
Journal of Machine Learning Research 22 (2021) 1-35 Submitted 3/20; Revised 10/20; Published 3/21

Attention is Turing Complete

Jorge Pérez jperez@dcc.uchile.cl
Department of Computer Science
Universidad de Chile
IMFD Chile

Pablo Barceló pbarcelo@uc.cl
Institute for Mathematical and Computational Engineering
School of Engineering, Faculty of Mathematics
Universidad Católica de Chile
IMFD Chile

Javier Marinkovic jmarinkovic@dcc.uchile.cl

Department of Computer Science

Universidad de Chile

IMFD Chile

Editor: Luc de Raedt

Abstract

Alternatives to recurrent neural networks, in particular, architectures based on self-attention,
are gaining momentum for processing input sequences. In spite of their relevance, the com-
putational properties of such networks have not yet been fully explored. We study the
computational power of the Transformer, one of the most paradigmatic architectures ex-
emplifying self-attention. We show that the Transformer with hard-attention is Turing
complete exclusively based on their capacity to compute and access internal dense repre-
sentations of the data. Our study also reveals some minimal sets of elements needed to
obtain this completeness result.

Keywords: Transformers, Turing completeness, self-Attention, neural networks, arbi-
trary precision

1. Introduction

There is an increasing interest in designing neural network architectures capable of learning
algorithms from examples (Graves et al., 2014; Grefenstette et al., 2015; Joulin and Mikolov,
2015; Kaiser and Sutskever, 2016; Kurach et al., 2016; Dehghani et al., 2018). A key
requirement for any such an architecture is thus to have the capacity of implementing
arbitrary algorithms, that is, to be Turing complete. Most of the networks proposed for
learning algorithms are Turing complete simply by definition, as they can be seen as a
control unit with access to an unbounded memory; as such, they are capable of simulating
any Turing machine.

On the other hand, the work by Siegelmann and Sontag (1995) has established a dif-
ferent way of looking at the Turing completeness of neural networks. In particular, their
work establishes that recurrent neural networks (RNNs) are Turing complete even if only a
bounded number of resources (i.e., neurons and weights) is allowed. This is based on two

c©2021 Jorge Pérez, Pablo Barceló, Javier Marinkovic.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v22/20-302.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v22/20-302.html

Pérez, Barceló, Marinkovic

conditions: (1) the ability of RNNs to compute internal dense representations of the data,
and (2) the mechanisms they use for accessing such representations. Hence, the view pro-
posed by Siegelmann and Sontag shows that it is possible to release the full computational
power of RNNs without arbitrarily increasing its model complexity.

Most of the early neural architectures proposed for learning algorithms correspond to
extensions of RNNs – e.g., Neural Turing Machines (Graves et al., 2014) –, and hence
they are Turing complete in the sense of Siegelmann and Sontag. However, a recent trend
has shown the benefits of designing networks that manipulate sequences but do not directly
apply a recurrence to sequentially process their input symbols. A prominent example of this
approach corresponds to architectures based on attention and self-attention mechanisms. In
this work we look at the problem of Turing completeness à la Siegelmann and Sontag for
one of the most paradigmatic models exemplifying attention: the Transformer (Vaswani
et al., 2017).

The main contribution of our paper is to show that the Transformer is Turing complete
à la Siegelmann and Sontag, that is, based on its capacity to compute and access internal
dense representations of the data it processes and produces. To prove this we assume that
internal activations are represented as rational numbers with arbitrary precision. The proof
of Turing completeness of the Transformer is based on a direct simulation of a Turing
machine which we believe to be quite intuitive. Our study also reveals some minimal sets
of elements needed to obtain these completeness results.

Background work The study of the computational power of neural networks can be
traced back to McCulloch and Pitts (1943), which established an analogy between neurons
with hard-threshold activations and threshold logic formulae (and, in particular, Boolean
propositional formulae), and Kleene (1956) that draw a connection between neural networks
and finite automata. As mentioned earlier, the first work showing the Turing completeness
of finite neural networks with linear connections was carried out by Siegelmann and Sontag
(1992, 1995). Since being Turing complete does not ensure the ability to actually learn
algorithms in practice, there has been an increasing interest in enhancing RNNs with mech-
anisms for supporting this task. One strategy has been the addition of inductive biases in
the form of external memory, being the Neural Turing Machine (NTM) (Graves et al., 2014)
a paradigmatic example. To ensure that NTMs are differentiable, their memory is accessed
via a soft attention mechanism (Bahdanau et al., 2014). Other examples of architectures
that extend RNNs with memory are the Stack-RNN (Joulin and Mikolov, 2015), and the
(De)Queue-RNNs (Grefenstette et al., 2015). By Siegelmann and Sontag’s results, all these
architectures are Turing complete.

The Transformer architecture (Vaswani et al., 2017) is almost exclusively based on
the attention mechanism, and it has achieved state of the art results on many language-
processing tasks. While not initially designed to learn general algorithms, Dehghani et al.
(2018) have advocated the need for enriching its architecture with several new features as a
way to learn general procedures in practice. This enrichment is motivated by the empirical
observation that the original Transformer architecture struggles to generalize to input of
lengths not seen during training. We, in contrast, show that the original Transformer
architecture is Turing complete, based on different considerations. These results do not
contradict each other, but show the differences that may arise between theory and practice.

2

Attention is Turing Complete

For instance, Dehghani et al. (2018) assume fixed precision, while we allow arbitrary internal
precision during computation. As we show in this paper, Transformers with fixed precision
are not Turing complete. We think that both approaches can be complementary as our
theoretical results can shed light on what are the intricacies of the original architecture,
which aspects of it are candidates for change or improvement, and which others are strictly
needed. For instance, our proof uses hard attention while the Transformer is often trained
with soft attention (Vaswani et al., 2017).

Recently, Hahn (2019) has studied the Transformer encoder (see Section 3) as a language
recognizer and shown several limitations of this architecture. Also, Yun et al. (2020) studied
Transformers showing that they are universal approximators of continuous functions over
strings. None of these works studied the completeness of the Transformer as a general
computational device which is the focus of our work.

Related article A related version of this paper was previously presented at the Interna-
tional Conference on Learning Representations, ICLR 2019, in which we announced results
on two modern neural network architectures: Transformers and Neural GPUs; see (Pérez
et al., 2019). For the sake of uniformity this submission focuses only on the former.

Organization of the paper The rest of the paper is organized as follows. We begin
by introducing notation and terminology in Section 2. In Section 3 we formally introduce
the Transformer architecture and prove a strong invariance property (Section 3.1) that
motivates the addition of positional encodings (Section 3.2). In Section 4 we prove our
main result on the Turing completeness of the Transformer (Theorem 6). As the proof
need several technicalities we divide it in three parts: overview of the main construction
(Section 4.1), implementation details for every part of the construction (Section 4.2) and
proof of intermediate lemmas (Appendix A). We finally discuss on some of the characteristics
of the Transformer needed to obtain Turing completeness (Section 5) and finish with the
possible future work (Section 6).

2. Preliminaries

We adopt the notation of Goodfellow et al. (2016) and use letters x, y, z, etc. for scalars, x,
y, z, etc. for vectors, and A, X, Y , etc. for matrices and sequences of vectors. We assume
that all vectors are row vectors, and thus they are multiplied as, e.g., xA for a vector x
and matrix A. Moreover, Ai,: denotes the i-th row of matrix A.

We assume all weights and activations to be rational numbers of arbitrary precision.
Moreover, we only allow the use of rational functions with rational coefficients. Most of our
positive results make use of the piecewise-linear sigmoidal activation function σ : Q → Q,
which is defined as

σ(x) =

0 x < 0,
x 0 ≤ x ≤ 1,
1 x > 1.

(1)

Observe that σ(x) can actually be constructed from standard ReLU activation functions.
In fact, recall that relu(x) = max(0, x). Hence,

σ(x) = relu(x)− relu(x− 1).

3

Pérez, Barceló, Marinkovic

Then there exist matrices A and B, and a bias vector b, such that for every vector x it
holds that σ(x) = relu(xA+b)B. This observation implies that in all our results, whenever
we use σ(·) as an activation function, we can alternatively use relu(·) but at the price of an
additional network layer.

Sequence-to-sequence neural networks We are interested in sequence-to-sequence
(seq-to-seq) neural network architectures that we formalize next. A seq-to-seq network
N receives as input a sequence X = (x1, . . . ,xn) of vectors xi ∈ Qd, for some d > 0, and
produces as output a sequence Y = (y1, . . . ,ym) of vectors yi ∈ Qd. Most architectures
of this type require a seed vector s and some stopping criterion for determining the length
of the output. The latter is usually based on the generation of a particular output vector
called an end of sequence mark. In our formalization instead, we allow a network to produce
a fixed number r ≥ 0 of output vectors. Thus, for convenience we see a general seq-to-seq
network as a function N such that the value N(X, s, r) corresponds to an output sequence
of the form Y = (y1,y2, . . . ,yr). With this definition, we can interpret a seq-to-seq network
as a language recognizer of strings as follows.

Definition 1 A seq-to-seq language recognizer is a tuple A = (Σ, f,N, s,F), where Σ is a
finite alphabet, f : Σ → Qd is an embedding function, N is a seq-to-seq network, s ∈ Qd

is a seed vector, and F ⊆ Qd is a set of final vectors. We say that A accepts the string
w ∈ Σ∗, if there exists an integer r ∈ N such that N(f(w), s, r) = (y1, . . . ,yr) and yr ∈ F.
The language accepted by A, denoted by L(A), is the set of all strings accepted by A.

We impose two additional restrictions over recognizers. The embedding function f :
Σ→ Qd should be computed by a Turing machine in polynomial time w.r.t. the size of Σ.
This covers the two most typical ways of computing input embeddings from symbols: the
one-hot encoding, and embeddings computed by fixed feed-forward networks. Moreover,
the set F should also be recognizable in polynomial-time; given a vector f , the membership
f ∈ F should be decided by a Turing machine working in polynomial time with respect to
the size (in bits) of f . This covers the usual way of checking equality with a fixed end-
of-sequence vector. We impose these restrictions to disallow the possibility of cheating by
encoding arbitrary computations in the input embedding or the stopping condition, while
being permissive enough to construct meaningful embeddings and stopping criterions.

Turing machine computations Let us recall that (deterministic) Turing machines are
tuples of the form M = (Q,Σ, δ, qinit, F), where:

• Q is a finite set of states,

• Σ is a finite alphabet,

• δ : Q× Σ→ Q× Σ× {1,−1} is the transition function,

• qinit ∈ Q is the initial state, and

• F ⊆ Q is the set of final states.

We assume that M is formed by a single tape that consists of infinitely many cells (or
positions) to the right, and also that the special symbol # ∈ Σ is used to mark blank

4

Attention is Turing Complete

positions in such a tape. Moreover, M has a single head that can move left and right over
the tape, reading and writing symbols from Σ.

We do not provide a formal definition of the notion of computation of M on input
string w ∈ Σ∗, but it can be found in any standard textbook on the theory of computation;
c.f. Sipser (2006). Informally, we assume that the input w = a1 · · · an is placed symbol-
by-symbol in the first n cells of the tape. The infinitely many other cells to the right of
w contain the special blank symbol #. The computation of M on w is defined in steps
i = 1, 2, In the first step the machine M is in the initial state qinit with its head reading
the first cell of the tape. If at any step i, for i > 0, the machine is in state q ∈ Q with its
head reading a tape that contains symbol a ∈ Σ, the machine proceeds to do the following.
Assume that δ(q, a) = (q′, b, d), for q′ ∈ Q, b ∈ Σ, and d ∈ {1,−1}. Then M writes symbol
b in the cell that is reading, updates its state to q′, and moves its head in the direction d,
with d = 1 meaning move one cell to the right and d = −1 one cell to the left.

