Although most of the ICs found in database praxis are
covered by the positive cases in [2], the queries are restricted to conjunctions of
literals. In [4, 6], a more general methodology based on logic programs with a
stable model semantics was introduced. There is a one to one correspondence
between the stable models of the logic programs and the database repairs. More
general queries could be considered, but ICs were restricted to be “binary”, i.e.
universal with at most two database literals (plus built-in formulas). A simi-
lar, independent approach to database repair based on logic programs was also
presented in [26].

The basic idea behind the logic programming based approach to consistent
query answering is that since we need to deal with all the repairs of a database,
we had better specify the class of the repairs. From a manageable logical speci-
fication of this class different reasoning tasks could be performed, in particular,
computation of consistent answers to queries.

Notice that a specification of the class of database repairs must include in-
formation about (from) the database and the information contained in the ICs.
Since these two pieces of information may be mutually inconsistent, we need
a logic that does not collapse in the presence of contradictions. A non classical
logic, like Annotated Predicate Calculus (APC) [27], for which a classically incon-
sistent set of premises can still have a model, is a natural candidate. In [3], a new
declarative semantic framework was presented for studying the problem of query
answering in databases that are inconsistent with respect to universal integrity
constraints. This was done by embedding both the database instance and the
integrity constraints into a single theory written in APC, with an appropriate,
non classical truth-values lattice Latt .

In [3] it was shown that there is a one to one correspondence between some
minimal models of the annotated theory and the repairs of the inconsistent
database for universal ICs. In this way, a non monotonic logical specification

of the database repairs was achieved. The annotated theory was used to de-
rived some algorithms for obtaining consistent answers to some simple first order
queries.

The results presented here extend those presented in [3] in different ways.
First, we show how to annotate other important classes of ICs found in database
praxis, e.g. referential integrity constraints [1], and the correspondence results
are extended. Next, the problem of consistent query answering is characterized
as a problem of non monotonic entailment.

We also show how the the APC theory that specifies the database repairs
motivates the generation of new logic programs to specify the database repairs.
Those programs have a classical stable model semantics and contain the annota-
tions as constants that appear as new arguments of the database predicates. We
establish a one to one correspondence between the stable models of the program
and the repairs of the original database. The programs obtained in this way are
simpler than those presented in in [4, 6, 26] in the sense that only one rule per
IC is needed, whereas the latter may lead to an exponential number of rules.

The logic programs obtained can be used to retrieve consistent answers to ar-
bitrary FO queries. Some computational experiments with DLV [21] are shown.
The methodology for consistent query answering based on logic programs pre-
sented here works for arbitrary FO queries and universal ICs, what considerable
extends the cases that could be handled in [2, 4, 3].

This paper improves, combines and extends results presented in [8, 9]. The
main extensions have to do with the analysis and optimizations of the logic
programs for consistent query answering introduced here.

This paper is structured as follows. In Section 2 we give some basic back-
ground. In section 3, we show how to annotate referential ICs, taking them, in
addition to universal ICs, into a theory written in annotated predicate calculus.
The correspondence between minimal models of the theory and database repairs
is also established. Next, in Section 4, we show how to annotate queries and for-
mulate the problem of consistent query answering as a problem of non-monotonic
(minimal) entailment from the annotated theory. Then, in Section 5, on the basis
of the generated annotated theory, disjunctive logic programs with annotation
arguments to specify the database repairs are presented. It is also shown how
to use them for consistent query answering. Some computational examples are
presented in Section 6. Section 7 gives the first full treatment of logic program
for computing repairs wrt referential integrity constraints. In Section 8 we in-
troduce some optimizations of the logic programs. Finally, in Section 9 we draw
some conclusions and consider related work. Proofs and intermediate results can
be found in http://www.scs.carleton.ca/∼bertossi/papers/proofsChap.ps.

2 Preliminaries

2.1 Database repairs and consistent answers

In the context of relational databases, we will consider a fixed relational schema
Σ = (D,P∪B) that determines a first order language. It consists of a fixed, pos-

sibly infinite, database domain D = {c1, c2, ...}, a fixed set of database predicates
P = {p1, . . . , pn}, and a fixed set of built-in predicates B = {e1, . . . , em}.

A database instance over Σ is a finite collection DB of facts of the form
p(c1, ..., cn), where p is a predicate in P and c1, ..., cn are constants in D. Built-
in predicates have a fixed and same extension in every database instance, not
subject to changes.

A universal integrity constraint (IC) is an implicitly universally quantified
clause of the form

q1(t̄1) ∨ · · · ∨ qn(t̄n) ∨ ¬p1(s̄1) ∨ · · · ∨ ¬pm(s̄m) (1)

in the FO language L(Σ) based on Σ, where each pi, qj is a predicate in P ∪ B
and the t̄i, s̄j are tuples containing constants and variables. We assume we have
a fixed set IC of ICs that is consistent as a FO theory. The database DB is
always logically consistent if considered in isolation from the ICs.

It may be the case that DB ∪ IC is inconsistent. Equivalently, if we associate
to DB a first order structure, also denoted with DB , in the natural way, i.e. by
applying the domain closure and unique names assumptions and the closed world
assumption [33] that makes false any ground atom not explicitly appearing in
the set of atoms DB , it may happen that DB , as a structure, does not satisfy the
IC . We denote with DB |=Σ IC the fact that the database satisfies IC . In this
case we say that DB is consistent wrt IC ; otherwise we say DB is inconsistent.

The distance [2] between two database instances DB1 and DB2 is their sym-
metric difference ∆(DB1,DB2) = (DB1 − DB2) ∪ (DB2 − DB1). Now, given a
database instance DB , possibly inconsistent wrt IC , we say that the instance
DB ′ is a repair [2] of DB wrt IC iff DB ′ |=Σ IC and ∆(DB ,DB ′) is minimal
under set inclusion in the class of instances that satisfy IC and are compatible
with the schema Σ.

Example 1. Consider the relational schema Book(author ,name, publYear), a
database instance DB = {Book(kafka,metamorph, 1915), Book(kafka, meta-
morph, 1919)}; and the functional dependency FD : author ,name → publYear ,
that can be expressed by IC : ¬Book(x, y, z)∨¬Book(x, y, w)∨ z = w. Instance
DB is inconsistent with respect to IC . The original instance has two possible re-
pairs: DB1 = {Book(kafka, metamorph, 1915)}, and DB2 = {Book(kafka,meta-
morph, 1919)}. �

Let DB be a database instance, possibly not satisfying a set IC of integrity
constraints. Given a query Q(x̄) ∈ L(Σ), we say that a tuple of constants t̄ is
a consistent answer to Q(x̄) in DB wrt IC, denoted DB |=c Q(t̄), if for every
repair DB ′ of DB , DB ′ |=Σ Q(t̄) [2].1 If Q is a closed formula, i.e. a sentence,
then true is a consistent answer to Q, denoted DB |=c Q, if for every repair DB ′

of DB , DB ′ |=Σ Q.

1 DB ′ |=Σ Q(t̄) means that when the variables in x̄ are replaced in Q by the constants
in t̄ we obtain a sentence that is true in DB ′.

Example 2. (example 1 continued) The query Q1 : Book(kafka,metamorph,
1915) does not have true as a consistent answer, because it is not true in every
repair. Query Q2(y) : ∃x∃zBook(x , y , z) has y = metamorph as a consistent
answer. Query Q3(x) : ∃zBook(x,metamorph, z) has x = kafka as a consistent
answer. �

2.2 Annotating DBs and ICs

Annotated Predicate Calculus (APC) was introduced in [27] and also studied in
[12] and [28]. It constitutes a non classical logic, where classically inconsistent
information does not trivializes logical inference, reasoning about causes of in-
consistency becomes possible, making one of its goals to study the differences in
the contribution to the inconsistency made by the different literals in a theory,
what is related to the problem of consistent query answers.

The syntax of APC is similar to that of classical logic, except for the fact
that the atoms (and only the atoms) are annotated with values drawn from a
truth-values lattice. The lattice Latt we will use throughout this paper is shown
in Figure 1, first introduced in [3].

⊥

fc td fd tc

fa f t ta

�

Fig. 1. Latt with constraints values, database values and advisory values

The lattice contain the usual truth values t, f ,�,⊥, for true, false, inconsistent
and unknown, resp., but also six new truth values. Intuitively, we can think
of values tc and fc as specifying what is needed for constraint satisfaction and
will be used to annotate atoms appearing in ICs. The values td and fd rep-
resent the truth values according to the original database and will be used to
annotate atoms inside, resp. outside, the database. Finally, ta and fa are con-
sidered advisory truth values. These are intended to solve conflicts between the
original database and the integrity constraints. Notice that lub(td, fc) = fa and

lub(fd, tc) = ta. This means that whenever we have an atom, e.g. annotated
with both td and fc, i.e. it is true according to the DB, but false according to
the ICs, then it becomes automatically annotated with fa, meaning that the ad-
vise is to make it false. This will be made precise through the notion of formula
satisfaction in APC below.

