
Center for Semantic Web Research

www.ciws.cl, @ciwschile



Three institutions

PUC, Chile

◮ Marcelo Arenas (Boss)
◮ SW, data exchange,

semistrucured data

◮ Juan Reutter
◮ SW, graph DBs, DLs

◮ Cristian Riveros
◮ data exchange, semistr. data

◮ Jorge Baier
◮ planning, search

◮ Carlos Buil
◮ SW

Univ. of Talca

Renzo Angles (SW)

Univ. of Chile

◮ Pablo Barceló (Deputy)
◮ graph DBs, DB theory

◮ Claudio Gutierrez
◮ SW, graph DBs

◮ Jorge Pérez
◮ SW, data exchange

◮ Aidan Hogan
◮ SW, semistr. data

◮ Bárbara Poblete
◮ web mining, SNA

◮ Benjaḿın Bustos
◮ multimedia



Alberto Mendelzon Workshop (AMW)



AMW 2016

◮ Panama City, 6-10 June, 2016

◮ PC Chairs:

Altigran Soares da Silva (UFAM), Reinhard Pichler (TU Wien)

◮ Invited speakers:
◮ Diego Calvanese (Data-driven verification)
◮ Juliana Freire (Urban data)
◮ Lise Getoor (Relational statistical learning)
◮ Raghu Ramakrishnan (Big data)

◮ Long & short submissions (due on Feb. 29th, 2016)

◮ AMW School (4 tutorials), 4-5 June, 2016

◮ Very nice environment



Query Languages for Graph DBs:

Bridging the Grap Between Theory and Practice

Pablo Barceló

DCC, Universidad de Chile
Center for Semantic Web Research (www.ciws.cl)



BACKGROUND AND OBJECTIVES



Graph databases

Trendy applications:

◮ Social network analysis

◮ Semantic web

◮ Scientific databases

◮ Software bug localization

◮ Geo-routing



Graph databases

Trendy applications:

◮ Social network analysis

◮ Semantic web

◮ Scientific databases

◮ Software bug localization

◮ Geo-routing

More in general:

◮ Wherever connections are as important as data



What is a graph database?

A data management system that exposes a graph data model.1

1Graph databases. Robinson, Webber, & Eifrem. O’Reilly, 2013.



What is a graph database?

A data management system that exposes a graph data model.1

Several existing graph DB engines and query languages:

◮ DEX/Sparksee - basic algebra

◮ IBM System G - Gremlin

◮ Neo4J - Cypher

◮ Oracle PGX - PGQL

◮ RDF stores (Virtuoso, AllegroGraph, Oracle, IBM) - SPARQL

1Graph databases. Robinson, Webber, & Eifrem. O’Reilly, 2013.



What graph databases are good for?

◮ Flexible modelling of interconnected data

◮ Agile evolution of the data model

◮ Scalable evaluation of join-intensive queries



My personal story

◮ Since 2009: Working on theory of query languages for graph DBs

◮ Since 2015: Working group of LDBC for the design of such language



My personal story

◮ Since 2009: Working on theory of query languages for graph DBs

◮ Since 2015: Working group of LDBC for the design of such language

Conclusion:

◮ Theory and practice are more connected than expected



Objectives

◮ Identify topics of common interest for theoreticians and developers

◮ Formalize relevant concepts (syntax, semantics, terminology, etc)

◮ Understand tradeoff expressiveness/efficiency



THE DATA MODEL:
PROPERTY GRAPHS



The data model is important as it must be:

◮ Flexible enough to accomodate scenarios of practical interest

◮ Simple enough to allow for a clean presentation

◮ Expressive enough for theoretical issues to appear in full force



The data model is important as it must be:

◮ Flexible enough to accomodate scenarios of practical interest

◮ Simple enough to allow for a clean presentation

◮ Expressive enough for theoretical issues to appear in full force

This is accomplished by the model of property graphs



A property graph

authored by

Author

name: Leonid Libkin

affil: U. of Edinburgh

Author

name: Robert Tarjan

affil: Princeton Univ. 