If the computation of M on w ever reaches a final state q ∈ F , we say that M accepts
w. The language of all strings in Σ∗ that are accepted by M is denoted L(M). A language
L is recognizable, or decidable, if there exists a TM M with L = L(M).

Turing completeness of seq-to-seq neural network architectures A class N of
seq-to-seq neural network architectures defines the class LN composed of all the languages
accepted by language recognizers that use networks in N . From these notions, the formal-
ization of Turing completeness of a class N naturally follows.

Definition 2 A class N of seq-to-seq neural network architectures is Turing Complete if LN
contains all decidable languages (i.e., all those that are recognizable by Turing machines).

3. The Transformer architecture

In this section we present a formalization of the Transformer architecture (Vaswani et al.,
2017), abstracting away from some specific choices of functions and parameters. Our for-
malization is not meant to produce an efficient implementation of the Transformer, but
to provide a simple setting over which its mathematical properties can be established in a
formal way.

The Transformer is heavily based on the attention mechanism introduced next. Consider
a scoring function score : Qd × Qd → Q and a normalization function ρ : Qn → Qn, for
d, n > 0. Assume that q ∈ Qd, and that K = (k1, . . . ,kn) and V = (v1, . . . ,vn) are tuples
of elements in Qd. A q-attention over (K,V), denoted by Att(q,K,V), is a vector a ∈ Qd

defined as follows.

(s1, . . . , sn) = ρ(score(q,k1), score(q,k2), . . . , score(q,kn)) (2)

a = s1v1 + s2v2 + · · ·+ snvn. (3)

Usually, q is called the query, K the keys, and V the values. We do not pose any restriction
on the scoring functions, but we do pose some restrictions over the normalization function
to ensure that it produces a probability distribution over the positions. We require the
normalization function to satisfy that for each x = (x1, . . . , xn) ∈ Qn there is a function
fρ from Q to Q+ such that it is the case that the i-th component ρi(x) of ρ(x) is equal

5

Pérez, Barceló, Marinkovic

to fρ(xi)/
∑n

j=1 fρ(xj). We note that, for example, one can define the softmax function in
this way by simply selecting fρ(x) to be the exponential function ex, but we allow other
possibilities as well as we next explain.

When proving possibility results, we will need to pick specific scoring and normalization
functions. A usual choice for the scoring function is a non linear function defined by a
feed forward network with input (q,ki), sometimes called additive attention (Bahdanau
et al., 2014). Another possibility is to use the dot product 〈q,ki〉, called multiplicative
attention (Vaswani et al., 2017). We actually use a combination of both: multiplicative
attention plus a feed forward network defined as the composition of functions of the form
σ(g(·)), where g is an affine transformation and σ is the piecewise-linear sigmoidal activation
defined in equation (1). For the normalization function, softmax is a standard choice.
Nevertheless, in our proofs we use the hardmax function, which is obtained by setting
fhardmax(xi) = 1 if xi is the maximum value in x, and fhardmax(xi) = 0 otherwise. Thus,
for a vector x in which the maximum value occurs r times, we have that hardmaxi(x) = 1

r
if xi is the maximum value of x, and hardmaxi(x) = 0 otherwise. We call it hard attention
whenever hardmax is used as normalization function.

Let us observe that the choice of hardmax is crucial for our proofs to work in their current
shape, as it allows to simulate the process of “accessing” specific positions in a sequence of
vectors. Hard attention has been previously used specially for processing images (Xu et al.,
2015; Elsayed et al., 2019) but, as far as we know, it has not been used in the context of
self-attention architectures to proces sequences. See Section 5 for further discussion on our
choices for functions in positive results. As it is customary, for a function F : Qd → Qd

and a sequence X = (x1,x2, . . . ,xn), with xi ∈ Qd, we write F (X) to denote the sequence
(F (x1), . . . , F (xn)).

Transformer Encoder and Decoder A single-layer encoder of the Transformer is a
parametric function Enc(θ), with θ being the parameters, that receives as input a sequence
X = (x1, . . . ,xn) of vectors in Qd and returns a sequence Enc(X;θ) = (z1, . . . ,zn) of
vectors in Qd of the same length as X. In general, we consider the parameters in θ to
be parameterized functions Q(·),K(·), V (·), and O(·), all of them from Qd to Qd. The
single-layer encoder is then defined as follows

ai = Att(Q(xi),K(X), V (X)) + xi (4)

zi = O(ai) + ai (5)

Notice that in equation 4 we apply functions Q and V , separately, over each entry in X.
In practice Q(·), K(·), V (·) are typically linear transformations specified as matrices of
dimension (d × d), and O(·) is a feed-forward network. The + xi and + ai summands
are usually called residual connections (He et al., 2016; He et al.). When the particular
functions used as parameters are not important, we simply write Z = Enc(X).

The Transformer encoder is defined simply as the repeated application of single-layer
encoders (with independent parameters), plus two final transformation functions K(·) and
V (·) applied to every vector in the output sequence of the final layer. Thus the L-layer
Transformer encoder is defined by the following recursion (with 1 ≤ ` ≤ L−1 andX1 = X):

X`+1 = Enc(X`;θ`), K = K(XL), V = V (XL). (6)

6

Attention is Turing Complete

We write (K,V) = TEncL(X) to denote that (K,V) is the result of an L-layer Transformer
encoder over the input sequence X.

A single-layer decoder is similar to a single-layer encoder but with additional attention
to an external pair of key-value vectors (Ke,V e). The input for the single-layer decoder is
a sequence Y = (y1, . . . ,yk) plus the external pair (Ke,V e), and the output is a sequence
Z = (z1, . . . ,zk) of the same length as Y . When defining a decoder layer we denote by Yi
the sequence (y1, . . . ,yi), for 1 ≤ i ≤ k. The output Z = (z1, . . . ,zk) of the layer is also
parameterized, this time by four functions Q(·), K(·), V (·) and O(·) from Qd to Qd, and is
defined as follows for each 1 ≤ i ≤ k:

pi = Att(Q(yi),K(Yi), V (Yi)) + yi (7)

ai = Att(pi,K
e,V e) + pi (8)

zi = O(ai) + ai (9)

Notice that the first (self) attention over (K(Yi), V (Yi)) considers the subsequence of Y only
until index i and is used to generate a query pi to attend the external pair (Ke,V e). We
denote the output of the single-decoder layer over Y and (Ke,V e) as Dec((Ke,V e),Y ;θ).

The Transformer decoder is a repeated application of single-layer decoders, plus a trans-
formation function F : Qd → Qd applied to the final vector of the decoded sequence. Thus,
the output of the decoder is a single vector z ∈ Qd. Formally, the L-layer Transformer
decoder is defined as

Y `+1 = Dec((Ke,V e),Y `;θ`), z = F (yLk) (1 ≤ ` ≤ L− 1 and Y 1 = Y). (10)

We use z = TDecL((Ke,V e),Y) to denote that z is the output of this L-layer Transformer
decoder on input Y and (Ke,V e).

An important restriction of Transformers is that the output of a Transformer decoder
always corresponds to the encoding of a letter in some finite alphabet Γ. Formally speaking,
it is required that there exists a finite alphabet Γ and an embedding function g : Γ→ QD,
such that the final transformation function F of the Transformer decoder maps any vector
in Qd to a vector in the finite set g(Γ) of embeddings of letters in Γ.

The complete Transformer A Transformer network receives an input sequence X, a
seed vector y0, and a value r ∈ N. Its output is a sequence Y = (y1, . . . ,yr) defined as

yt+1 = TDec(TEnc(X), (y0,y1, . . . ,yt)), for 0 ≤ t ≤ r − 1. (11)

We denote the output sequence of the transformer as Y = (y1,y2, . . . ,yr) = Trans(X,y0, r).

3.1 Invariance under proportions

Transformer networks, as defined above, are quite weak in terms of its abilities to capture
languages. This is due to the fact that Transformers are order-invariant, i.e., they do not
have access to the relative order of the elements in the input. More formally, two input
sequences that are permutations of each other produce exactly the same output. This is
a consequence of the following property of the attention function: if K = (k1, . . . ,kn),
V = (v1, . . . ,vn), and π : {1, . . . , n} → {1, . . . , n} is a permutation, then Att(q,K,V) =
Att(q, π(K), π(V)) for every query q.

7

Pérez, Barceló, Marinkovic

Based on order-invariance we can show that Transformers, as currently defined, are quite
weak in their ability to recognize basic string languages. As a standard yardstick we use
the well-studied class of regular languages, i.e., languages recognized by finite automata;
see, e.g., Sipser (2006). Order-invariance implies that not every regular language can be
recognized by a Transformer network. For example, there is no Transformer network that
can recognize the regular language (ab)∗, as the latter is not order-invariant.

A reasonable question then is whether the Transformer can express all regular languages
which are themselves order-invariant. It is possible to show that this is not the case by
proving that the Transformer actually satisfies a stronger invariance property, which we
call proportion invariance, and that we present next. For a string w ∈ Σ∗ and a symbol
a ∈ Σ, we use prop(a,w) to denote the ratio between the number of times that a appears
in w and the length of w. Consider now the set PropInv(w) = {u ∈ Σ∗ | prop(a,w) =
prop(a, u) for every a ∈ Σ}. Then:

Proposition 3 Let Trans be a Transformer, s a seed, r ∈ N, and f : Σ → Qd an em-
bedding function. Then Trans(f(w), s, r) = Trans(f(u), s, r), for each u,w ∈ Σ∗ with
u ∈ PropInv(w).

The proof of this result is quite technical and we have relegated it to the appendix. As
an immediate corollary we obtain the following.

Corollary 4 Consider the order-invariant regular language L = {w ∈ {a, b}∗ | w has an
even number of a symbols}. Then L cannot be recognized by a Transformer network.

Proof To obtain a contradiction, assume that there is a language recognizer A that uses
a Transformer network and such that L = L(A). Now consider the strings w1 = aabb and
w2 = aaabbb. Since w1 ∈ PropInv(w2) by Proposition 3 we have that w1 ∈ L(A) if and only
if w2 ∈ L(A). This is a contradiction since w1 ∈ L but w2 /∈ L.

On the other hand, languages recognized by Transformer networks are not necessarily
regular.

Proposition 5 There is a Transformer network that recognizes the non-regular language
S = {w ∈ {a, b}∗ | w has strictly more symbols a than symbols b}.

Proof To obtain a contradiction, assume that there is a language recognizer A that uses
a Transformer network and such that L = L(A). Now consider the strings w1 = aabb and
w2 = aaabbb. Since w1 ∈ PropInv(w2) by Proposition 3 we have that w1 ∈ L(A) if and only
if w2 ∈ L(A). This is a contradiction since w1 ∈ L but w2 /∈ L.

That is, the computational power of Transformer networks as defined in this section is
both rather weak (they do not even contain order-invariant regular languages) and not so
easy to capture (as they can express counting properties that go beyond regularity).