The intuition behind is that, in case of a conflict between the constraints and
the database, we should obey the constraints, because the database instance only
can be changed to restore consistency. This lack of symmetry between data and
ICs is precisely captured by the lattice. Advisory value ta is an indication that
the atom annotated with it must be inserted into the DB; and deleted from the
DB when annotated with fa.

Herbrand interpretations are now sets of annotated ground atoms. The notion
of formula satisfaction in an Herbrand interpretation I is defined classically,
except for atomic formulas p: we say that I |= p :s, with s ∈ Latt , iff for some
s′ such that s ≤ s′ we have that p :s′ ∈ I [27].

Given an APC theory T , we say that an Herbrand interpretation I is a ∆-
minimal model of T , with ∆ = {ta, fa}, if I is a model of T and no other model
of T has a proper subset of atoms annotated with elements in ∆, i.e. the set of
atoms annotated with ta or fa in I is minimal under set inclusion. Considering
∆-minimal models is natural, because they minimize the set of changes, which
in their turn are represented by the atoms annotated with ta or fa.2

Given a database instance DB and a set of integrity constraints IC of the
form (1), an embedding T (DB , IC) of DB and IC into a new APC theory was
defined [3]. The new theory reconciles in a non classical setting the conflicts
between data and ICs. In [3] it was also shown that there is a one-to-one corre-
spondence between the ∆-minimal models of theory T (DB , IC) and the repairs
of the original database instance. Actually, repairs can be obtained from minimal
models as follows:

Definition 1. [3] Given a minimal model M of T (DB , IC), the corresponding
DB instance is defined by DBM = {p(ā) | M |= p(ā):t ∨ p(ā):ta}. �

Example 3. (example 1 cont.) The embedding T (DB) of DB into APC is given
by the following formulas:

1. Book(kafka,metamorph, 1915):td, Book(kafka,metamorph, 1919):td.
Every ground atom that is not in DB is (possibly implicitly) annotated with
fd.

2. Predicate closure axioms:
((x = kafka):td ∧ (y = metamorph):td ∧ (z = 1915):td) ∨
((x = kafka):td ∧ (y = metamorph):td ∧ (z = 1919):td) ∨ Book(x, y, z):fd.

The embedding T (IC) of IC into APC is given by:

2 Most of the time we will simply say “minimal” instead of ∆-minimal. In this case
there should be no confusion with the other notion of minimality in this paper,
namely the one that applies to repairs.

3. Book(x, y, z):fc ∨ Book(x, y, w):fc ∨ (z = w):tc.
4. Book(x, y, z):fc ∨ Book(x, y, z):tc, ¬Book(x, y, z):fc ∨ ¬Book(x, y, z):tc.3

These formulas specify that every fact must have one and just one constraint
value.

Furthermore

5. For every true built-in atom ϕ we include ϕ:t in T (B), and ϕ:f for every
false built-in atom, e.g. (1915 = 1915):t, but (1915 = 1919):f .

The ∆-minimal models of T (DB , IC) = T (DB) ∪ T (IC) ∪ T (B) are:

M1 = {Book(kafka,metamorph, 1915):t, Book(kafka,metamorph, 1919):fa},
M2 = {Book(kafka,metamorph, 1915):fa, Book(kafka,metamorph, 1919):t}.

They also contain annotated false DB atoms and built-ins, but we will show
only the most relevant data in them. The corresponding database instances,
DBM1 ,DBM2 are the repairs of DB shown in Example 1. �

From the definition of the lattice and the fact that no atom from the database is
annotated with both td and fd, it is possible to show that, in the minimal models
of the annotated theory, a DB atom may get as annotation either t or fa if the
atom was annotated with td; similarly either f or ta if the atom was annotated
with fd. In the transition from the annotated theory to its minimal models, the
annotations td, fd “disappear”, as we want the atoms to be annotated at the
highest possible layer in the lattice; except for �, that can always we avoided in
the minimal models.

3 Annotating Referential ICs

Referential integrity constraints (RICs) like

∀x̄(p(x̄) → ∃yq(x̄′, y)), (2)

where the variables in x̄′ are a subset of the variables in x̄, cannot be expressed
as an equivalent clause of the form (1). RICs are important and common in
databases. For that reason, we need to extend our embedding methodology.
Actually, we embed (2) into APC by means of

p(x̄):fc ∨ ∃y(q(x̄′, y):tc). (3)

In the rest of this section we allow the given set of ICs to contain, in addition to
universal ICs of the form (1), also RICs like (2). The one-to-one correspondence
between minimal models of the new theory T (DB , IC) and the repairs of DB
still holds. Most important for us is to obtain repairs from minimal models.
3 Since only atomic formulas are annotated, the non atomic formula ¬p(x̄):s is to be

read as ¬(p(x̄):s). We will omit the parenthesis though.

Given a pair of database instances DB1 and DB2 over the same schema (and
domain), we construct the Herbrand structure M(DB1,DB2) = 〈D, IP , IB〉,
where D is the domain of the database and IP , IB are the interpretations for
the predicates and the built-ins, respectively. IP is defined as follows:

IP(p(ā)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

t p(ā) ∈ DB1, p(ā) ∈ DB2

f p(ā) ∈ DB1, p(ā) ∈ DB2

fa p(ā) ∈ DB1, p(ā) ∈ DB2

ta p(ā) ∈ DB1, p(ā) ∈ DB2

The interpretation IB is defined as expected: if q is a built-in, then IP (q(ā)) = t
iff q(ā) is true in classical logic, and IP (q(ā)) = f iff q(ā) is false.

Lemma 1. Given two database instances DB and DB ′, if DB ′ |=Σ IC , then
M(DB ,DB ′) |= T (DB , IC). �

Lemma 2. If M is a model of T (DB , IC) such that DBM is finite4, then
DBM |=Σ IC . �

The following results shows the one-to one correspondence between the minimal
models of T (DB , IC) and the repairs of DB .

Proposition 1. If DB ′ is a repair of DB with respect to the set of integrity
constraints IC , then M(DB ,DB ′) is minimal among the models of T (DB , IC).
�

Proposition 2. Let M be a model of T (DB , IC). If M is minimal and DBM
is finite, then DBM is a repair of DB with respect to IC . �

Example 4. Consider the relational schema of Example 1 extended with the ta-
ble Author(name, citizenship). Now, IC also contains the RIC: Book(x , y , z) →
∃wAuthor(x ,w), expressing that every writer of a book in the database instance
must be registered as an author. The theory T (IC) now also contains:

Book(x , y , z):fc ∨ ∃w(Author(x ,w):tc), Author(x ,w):fc ∨ Author(x ,w):tc,
¬Author(x ,w):fc ∨ ¬Author(x ,w):tc.

We might also have the functional dependency FD : name → citizenship, that
in conjunction with the RIC, produces a foreign key constraint. The database in-
stance {Book(neruda, 20 lovepoems, 1924)} is inconsistent wrt the given RIC. If
we have the following subdomain D(Author .citizenship) = {chilean, canadian}
for the attribute “citizenship”, we obtain the following database theory:

T (DB) = {Book(neruda, 20 lovepoems, 1924) : td, Author(neruda, chilean) : fd,
Author(neruda, canadian):fd, . . . }.
4 That is, the extensions of the database predicates are finite. These are the models

that may lead to database instances, because the latter have finite database relations.

The minimal models of T (DB , IC) are:

M1 = {Book(neruda, 20 lovepoems, 1924):fa, Author(neruda, chilean):f ,
Author(neruda, canadian):f , . . . }

M2 = {Book(neruda, 20 lovepoems, 1924):t, Author(neruda, chilean):ta,
Author(neruda, canadian):f , . . . }

M3 = {Book(neruda, 20 lovepoems, 1924):t, Author(neruda, chilean):f ,
Author(neruda, canadian):ta, . . . }.

We obtain DBM1 = ∅, DBM2 = {Book(neruda, 20 lovepoems, 1924),Author(
neruda, chilean)} and DBM3 similar to DBM2 , but with a Canadian Neruda.
According to Proposition 2, these are repairs of the original database instance,
actually the only ones. �

As in [3], it can be proved that when the original instance is consistent, then
it is its only repair and it corresponds to a unique minimal model of the APC
theory.