Article

name: jacmHopcroft74

year: 1974 

Venue

name: FOCS67

authored by

corresponding: YES

Author

Author

Author

Author

name: John Hopcroft

affil: Cornell Univ. 

name: Jeff Ullman

affil: Stanford Univ. 

name: Ron Fagin

affil: IBM Almaden

name: Moshe Vardi

affil: Rice University

Author

name: Limsoon Wong

affil: NU Singapore

Article

name: FOCSHopcroft67

year: 1967

Article

name: PODSUllman89

year: 1989 

Article

name: PODSFaginUV83

year: 1983

Article

name: PODSVardi95

year: 1995

Article

name: PODSLibkin95

year: 1995

Article

name: IPLLibkinW95

year: 1995

Journal

name: JACM

Venue

Venue

Venue

Journal

name: PODS89

name: PODS83

name: PODS95

name: IPL

journal

journal

part of

part of

part of

part of

Conference

Conference

name: FOCS

name: PODS

series

series

part of

se
rie

s

series

authored by

authored by

authored by

authored by

authored by

corresponding: YES

corresponding: YES

authored by

authored by

cooresponding: YES

cooresponding: YES

authored by

authored by

authored by

cooresponding: YES



What is a property graph then?

◮ It is a graph

◮ It is directed

◮ It is labeled in nodes and edges

◮ Nodes and edges can be attributed



What is a property graph then?

◮ It is a graph

◮ It is directed

◮ It is labeled in nodes and edges

◮ Nodes and edges can be attributed



What is a property graph then?

◮ It is a graph

◮ It is directed

◮ It is labeled in nodes and edges

◮ Nodes and edges can be attributed



What is a property graph then?

◮ It is a graph

◮ It is directed

◮ It is labeled in nodes and edges

◮ Nodes and edges can be attributed



What is a property graph then?

◮ It is a graph

◮ It is directed

◮ It is labeled in nodes and edges

◮ Nodes and edges can be attributed



GRAPH PATTERNS



Graph patterns are:

The basic unit for querying property graphs



Graph patterns are:

The basic unit for querying property graphs

Definition of graph pattern:

◮ A directed graph

◮ Nodes are given by variables x , y , z , . . .

◮ Edges are given by variables X ,Y ,Z , . . .

◮ Nodes and edges satisfy label and attribute constraints (selection)
◮ E.g., l(x) = Author, l(Y ) = authored by & Y@corresponding = YES

◮ Some of the variables are selected (projection)



Graph patterns are:

The basic unit for querying property graphs

Definition of graph pattern:

◮ A directed graph

◮ Nodes are given by variables x , y , z , . . .

◮ Edges are given by variables X ,Y ,Z , . . .

◮ Nodes and edges satisfy label and attribute constraints (selection)
◮ E.g., l(x) = Author, l(Y ) = authored by & Y@corresponding = YES

◮ Some of the variables are selected (projection)



Graph patterns are:

The basic unit for querying property graphs

Definition of graph pattern:

◮ A directed graph

◮ Nodes are given by variables x , y , z , . . .

◮ Edges are given by variables X ,Y ,Z , . . .

◮ Nodes and edges satisfy label and attribute constraints (selection)
◮ E.g., l(x) = Author, l(Y ) = authored by & Y@corresponding = YES

◮ Some of the variables are selected (projection)



Graph patterns are:

The basic unit for querying property graphs

Definition of graph pattern:

◮ A directed graph

◮ Nodes are given by variables x , y , z , . . .

◮ Edges are given by variables X ,Y ,Z , . . .

◮ Nodes and edges satisfy label and attribute constraints (selection)
◮ E.g., l(x) = Author, l(Y ) = authored by & Y@corresponding = YES

◮ Some of the variables are selected (projection)



Graph patterns are:

The basic unit for querying property graphs

Definition of graph pattern:

◮ A directed graph

◮ Nodes are given by variables x , y , z , . . .

◮ Edges are given by variables X ,Y ,Z , . . .

◮ Nodes and edges satisfy label and attribute constraints (selection)
◮ E.g., l(x) = Author, l(Y ) = authored by & Y@corresponding = YES

◮ Some of the variables are selected (projection)



Graph patterns are:

The basic unit for querying property graphs

Definition of graph pattern:

◮ A directed graph

◮ Nodes are given by variables x , y , z , . . .

◮ Edges are given by variables X ,Y ,Z , . . .