8

Attention is Turing Complete

3.2 Positional Encodings

The weakness in terms of expressive power that Transformers exhibit due to order- and
proportion-invariance has motivated the need for including information about the order of
the input sequence by other means; in particular, this is often achieved by using the so-
called positional encodings (Vaswani et al., 2017; Shaw et al., 2018), which come to remedy
the order-invariance issue by providing information about the absolute positions of the
symbols in the input. A positional encoding is just a function pos : N→ Qd. Function pos
combined with an embedding function f : Σ → Qd give rise to a new embedding function
fpos : Σ × N → Qd such that fpos(a, i) = f(a) + pos(i). Thus, given an input string
w = a1a2 · · · an ∈ Σ∗, the result of the embedding function fpos(w) provides a “new” input(

fpos(a1, 1), fpos(a2, 2), . . . , fpos(an, n)
)

to the Transformer encoder. Similarly, the Transformer decoder instead of receiving the
sequence Y = (y0,y1, . . . ,yt) as input, it receives now the sequence

Y ′ =
(
y0 + pos(1),y1 + pos(2), . . . ,yt + pos(t+ 1)

)
As for the case of the embedding functions, we require the positional encoding pos(i) to be
computable by a Turing machine in polynomial time with respect to the size (in bits) of i.

As we show in the next section, positional encodings not only solve the aforementioned
weaknesses of Transformer networks in terms of order- and proportion-invariance, but ac-
tually ensure a much stronger condition: There is a natural class of positional encoding
functions that provide Transformer networks with the ability to encode any language ac-
cepted by a Turing machine.

4. Turing completeness of the Transformer with positional encodings

In this section we prove our main result.

Theorem 6 The class of Transformer networks with positional encodings is Turing com-
plete. Moreover, Turing completeness holds even in the restricted setting in which the only
non-constant values in positional embedding pos(n) of n, for n ∈ N, are n, 1/n, and 1/n2,
and Transformer networks have a single encoder layer and three decoder layers.

Actually, the proof of this result shows something stronger: Not only Transformers can
recognize all languages accepted by Turing machines, i.e., the so-called recognizable or decid-
able languages; they can recognize all recursively enumerable or semi-decidable languages,
which are those languages L for which there exists a TM that enumerates all strings in L.

We now provide a complete proof of Theorem 6. For readability, the proofs of some
intermediate lemmas are relegated to the appendix.

Let M = (Q,Σ, δ, qinit, F) be a Turing machine with a tape that is infinite to the right
and assume that the special symbol # ∈ Σ is used to mark blank positions in the tape. We
make the following assumptions about how M works when processing an input string:

• M begins at state qinit pointing to the first cell of the tape reading the blank symbol
#. The input is written immediately to the right of this first cell.

9

Pérez, Barceló, Marinkovic

• Q has a special state qread used to read the complete input.

• Initially (step 0), M makes a transition to state qread and move its head to the right.

• While in state qread it moves to the right until symbol # is read.

• There are no transitions going out from accepting states (states in F).

It is easy to prove that every general Turing machine is equivalent to one that satisfies the
above assumptions. We prove that one can construct a transformer network TransM that is
able to simulate M on every possible input string; or, more formally, L(M) = L(TransM).

The construction is somehow involved and makes use of several auxiliary definitions and
intermediate results. To make the reading easier we divide the construction and proof in
three parts. We first give a high-level view of the strategy we use. Then we give some details
on the architecture of the encoder and decoder needed to implement our strategy, and finally
we formally prove that every part of our architecture can be actually implemented.

4.1 Overview of the construction and high-level strategy

In the encoder part of TransM we receive as input the string w = s1s2 · · · sn. We first use an
embedding function to represent every si as a one-hot vector and add a positional encoding
for every index. The encoder produces output (Ke,V e), where Ke = (ke1 , . . . ,k

e
n) and

V e = (ve1 , . . . ,v
e
n) are sequences of keys and values such that vei contains the information

of si and kei contains the information of the i-th positional encoding. We later show that
this allows us to attend to every specific position and copy every input symbol from the
encoder to the decoder (see Lemma 7).

In the decoder part of TransM we simulate a complete execution of M over w =
s1s2 · · · sn. For this we define the following sequences (for i ≥ 0):

q(i) : state of M at step i of the computation

s(i) : symbol read by the head of M during step i

v(i) : symbol written by M during step i

m(i) : direction in which the head is moved in the transition of M during step i

For the case of m(i) we assume that −1 represents a movement to the left and 1 represents a
movement to the right. In our construction we show how to build a decoder that computes
all the above values, for every step i, using self attention plus attention over the encoder
part. Since the above values contain all the needed information to reconstruct the complete
history of the computation, we can effectively simulate M .

In particular, our construction produces the sequence of output vectors y1,y2, . . . such
that, for every i, the vector yi contains both q(i) and s(i) encoded as one-hot vectors. The
construction and proof goes by induction. We begin with an initial vector y0 that represents
the state of the computation before it has started, that is q(0) = qinit and s(0) = #. For the
induction step we assume that we have already computed y1, . . . ,yr such that yi contains
information about q(i) and s(i), and we show how on input (y0,y1, . . . ,yr) the decoder
produces the next vector yr+1 containing q(r+1) and s(r+1).

10

Attention is Turing Complete

The overview of the construction is as follows. First, by definition the transition function
δ of Turing machine M relates the above values with the following equation:

δ(q(i), s(i)) = (q(i+1), v(i),m(i)). (12)

We prove that we can use a two-layer feed-forward network to mimic the transition function
δ (Lemma 8). Thus, given that the input vector yi contains q(i) and s(i), we can produce the
values q(i+1), v(i) and m(i) (and store them as values in the decoder). In particular, since
yr is in the input, we can produce q(r+1) which is part of what we need for yr+1. In order
to complete the construction we also need to compute the value s(r+1), that is, we need to
compute the symbol read by the head of machine M during the next step (step r+ 1). We
next describe at a high level, how this symbol can be computed with two additional decoder
layers.

We first make some observations about s(i) that are fundamental for our construction.
Assume that during step i of the computation the head of M is pointing at the cell with
index k. Then we have three possibilities:

1. If i ≤ n, then s(i) = si since M is still reading its input string.

2. If i > n and M has never written at index k, then s(i) = #, the blank symbol.

3. Otherwise, that is, if i > n and step i is not the first step in which M is pointing to
index k, then s(i) is the last symbol written by M at index k.

For the case (1) we can produce s(i) by simply attending to position i in the encoder
part. Thus, if r + 1 ≤ n to produce s(r+1) we can just attend to index r + 1 in the encoder
and copy this value to yr+1. For cases (2) and (3) the solution is a bit more complicated,
but almost all the important work is done by computing the index of the cell that M will
be pointing during step r + 1.

To formalize this computation, let us denote by c(i) ∈ N the following value:

c(i) : the index of the cell the head of M is pointing to during step i.

Notice that the value c(i), for i > 0, satisfies that c(i) = c(i−1) + m(i−1). If we unroll this
equation by using c(0) = 0, we obtain that

c(i) = m(0) +m(1) + · · ·+m(i−1).

Then, since we are assuming that the decoder stores each value of the form m(j), for
0 ≤ j ≤ i, at step i the decoder has all the necessary information to compute not only
value c(i) but also c(i+1). We actually show that the computation (of a representation) of
c(i) and c(i+1) can be done by using a single layer of self attention (Lemma 9).

We still need to define a final notion. With c(i) one can define the auxiliary value `(i)
as follows. If the set {j | j < i and c(j) = c(i)} is nonempty, then

`(i) := max { j | j < i and c(j) = c(i) }.

Otherwise, `(i) = (i − 1). Thus, if the cell c(i) has been visited by the head of M before
step i, then `(i) denotes the last step in which this happened. Since, by assumption, at

11

Pérez, Barceló, Marinkovic

#

qread s1

qread sn

qread # →

qread sn →

qread s1 →

qread sn n

qread s1 2

qread #

qread s2

qread s1

qinit

s(t−1)

...
...

...
...

1

...
...

...

...
...

...
...

Att Att

︷ ︸︸ ︷
computes index of cell

︷ ︸︸ ︷
computes last symbol

at the next step (t+ 1) written at cell c(t+1)

︷ ︸︸ ︷
implements M ’s

transition function

v(t−1)q(t) c(t)

...

attends to the
encoder and copies
the corresponding
symbol

uses self attention
to compute next state
and the next symbol
under M ’s head

m(t−1)q(t)

c(t+1)

q(t) s(t)

v(t) m(t) q(t+1)s(t+1)q(t) s(t)

q(t−1)

qread

q(t+1)

v(t−1)

q(t+1) v(t)

Figure 1: High-level structure of the decoder part of TransM .

every step of the computation M moves its head either to the right or to the left (it never
stays in the same cell), for every i it holds that c(i) 6= c(i−1), from which we obtain that, in
this case, `(i) < i− 1. This implies that `(i) = i− 1 if and only if cell c(i) is visited by the
head of M for the first time at time step i. This allows us to check that c(i) is visited for
the first time at time step i by just checking whether `(i) = i− 1.

We now have all the necessary ingredients to explain how to compute the value s(r+1),
i.e., the symbol read by the head of M during step i of the computation. Assume that
r+ 1 > n (the case r+ 1 ≤ n was already covered before). We first note that if `(r+ 1) = r
then s(r+1) = # since this is the first time that cell c(r+1) is visited. On the other hand, if
`(r + 1) < r then s(r+1) is the value written by M at step `(r + 1), i.e., s(r+1) = v(`(r+1)).
Thus, in this case we only need to attend to position `(r+ 1) and copy the value v(`(r+1)) to
produce s(r+1). We show that all this can be done with an additional self-attention decoder
layer (Lemma 10).

We have described at a high-level a decoder that, with input (y0,y1, . . . ,yr), computes
the values q(r+1) and s(r+1) which are needed to produce yr+1. A pictorial description of
this high-level idea is depicted in Figure 1. In the following we explain the technical details
of our construction.

4.2 Details of the architecture of TransM

In this section we give more details on the architecture of the encoder and decoder needed
to implement our strategy.

Attention mechanism For our attention mechanism we make use of the non-linear func-
tion ϕ(x) = −|x| to define a scoring function scoreϕ : Rd × Rd → R such that

scoreϕ(u,v) = ϕ(〈u,v〉) = −|〈u,v〉|.

We note that this function can be computed as a small feed-forward network that has the
dot product as input. Recall that relu(x) = max(0, x). Function ϕ(x) can be implemented
as ϕ(x) = − relu(x)− relu(−x). Then, let w1 be the (row) vector [1,−1] and w2 the vector
[−1,−1]. We have that ϕ(x) = relu(xw1)wT

2 and then scoreϕ(u,v) = relu(uvTw1)wT
2 .

Now, let q ∈ Qd, and K = (k1, . . . ,kn) and V = (v1, . . . ,vn) be tuples of elements
in Qd. We describe how Att(q,K,V) is computed when hard attention is considered

12

Attention is Turing Complete

(i.e., when hardmax is used as a normalization function). Assume first that there is a
single j? ∈ {1, . . . , n} that maximizes the value scoreϕ(q,kj). In such a case we have that
Att(q,K,V) = vj? with

j? = arg max
1≤j≤n

scoreϕ(q,kj)

= arg max
1≤j≤n

−|〈q,kj〉|

= arg min
1≤j≤n

|〈q,kj〉| (13)

Thus, when computing hard attention with the function scoreϕ(·) we essentially select the
vector vj such that the dot product 〈q,kj〉 is as close to 0 as possible. If there is more than
one index, say indexes j1, j2, . . . , jr, that minimize the dot product 〈q,kj〉, we then have

Att(q,K,V) =
1

r

(
vj1 + vj2 + · · ·+ vjr

)
.