3.1 Annotating general ICs

The class of ICs found in database praxis is contained in the class of FO formulas
of the form:

∀x̄ (ϕ(x̄) → ∃z̄ψ(ȳ)) (4)

where ϕ and ψ are (possibly empty) conjunctions of literals, and z̄ = ȳ − x̄.
This class [1, chapter 10] includes the ICs of the form (1), in particular, range
constraints (e.g. ∀x (p(x) → x > 30)), join dependencies, functional dependen-
cies, full inclusion dependencies; and also referential integrity constraints, and
in consequence, also foreign key constraints.

The annotation methodology introduced so far can be extended to the whole
class (4). We only sketch this extension here.

If in (4) ϕ(x̄) is
∧k

i=1 pi(x̄i) ∧
∧m

i=k+1 ¬pi(x̄i) and ψ(ȳ) is
∧l

j=1 qj(ȳj) ∧∧r
j=l+1 ¬qj(ȳj), we embed the constraint into APC as follows:

k∨
i=1

pi(x̄i):fc ∨
m∨

i=k+1

pi(x̄i):tc ∨ ∃z̄(
l∧

j=1

qj(ȳj):tc ∧
r∧

j=l+1

qj(ȳj):fc).

If we allow now that IC contains ICs of the form (4), it is still possible to
establish the one-to-one correspondence between minimal models of T (DB , IC)
and the repairs of DB .

4 Annotation of Queries

According to Proposition 2, a ground tuple t̄ is a consistent answer to a FO
query Q(x̄) iff Q(t̄) is true in every minimal model of T (DB , IC). However, if

we want to pose the query directly to the theory, it is necessary to reformulate
it as an annotated formula.

Definition 2. Given a FO query Q(x̄) in language L(Σ), we denote by Qan(x̄)
the APC formula obtained from Q by simultaneously replacing, for p ∈ P, the
negative literal ¬p(s̄) by the APC formula p(s̄):f ∨p(s̄):fa, and the positive literal
p(s̄) by the APC formula p(s̄):t ∨ p(s̄):ta. For p ∈ B, the atom p(s̄) is replaced
by the APC formula p(s̄):t. �

According to this definition, logically equivalent versions of a query could have
different annotated versions, but it can be shown (Proposition 3), that they
retrieve the same consistent answers.

Example 5. (example 1 cont.) If we want the consistent answers to the query
Q(x) : ¬∃y∃z∃w∃t(Book(x , y , z) ∧ Book(x ,w , t) ∧ y = w), asking for those au-
thors that have at most one book, we generate the annotated query Qan(x̄) :
¬∃y∃z∃w∃t((Book(x , y , z):t∨Book(x , y , z):ta)∧ (Book(x ,w , t):t∨Book(x ,w , t):
ta) ∧ (y = w):t), to be posed to the annotated theory with its minimal model
semantics. �

Definition 3. If ϕ is an APC sentence in the language of T (DB , IC), we say
that T (DB , IC) ∆-minimally entails ϕ, written T (DB , IC) |=∆ ϕ, iff every
∆-minimal model M of T (DB , IC), such that DBM is finite, satisfies ϕ, i.e.
M |=APC ϕ. �

Now we characterize consistent query answers wrt the annotated theory.

Proposition 3. Let DB be a database instance, IC a set of integrity constraints
and Q(x̄) a query in FO language L(Σ). It holds:

DB |=c Q(t̄) iff T (DB , IC) |=∆ Qan(t̄). �

Example 6. (example 5 continued) For consistently answering the query Q(x),
we pose the query Qan(x) to the minimal models of T (DB , IC). The answer we
obtain from every minimal model is x = kafka. �

According to this proposition, in order to consistently answer queries, we are left
with the problem of evaluating minimal entailment wrt the annotated theory. In
[3] some limited FO queries were evaluated without passing to their annotated
versions. The algorithms for consistent query answering were rather ad hoc and
were extracted from the theory T (DB , IC). However, no advantage was taken
from a characterization of consistent answers in terms of minimal entailment
from T (DB , IC). In the next section we will address this issue by taking the
original DB instance with the ICs into a logic program that is inspired by the
annotated theory T (DB , IC). Furthermore, the query to be posed to the logic
program will be built from Qan .

5 Logic Programming Specification of Repairs

In this section we will consider ICs of the form (1). Our aim is to specify database
repairs using classical first order logic programs. However, those programs will
be suggested by the non classical annotated theory.

In order to accommodate annotations in this classical framework, we will first
consider the annotations in the lattice Latt as new constants in the language.
Next, we will replace each predicate p(x̄) ∈ P by a new predicate p(x̄, ·), with
an extra argument to be occupied by annotation constants. In this way we can
simulate the annotations we had before, but in a classical setting. With all this,
we have a new FO language, L(Σ)an , for annotated L(Σ).

Definition 4. The repair logic program, Π(DB , IC), for DB and IC , is written
with predicates from L(Σ)an and contains the following clauses:

1. For every atom p(ā) ∈ DB, Π(DB , IC) contains the fact p(ā, td).
2. For every predicate p ∈ P , Π(DB , IC) contains the clauses:

p(x̄, t�) ← p(x̄, td). p(x̄, t�) ← p(x̄, ta).
p(x̄, f�) ← p(x̄, fa). p(x̄, f�) ← not p(x̄, td).,

where t�, f� are new, auxiliary elements in the domain of annotations.
3. For every constraint of the form (1), Π(DB , IC) contains the clause:

∨n
i=1 pi(t̄i, fa) ∨

∨m
j=1 qj(s̄j , ta) ←−

∧n
i=1 pi(t̄i, t�) ∧

∧m
j=1 qj(s̄j , f�) ∧ ϕ̄,

where ϕ̄ represents the negation of ϕ. �

Intuitively, the clauses in 3. say that when the IC is violated (the body), then
DB has to be repaired according to one of the alternatives shown in the head.
Since there may be interactions between constraints, these single repairing steps
may not be enough to restore the consistency of DB. We have to make sure
that the repairing process continues and stabilizes in a state where all the ICs
hold. This is the role of the clauses in 2. containing the new annotations t�, that
groups together those atoms annotated with td and ta, and f�, that does the
same with fd and fa. Notice that the annotations t�, f�, obtained through the
combined effect of rules 2. and 3., can be fed back into rules 3. until consistency
is restored. This possibility is what allows us to have just one program rule for
each IC.

Example 7 shows the interaction of a functional dependency and a full in-
clusion dependency. When atoms are deleted in order to satisfy the functional
dependency, the inclusion dependency could be violated, and in a second step it
should be repaired. At that second step, the annotations t� and f�, computed
at the first step where the functional dependency was repaired, will detect the
violation of the inclusion dependency and trigger the corresponding repairing
process.

Example 7. (example 1 continued) We extend the schema with the table Eurbook(
author , name, publYear), for European books. Now, DB also contains the literal

Eurbook(kafka,metamorph, 1919)}. If in addition to the ICs we had before, we
consider the full inclusion dependency ∀xyz (Eurbook(x , y , z) → Book(x , y , z)),
we obtain the following program Π(DB , IC):

1. EurBook(kafka,metamorph, 1919 , td). Book(kafka,metamorph, 1919 , td).
Book(kafka,metamorph, 1915 , td).

2. Book(x , y , z , t�) ← Book(x , y , z , td). Book(x , y , z , t�) ← Book(x , y , z , ta).
Book(x , y , z , f�) ← Book(x , y , z , fa). Book(x , y , z , f�) ← not Book(x , y , z , td).
Eurbook(x , y , z , t�) ← Eurbook(x , y , z , td).
Eurbook(x , y , z , t�) ← Eurbook(x , y , z , ta).
Eurbook(x , y , z , f�) ← Eurbook(x , y , z , fa).
Eurbook(x , y , z , f�) ← not Eurbook(x , y , z , td).

3. Book(x , y , z , fa) ∨ Book(x , y ,w , fa) ← Book(x , y , z , t�),Book(x , y ,w , t�),
z = w.

Eurbook(x , y , z , fa) ∨ Book(x , y , z , ta) ← Eurbook(x , y , z , t�),Book(x , y , z , f�).
�

Our programs are standard logic programs (as opposed to annotated logic pro-
grams [28]) and, finding in them negation as failure, we will give them an also
standard stable model semantics.

Let Π be the ground logic program obtained by instantiating the disjunctive
program Π(DB , IC) in its Herbrand universe. A set of ground atoms M is a
stable model of Π(DB , IC) iff it is a minimal model of ΠM, where ΠM = {A1 ∨
· · · ∨An ← B1, · · · , Bm | A1 ∨ · · · ∨An ← B1, · · · , Bm,not C1, · · · ,not Ck ∈ Π
and Ci /∈ M for 1 ≤ i ≤ k} [23, 24].