◮ Nodes and edges satisfy label and attribute constraints (selection)
◮ E.g., l(x) = Author, l(Y ) = authored by & Y@corresponding = YES

◮ Some of the variables are selected (projection)



Example of a graph pattern

Find pairs of authors who coauthored a paper in PODS83:

Author

Author

ArticleVenue
part of

authored by

authored by

name: PODS83



More examples
Get the common friends of Peter, John and Mary:

Person Person

Person

Person

name: Mary

name: John

name: Peter

friend of

frie
nd of

friend of



More examples
Get the common friends of Peter, John and Mary:

Person Person

Person

Person

name: Mary

name: John

name: Peter

friend of

frie
nd of

friend of

Find friends of John who are
(1) mutual friends, and (2) have lovers that are colleagues

friend of

Person

Person

friend of

Person

name: John

Person

Person

frie
nd of

lover of

lover of

works with



Evaluation of graph patterns

1. Find all matchings of the pattern over the property graph

2. Project over the variables in the output



Evaluation of graph patterns

1. Find all matchings of the pattern over the property graph

2. Project over the variables in the output



Evaluation of graph patterns

1. Find all matchings of the pattern over the property graph

2. Project over the variables in the output



An example of evaluation
The property graph

authored by

Author

name: Leonid Libkin

affil: U. of Edinburgh

Author

name: Robert Tarjan

affil: Princeton Univ. 

Article

name: jacmHopcroft74

year: 1974 

Venue

name: FOCS67

authored by

corresponding: YES

Author

Author

Author

Author

name: John Hopcroft

affil: Cornell Univ. 

name: Jeff Ullman

affil: Stanford Univ. 

name: Ron Fagin

affil: IBM Almaden

name: Moshe Vardi

affil: Rice University

Author

name: Limsoon Wong

affil: NU Singapore

Article

name: FOCSHopcroft67

year: 1967

Article

name: PODSUllman89

year: 1989 

Article

name: PODSFaginUV83

year: 1983

Article

name: PODSVardi95

year: 1995

Article

name: PODSLibkin95

year: 1995

Article

name: IPLLibkinW95

year: 1995

Journal

name: JACM

Venue

Venue

Venue

Journal

name: PODS89

name: PODS83

name: PODS95

name: IPL

journal

journal

part of

part of

part of

part of

Conference

Conference

name: FOCS

name: PODS

series

series

part of

se
rie

s

series

authored by

authored by

authored by

authored by

authored by

corresponding: YES

corresponding: YES

authored by

authored by

cooresponding: YES

cooresponding: YES

authored by

authored by

authored by

cooresponding: YES



An example of evaluation

The graph pattern

Author

Author

ArticleVenue
part of

authored by

authored by

name: PODS83



An example of evaluation
A matching

authored by

Author

name: Leonid Libkin

affil: U. of Edinburgh

Author

name: Robert Tarjan

affil: Princeton Univ. 

Article

name: jacmHopcroft74

year: 1974 

Venue

name: FOCS67

authored by

corresponding: YES

Author

Author

Author

Author

name: John Hopcroft

affil: Cornell Univ. 

name: Jeff Ullman

affil: Stanford Univ. 

name: Ron Fagin

affil: IBM Almaden

name: Moshe Vardi

affil: Rice University

Author

name: Limsoon Wong

affil: NU Singapore

Article

name: FOCSHopcroft67

year: 1967

Article

name: PODSUllman89

year: 1989 

Article

name: PODSFaginUV83

year: 1983

Article

name: PODSVardi95

year: 1995

Article

name: PODSLibkin95

year: 1995

Article

name: IPLLibkinW95

year: 1995

Journal

name: JACM

Venue

Venue

Venue

Journal

name: PODS89

name: PODS83

name: PODS95

name: IPL

journal

journal

part of

part of

part of

part of

Conference

Conference

name: FOCS

name: PODS

series

series

part of

se
rie

s

series

authored by

authored by

authored by

authored by

corresponding: YES

corresponding: YES

authored by

authored by

cooresponding: YES

cooresponding: YES

authored by

authored by

authored by

cooresponding: YES

authored by



An example of evaluation
Its projection

authored by

Author

name: Leonid Libkin

affil: U. of Edinburgh

Author

name: Robert Tarjan

affil: Princeton Univ. 