Thus, in the extreme case in which all dot products of the form 〈q,kj〉 are equal, for 1 ≤
j ≤ n, attention behaves simply as the average of all value vectors, that is Att(q,K,V) =
1
n

∑n
j=1 vj . We use all these properties of the hard attention in our proof.

Vectors and encodings We now describe the vectors that we use in the encoder and
decoder parts of TransM . All such vectors are of dimension d = 2|Q|+4|Σ|+11. To simplify
the exposition, whenever we use a vector v ∈ Qd we write it arranged in four groups of
values as follows

v = [q1, s1, x1,
q2, s2, x2, x3, x4, x5,
s3, x6, s4, x7

x8, x9, x10, x11],

where for each i we have that qi ∈ Q|Q|, si ∈ Q|Σ|, and xi ∈ Q. Whenever in a vector of
the above form any of the four groups of values is composed only of 0’s, we simply write
‘0, . . . , 0’ assuming that the length of this sequence is implicitly determined by the length
of the corresponding group. Finally, we denote by 0q and 0s the vectors in Q|Q| and Q|Σ|,
respectively, that consist exclusively of 0s.

For a symbol s ∈ Σ, we use J s K to denote a one-hot vector in Q|Σ| that represents s.
That is, given an injective function π : Σ→ {1, . . . , |Σ|}, the vector J s K has a 1 in position
π(s) and a 0 in all other positions. Similarly, for q ∈ Q, we use J q K to denote a one-hot
vector in Q|Q| that represents q.

Embeddings and positional encodings We can now introduce the embedding and po-
sitional encodings used in our construction. We use an embedding function f : Σ → Qd

defined as
f(s) = [0, . . . , 0,

0, . . . , 0,
J s K, 0,0s, 0,
0, . . . , 0]

13

Pérez, Barceló, Marinkovic

Our construction uses the positional encoding pos : N→ Qd such that

pos(i) = [0, . . . , 0,
0, . . . , 0,
0, . . . , 0,
1, i, 1/i, 1/i2]

Thus, given an input sequence s1s2 · · · sn ∈ Σ∗, we have for each 1 ≤ i ≤ n that

fpos(si) = f(si) + pos(i) = [0, . . . , 0,
0, . . . , 0,
J si K, 0,0s, 0,
1, i, 1/i, 1/i2]

We denote this last vector by xi. That is, if M receives the input string w = s1s2 · · · sn,
then the input for TransM is the sequence (x1,x2, . . . ,xn). The need for using a positional
encoding having values 1/i and 1/i2 will be clear when we formally prove the correctness
of our construction.

We need a final preliminary notion. In the formal construction of TransM we also use
the following auxiliary sequences:

α(i) =

{
si 1 ≤ i ≤ n
sn i > n

β(i) =

{
i i ≤ n
n i > n

These are used to identify when M is still reading the input string.

Construction of TEncM The encoder part of TransM is very simple. For TEncM we use
a single-layer encoder, such that TEncM (x1, . . . ,xn) = (Ke,V e), where Ke = (k1, . . . ,kn)
and V e = (v1, . . . ,vn) satisfy the following for each 1 ≤ i ≤ n:

ki = [0, . . . , 0,
0, . . . , 0,
0, . . . , 0,
i,−1, 0, 0]

vi = [0, . . . , 0,
0, . . . , 0,
J si K, i,0s, 0,
0, . . . , 0]

It is straightforward to see that these vectors can be produced with a single encoder layer
by using a trivial self attention, taking advantage of the residual connections in equations (4)
and (5), and then using linear transformations for V (·) and K(·) in equation (6).

When constructing the decoder we use the following property.

14

Attention is Turing Complete

Lemma 7 Let q ∈ Qd be a vector such that q = [, . . . , , 1, j, ,], where j ∈ N and ‘ ’
denotes an arbitrary value. Then

Att(q,Ke,V e) = [0, . . . , 0,
0, . . . , 0,

J α(j) K, β(j),0s, 0,
0, . . . , 0]

Construction of TDecM We next show how to construct the decoder part of TransM to
produce the sequence of outputs y1,y2, . . ., where yi is given by:

yi = [J q(i) K, J s(i) K,m(i−1),
0, . . . , 0,
0, . . . , 0,
0, . . . , 0]

That is, yi contains information about the state of M at step i, the symbol under the head
of M at step i, and the last direction followed by M (the direction of the movement of
the head at step i − 1). The need to include m(i−1) will become clear in the construction.
Notice that this respects the restriction on the vectors produced by Transformer decoders:
there is only a finite number of vectors yi the decoder can produce, and thus such vectors
can be understood as embeddings of some finite alphabet Γ.

We consider as the initial (seed) vector for the decoder the vector

y0 = [J qinit K, J # K, 0,
0, . . . , 0,
0, . . . , 0,
0, . . . , 0]

We are assuming that m(0) = 0 to represent that previous to step 1 there was no head
movement. Our construction resembles a proof by induction; we describe the architecture
piece by piece and at the same time we show how for every r ≥ 0 our architecture constructs
yr+1 from the previous vectors (y0, . . . ,yr).

Thus, assume that y0, . . . ,yr satisfy the properties stated above. Since we are using
positional encodings, the actual input for the first layer of the decoder is the sequence

y0 + pos(1), y1 + pos(2), . . . , yr + pos(r + 1).

We denote by yi the vector yi plus its positional encoding. Thus,

yi = [J q(i) K, J s(i) K,m(i−1),
0, . . . , 0,
0, . . . , 0,
1, (i+ 1), 1/(i+ 1), 1/(i+ 1)2]

For the first self attention in equation (7) we just produce the identity which can be
easily implemented as in the proof of Proposition 5. Thus, we produce the sequence of
vectors (p1

0,p
1
1, . . . ,p

1
r) such that p1

i = yi.

15

Pérez, Barceló, Marinkovic

Since p1
i is of the form [, . . . , , 1, i+ 1, ,], by Lemma 7 we know that if we use p1

i

to attend over the encoder we obtain

Att(p1
i ,K

e,V e) = [0, . . . , 0,
0, . . . , 0,

J α(i+1) K, β(i+1),0s, 0,
0, . . . , 0]

Thus, in equation (8) we finally produce the vector a1
i given by

a1
i = Att(p1

i ,K
e,V e) + p1

i = [J q(i) K, J s(i) K,m(i−1),
0, . . . , 0,

J α(i+1) K, β(i+1),0s, 0,
1, (i+ 1), 1/(i+ 1), 1/(i+ 1)2]

(14)

As the final piece of the first decoder layer we use a function O1(·) in equation (9) that
satisfies the properties stated in the following lemma.

Lemma 8 There exists a two-layer feed-forward network O1 : Qd → Qd such that, on input
vector a1

i as defined in equation (14), it produces as output

O1(a1
i) = [−J q(i) K,−J s(i) K,−m(i−1),

J q(i+1) K, J v(i) K,m(i),m(i−1), 0, 0
0, . . . , 0,
0, . . . , 0]

That is, function O1(·) simulates transition δ(q(i), s(i)) to construct J q(i+1) K, J v(i) K,
and m(i) besides some other linear transformations.

We finally produce as the output of the first decoder layer, the sequence (z1
0 , z

1
1 , . . . ,z

1
r)

such that

z1
i = O1(a1

i) + a1
i = [0, . . . , 0,

J q(i+1) K, J v(i) K,m(i),m(i−1), 0, 0,

J α(i+1) K, β(i+1),0s, 0,
1, (i+ 1), 1/(i+ 1), 1/(i+ 1)2]

(15)

Notice that z1
r already holds info about q(r+1) and m(r) which we need for constructing

vector yr+1. The single piece of information that we still need to construct is s(r+1), that
is, the symbol under the head of machine M at the next time step (time r + 1). We next
describe how this symbol can be computed with two additional decoder layers.

Recall that c(i) is the cell to which M is pointing to at time i, and that it satisfies that
c(i) = m(0) + m(1) + · · · + m(i−1). We can take advantage of this property to prove the
following lemma.

Lemma 9 Let Z1
i = (z1

0 , z
1
1 , . . . ,z

1
i). There exist functions Q2(·), K2(·), and V2(·) defined

by feed-forward networks such that

Att(Q2(z1
i),K2(Z1

i), V2(Z1
i)) = [0, . . . , 0,

0q,0s, 0, 0,
c(i+1)

(i+1) ,
c(i)

(i+1) ,

0, . . . , 0,
0, . . . , 0]

(16)

16

Attention is Turing Complete

Lemma 9 essentially shows that one can construct a representation for values c(i) and
c(i+1) for every possible index i. In particular, if i = r we will be able to compute the value
c(r+1) that represents the cell to which the head of M is pointing to during the next time
step.

Continuing with the second decoder layer, after applying the self attention defined by
Q2, K2, and V2, and adding the residual connection in equation (7), we obtain the sequence
of vectors (p2

0,p
2
1, . . . ,p

2
r) such that for each 0 ≤ i ≤ r:

p2
i = Att(Q2(z1

i),K2(Z1
i), V2(Z1

i)) + z1
i

= [0, . . . , 0,

J q(i+1) K, J v(i) K,m(i),m(i−1), c
(i+1)

(i+1) ,
c(i)

(i+1) ,

J α(i+1) K, β(i+1),0s, 0,
1, (i+ 1), 1/(i+ 1), 1/(i+ 1)2]

From vectors (p2
0,p

2
1, . . . ,p

2
r), and by using the residual connection in equation (8)

plus a null output function O(·) in equation (9), one can produce the sequence of vec-
tors (z2

0 , z
2
1 , . . . ,z

2
r) such that z2

i = p2
i , for each 0 ≤ i ≤ r, as the output of the second

decoder layer. That is,

z2
i = p2

i = [0, . . . , 0,

J q(i+1) K, J v(i) K,m(i),m(i−1), c
(i+1)

(i+1) ,
c(i)

(i+1) ,

J α(i+1) K, β(i+1),0s, 0,
1, (i+ 1), 1/(i+ 1), 1/(i+ 1)2]

We now describe how we can use a third, and final, decoder layer to produce our desired
s(r+1) value, i.e., the symbol read by the head of M over the next time step. Recall that
`(i) is the last time (previous to i) in which M was pointing to position c(i), or it is i− 1 if
this is the first time that M is pointing to c(i). We can prove the following lemma.

Lemma 10 There exist functions Q3(·), K3(·), and V3(·) defined by feed-forward networks
such that

Att(Q3(z2
i),K3(Z2

i), V3(Z2
i)) = [0, . . . , 0,

0, . . . , 0,

0s, 0, J v(`(i+1)) K, `(i+ 1),
0, . . . , 0]

We prove Lemma 10 by showing that, for every i, one can attend exactly to position
`(i+1) and then copy both values: `(i+1) and J v(`(i+1)) K. We do this by taking advantage
of the previously computed values c(i) and c(i+1). Then we have that p3

i is given by

p3
i = Att(Q3(z2

i),K3(Z2
i), V3(Z2

i)) + z2
i

= [0, . . . , 0

J q(i+1) K, J v(i) K,m(i),m(i−1), c
(i+1)

(i+1) ,
c(i)

(i+1) ,

J α(i+1) K, β(i+1), J v(`(i+1)) K, `(i+ 1),
1, (i+ 1), 1/(i+ 1), 1/(i+ 1)2]

(17)

17

Pérez, Barceló, Marinkovic

From vectors (p3
0,p

3
1, . . . ,p

3
r), and by using the residual connection in Equation (8)

plus a null output function O(·) in equation (9), we can produce the sequence of vectors
(z3

0 , z
3
1 , . . . ,z

3
r) such that z3

i = p3
i , for each 1 ≤ i ≤ r, as the output of the third and final

decoder layer. We then have

z3
i = p3

i = [0, . . . , 0,

J q(i+1) K, J v(i) K,m(i),m(i−1), c
(i+1)

(i+1) ,
c(i)

(i+1) ,

J α(i+1) K, β(i+1), J v(`(i+1)) K, `(i+ 1),
1, (i+ 1), 1/(i+ 1), 1/(i+ 1)2]

We finish our construction by applying a final transformation function F (·) in equa-
tion (10) with the properties specified in the following lemma.