Definition 5. A Herbrand model M is coherent if it does not contain a pair of
literals of the form {p(ā, ta), p(ā, fa)}. �

Example 8. (example 7 continued) The coherent stable models of the program
presented in Example 7 are:

M1 = {Book(kafka,metamorph, 1919 , td), Book(kafka,metamorph, 1919 , t�),
Book(kafka,metamorph, 1915 , td), Book(kafka,metamorph, 1915 , t�),
Book(kafka,metamorph, 1915 , fa), Book(kafka,metamorph, 1915 , f�),
Eurbook(kafka,metamorph, 1919 , td), Eurbook(kafka,metamorph, 1919 , t�)};
M2 = {Book(kafka,metamorph, 1919 , td), Book(kafka,metamorph, 1919 , t�),
Book(kafka,metamorph, 1919 , fa), Book(kafka,metamorph, 1919 , f�),
Book(kafka,metamorph, 1915 , td), Book(kafka,metamorph, 1915 , t�),
Eurbook(kafka,metamorph, 1919 , td), Eurbook(kafka,metamorph, 1919 , t�),
Eurbook(kafka,metamorph, 1919 , fa), Eurbook(kafka,metamorph, 1919 , f�)}. �

The stable models of the program will include the database contents with its
original annotations (td). Every time there is an atom in a model annotated
with td or ta, it will appear annotated with t�. From these models we should be
able to “read” database repairs. Every stable model of the logic program has to
be interpreted. In order to do this, we introduce two new annotations, t��, f��,

in the last arguments. The first one groups together those atoms annotated with
ta and those annotated with td, but not fa. Intuitively, they correspond to those
annotated with t in the models of T (DB , IC). A similar role plays the other new
annotation wrt the “false” annotations. These new annotations will simplify the
expression of the queries to be posed to the program. Without them, instead of
simply asking p(x̄, t��) (for the tuples in p in a repair), we would have to ask for
p(x̄, ta) ∨ (p(x̄, td) ∧ ¬p(x̄, fa)). The interpreted models can be easily obtained
by adding new rules.

Definition 6. The interpretation program Π�(DB , IC) extends Π(DB , IC) with
the following rules:

p(ā, f��) ← p(ā, fa). p(ā, f��) ← not p(ā, td), not p(ā, ta).
p(ā, t��) ← p(ā, ta). p(ā, t��) ← p(ā, td), not p(ā, fa). �

Example 9. (example 8 continued) The coherent stable models of the interpre-
tation program extend

M1 with {Eurbook(kafka,metamorph, 1919 , t��),
Book(kafka,metamorph, 1919 , t��),Book(kafka,metamorph, 1915 , f��)};

M2 with {Eurbook(kafka,metamorph, 1919 , f��),
Book(kafka,metamorph, 1919 , f��),Book(kafka,metamorph, 1915 , t��)}. �

From an interpretation model we can obtain a database instance.

Definition 7. Let M be a coherent stable model of program Π�(DB , IC). The
database associated to M is DBM = {p(ā) | p(ā, t��) ∈ M}. �

The following theorem establishes the one-to-one correspondence between coher-
ent stable models of the program and the repairs of the original instance.

Theorem 1. If M is a coherent stable model of Π�(DB , IC), and DBM is
finite, then DBM is a repair of DB with respect to IC . Furthermore, the repairs
obtained in this way are all the repairs of DB. �

Example 10. (example 9 continued) The following database instances obtained
from Definition 7 are the repairs of DB :

DBM1 = {Eurbook(kafka,metamorph, 1919), Book(kafka,metamorph, 1919)},
DBM2 = {Book(kafka,metamorph, 1915)}. �

5.1 The query program

Given a first order query Q, we want the consistent answers from DB . In conse-
quence, we need those atoms that are simultaneously true of Q in every stable
model of the program Π(DB , IC). They are obtained through the query Q��,
obtained from Q by replacing, for p ∈ P, every positive literal p(s̄) by p(s̄, t��)
and every negative literal ¬p(s̄) by p(s̄, f��). Now Q�� can be transformed into a
query program Π(Q��) by a standard transformation [30, 1]. This query program
will be run in combination with Π�(DB , IC).

Example 11. For the query Q(y) : ∃zBook(kafka, y , z), we generate Q��(y) :
∃zBook(kafka, y, z, t��), that is transformed into the query program clause
Answer(y) ← Book(kafka, y , z , t��). �

6 Computing from the Program

The database repairs could be computed using an implementation of the disjunc-
tive stable models semantics like DLV [21], that also supports denial constraints
as studied in [13]. In this way we are able to prune out the models that are not
coherent, imposing for every predicate p the constraint ← p(x̄, ta), p(x̄, fa).

Example 12. Consider the database instance {p(a)} that is inconsistent wrt the
full inclusion dependency ∀x(p(x) → q(x)). The program Π�(DB , IC) contains
the following clauses:

1. Database contents: p(a, td).
2. Rules for the closed world assumption:

p(x, f�) ← not p(x, td). q(x, f�) ← not q(x, td).
3. Annotation rules:

p(x, f�) ← p(x, fa). p(x, t�) ← p(x, ta). p(x, t�) ← p(x, td).
q(x, f�) ← q(x, fa). q(x, t�) ← q(x, ta). q(x, t�) ← q(x, td).

4. Rule for the IC: p(x, fa) ∨ q(x, ta) ← p(x, t�), q(x, f�).
5. Denial constraints for coherence

← p(x̄, ta), p(x̄, fa). ← q(x̄, ta), q(x̄, fa).
6. Interpretation rules:

p(x, t��) ← p(x, ta). p(x, t��) ← p(x, td), not p(x, fa).
p(x, f��) ← p(x, fa). p(x, f��) ← not p(x, td), not p(x, ta).
q(x, t��) ← q(x, ta). q(x, t��) ← q(x, td), not q(x, fa).
q(x, f��) ← q(x, fa). q(x, f��) ← not q(x, td), not q(x, ta).

Running program Π�(DB , IC) with DLV we obtain two stable models:

M1 = {p(a, td), p(a, t�), q(a, f�), q(a, ta), p(a, t��), q(a, t�), q(a, t��)},
M2 = {p(a, td), p(a, t�), p(a, f�)), q(a, f�), p(a, f��), q(a, f��), p(a, fa)}.

The first model says, through its atom q(a, t��), that q(a) has to be inserted in
the database. The second one, through its atom p(a, f��), that p(a) has to be
deleted. �

The coherence denial constraints did not play any role in the previous example,
we obtain exactly the same model with or without them. The reason is that we
have only one IC; in consequence, only one step is needed to obtain a repair of
the database. There is no way to obtain an incoherent stable model due to the
application of the rules 1. and 2. in Example 12 in a second repair step.

Example 13. (example 12 continued) Let us now add an extra full inclusion
dependency, ∀x(q(x) → r(x)), keeping the same instance. One repair is obtained
by inserting q(a), what causes the insertion of r(a). The program is as before,
but with the additional rules

r(x, f�) ← not r(x, td). r(x, f�) ← r(x, fa). r(x, t�) ← r(x, ta).
r(X, t�) ← r(X, td). r(x, t��) ← r(x, ta). r(x, t��) ← r(x, td),not r(x, fa).
r(x, f��) ← r(x, fa). r(x, f��) ← not r(x, td),not r(x, ta).
q(x, fa) ∨ r(x, ta) ← q(x, t�), r(x, f�). ← r(x, ta), r(x, fa).

If we run the program we obtain the expected models, one that deletes p(a), and
a second one that inserts both q(a) and r(a). However, if we omit the coherence
denial constraints, more precisely the one for table q, we obtain a third model,
namely {p(a, td), p(a, t�), q(a, f�), r(a, f�), q(a, fa), q(a, ta), p(a, t��), q(a, t�),
q(a, t��), q(a, f��), r(a, f��)}, that is not coherent, because it contains both q(a, fa)
and q(a, ta), and cannot be interpreted as a repair of the original database. �

Notice that the programs with annotations obtained are very simple in terms of
their dependency on the ICs. As mentioned before, consistent answers can be
obtained “running” a query program together with the repair program Π�(DB,
IC), under the skeptical stable model semantics, that sanctions as true what is
true of all stable models.

Example 14. (example 12 continued) Assume now that the original database is
{p(a), p(b), q(b)}, and we want the consistent answers to the query p(x). In this
case we need to add the facts p(b, td), q(b, td), and the query rule ans(x) ←
p(x, t��) to the program.