Article

name: jacmHopcroft74

year: 1974 

Venue

name: FOCS67

authored by

corresponding: YES

Author

Author

Author

Author

name: John Hopcroft

affil: Cornell Univ. 

name: Jeff Ullman

affil: Stanford Univ. 

name: Ron Fagin

affil: IBM Almaden

name: Moshe Vardi

affil: Rice University

Author

name: Limsoon Wong

affil: NU Singapore

Article

name: FOCSHopcroft67

year: 1967

Article

name: PODSUllman89

year: 1989 

Article

name: PODSFaginUV83

year: 1983

Article

name: PODSVardi95

year: 1995

Article

name: PODSLibkin95

year: 1995

Article

name: IPLLibkinW95

year: 1995

Journal

name: JACM

Venue

Venue

Venue

Journal

name: PODS89

name: PODS83

name: PODS95

name: IPL

journal

journal

part of

part of

part of

part of

Conference

Conference

name: FOCS

name: PODS

series

series

part of

se
rie

s

series

authored by

authored by

authored by

authored by

corresponding: YES

corresponding: YES

authored by

authored by

cooresponding: YES

cooresponding: YES

authored by

authored by

authored by

cooresponding: YES

authored by



An example of evaluation
Another matching

authored by

Author

name: Leonid Libkin

affil: U. of Edinburgh

Author

name: Robert Tarjan

affil: Princeton Univ. 

Article

name: jacmHopcroft74

year: 1974 

Venue

name: FOCS67

authored by

corresponding: YES

Author

Author

Author

Author

name: John Hopcroft

affil: Cornell Univ. 

name: Jeff Ullman

affil: Stanford Univ. 

name: Ron Fagin

affil: IBM Almaden

name: Moshe Vardi

affil: Rice University

Author

name: Limsoon Wong

affil: NU Singapore

Article

name: FOCSHopcroft67

year: 1967

Article

name: PODSUllman89

year: 1989 

Article

name: PODSFaginUV83

year: 1983

Article

name: PODSVardi95

year: 1995

Article

name: PODSLibkin95

year: 1995

Article

name: IPLLibkinW95

year: 1995

Journal

name: JACM

Venue

Venue

Venue

Journal

name: PODS89

name: PODS83

name: PODS95

name: IPL

journal

journal

part of

part of

part of

part of

Conference

Conference

name: FOCS

name: PODS

series

series

part of

se
rie

s

series

authored by

authored by

authored by

authored by

corresponding: YES

corresponding: YES

authored by

authored by

cooresponding: YES

cooresponding: YES

authored by

authored by

authored by

cooresponding: YES

authored by



An example of evaluation
Its projection

authored by

Author

name: Leonid Libkin

affil: U. of Edinburgh

Author

name: Robert Tarjan

affil: Princeton Univ. 

Article

name: jacmHopcroft74

year: 1974 

Venue

name: FOCS67

authored by

corresponding: YES

Author

Author

Author

Author

name: John Hopcroft

affil: Cornell Univ. 

name: Jeff Ullman

affil: Stanford Univ. 

name: Ron Fagin

affil: IBM Almaden

name: Moshe Vardi

affil: Rice University

Author

name: Limsoon Wong

affil: NU Singapore

Article

name: FOCSHopcroft67

year: 1967

Article

name: PODSUllman89

year: 1989 

Article

name: PODSFaginUV83

year: 1983

Article

name: PODSVardi95

year: 1995

Article

name: PODSLibkin95

year: 1995

Article

name: IPLLibkinW95

year: 1995

Journal

name: JACM

Venue

Venue

Venue

Journal

name: PODS89

name: PODS83

name: PODS95

name: IPL

journal

journal

part of

part of

part of

part of

Conference

Conference

name: FOCS

name: PODS

series

series

part of

se
rie

s

series

authored by

authored by

authored by

authored by

corresponding: YES

corresponding: YES

authored by

authored by

cooresponding: YES

cooresponding: YES

authored by

authored by

authored by

cooresponding: YES

authored by



But what is a matching?



But what is a matching?