Lemma 11 There exists a function F : Qd → Qd defined by a feed-forward network such
that

F (z3
r) = [J q(r+1) K, J s(r+1) K,m(r),

0, . . . , 0,
0, . . . , 0,
0, . . . , 0]

= yr+1

Final step Recall that M = (Q,Σ, δ, qinit, F). We can now use our TransM network to
construct the seq-to-seq language recognizer

A = (Σ, fpos,TransM ,y0,F),

where F is the set of all vectors in Qd that correspond to one-hot encodings of final states
in F . Formally, F = {J q K | q ∈ F} ×Qd−|Q|. It is straightforward to see that membership
in F can be checked in linear time.

It is easy to observe that L(A) = L(M), i.e., for every w ∈ Σ∗ it holds that A accepts
w if and only if M accepts w. In fact, if M accepts w then the computation of M on w
reaches an accepting state qf ∈ F at some time step, say t?. It is clear from the construction
above that, on input fpos(w), our network TransM produces a vector yt? that contains qf
as a one-hot vector; this implies that A accepts w. In turn, if M does not accept w then
the computation of M on w never reaches an accepting state. Therefore, TransM on input
fpos(w) never produces a vector yr that contains a final state in F as a one-hot vector. This
finishes the proof of the theorem.

5. Requirements for Turing completeness

In this section we describe some of the main features used in the proof of Turing completeness
for Transformer networks presented in the previous section, and discuss to what extent they
are required for such a result to hold.

18

Attention is Turing Complete

Choices of functions and parameters Although the general architecture that we pre-
sented closely follows the original presentation of the Transformer by Vaswani et al. (2017),
some choices for functions and parameters in our Turing completeness proof are different to
the standard choices in practice. For instance, for the output function O(·) in equation (9)
our proof uses a feed-forward network with various layers, while Vaswani et al. (2017) use
only two layers. A more important difference is that we use hard attention which allow us
to attend directly to specific positions. Different forms of attention, including hard atten-
tion, has been used in previous work (Bahdanau et al., 2014; Xu et al., 2015; Luong et al.,
2015; Elsayed et al., 2019; Gülçehre et al.; Ma et al., 2019; Katharopoulos et al., 2020).
The decision of using hard attention in our case is fundamental for our current proof to
work. In contrast, the original formulation by Vaswani et al. (2017), as well as most of the
subsequent work on Transformers and its applications (Dehghani et al., 2018; Devlin et al.,
2019; Shiv and Quirk, 2019; Yun et al., 2020) uses soft attention by considering softmax as
the normalization function in Equation (2). Although softmax is not a rational function,
and thus, is forbidden in our formalization, one can still try to analyze if our results can be
extended by for example allowing a bounded-precision version of it. Weiss et al. (2018) have
presented an analysis of the computational power of different types of RNNs with bounded
precision. They show that when precision is restricted, then different types of RNNs have
different computational capabilities. One could try to develop a similar approach for Trans-
formers, and study to what extent using softmax instead of hardmax has an impact in its
computational power. This is a challenging problem that deserves further study.

The need of arbitrary precision Our Turing-complete proof relies on having arbitrary
precision for internal representations, in particular, for storing and manipulating positional
encodings. Although having arbitrary precision is a standard assumption when studying
the expressive power of neural networks (Cybenko (1989); Siegelmann and Sontag (1995)),
practical implementations rely on fixed precision hardware. If fixed precision is used, then
positional encodings can be seen as functions of the form pos : N → A where A is a finite
subset of Qd. Thus, the embedding function fpos can be seen as a regular embedding
function f ′ : Σ′ → Qd where Σ′ = Σ × A. Thus, whenever fixed precision is used, the net
effect of having positional encodings is to just increase the size of the input alphabet. Then
from Proposition 3 we obtain that the Transformer with positional encodings and fixed
precision is not Turing complete.

An interesting way to bound the precision used by Transformer networks is to make it
depend on the size of the input only. An immediate corollary of our Turing completeness
proof in Theorem 6 is that by uniformly bounding the precision used in positional encodings
we can capture every deterministic complexity class defined by Turing machines. Let us
formalize this idea. We assume now that Turing machines have both accepting and rejecting
states, and none of these states have outgoing transitions. A language L ⊆ Σ∗ is accepted
by a Turing machine M in time T (n), for T : N → N, if for every w ∈ Σ∗ we have that
the computation of M on w reaches an accepting or rejecting state in at most T (|w|) steps,
and w ∈ L(M) iff it is an accepting state that is reached by the computation. We write
Time(T (n)) for the class of all languages L that are accepted by Turing machines in time
f(n). This definition covers some important complexity class; e.g., the famous class P of

19

Pérez, Barceló, Marinkovic

languages that can be accepted in polynomial time is defined as

P := Time(nO(1)) =
⋃
k≥0

TIME(nk),

while the class of Exptime of languages that can be accepted in single exponential time is
defined as

Exptime := Time(2n
O(1)

) =
⋃
k≥0

TIME(2n
k
).

Since a Turing machine M that accepts a language in time T (n) does not need to
move its head beyond cell T (|w|), assuming that w is the input given to M , the positional
encodings used in the proof of Theorem 6 need at most log(T (|w|)) bits to represent pos(n),
for n the index of a cell visited by the computation of M on w. Moreover, in order to detect
whether M accepts or not the input w the decoder TransM does not need to produce more
than T (|w|) vectors in the output. Let us then define a Transformer network Trans to be
T (n)-bounded if the following conditions hold:

• The precision allowed for the internal representations of Trans on input w is of at
most log(T (|w|) bits.

• If A is a seq-to-seq language recognizer based on Trans such that A accepts input w,
then A accepts w without producing more than T (|w|) output vectors, i.e., there is
r ≤ T (|w|) such that Trans(f(w), s, r) = (y1, . . . ,yr) and yr ∈ F.

The following corollary, which is obtained by simple inspection of the proof of Theo-
rem 6, establishes that to recognize languages in Time(T (n)) it suffices to use T (n)-bounded
Transformer networks.

Corollary 12 Let T : N → N. For every language L ∈ Time(T (n)) there is a seq-to-seq
language recognizer A, based on a T (n)-bounded Transformer network TransM , such that
L = L(A).

Residual connections First, it would be interesting to refine our analysis by trying
to draw a complete picture of the minimal sets of features that make the Transformer
architecture Turing complete. As an example, our current proof of Turing completeness
requires the presence of residual connections, i.e., the +xi, +ai, +yi, and +pi summands in
the definition of the single-layer encoder. We would like to sort out whether such connections
are in fact essential to obtain Turing completeness.

6. Future work

We have already mentioned some interesting open problems in the previous section. It would
be interesting, in addition, to extract practical implications from our theoretical results. For
example, the undecidability of several practical problems related to probabilistic language
modeling with RNNs has recently been established Chen et al. (2018). This means that
such problems can only be approached in practice via heuristics solutions. Many of the
results in Chen et al. (2018) are, in fact, a consequence of the Turing completeness of

20

Attention is Turing Complete

RNNs as established by Siegelmann and Sontag (1995). We plan to study to what extent
our analogous undecidability results for Transformers imply undecidability for language
modeling problems based on them.

Another very important issue is if our choices of functions and parameters may have a
practical impact, in particular when learning algorithms from examples. There is some evi-
dence that using a piece-wise linear activation function, similar to the one used in this paper,
substantially improves the generalization in algorithm learning for Neural GPUs (Freivalds
and Liepins, 2018). This architecture is of interest, as it is the first one able to learn dec-
imal multiplication from examples. In a more recent result, Yan et al. (2020) show that
Transformers with a special form of masked attention are better suited to learn numerical
sub-routines compared with the usual soft attention. Masked attention is similar to hard
attention as it forces the model to ignore a big part of the sequence in every attention
step, thus allowing only a few positions to be selected. A thorough analysis on how our
theoretical results and assumptions may have a practical impact is part of our future work.

Acknowledgments

Barceló and Pérez are funded by the Millennium Institute for Foundational Research on
Data (IMFD Chile) and Fondecyt grant 1200967.

Appendix A. Missing proofs from Section 3

Proof [of Proposition 3] We extend the definition of the function PropInv to sequences
of vectors. Given a sequence X = (x1, . . . ,xn) of n vectors, we use vals(X) to denote the
set of all vectors occurring in X. Similarly as for strings, for a vector v we write prop(v,X)
for the number of times that v occurs in X divided by n. To extend the notion of PropInv
to any sequence X of vectors we use the following definition:

PropInv(X) = {X ′ | vals(X ′) = vals(X) and

prop(v,X) = prop(v,X ′) for all v ∈ vals(X)}.

Notice that for every embedding function f : Σ→ Qd and string w ∈ Σ∗, we have that if u ∈
PropInv(w) then f(u) ∈ PropInv(f(w)). Thus in order to prove that Trans(f(w), s, r) =
Trans(f(u), s, r) for every u ∈ PropInv(w), it is enough to prove that

Trans(X, s, r) = Trans(X ′, s, r), for every X ′ ∈ PropInv(X). (18)

To further simplify the exposition of the proof we introduce some extra notation. We
denote by pXv the number of times that vector v occurs in X. Thus we have that X ′ ∈
PropInv(X) if and only if, there exists a value γ ∈ Q+ such that for every v ∈ vals(X) it
holds that pX

′
v = γpXv . We now have all the necessary ingredients to proceed with the proof

of Proposition 3; more in particular, with the proof of equation 18. Let X = (x1, . . . ,xn)
be an arbitrary sequence of vectors, and let X ′ = (x′1, . . . ,x

′
m) ∈ PropInv(X). Moreover,

let Z = (z1, . . . ,zn) = Enc(X;θ) and Z ′ = (z′1, . . . ,z
′
m) = Enc(X ′;θ). We first prove the

following property:

For every pair of indices (i, j) ∈ {1, . . . , n} × {1, . . . ,m}, if xi = x′j then zi = z′j . (19)

21

Pérez, Barceló, Marinkovic

Let (i, j) be a pair of indices such that xi = x′j . From Equations (4-5) we have that zi =
O(ai)+ai, where ai = Att(Q(xi),K(X), V (X))+xi. Thus, since xi = x′j , in order to prove
zi = z′j it is enough to prove that Att(Q(xi),K(X), V (X)) = Att(Q(x′j),K(X ′), V (X ′)).
By equations (2-3) and the restriction over the form of normalization functions,

Att(Q(xi),K(X), V (X)) =
1

α

n∑
`=1

s`V (x`),

where s` = fρ(score(Q(xi),K(x`))), for some normalization function fρ, and α =
∑n

`=1 s`.
The above equation can be rewritten as

Att(Q(xi),K(X), V (X)) =
1

α′

∑
v∈vals(X)

pXv fρ(score(Q(xi),K(v))) · V (v)

with α′ =
∑

v∈vals(X) p
X
v fρ(score(Q(v),K(v))). By a similar reasoning we can write

Att(Q(x′j),K(X ′), V (X ′)) =
1

β

∑
v∈vals(X′)

pX
′

v fρ(score(Q(x′j),K(v))) · V (v)

with β =
∑

v∈vals(X′) p
X′
v fρ(score(Q(v),K(v))).