Now the stable models we had before are extended with ground query atoms.
In M1 we find ans(a), ans(b). In M2 we find ans(b) only. In consequence, the
tuple b is the only consistent answer to the query. �

7 Repair Programs for Referential ICs

So far we have presented repair programs for universal ICs. Now we also want
to consider referential ICs (RICs) of the form (2). We assume that the variables
range over the underlying database domain D that now may may contain the
null value (a new constant). A RIC can be repaired by cascaded deletion, but
also by insertion of this null value, i.e. through insertion of the atom q(ā,null).
If this second case, it is expected that this change will not propagate through
other ICs like a full inclusion dependency of the form ∀x̄(q(x̄, y) → r(x̄, y)).
The program should not detect such inconsistency wrt this IC. This can be
easily avoided at the program level by appropriately qualifying the values of
variables in the disjunctive repair clause for the other ICs, like the full inclusion
dependency above.

The program Π�(DB , IC) we presented in previous sections is, therefore,
extended with the following formulas:

p(x̄, fa) ∨ q(x̄′,null , ta) ← p(x̄, t�), not aux(x̄′), not q(x̄′,null , td). (5)
aux(x̄′) ← q(x̄′, y, td), not q(x̄′, y, fa). (6)
aux(x̄′) ← q(x̄′, y, ta). (7)

Intuitively, clauses (6) and (7) detect if the formula ∃y(q(ā′, y):t∨ q(ā′, y):ta)) is
satisfied by the model. If this is not the case and p(ā, t�) belongs to the model
(in which case (2) is violated by ā), and q(ā′, null) is not in the database, then,
according to rule (5), the repair is done either by deleting p(ā) or inserting
q(ā′, null).

Notice that in this section we have been departing from the definition of
repair given in Section 2, in the sense that repairs are obtained now by deletion
of tuples or insertion of null values only, the usual ways in which RICs are
maintained. In particular, if the instance is {p(ā)} and IC contains only p(x̄) →
∃yq(x̄, y), then {p(ā), q(ā, b)}, with b ∈ D, will not be obtained as a repair
(although it is according to the initial definition), because it will not be captured
by the program. This makes sense, because allowing such repairs would produce
infinitely many of them, all of which are not natural from the perspective of
usual database praxis.

If we want to establish a correspondence between stable models of the new
repair program and the database repairs, we need first a precise definition of a
repair in the new sense, according to which repairs can be achieved by insertion
of null values that do not propagate through other ICs. We proceed by first
redefining when a database instance, possibly containing null values, satisfies a
set of ICs.

Definition 8. For a database instance DB, whose domain D may contain the
constant null and a set of integrity constraints IC = ICU ∪ICR, where ICU is a
set of universal integrity constraints of the form ∀x̄ϕ, with ϕ quantifier free, and
ICR is a set of referential integrity constraints of the form ∀x̄(p(x̄) → ∃yq(x̄′, y)),
with x̄′ ⊆ x̄, we say that r satisfies IC, written DB |=Σ IC iff:

1. For each ∀x̄ϕ ∈ ICU , DB |=Σ ϕ[ā] for all ā ∈ D − {null}, and
2. For each ∀x̄(p(x̄) → ∃yq(x̄′, y)) ∈ ICR, if DB |=Σ p(ā), with ā ∈ D−{null},

then DB |=Σ ∃yq(ā, y). �

Definition 9. Let DB ,DB1,DB2 be database instances over the same schema
and domain D (that may now contain null). It holds DB1 ≤DB DB2 iff:

1. for every atom p(ā) ∈ ∆(DB,DB1), with ā ∈ D − {null}, it holds p(ā) ∈
∆(DB,DB2), and

2. for every atom p(ā, null) ∈ ∆(DB,DB1), it holds p(ā, null) ∈ ∆(DB, DB2)
or p(ā, b̄) ∈ ∆(DB,DB2) with b̄ ∈ D − {null}. �

Definition 10. Given a database instance DB and a set of universal and ref-
erential integrity constraints IC , a repair of DB wrt IC is a database instance
DB ′ over the same schema and domain (plus possibly null if it was not in the
domain of DB), such that DB ′ |=Σ IC (in the sense of Definition 8) and DB ′

is ≤DB -minimal in the class of database instances that satisfy IC . �

Example 15. Consider the universal integrity constraint ∀xy(q(x, y) → r(x, y))
together with the referential integrity constraints ∀x(p(x) → ∃yq(x, y)) and
∀x(s(x) → ∃yr(x, y)) and the inconsistent database instance DB = {q(a, b), p(c),
s(a)}. The repairs for the latter are:

i DB i ∆(DB ,DB i)
1 {q(a, b), r(a, b), p(c), q(c, null), s(a)} {r(a, b), q(c, null)}
2 {q(a, b), r(a, b), s(a)} {p(c), r(a, b)}
3 {p(c), q(c, null), s(a), r(a, null)} {q(a, b), q(c, null), r(a, null)}
4 {p(c), q(c, null)} {q(a, b), q(c, null), s(a)}
5 {s(a), r(a, null)} {q(a, b), p(c), r(a, null)}
6 ∅ {q(a, b), p(c), s(a)}

In the first repair it can be seen that the atom q(c, null) does not propagate
through the universal constraint to r(c, null). For example, the instance DB7 =
{q(a, b), r(a, b), p(c), q(c, a), r(c, a), s(a))}, where we have introduced r(c, a) in
order to satisfy the second RIC, does satisfy IC , but is not a repair because
∆(DB,DB1) ≤DB ∆(DB,DB7) = {r(a, b), q(c, a), r(c, a)}.

If r(a, b) was inserted due to the universal constraint, we do want r(a, null)
to be inserted in order to satisfy the second referential constraint. This fact
is captured by both the definition of repair and the repair program. Actually,
the instance DB8 = {q(a, b), r(a, b), s(a), r(a, null))} is not a repair, because
∆(DB,DB2) ⊆ ∆(DB,DB8) = {p(c), r(a, b), r(a, null)} and, in consequence,
∆(DB,DB2) ≤DB ∆(DB,DB8). The program also does not consider DB8 as a
repair, because the clauses (6) and (7) detect that r(a, b) is already in the repair.
�

If the set of IC contains both universal ICs and referential ICs, then the repair
program Π�(DB , IC) contains now the extra rules we introduced at the begin-
ning of this section. As before, for a stable model M of the program, DBM
denotes the corresponding database as in Definition 7. With the class of repairs
introduced in Definition 10 it holds as before

Theorem 2. If M is a coherent stable model of Π�(DB , IC), and DBM is
finite, then DBM is a repair of DB with respect to IC . Furthermore, the repairs
obtained in this way are all the repairs of DB. �

Example 16. Consider the database instance {p(ā)} and the following set of
ICs: p(x) → ∃yq(x, y), q(x, y) → r(x, y). The program Π�(DB , IC) is written
in DLV as follows (ts, tss, ta, etc. stand for t�, t��, ta, etc.):5

5 The domain predicate used in the program should contain all the constants different
from null that appear in the active domain of the database.

Database contents
domd(a).

p(a,td).

Rules for CWA
p(X,fs) :- domd(X), not p(X,td).

q(X,Y,fs) :- domd(X), domd(Y), not q(X,Y,td).

r(X,Y,fs) :- not r(X,Y,td), domd(X), domd(Y).

Annotation rules
p(X,fs) :- p(X,fa), domd(X).

p(X,ts) :- p(X,ta),domd(X).

p(X,ts) :- p(X,td), domd(X).

q(X,Y,fs) :- q(X,Y,fa),domd(X),domd(Y).

q(X,Y,ts) :- q(X,Y,ta), domd(X), domd(Y).

q(X,Y,ts) :- q(X,Y,td), domd(X), domd(Y).

r(X,Y,fs) :- r(X,Y,fa), domd(X), domd(Y).

r(X,Y,ts) :- r(X,Y,ta), domd(X), domd(Y).

r(X,Y,ts) :- r(X,Y,td), domd(X), domd(Y).

Rules for the ICs
p(X,fa) v q(X,null,ta) :- p(X,ts), not aux(x), not q(X,null,td),domd(X).

aux(X) :- q(X,Y,td), not q(X,Y,fa), domd(X), domd(Y).

aux(X) :- q(X,Y,ta), domd(X), domd(Y).

q(X,Y,fa) v r(X,Y,ta) :- q(X,Y,ts), r(X,Y,fs), domd(X), domd(Y).

Interpretation rules
p(X,tss) :- p(X,ta).

p(X,tss) :- p(X,td), not p(X,fa).

p(X,fss) :- p(X,fa).

p(X,fss) :- domd(X), not p(X,td), not p(X,ta).

q(X,Y,tss) :- q(X,Y,ta).

q(X,Y,tss) :- q(X,Y,td), not q(X,Y,fa).

q(X,Y,fss) :- q(X,Y,fa).

q(X,Y,fss) :- domd(X), domd(Y),not q(X,Y,td), not q(X,Y,ta).

r(X,Y,tss) :- r(X,Y,ta).

r(X,Y,tss) :- r(X,Y,td), not q(X,Y,fa).

r(X,Y,fss) :- r(X,Y,fa).

r(X,Y,fss) :- domd(X), domd(Y), not r(X,Y,td), not r(X,Y,ta).