A mapping from:

◮ nodes of the pattern to nodes of the graph, and

◮ edges of the pattern to edges of the graph

which preserves the structure of the pattern in the graph



Different notions of matching

Homomorphism: No restriction on the mapping

◮ 6= nodes in the pattern can map to the same node in the graph



Different notions of matching

Homomorphism: No restriction on the mapping

◮ 6= nodes in the pattern can map to the same node in the graph

Mostly studied in database theory (PODS)



Different notions of matching

Isomorphism: Mapping is injective

◮ 6= elements in the pattern map to 6= elements in the graph



Different notions of matching

Isomorphism: Mapping is injective

◮ 6= elements in the pattern map to 6= elements in the graph

Mostly studied in database systems (SIGMOD)



Different notions of matching

Edge-injective: Self-describing

◮ 6= edges in the pattern map to 6= edges in the graph



Different notions of matching

Edge-injective: Self-describing

◮ 6= edges in the pattern map to 6= edges in the graph

Implemented in some graph DB engines (Neo4J)



Is there a matching?



Is there a matching?

An NP-complete problem



Is there a matching?

An NP-complete problem

How to address this problem?



Solution 1: Restriction on graph patterns

In many applications, graph patterns are tame:

◮ Homomorphism/isomorphism can be solved efficiently for them



Solution 1: Restriction on graph patterns

In many applications, graph patterns are tame:

◮ Homomorphism/isomorphism can be solved efficiently for them

Tame: The underlying graph is almost acyclic

◮ Bounded treewidth (database/graph theory)



Solution 2: Heuristics for real-world datasets

Structural optimization techniques for reducing search space:

◮ Join ordering, prunning, indexes (database systems)



Solution 2: Heuristics for real-world datasets

Structural optimization techniques for reducing search space:

◮ Join ordering, prunning, indexes (database systems)

Real databases have structure that can be exploited



Solution 3: Inexact evaluation

Use weaker forms of matching that can be evaluated efficiently:

◮ Bisimulations, approximations (database theory/systems)



Solution 3: Inexact evaluation

Use weaker forms of matching that can be evaluated efficiently:

◮ Bisimulations, approximations (database theory/systems)

Compromise the quality of the answer in favor of efficiency



Solution 4: Use different notions of complexity

Graphs and patterns are different beasts:

◮ Graphs are BIG, patterns are small



Solution 4: Use different notions of complexity

Graphs and patterns are different beasts:

◮ Graphs are BIG, patterns are small

Assume pattern is fixed (data complexity/database theory):

◮ Matching can be solved very efficiently



Solution modifiers on graph patterns

Relational operations:

◮ Union

◮ Difference

◮ Cartesian product



Solution modifiers on graph patterns

Relational operations:

◮ Union

◮ Difference

◮ Cartesian product

The language becomes relational complete



OPTIONAL: An important solution modifier

Allows to match parts of the data only if available

◮ Important in the context of semistructured data

◮ Developed by the RDF community

◮ Corresponds to left-outer join in relational algebra



An example with OPTIONAL

The property graph

evaluated in

Paper

year: 1985

name: AKV85

Conference

name: STOC85

published in

Paper

year: 1985

name: Saf85

Review

text: "This paper..."

pu
bl

ish
ed

 in



An example with OPTIONAL

The property graph

evaluated in

Paper

year: 1985

name: AKV85

Conference

name: STOC85

published in

Paper

year: 1985

name: Saf85

Review

text: "This paper..."

pu
bl

ish
ed

 in

The pattern with optional

(x ,published in, y) OPTIONAL (y , evaluated in, z)



An example with OPTIONAL

A matching

name: STOC85

Paper

year: 1985

name: AKV85

published in

Paper

year: 1985

name: Saf85

Review

text: "This paper..."

pu
bl

ish
ed

 in

evaluated in

Conference

The pattern with optional

(x ,published in, y) OPTIONAL (x , evaluated in, z)



An example with OPTIONAL

Another matching

name: STOC85

published in

Paper

year: 1985

name: Saf85

Review

text: "This paper..."

pu
bl

ish
ed

 in

evaluated in

Paper

year: 1985

name: AKV85

Conference

The pattern with optional

(x ,published in, y) OPTIONAL (x , evaluated in, z)



Conclusion

◮ Graph patterns are a versatile and simple language for querying PGs

◮ Graph pattern evaluation comes in different flavors

◮ This problem is challenging (theory/practice)

◮ Different operators can be added in order to increase expressiveness



NAVIGATION



Graphs are there to be navigated
Recall our property graph?

authored by

Author

name: Leonid Libkin

affil: U. of Edinburgh

Author

name: Robert Tarjan

affil: Princeton Univ. 