Now, since X ′ ∈ PropInv(X) we know that vals(X) = vals(X ′) and there exists a
γ ∈ Q+ such that pX

′
v = γpXv for every v ∈ vals(X). From this property, plus the fact that

xi = x′j we have

Att(Q(x′j),K(X ′), V (X ′)) =
1

γα′

∑
v∈vals(X)

γpXv fρ(score(Q(x′j),K(v))) · V (v)

=
1

α′

∑
v∈vals(X)

pXv fρ(score(Q(xi),K(v))) · V (v)

= Att(Q(xi),K(X), V (X)).

This completes the proof of property (19) above.
Consider now the complete encoder TEnc. Let (K,V) = TEnc(X) and (K ′,V ′) =

TEnc(X ′), and let q be an arbitrary vector. We prove next that

Att(q,K,V) = Att(q,K ′,V ′). (20)

By following a similar reasoning as for proving Property (19) plus induction on the layers
of TEnc, one can first show that if xi = x′j then ki = k′j and vi = v′j , for every i ∈
{1, . . . , n} and j ∈ {1, . . . ,m}. Thus, there exists mappings MK : vals(X) → vals(K)
and MV : vals(X) → vals(V) such that, for every X ′′ = (x′′1, . . . , x

′′
p) with vals(X ′′) =

vals(X), it holds that TEnc(X ′′) = (K ′′,V ′′) for K ′′ = (MK(x′′1), . . . ,MK(x′′p)) and V ′′ =
(MV (x′′1), . . . ,MV (x′′p)). Let us then focus on Att(q,K,V). It holds that

Att(q,K,V) =
1

α

n∑
i=1

fρ(score(q,ki))vi,

22

Attention is Turing Complete

with α =
∑n

i=1 fρ(score(q,ki)). Similarly as before, we can rewrite this as

Att(q,K,V) =
1

α

n∑
i=1

fρ(score(q,MK(xi))) ·MV (xi)

=
1

α

∑
v∈vals(X)

pXv fρ(score(q,MK(v))) ·MV (v)

with α =
∑

v∈vals(X) p
X
v fρ(score(q,MK(v))). Similarly for Att(q,K ′,V ′) we have

Att(q,K ′,V ′) =
1

β

m∑
j=1

fρ(score(q,MK(x′j))) ·MV (x′j)

=
1

β

∑
v∈vals(X′)

pX
′

v fρ(score(q,MK(v))) ·MV (v).

Finally, using X ′ ∈ PropInv(X), we obtain

Att(q,K ′,V ′) =
1

β

∑
v∈vals(X′)

pX
′

v fρ(score(q,MK(v))) ·MV (v)

=
1

γα

∑
v∈vals(X)

γpXv fρ(score(q,MK(v))) ·MV (v)

=
1

α

∑
v∈vals(X)

pXv fρ(score(q,K(v))V (v)

= Att(q,K,V),

which is what we wanted.
To complete the rest of the proof, consider Trans(X,y0, r) which is defined by the

recursion

yk+1 = TDec(TEnc(X), (y0,y1, . . . ,yk)), for 0 ≤ k < r.

To prove that Trans(X,y0, r) = Trans(X ′,y0, r) we use an inductive argument on k and
show that if (y1, . . . ,yr) = Trans(X,y0, r) and (y′1, . . . ,y

′
r) = Trans(X ′,y0, r), then yk =

y′k for each 1 ≤ k ≤ r. For the basis case it holds that

y1 = TDec(TEnc(X), (y0))

= TDec((K,V), (y0)).

Now TDec((K,V), (y0)) is completely determined by y0 and the values of the form Att(q,K,V),
where q is query that only depends on y0. But Att(q,K,V) = Att(q,K ′,V ′), for any such
a query q from equation 20, and thus

y1 = TDec((K,V), (y0))

= TDec((K ′,V ′), (y0))

= TDec(TEnc(X ′), (y0))

= y′1.

23

Pérez, Barceló, Marinkovic

The rest of the steps follow by a simple induction on k.

Appendix B. Missing proofs from Section 4

Proof [of Lemma 7] Let q ∈ Qd be a vector such that q = [, . . . , , 1, j, ,], where
j ∈ N and ‘ ’ is an arbitrary value. We next prove that

Att(q,Ke,V e) = [0, . . . , 0,
0, . . . , 0,

J α(j) K, β(j),0s, 0,
0, . . . , 0]

where α(j) and β(j) are defined as

α(j) =

{
sj 1 ≤ j ≤ n
sn j > n

β(j) =

{
j j ≤ n
n j > n

Recall that Ke = (k1, . . . ,kn) is such that ki = [0, . . . , 0, i,−1, 0, 0]. Then

scoreϕ(q,ki) = ϕ(〈q,ki〉) = −|〈q,ki〉| = −|i− j|.

Notice that, if j ≤ n, then the above expression is maximized when i = j. Otherwise, if
j > n then the expression is maximized when i = n. Then Att(q,Ke,V e) = vi? , where

i? =

{
j j ≤ n
n j > n

Therefore, i? as just defined is exactly β(j). Thus, given that vi is defined as

vi = [0, . . . , 0,
0, . . . , 0,
J si K, i,0s, 0,
0, . . . , 0]

we obtain that

Att(q,Ke,V e) = vi? = [0, . . . , 0,
0, . . . , 0,
J si? K, i?,0s, 0,
0, . . . , 0]

= [0, . . . , 0,
0, . . . , 0,

J α(j) K, β(j),0s, 0,
0, . . . , 0]

24

Attention is Turing Complete

which is what we wanted to prove.

Proof [of Lemma 8] In order to prove the lemma we need some intermediate notions and
properties. Assume that the injective function π1 : Σ → {1, . . . , |Σ|} is the one used to
construct the one-hot vectors J s K for s ∈ Σ, and that π2 : Q→ {1, . . . , |Q|} is the one used
to construct J q K for q ∈ Q. Using π1 and π2 one can construct one-hot vectors for pairs
in the set Q × Σ. Formally, given (q, s) ∈ Q × Σ we denote by J (q, s) K a one-hot vector
with a 1 in position (π1(s)− 1)|Q|+ π2(q) and a 0 in every other position. To simplify the
notation, we define

π(q, s) := (π1(s)− 1)|Q|+ π2(q).

One can similarly construct an injective function π′ from Q × Σ × {−1, 1} such that
π′(q, s,m) = π(q, s) if m = −1, and π′(q, s,m) = |Q||Σ| + π(q, s) otherwise. We denote
by J (q, s,m) K the corresponding one-hot vector for each (q, s,m) ∈ Q× Σ× {−1, 1}.

We prove three useful properties below. In every case we assume that q ∈ Q, s ∈ Σ,
m ∈ {−1, 1}, and δ(·, ·) is the transition function of the Turing machine M .

1. There exists f1 : Q|Q|+|Σ| → Q|Q||Σ| such that f1([J q K, J s K]) = J (q, s) K.

2. There exists fδ : Q|Q||Σ| → Q2|Q||Σ| such that fδ(J (q, s) K) = J δ(q, s) K.

3. There exists f2 : Q2|Q||Σ| → Q|Q|+|Σ|+1 such that f2(J (q, s,m) K) = [J q K, J s K,m].

To show (1), let us denote by Si, with i ∈ {1, . . . , |Σ|}, a binary matrix of dimensions
|Σ| × |Q| such that every cell of the form (i, ·) in Si contains a 1, and every other cell
contains a 0. We note that for every s ∈ Σ it holds that J s KSi = [1, . . . , 1] if and only if
π1(s) = i; otherwise J s KSi = [0, . . . , 0]. Now, consider the vector v(q,s)

v(q,s) = [J q K + J s KS1, J q K + J s KS2, . . . , J q K + J s KS|Σ|].

We first note that for every i ∈ {1, . . . , |Σ|}, if π1(s) 6= i then

J q K + J s KSi = J q K + [0, . . . , 0] = J q K.

Moreover,
J q K + J s KSπ1(s) = J q K + [1, . . . , 1]

is a vector that contains a 2 exactly at index π2(q), and a 1 in all other positions. Thus,
the vector v(q,s) contains a 2 exactly at position (π1(s)− 1)|Q|+ π2(q) and either a 0 or a
1 in every other position.

Now, let us denote by o a vector in Q|Q||Σ| that has a 1 in every position and consider
the following affine transformation

g1([J q K, J s K]) = v(q,s) − o. (21)

Vector g1([J q K, J s K]) contains a 1 exclusively at position (π1(s)− 1)|Q|+π2(q) = π(q, s),
and a value less than or equal to 0 in every other position. Thus, to construct f1(·) we can
apply the piecewise-linear sigmoidal activation σ(·) (see Equation (1)) to obtain

f1([J q K, J s K]) = σ(g1([J q K, J s K])) = σ(v(q,s) − o) = J (q, s) K, (22)

25

Pérez, Barceló, Marinkovic

which is what we wanted.
Now, to show (2), let us denote by M δ a matrix of dimensions (|Q||Σ|) × (2|Q||Σ|)

constructed as follows. For (q, s) ∈ Q×Σ, if δ(q, s) = (p, r,m) then M δ has a 1 at position
(π(q, s), π′(p, r,m)) and it has a 0 in every other position. That is,

M δ
π(q,s),: = J (p, r,m) K = J δ(q, s) K.

It is straightforward to see then that J (q, s) KM δ = J δ(q, s) K, and thus we can define f2(·)
as

f2(J (q, s) K) = J (q, s) KM δ = J δ(q, s) K. (23)

To show (3), consider the matrix A of dimensions (2|Q||Σ|)× (|Q|+ |Σ|+ 1) such that

Aπ′(q,s,m),: = [J q K, J s K,m].

Then we can define f3(·) as

f3(J (q, s,m) K) = J (q, s,m) KA = [J q K, J s K,m]. (24)

We are now ready to begin with the proof of the lemma. Recall that a1
i is given by

a1
i = [J q(i) K, J s(i) K,m(i−1),

0, . . . , 0,

J α(i+1) K, β(i+1),0s, 0,
1, (i+ 1), 1/(i+ 1), 1/(i+ 1)2]

We need to construct a function O1 : Qd → Qd such that

O1(a1
i) = [−J q(i) K,−J s(i) K,−m(i−1),

J q(i+1) K, J v(i) K,m(i),m(i−1), 0, 0
0, . . . , 0,
0, . . . , 0]

We first apply function h1(·) defined as follows. Let us define

m̂(i−1) :=
1

2
m(i−1) +

1

2
.

Note that m̂(i−1) is 0 if m(i−1) = −1, it is 1
2 if m(i−1) = 0 (which occurs only when i = 1),

and it is 1 if m(i−1) = 1. We use this transformation exclusively to represent m(i−1) with a
value in [0, 1].