Denial constraints
:- p(X,ta), p(X,fa).

:- q(X,Y,ta), q(X,Y,fa).

:- r(X,Y,ta),r(X,Y,fa).

The stable models of the program are:

{domd(a), p(a,td), p(a,ts), p(a,fs), p(a,fss), p(a,fa), q(a,a,fs),

r(a,a,fs), q(a,a,fss), r(a,a,fss)}

{domd(a), p(a,td), p(a,ts), p(a,tss), q(a,null,ta), q(a,a,fs),

r(a,a,fs), q(a,a,fss), r(a,a,fss), q(a,null,tss)},

corresponding to the database instances ∅ and {p(a), q(a, null)}.
If the fact q(a, null) is added to the original instance, the fact q(a,null,td)

becomes a part of the program. In this case, the program considers that the
new instance {p(a), q(a, null)} satisfies the RIC. It also considers that the full
inclusion dependency q(x, y) → r(x, y) is satisfied, because we do not want null
values to be propagated. All this is reflected in the only model of the program,
namely
{domd(a), p(a,td), p(a,ts), q(a,null,td), p(a,tss), q(a,a,fs),

r(a,a,fs), q(a,a,fss), r(a,a,fss), q(a,null,tss)}.
�

If we want to impose the policy of repairing the violation of a RIC just by
deleting tuples, then, rule (5) should be changed by

p(x̄, fa) ← p(x̄, t�), not aux(x̄′), not q(x̄′,null , td),

that says that if the RIC is violated, then the fact p(ā) that produces such
violation must be deleted.

If we insist in keeping the original definition of repair (Section 2), i.e. allowing
{p(ā), q(ā, b)} to be a repair for every element b ∈ D, clause (5) could be replaced
by:

p(x̄, fa) ∨ q(x̄′, y, ta) ← p(x̄, t�), not aux(x̄′), not q(x̄′,null , td), choice(x̄′, y).
(8)

where choice(X̄, Ȳ) is the static non-deterministic choice operator [25] that se-
lects one value for attribute tuple Ȳ for each value of the attribute tuple X̄. In
equation (8), choice(x̄′, y) would select one value for y from the domain for each
combination of values x̄′. Then, this rule forces the one to one correspondence
between stable models of the program and the repairs as introduced in Section
2.

8 Optimization of Repair Programs

The logic programs used to specify database repairs can be optimized in sev-
eral ways. In Section 8.1 we examine certain program transformations that can
lead to programs with a lower computational complexity. In Section 8.2, we ad-
dress the issue of avoiding the explicit computation of negative information or
of materialization of absent data, what in database applications can be a serious
problem from the point of view of space and time complexity.

Other possible optimizations, that are not further discussed here, have to do
with avoiding the complete computation of all stable models (the repairs) when-
ever a query is to be answered. The query rewriting methodology introduced
in [2] had this advantage: inconsistencies were solved locally, without having to
restore the consistency of the complete database. In contrast, the logic program-
ming base methodology, at least if implemented in a straightforward manner,
computes all stable models. This issue is related to finding methodologies for
minimizing the number of rules to be instantiated, the way ground instantiations
are done, avoiding evaluation of irrelevant subgoals, etc. Further implementation
issues are discussed in Section 9.

8.1 Head cycle free programs

In some cases, the repair programs we have introduced may be transformed into
equivalent non disjunctive programs. This is the case of head-cycle-free programs
[10] introduced below. These programs have better computational complexity
than general disjunctive programs in the sense that the complexity is reduced
from ΠP

2 -complete to coNP-complete [18, 29].
The dependency graph of a ground disjunctive program Π is defined as a

directed graph where each literal is a node and there is an arch from L to L′

iff there is a rule in which L appears positive in the body and L′ appears in
the head. Π is headcycle free (HCF) iff its dependency graph does not contain
directed cycles that go through two literals that belong to the head of the same
rule.

A disjunctive program Π is HCF if its ground version is HCF. If this is
the case, Π can be transformed into a non disjunctive normal program sh(Π)
with the same stable models that is obtained by replacing every disjunctive
rule of the form:

∨n
i=1 pi(x̄i) ←

∧m
j=1 qj(ȳj) by the n following rules pi(x̄i) ←∧m

j=1 qj(ȳj)∧
∧

k �=i not pk(x̄k), i = 1, ..., n. Such transformations can be justified
or discarded on the basis of a careful analysis of the intrinsic complexity of
consistent query answering [15]. If the original program can be transformed into
a normal program, then also other efficient implementations could be used for
query evaluation, e.g. XSB [34], that has been already successfully applied in
the context of consistent query answering via query transformation, with non-
existentially quantified conjunctive queries [14].

Example 17. (example 12 continued)

The repair program is HCF because, as it can be seen from the (relevant part
of the) dependency graph, there is no cycle involving both p(x, fa) and q(x, ta),
the atoms that appear in the only disjunctive head.

The non disjunctive version of the program has the disjunctive clause re-
placed by the two definite clauses p(x, fa) ← p(x, t�), q(x, f�), not q(x, ta), and
q(x, ta) ← p(x, t�), q(x, f�), not p(x, fa). The two programs have the same stable
models. �

In the rest of this section we will consider a set IC of universal ICs of the form

q1(t̄1) ∨ · · · ∨ qn(t̄n) ← p1(s̄1) ∧ · · · ∧ pm(s̄m). (9)

(the rule version of (1)). We denote with ground(IC) the set of ground instan-
tiations of the clauses in IC in D. A ground literal l is bilateral with respect to
ground(IC) if appears in the head of a rule in ground(IC) and in the body of a
possibly different rule in ground(IC).

Example 18. In ground(IC) = {s(a, b) → s(a, b)∨ r(a, b), r(a, b) → r(b, a)}, the
literals s(a, b) and r(a, b) are bilateral, because they appear in a head of a rule
and in a body of a rule. Instead, r(b, a) is not bilateral. �

The following theorem tells us how to check if the repair program is HCF by
analyzing just the set of ICs.

Theorem 3. The program Π�(DB, IC) is HCF iff ground(IC) does not have
a pair of bilateral literals in the same rule. �

Example 19. If IC = {s(x, y) → r(x), r(x) → p(x)} and the domain is D =
{a, b}, we have ground(IC) = {s(a, a) → r(a), s(a, b) → r(a), s(b, a) →
r(b), s(b, b) → r(b), r(a) → p(a), r(b) → p(b)}. The bilateral literals are r(a)
and r(b). The program Π�(DB , IC) is HCF because r(a) and r(b) do not ap-
pear in a same rule in ground(IC). As a consequence, the clause s(x, y, fa) ∨
r(x, ta) ← s(x, y, f�), r(x, t�) of Π�(DB , IC), for example, can be replaced in
sh(Π�(DB , IC)) by the two clauses s(x, y, fa) ← s(x, y, f�), r(x, t�),not r(x, ta)
and r(x, ta) ← s(x, y, f�), r(x, t�),not s(x, y, fa). �

Example 20. If IC = {s(x) → r(x), p(x) → s(x), u(x, y) → p(x)} and the do-
main is D = {a, b}, we have ground(IC) = {s(a) → r(a), p(a) → s(a), u(a, a) →
p(a), s(b) → r(b), p(b) → s(b), u(b, b) → p(b), u(a, b) → p(a), u(b, a) →
p(b)}. The bilateral literals in ground(IC) are s(a), s(b), p(a), p(b). The program
Π�(DB , IC) is not HCF, because there are pairs of bilateral literals appearing
in the same rule in ground(IC), e.g. {s(a), p(a)} and {s(b), p(b)}. �

Corollary 1. If IC contains only denial constraints, i.e. formulas of the form∨n
i=1 pi(t̄i) → ϕ, where pi(t̄i) is an atom and ϕ is a formula containing built-in

predicates only, then Π�(DB, IC) is HCF. �

Example 21. For IC = {∀xyzuv(p(x, y, z) ∧ p(x, u, v) → y = u), ∀xyzuv(p(x,
y, z) ∧ p(x, u, v) → z = v), ∀xyzv(q(x, y, z) ∧ p(x, y, v) → z = v)}, and any
ground instantiation, there are no bilateral literals. In consequence, the program
Π�(DB, IC) will be always HCF. �

This corollary includes important classes of ICs as key constraints, functional
dependencies and range constraints. In [15] it was shown that, for this kind of
ICs, the intrinsic lower bound complexity of consistent query answering is coNP-
complete. The corollary shows that by means of the transformed program this
lower bound is achieved.

8.2 Avoiding materialization of the CWA

The repair programs introduced in Section 5 contain clauses of the form p(x̄, f�)
← not p(x̄, td), that have the consequence of materializing negative information
in the stable models of the programs. The repairs programs can be optimized,
making them compute only that negative data that is needed to obtain the
database repairs.

First, by unfolding, atoms of the form p(x̄, f�) that appear as subgoals in the
bodies are replaced by their definitions. More precisely, replace every rule that
contains an atom of the form p(x̄, f�) in the body, by two rules, one replacing
the atom by p(x̄, fa), and another replacing the atom by not p(x̄, td). Next,
eliminate from the repair program those rules that have atoms annotated with
f�� or f� in their heads, because they compute data that should not be explicitly
contained in the repairs. If Π�opt(DB, IC) denotes the program obtained after
applying these two transformations, it is easy to see that the following holds

Proposition 4. Π�opt(DB, IC) and Π�(DB, IC) produce the same database
repairs, more precisely, they compute exactly the same database instances in the
sense of Definition 7. �

Example 22. (example 16 continued) The optimized program Π�opt(DB, IC) is
as below and determines the same repairs as the original program. Notice that
the second disjunctive rule in the original program was replaced by two new
rules in the new program.

domd(a).

p(a,td).

p(X,ts) :- p(X,ta),domd(X).

p(X,ts) :- p(X,td), domd(X).

q(X,Y,ts) :- q(X,Y,ta), domd(X), domd(Y).

q(X,Y,ts) :- q(X,Y,td), domd(X), domd(Y).

r(X,Y,ts) :- r(X,Y,ta), domd(X), domd(Y).

r(X,Y,ts) :- r(X,Y,td), domd(X), domd(Y).

p(X,fa) v q(X,null,ta) :- p(X,ts), not aux(x), not q(X,null,td),domd(X).

aux(X) :- q(X,Y,td), not q(X,Y,fa), domd(X), domd(Y).

aux(X) :- q(X,Y,ta), domd(X), domd(Y).

q(X,Y,fa) v r(X,Y,ta) :- q(X,Y,ts), r(X,Y,fa), domd(X), domd(Y).

q(X,Y,fa) v r(X,Y,ta) :- q(X,Y,ts), not r(X,Y,td), domd(X), domd(Y).

p(X,tss) :- p(X,ta).

p(X,tss) :- p(X,td), not p(X,fa).

q(X,Y,tss) :- q(X,Y,ta).

q(X,Y,tss) :- q(X,Y,td), not q(X,Y,fa).

r(X,Y,tss) :- r(X,Y,ta).

r(X,Y,tss) :- r(X,Y,td), not q(X,Y,fa).

:- p(X,ta), p(X,fa).

:- q(X,Y,ta), q(X,Y,fa).

:- r(X,Y,ta),r(X,Y,fa). �

The optimization for HCF programs of Section 8.1 and the one that avoids the
materialization of unnecessary negative data can be combined.

Theorem 4. If Π�(DB, IC) is HCF, then sh(Π�(DB, IC))opt and Π�(DB, IC)
compute the same database repairs in the sense of Definition 7. �

9 Conclusions

We have presented a general treatment of consistent query answering for first or-
der queries and universal and referential ICs that is based on annotated predicate
calculus (APC). Integrity constraints and database information are translated
into a theory written in APC in such a way that there is a correspondence
between the minimal models of the new theory and the repairs of the original
database.

We have also shown how to specify database repairs by means of classical
disjunctive logic programs with stable model semantics. Those programs have
annotations as new arguments, and are inspired by the APC theory mentioned
above. In consequence, consistent query answers can be obtained by “running” a
query program together with the specification program. We illustrated their use
by means of the DLV system. Finally, some optimizations of the repair programs
were introduced.

The problem of consistent query answering was explicitly presented in [2],
where also the notions of repair and consistent answer were formally defined. In
addition, a methodology for consistent query answering based on a rewriting of
the original query was developed (and further investigated and implemented in
[14]). Basically, if we want the consistent answers to a FO query expressed in, say
SQL2, a new query in SQL2 can be computed, such that its usual answers from
the database are the consistent answers to the original query. That methodology
has a polynomial data complexity, and that is the reason why it works for some
restricted classes of FO ICs and queries, basically for non existentially quantified
conjunctive queries [1]. Actually, in [15] it is shown that the problem of CQA is
coNP-complete for simple functional dependencies and existential queries.

In this paper, we have formulated the problem of CQA as a problem of non-
monotonic reasoning, more precisely of minimal entailment, whose complexity,
even in the propositional case, can be at least ΠP

2 -complete [19]. Having a prob-
lem of nonmonotonic reasoning with such complexity, it is not strange to try to
use disjunctive logic programs with negation with a stable or answer set seman-
tics to solve the problem of CQA, because such programs have nonmonotonic
consequences and a ΠP

2 -complete complexity [18]. Answer set programming has

been successfully used in formalizing and implementing complex nommonotonic
reasoning tasks [7].

Under those circumstances, the problem then is to come up with the best
logic programming specifications and the best way to use them, so that the
computational complexity involved does not go beyond the intrinsic, theoretical
lower bound complexity of consistent query answering.

Implementation and applications are important directions of research. The
logic programming environment will interact with a DBMS, where the incon-
sistent DB will be stored. As much of the computation as possible should be
pushed into the DBMS instead of doing it at the logic programming level.

The problem of developing query evaluation mechanisms from disjunctive
logic programs that are guided by the query, most likely containing free variables
and then expecting a set of answers, like magic sets [1], deserves more attention
from the logic programming and database communities. The current alternative
relies on finding those ground query atoms that belong to all the stable models
once they have been computed via a ground instantiation of the original program
(see Example 11). In [20] intelligent grounding strategies for pruning in advance
the instantiated program have been explored and incorporated into DLV. It
would be interesting to explore to what extent the program can be further pruned
from irrelevant rules and subgoals using information obtained by querying the
original database.

As shown in [6], there are classes of ICs for which the intersection of the
stable models of the repair program coincides with the well-founded semantics,
which can be computed more efficiently than the stable model semantics. It could
be possible to take advantage of this efficient “core” computation for consistent
query answering if ways of modularizing or splitting the whole computation into
a core part and a query specific part are found. Such cases were identified in [5]
for FDs and aggregation queries.

In [26], a general methodology based on disjunctive logic programs with stable
model semantics is used for specifying database repairs wrt universal ICs. In
their approach, preferences between repairs can be specified. The program is
given through a schema for rule generation.

Independently, in [4] a specification of database repairs for binary universal
ICs by means of disjunctive logic programs with a stable model semantics was
presented. Those programs contained both “triggering” rules and “stabilizing”
rules. The former trigger local, one-step changes, and the latter stabilize the
chain of local changes in a state where all the ICs hold. The same rules, among
others, are generated by the rule generation schema introduced in [26].

The programs presented here also work for the whole class of universal ICs,
but they are much simpler and shorter than those presented in [26, 4]. Actually,
the schema presented in [26] and the extended methodology sketched in [4],
both generate an exponential number of rules in terms of the number of ICs
and literals in them. Instead, in the present work, due to the simplicity of the
program, that takes full advantage of the relationship between the annotations, a

linear number of rules is generated. Our treatment of referential ICs considerably
extends what has been sketched in [4, 26].

There are several similarities between our approach to consistency handling
and those followed by the belief revision/update community. Database repairs
coincide with revised models defined by Winslett in [35]. The treatment in [35] is
mainly propositional, but a preliminary extension to first order knowledge bases
can be found in [16]. Those papers concentrate on the computation of the models
of the revised theory, i.e., the repairs in our case, but not on query answering.
Comparing our framework with that of belief revision, we have an empty domain
theory, one model: the database instance, and a revision by a set of ICs. The
revision of a database instance by the ICs produces new database instances, the
repairs of the original database.

Nevertheless, our motivation and starting point are quite different from those
of belief revision. We are not interested in computing the repairs per se, but
in answering queries, hopefully using the original database as much as possible,
possibly posing a modified query. If this is not possible, we look for methodologies
for representing and querying simultaneously and implicitly all the repairs of the
database. Furthermore, we work in a fully first-order framework.

The semantics of database updates is treated in [22], a treatment that is
close to belief revision. That paper represents databases as collections of theo-
ries, in such a way that under updates a new collection of theories is generated
that minimally differ from the original ones. So, there is some similarity to our
database repairs. However, that paper does not consider inconsistencies, nor
query answering in any sense.