Now, consider h1(a1
i) defined by

h1(a1
i) = [J q(i) K, J s(i) K, m̂(i−1), g1([J q(i) K, J s(i) K])],

where g1(·) is the function defined above in Equation (21). It is clear that h1(·) is an affine
transformation. Moreover, we note that except for g1([J q(i) K, J s(i) K]) all values in h1(a1

i)
are in the interval [0, 1]. Thus, if we apply function σ(·) to h1(a1

i) we obtain

σ(h1(a1
i)) = [J q(i) K, J s(i) K, m̂(i−1), σ(g1([J q(i) K, J s(i) K]))]

= [J q(i) K, J s(i) K, m̂(i−1), J (q(i), s(i)) K],

26

Attention is Turing Complete

where the second equality is obtained from equation (22). We can then define h2(·) such
that

h2(σ(h1(a1
i))) = [J q(i) K, J s(i) K, 2m̂(i−1) − 1, f2(J (q(i), s(i)) K)]

= [J q(i) K, J s(i) K,m(i−1), J δ(q(i), s(i)) K]

= [J q(i) K, J s(i) K,m(i−1), J (q(i+1), v(i),m(i)) K],

where the second equality is obtained from equation (23). Now we can define h3(·) as

h3(h2(σ(h1(a1
i)))) = [J q(i) K, J s(i) K,m(i−1), f3(J (q(i+1), v(i),m(i)) K)]

= [J q(i) K, J s(i) K,m(i−1), J q(i+1) K, J v(i) K,m(i)],

where the second equality is obtained from equation (24).
Finally we can apply a function h4(·) to just reorder the values and multiply some

components by −1 to complete our construction

O1(a1
i) = h4(h3(h2(σ(h1(a1

i))))) = [−J q(i) K,−J s(i) K,−m(i−1),

J q(i+1) K, J v(i) K,m(i),m(i−1), 0, 0
0, . . . , 0,
0, . . . , 0]

We note that we applied a single non-linearity and all other functions are affine transfor-
mations. Thus O1(·) can be implemented with a two-layer feed-forward network.

Proof [of Lemma 9] Recall that z1
i is the following vector

z1
i = [0, . . . , 0,

J q(i+1) K, J v(i) K,m(i),m(i−1), 0, 0,

J α(i+1) K, β(i+1),0s, 0,
1, (i+ 1), 1/(i+ 1), 1/(i+ 1)2]

We consider Q2 : Qd → Qd and K2 : Qd → Qd to be trivial functions that for every input
produce an output vector composed exclusively of 0s. Moreover, we consider V2 : Qd → Qd

such that for every j ∈ {0, 1, . . . , i},

V2(z1
j) = [0, . . . , 0,

0q,0s, 0, 0,m
(j),m(j−1),

0, . . . , 0,
0, . . . , 0]

Then, since K2(z1
j) = [0, . . . , 0], it holds that scoreϕ(Q2(z1

i),K2(z1
j)) = 0 for every j ∈

{0, . . . , i}. Thus, we have that the attention Att(Q2(z1
i),K2(Z1

i), V2(Z1
i)) corresponds pre-

cisely to the average of the vectors in V2(Z1
i) = V2(z1

0 , . . . ,z
1
i), i.e.,

Att(Q2(z1
i),K2(Z1

i), V2(Z1
i)) = 1

(i+1)

∑i
j=0 V2(z1

j)

= [0, . . . , 0,

0q,0s, 0, 0,
1

(i+1)

∑i
j=0m

(j), 1
(i+1)

∑i
j=0m

(j−1),

0, . . . , 0,
0, . . . , 0]

27

Pérez, Barceló, Marinkovic

Then, since m(0) + · · ·+m(i) = c(i+1) and m(0) + · · ·+m(i−1) = c(i) it holds that

Att(Q2(z1
i),K2(Z1

i), V2(Z1
i)) = [0, . . . , 0,

0q,0s, 0, 0,
c(i+1)

(i+1) ,
c(i)

(i+1) ,

0, . . . , 0,
0, . . . , 0]

which is exactly what we wanted to show.

Proof [of Lemma 10] Recall that z2
i is the following vector

z2
i = [0, . . . , 0,

J q(i+1) K, J v(i) K,m(i),m(i−1), c
(i+1)

(i+1) ,
c(i)

(i+1) ,

J α(i+1) K, β(i+1),0s, 0,
1, (i+ 1), 1/(i+ 1), 1/(i+ 1)2]

We need to construct functions Q3(·), K3(·), and V3(·) such that

Att(Q3(z2
i),K3(Z2

i), V3(Z2
i)) = [0, . . . , 0,

0, . . . , 0,

0s, 0, J v(`(i+1)) K, `(i+ 1),
0, . . . , 0]

We first define the query function Q3 : Qd → Qd such that

Q3(z2
i) = [0, . . . , 0

0, . . . , 0,
0, . . . , 0,

0, c
(i+1)

(i+1) ,
1

(i+1) ,
1

3(i+1)2
]

Now, for every j ∈ {0, 1, . . . , i} we define K3 : Qd → Qd and V3 : Qd → Qd such that

K3(z2
j) = [0, . . . , 0

0, . . . , 0,
0, . . . , 0,

0, 1
(j+1) ,

−c(j)
(j+1) ,

1
(j+1)2

]

V3(z2
j) = [0, . . . , 0,

0, . . . , 0,

0s, 0, J v(j) K, j,
0, . . . , 0]

It is clear that the three functions are linear transformations and thus they can be defined
by feed-forward networks.

Consider now the attention Att(Q3(z2
i),K3(Z2

i), V3(Z2
i)). In order to compute this

value, and since we are considering hard attention, we need to find a value j ∈ {0, 1, . . . , i}
that maximizes

scoreϕ(Q3(z2
i),K3(z2

j)) = ϕ(〈Q3(z2
i),K3(z2

j)〉).

28

Attention is Turing Complete

Let j? be any such a value. Then

Att(Q3(z2
i),K3(Z2

i), V3(Z2
i)) = V3(z2

j?).

We show next that given our definitions above, it always holds that j? = `(i+1), and hence
V3(z2

j?) is exactly the vector that we wanted to obtain. Moreover, this implies that j? is
actually unique.

To simplify the notation, we denote by χij the dot product 〈Q3(z2
i),K3(z2

j)〉. Thus, we

need to find j? = arg maxj ϕ(χij). Recall that, given the definition of ϕ (see equation (13)),
it holds that

arg max
j∈{0,...,i}

ϕ(χij) = arg min
j∈{0,...,i}

|χij |.

Then, it is enough to prove that

arg min
j∈{0,...,i}

|χij | = `(i+ 1).

Now, by our definition of Q3(·) and K3(·) we have that

χij =
c(i+1)

(i+ 1)(j + 1)
− c(j)

(i+ 1)(j + 1)
+

1

3(i+ 1)2(j + 1)2

= εiεj ·
(
c(i+1) − c(j) +

εiεj
3

)
where εk = 1

(k+1) . We next prove the following auxiliary property.

If j1 is such that c(j1) 6= c(i+1) and j2 is such that c(j2) = c(i+1), then |χij2 | < |χ
i
j1 |. (25)

In order to prove (25), assume first that j1 ∈ {0, . . . , i} is such that c(j1) 6= c(i+1). Then
we have that |c(i+1) − c(j1)| ≥ 1 since c(i+1) and c(j1) are integer values. From this we have
two possibilities for χij1 :

• If c(i+1) − c(j1) ≤ −1, then

χij1 ≤ −εiεj1 +
(εiεj1)2

3
.

Notice that 1 ≥ εj1 ≥ εi > 0. Then we have that εiεj1 ≥ (εiεj1)2 > 1
3(εiεj1)2, and

thus

|χij1 | ≥ εiεj1 −
(εiεj1)2

3

Finally, and using again that 1 ≥ εj1 ≥ εi > 0, from the above equation we obtain
that

|χij1 | ≥ εiεi −
(εiεj1)2

3
≥ (εi)

2 − (εi)
2

3
≥ 2(εi)

2

3
.

• If c(i+1) − c(j1) ≥ 1, then χij1 ≥ εiεj1 + 1
3(εiεj1)2. Since 1 ≥ εj1 ≥ εi > 0 we obtain

that |χij1 | ≥ εiεj1 ≥ εiεi ≥
2
3(εi)

2.

29

Pérez, Barceló, Marinkovic

Thus, we have that if c(j1) 6= c(i+1) then |χij1 | ≥
2
3(εi)

2.

Now assume j2 ∈ {0, . . . , i} is such that c(j2) = c(i+1). In this case we have that

|χij2 | =
(εiεj2)2

3
=

(εi)
2(εj2)2

3
≤ (εi)

2

3
,

where the last inequality holds since 0 ≤ εj2 ≤ 1.
We showed that if c(j1) 6= c(i+1) then |χij1 | ≥

2
3(εi)

2 and if c(j2) = c(i+1) then |χij2 | ≤
1
3(εi)

2, which implies that |χij2 | < |χ
i
j1
|. This completes the proof of the property in (25).

We now prove that arg minj |χij | = `(i+ 1). Recall first that `(i+ 1) is defined as

`(i+ 1) =

{
max{j | j ≤ i and c(j) = c(i+1)} if there exists j ≤ i s.t. c(j) = c(i+1),

i otherwise.

Assume first that there exists j ≤ i such that c(j) = c(i+1). By (25) we know that

arg min
j∈{0,...,i}

|χij | = arg min
j s.t. c(j)=c(i+1)

|χij |

= arg min
j s.t. c(j)=c(i+1)

(εiεj)
2

3

= arg min
j s.t. c(j)=c(i+1)

εj

= arg min
j s.t. c(j)=c(i+1)

1

j + 1

= max
j s.t. c(j)=c(i+1)

j

= max{j | c(j) = c(i+1)}

On the contrary, assume that for every j ≤ i it holds that c(j) 6= c(i+1). We will prove
that in this case |χji | > |χii|, for every j < i, and thus arg minj∈{0,...,i} |χij | = i. Now, since

c(j) 6= c(i+1) for every j ≤ i, then c(i+1) is a cell that has never been visited before by
M . Given that M never makes a transition to the left of its initial cell, then cell c(i+1)

is a cell that appears to the right of every other previously visited cell. This implies that
c(i+1) > c(j) for every j ≤ i. Thus, for every j ≤ i we have c(i+1) − c(j) ≥ 1. Hence,

|χij | = χij ≥ εiεj +
1

3
(εiεj)

2.

Moreover, notice that if j < i then εj > εi and thus, if j < i we have that

|χij | ≥ εiεj +
(εiεj)

2

3
> εiεi +

(εiεi)
2

3
= |χii|.

Therefore, arg minj∈{0,...,i} |χij | = i.
Summing it up, we have shown that

arg min
j∈{0,...,i}

|χij | =

{
max{j | c(j) = c(i+1)} if there exists j ≤ i s.t. c(j) = c(i+1),

i otherwise.

30

Attention is Turing Complete

This is exactly the definition of `(i+ 1), which completes the proof of the lemma.

Proof [Lemma 11] Before proving Lemma 11 we establish the following auxiliary claim
that allows us to implement a particular type of if statement with a feed-forward network.

Claim 1 Let x ∈ {0, 1}m and y, z ∈ {0, 1}n be binary vectors, and let b ∈ {0, 1}. There
exists a two-layer feed-forward network f : Qm+2n+1 → Qm+n such that

f([x,y, z, b]) =

{
[x,y] if b = 0,

[x, z] if b = 1.