Another approach to database repairs based on a logic programming seman-
tics consists of the revision programs [31]. The rules in those programs explicitly
declare how to enforce the satisfaction of an integrity constraint, rather than ex-
plicitly stating the ICs, e.g. in(a) ← in(a1), . . . , in(ak), out(b1), . . . , out(bm) has
the intended procedural meaning of inserting the database atom a whenever
a1, . . . , ak are in the database, but not b1, . . . , bm. Also a declarative, stable
model semantics is given to revision programs. Preferences for certain kinds of
repair actions can be captured by declaring the corresponding rules in program
and omitting rules that could lead to other forms of repairs.

In [12, 28] paraconsistent and annotated logic programs, with non classical
semantics, are introduced. However, in [17] some transformation methodologies
for paraconsistent logic programs [12] are shown that allow assigning to them
extensions of classical semantics. Our programs have a fully standard stable
model semantics.

Acknowledgments: Work funded by DIPUC, MECESUP, FONDECYT Grant
1000593, CONICYT, Carleton University Start-Up Grant 9364-01, NSERC Grant
250279-02. L. Bertossi holds a Faculty Fellowship of the Center for Advanced
Studies, IBM Toronto Lab. We are grateful to Marcelo Arenas, Alvaro Campos,
Alberto Mendelzon, and Nicola Leone for useful conversations.

References

1. Abiteboul, S., Hull, R. and Vianu, V. Foundations of Databases. Addison-Wesley,
1995.

2. Arenas, M., Bertossi, L. and Chomicki, J. Consistent Query Answers in Incon-
sistent Databases. In Proc. ACM Symposium on Principles of Database Systems
(ACM PODS’99), 1999, pp. 68–79.

3. Arenas, M., Bertossi, L. and Kifer, M. Applications of Annotated Predicate Calcu-
lus to Querying Inconsistent Databases. In ‘Computational Logic - CL2000’ Stream:
6th International Conference on Rules and Objects in Databases (DOOD’2000).
Springer Lecture Notes in Artificial Intelligence 1861, 2000, pp. 926–941.

4. Arenas, M., Bertossi, L. and Chomicki, J. Specifying and Querying Database
Repairs using Logic Programs with Exceptions. In Flexible Query Answering Sys-
tems. Recent Developments, H.L. Larsen, J. Kacprzyk, S. Zadrozny, H. Christiansen
(eds.), Springer, 2000, pp. 27–41.

5. Arenas, M., Bertossi, L. and Chomicki, J. Scalar Aggregation in FD-Inconsistent
Databases. In Database Theory - ICDT 2001, Springer, LNCS 1973, 2001, pp.
39–53.

6. Arenas, M., Bertossi, L. and Chomicki, J. Answer Sets for Consistent Query An-
swers. To appear in Theory and Practice of Logic Programming.

7. Baral, C. Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, 2003.

8. Barcelo, P. and Bertossi, L. Repairing Databases with Annotated Predicate
Logic. In Proc. Nineth International Workshop on Non-Monotonic Reasoning
(NMR’2002), Special session: Changing and Integrating Information: From Theory
to Practice, S. Benferhat and E. Giunchiglia (eds.), 2002, pp. 160–170.

9. Barcelo, P. and Bertossi, L. Logic Programs for Querying Inconsistent Databases.
Proc. Practical Aspects of Declarative Languages (PADL03), Springer LNCS 2562,
2003, pp. 208-222.

10. Ben-Eliyahu, R. and Dechter, R. Propositional Semantics for Disjunctive Logic
Programs. Annals of Mathematics in Artificial Intelligence, 1994, 12:53-87.

11. Bertossi, L., Chomicki, J., Cortes, A. and Gutierrez, C. Consistent Answers from
Integrated Data Sources. In ’Flexible Query Answering Systems’, Proc. of the 5th
International Conference, FQAS 2002. T. Andreasen, A. Motro, H. Christiansen,
H. L. Larsen (eds.). Springer LNAI 2522, 2002, pp. 71–85.

12. Blair, H.A. and Subrahmanian, V.S. Paraconsistent Logic Programming. Theoret-
ical Computer Science, 1989, 68:135-154.

13. Buccafurri, F., Leone, N. and Rullo, P. Enhancing Disjunctive Datalog by Con-
straints. IEEE Transactions on Knowledge and Data Engineering, 2000, 12(5):845-
860.

14. Celle, A. and Bertossi, L. Querying Inconsistent Databases: Algorithms and Im-
plementation. In ‘Computational Logic - CL 2000’, J. Lloyd et al. (eds.). Stream:
6th International Conference on Rules and Objects in Databases (DOOD’2000).
Springer Lecture Notes in Artificial Intelligence 1861, 2000, pp. 942–956.

15. Chomicki, J. and Marcinkowski, J. On the Computational Complexity of Consis-
tent Query Answers. Submitted in 2002 (CoRR paper cs.DB/0204010).

16. Chou, T. and Winslett, M. A Model-Based Belief Revision System. Journal of
Automated Reasoning, 1994, 12:157–208.

17. Damasio, C. V. and Pereira, L.M. A Survey on Paraconsistent Semantics for Ex-
tended Logic Programas. In Handbook of Defeasible Reasoning and Uncertainty

Management Systems, Vol. 2, D.M. Gabbay and Ph. Smets (eds.), Kluwer Aca-
demic Publishers, 1998, pp. 241–320.

18. Dantsin, E., Eiter, T., Gottlob, G. and Voronkov, A. Complexity and Expressive
Power of Logic Programming. ACM Computing Surveys, 2001, 33(3): 374–425.

19. Eiter, T. and Gottlob, G. Propositional Circumscription and Extended Closed
World Assumption are Πp

2 -complete. Theoretical Computer Science, 1993, 114,
pp. 231-245.

20. Eiter, T., Leone, N., Mateis, C., Pfeifer, G. and Scarcello, F. A Deductive System
for Non-Monotonic Reasoning. Proc. LPNMR’97, Springer LNAI 1265, 1997, pp.
364–375.

21. Eiter, T., Faber, W.; Leone, N. and Pfeifer, G. Declarative Problem-Solving in
DLV. In Logic-Based Artificial Intelligence, J. Minker (ed.), Kluwer, 2000, pp. 79–
103.

22. Fagin, R., Kuper, G., Ullman, J. and Vardi, M. Updating Logical Databases. In
Advances in Computing Research, JAI Press, 1986, Vol. 3, pp. 1-18.

23. Gelfond, M. and Lifschitz, V. The Stable Model Semantics for Logic Program-
ming. In Logic Programming, Proceedings of the Fifth International Conference
and Symposium, R. A. Kowalski and K. A. Bowen (eds.), MIT Press, 1988, pp.
1070–1080.

24. Gelfond, M. and Lifschitz, V. Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing, 1991, 9:365–385.

25. Giannotti, F., Greco, S.; Sacca, D. and Zaniolo, C. Programming with Non-
determinism in Deductive Databases. Annals of Mathematics and Artificial In-
telligence, 1997, 19(3-4).

26. Greco, G., Greco, S. and Zumpano, E. A Logic Programming Approach to the In-
tegration, Repairing and Querying of Inconsistent Databases. In Proc. 17th Inter-
national Conference on Logic Programming, ICLP’01, Ph. Codognet (ed.), LNCS
2237, Springer, 2001, pp. 348–364.

27. Kifer, M. and Lozinskii, E.L. A Logic for Reasoning with Inconsistency. Journal
of Automated reasoning, 1992, 9(2):179-215.

28. Kifer, M. and Subrahmanian, V.S. Theory of Generalized Annotated Logic Pro-
gramming and its Applications. Journal of Logic Programming, 1992, 12(4):335-
368.

29. Leone, N., Rullo, P. and Scarcello, F. Disjunctive Stable Models: Unfounded
Sets, Fixpoint Semantics, and Computation. Information and Computation, 1997,
135(2):69-112.

30. Lloyd, J.W. Foundations of Logic Programming. Springer Verlag, 1987.
31. Marek, V.W. and Truszczynski, M. Revision Programming. Theoretical Computer

Science, 1998, 190(2):241–277.
32. Pradhan, S. Reasoning with Conflicting Information in Artificial Intelligence and

Database Theory. PhD thesis, Department of Computer Science, University of
Maryland, 2001.

33. Reiter, R. Towards a Logical Reconstruction of Relational Database Theory. In On
Conceptual Modelling, M.L. Brodie, J. Mylopoulos, J.W. Schmidt (eds.), Springer,
1984.

34. Sagonas, K.F., Swift, T. and Warren, D.S. XSB as an Efficient Deductive Database
Engine. In Proc. of the 1994 ACM SIGMOD International Conference on Man-
agement of Data, ACM Press, 1994, pp. 442-453.

35. Winslett, M. Reasoning about Action using a Possible Models Approach. In Proc.
Seventh National Conference on Artificial Intelligence (AAAI’88), 1988, pp. 89–93.