Proof Consider the function f1 : Qm+2n+1 → Qm+2n such that

f1([x,y, z, b]) = [x,y − b1, z + b1− 1],

where 1 is the n-dimensional vector [1, 1, . . . , 1]. Thus, we have that

f1([x,y, z, b]) =

{
[x,y, z − 1] if b = 0,

[x,y − 1, z] if b = 1.

Now, since x, y and z are all binary vectors, it is easy to obtain by applying the piecewise-
linear sigmoidal activation function σ that

σ(f1([x,y, z, b])) =

{
[x,y,0] if b = 0,

[x,0, z] if b = 1,

where 0 is the n-dimensional vector [0, 0, . . . , 0]. Finally, consider the function f2 : Qm+2n →
Qm+n such that f2([x,y, z]) = [x,y + z]. Then we have that

f2(σ(f1([x,y, z, b]))) =

{
[x,y] if b = 0,

[x, z] if b = 1.

We note that f1(·) and f2(·) are affine transformations, and thus f(·) = f2(σ(f1(·))) is a
two-layer feed-forward network. This completes our proof.

We can now continue with the proof of Lemma 11. Recall that z3
r is the following vector

z3
r = [0, . . . , 0,

J q(r+1) K, J v(r) K,m(r),m(r−1), c
(r+1)

(r+1) ,
c(r)

(r+1) ,

J α(r+1) K, β(r+1), J v(`(r+1)) K, `(r + 1),
1, (r + 1), 1/(r + 1), 1/(r + 1)2]

Let us denote by J m(r) K a vector such that

J m(r) K =

{
[1, 0] if m(r) = 1,

[0, 1] if m(r) = −1.

31

Pérez, Barceló, Marinkovic

We first consider the function f1(·) such that

f1(z3
r) = [J q(r+1) K, J m(r) K, J α(r+1) K, (r+1)−β(r+1), J v(`(r+1)) K, J # K, `(r+1)−(r−1)].

It is straightforward that f1(·) can be implemented as an affine transformation. Just notice
that J # K is a fixed vector, `(r + 1)− (r − 1) = `(r + 1)− (r + 1) + 2 and that J m(r) K =

[m
(r)

2 , −m
(r)

2]+[1
2 ,

1
2]. Moreover, all values in f1(z3

r) are binary values except for (r+1)−β(r+1)

and `(r + 1)− (r − 1). Thus, if we apply function σ(·) to f1(z3
r) we obtain

σ(f1(z3
r)) = [J q(r+1) K, J m(r) K, J α(r+1) K, b1, J v(`(r+1)) K, J # K, b2],

where b1 = σ((r+ 1)−β(r+1)) and b2 = σ(`(r+ 1)− (r− 1)). By the definition of β(r+1) we
know that β(r+1) = r + 1 whenever r + 1 ≤ n, and β(r+1) = n if r + 1 > n. Thus we have
that

b1 =

{
0 if r + 1 ≤ n
1 if r + 1 > n

For the case of b2, since `(r+1) ≤ r we have that b2 = 1 if `(r+1) = r and it is 0 otherwise.
Therefore,

b2 =

{
1 if `(r + 1) = r

0 if `(r + 1) 6= r

Then, we can use the if function in Claim 1 to implement a function f2(·) such that

f2(σ(f1(z3
r))) =

{
[J q(r+1) K, J m(r) K, J α(r+1) K, b1, J v(`(r+1)) K] if b2 = 0,

[J q(r+1) K, J m(r) K, J α(r+1) K, b1, J # K] if b2 = 1.

We can use again the if function in Claim 1 to implement a function f3(·) such that

f3(f2(σ(f1(z3
r)))) =

[J q(r+1) K, J m(r) K, J α(r+1) K] if b2 = 0 and b1 = 0,

[J q(r+1) K, J m(r) K, J v(`(r+1)) K] if b2 = 0 and b1 = 1,

[J q(r+1) K, J m(r) K, J α(r+1) K] if b2 = 1 and b1 = 0,

[J q(r+1) K, J m(r) K, J # K] if b2 = 1 and b1 = 1,

which can be rewritten as

f3(f2(σ(f1(z3
r)))) =

[J q(r+1) K, J m(r) K, J α(r+1) K] if r + 1 ≤ n,
[J q(r+1) K, J m(r) K, J # K] if r + 1 > n and `(r + 1) = r,

[J q(r+1) K, J m(r) K, J v(`(r+1)) K] if r + 1 > n and `(r + 1) 6= r.

From this, it is easy to prove that

f3(f2(σ(f1(z3
r)))) = [J q(r+1) K, J m(r) K, J s(r+1) K].

This can be obtained from the following observation. If r + 1 ≤ n, then α(r+1) = sr+1 =
s(r+1). If r + 1 > n and `(r + 1) = r, then we know that c(r+1) is visited by M for the

32

Attention is Turing Complete

first time at time r+ 1 and this cell is to the right of the original input, which implies that
s(r+1) = #. Finally, if r+1 > n and `(r+ 1) 6= r, then we know that c(r+1) has been visited
before at time `(r + 1), and thus s(r+1) = v(`(r+1)).

The final piece of the proof consists in converting J m(r) K back to its value m(r), reorder
the values, and add 0s to obtain yr+1. We do all this with a final linear transformation
f4(·) such that

f4(f3(f2(σ(f1(z3
r))))) = [J q(r+1) K, J s(r+1) K,m(r),

0, . . . , 0,
0, . . . , 0,
0, . . . , 0]

= yr+1

This completes the proof of the lemma.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. CoRR, abs/1409.0473, 2014.

Yining Chen, Sorcha Gilroy, Andreas Maletti, Jonathan May, and Kevin Knight. Recurrent
neural networks as weighted language recognizers. In Conference of the North American
Chapter of the Association for Computational Linguistics, NAACL-HLT, pages 2261–
2271, 2018.

George Cybenko. Approximation by superpositions of a sigmoidal function. MCSS, 2(4):
303–314, 1989.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser.
Universal transformers. CoRR, abs/1807.03819, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training
of deep bidirectional transformers for language understanding. In Jill Burstein, Christy
Doran, and Thamar Solorio, editors, Conference of the North American Chapter of the
Association for Computational Linguistics, NAACL-HLT, pages 4171–4186. Association
for Computational Linguistics, 2019.

Gamaleldin F. Elsayed, Simon Kornblith, and Quoc V. Le. Saccader: Improving accuracy of
hard attention models for vision. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelz-
imer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Conference on
Neural Information Processing Systems, NeurIPS, pages 700–712, 2019.

Karlis Freivalds and Renars Liepins. Improving the neural GPU architecture for algorithm
learning. In Neural Abstract Machines & Program Induction, NAMPI, 2018.

Ian J. Goodfellow, Yoshua Bengio, and Aaron C. Courville. Deep Learning. Adaptive
computation and machine learning. MIT Press, 2016.

33

Pérez, Barceló, Marinkovic

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural Turing Machines. arXiv preprint
arXiv:1410.5401, 2014.

Edward Grefenstette, Karl Moritz Hermann, Mustafa Suleyman, and Phil Blunsom. Learn-
ing to transduce with unbounded memory. In Conference on Neural Information Pro-
cessing Systems, NIPS, pages 1828–1836, 2015.

Çaglar Gülçehre, Misha Denil, Mateusz Malinowski, Ali Razavi, Razvan Pascanu,
Karl Moritz Hermann, Peter W. Battaglia, Victor Bapst, David Raposo, Adam San-
toro, and Nando de Freitas. Hyperbolic attention networks. In International Conference
on Learning Representations, ICLR.

Michael Hahn. Theoretical limitations of self-attention in neural sequence models. arXiv
preprint arXiv:1906.06755, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep
residual networks. In European Conference on Computer Vision, ECCV.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Conference on Computer Vision and Pattern Recognition, CVPR, pages
770–778, 2016.

Armand Joulin and Tomas Mikolov. Inferring algorithmic patterns with stack-augmented
recurrent nets. In Conference on Neural Information Processing Systems, NIPS, pages
190–198, 2015.

Lukasz Kaiser and Ilya Sutskever. Neural GPUs learn algorithms. In International Confer-
ence on Learning Representations, ICLR, 2016.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transform-
ers are rnns: Fast autoregressive transformers with linear attention. In International
Conference on Machine Learning, ICML, 2020.

S. C. Kleene. Representation of events in nerve nets and finite automata. In Claude Shannon
and John McCarthy, editors, Automata Studies, pages 3–41. Princeton University Press,
1956.

Karol Kurach, Marcin Andrychowicz, and Ilya Sutskever. Neural random-access machines.
In International Conference on Learning Representations, ICLR, 2016.

Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches to
attention-based neural machine translation. CoRR, abs/1508.04025, 2015.

Xindian Ma, Peng Zhang, Shuai Zhang, Nan Duan, Yuexian Hou, Ming Zhou, and Dawei
Song. A tensorized transformer for language modeling. In Hanna M. Wallach, Hugo
Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett,
editors, Conference on Neural Information Processing Systems, NeurIPS, pages 2229–
2239, 2019.

34

Attention is Turing Complete

Warren McCulloch and Walter Pitts. A logical calculus of ideas immanent in nervous
activity. Bulletin of Mathematical Biophysics, 5:127–147, 1943.

Jorge Pérez, Javier Marinkovic, and Pablo Barceló. On the turing completeness of modern
neural network architectures. In International Conference on Learning Representations,
ICLR, 2019.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position
representations. In Conference of the North American Chapter of the Association for
Computational Linguistics, NAACL-HLT, pages 464–468, 2018.

Vighnesh Shiv and Chris Quirk. Novel positional encodings to enable tree-based transform-
ers. In Conference on Neural Information Processing Systems, NeurIPS, pages 12081–
12091. Curran Associates, Inc., 2019.

Hava T. Siegelmann and Eduardo D. Sontag. On the computational power of neural nets.
In Conference on Computational Learning Theory, COLT, pages 440–449, 1992.

Hava T. Siegelmann and Eduardo D. Sontag. On the computational power of neural nets.
J. Comput. Syst. Sci., 50(1):132–150, 1995.

Michael Sipser. Introduction to the Theory of Computation. Second edition, 2006.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Conference on
Neural Information Processing Systems, NIPS, pages 5998–6008, 2017.

Gail Weiss, Yoav Goldberg, and Eran Yahav. On the practical computational power of
finite precision RNNs for language recognition. In Annual Meeting of the Association for
Computational Linguistics, ACL, pages 740–745, 2018.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron C. Courville, Ruslan Salakhut-
dinov, Richard S. Zemel, and Yoshua Bengio. Show, attend and tell: Neural image cap-
tion generation with visual attention. In International Conference on Machine Learning,
ICML, pages 2048–2057, 2015.

Yujun Yan, Kevin Swersky, Danai Koutra, Parthasarathy Ranganathan, and Milad
Hashemi. Neural execution engines: Learning to execute subroutines. In Conference
on Neural Information Processing Systems, NeurIPS, 2020.

Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank J Reddi, and Sanjiv
Kumar. Are transformers universal approximators of sequence-to-sequence functions? In
International Conference on Learning Representations, ICLR, 2020.

35

	Introduction
	Preliminaries
	The Transformer architecture
	Invariance under proportions
	Positional Encodings

	Turing completeness of the Transformer with positional encodings
	Overview of the construction and high-level strategy
	Details of the architecture of TransM

	Requirements for Turing completeness
	Future work
	Missing proofs from Section 3
	Missing proofs from Section 4