Article

name: jacmHopcroft74

year: 1974 

Venue

name: FOCS67

authored by

corresponding: YES

Author

Author

Author

Author

name: John Hopcroft

affil: Cornell Univ. 

name: Jeff Ullman

affil: Stanford Univ. 

name: Ron Fagin

affil: IBM Almaden

name: Moshe Vardi

affil: Rice University

Author

name: Limsoon Wong

affil: NU Singapore

Article

name: FOCSHopcroft67

year: 1967

Article

name: PODSUllman89

year: 1989 

Article

name: PODSFaginUV83

year: 1983

Article

name: PODSVardi95

year: 1995

Article

name: PODSLibkin95

year: 1995

Article

name: IPLLibkinW95

year: 1995

Journal

name: JACM

Venue

Venue

Venue

Journal

name: PODS89

name: PODS83

name: PODS95

name: IPL

journal

journal

part of

part of

part of

part of

Conference

Conference

name: FOCS

name: PODS

series

series

part of

se
rie

s

series

authored by

authored by

authored by

authored by

authored by

corresponding: YES

corresponding: YES

authored by

authored by

cooresponding: YES

cooresponding: YES

authored by

authored by

authored by

cooresponding: YES



Graphs are there to be navigated

Find pairs of authors linked by a coauthorship sequence

AuthorAuthor (

authored by−1authored by
)

∗



Do practical query languages navigate?

Very little:

◮ Check if there is a directed path between two nodes (DFS)



Do practical query languages navigate?

Very little:

◮ Check if there is a directed path between two nodes (DFS)

The previous query cannot be expressed (save for a few exceptions)



Do practical query languages navigate?

Very little:

◮ Check if there is a directed path between two nodes (DFS)

The previous query cannot be expressed (save for a few exceptions)

No support for regular path queries (database theory, RDF, DL)

◮ Is there a directed path whose label satisfies a regex?



Are RPQs harder to evaluate?



Are RPQs harder to evaluate?

Not really (in theory):

◮ Convert the regex into an automata

◮ Take the cross product of the property graph and the automata

◮ Check if there is a path from an initial to a final state (DFS)



Are RPQs harder to evaluate?

Not really (in theory):

◮ Convert the regex into an automata

◮ Take the cross product of the property graph and the automata

◮ Check if there is a path from an initial to a final state (DFS)

Cost is linear in the size of the data and the regex



But, what is the semantics?

Is there a path or a simple path?

◮ Database theory concentrates on the former (why?)

◮ Graph DB engines implement the latter (why?)



But, what is the semantics?

Is there a path or a simple path?

◮ Database theory concentrates on the former (why?)

◮ Graph DB engines implement the latter (why?)



But, what is the semantics?

Is there a path or a simple path?

◮ Database theory concentrates on the former (why?)

◮ Graph DB engines implement the latter (why?)



But, what is the semantics?

Is there a path or a simple path?

◮ Database theory concentrates on the former (why?)

◮ Graph DB engines implement the latter (why?)

Our algorithm evaluates RPQs under arbitrary path semantics



But, what is the semantics?

Is there a path or a simple path?

◮ Database theory concentrates on the former (why?)

◮ Graph DB engines implement the latter (why?)

Our algorithm evaluates RPQs under arbitrary path semantics

Is it possible to use it under a simple path semantics?



RPQs under simple paths

Is there a simple path whose label satisfies a regex?

◮ This problem is NP-complete even if the regex is fixed!

◮ High complexity only dependent on the size of the data



RPQs under simple paths

Is there a simple path whose label satisfies a regex?

◮ This problem is NP-complete even if the regex is fixed!

◮ High complexity only dependent on the size of the data



RPQs under simple paths

Is there a simple path whose label satisfies a regex?

◮ This problem is NP-complete even if the regex is fixed!

◮ High complexity only dependent on the size of the data



RPQs under simple paths

Is there a simple path whose label satisfies a regex?

◮ This problem is NP-complete even if the regex is fixed!

◮ High complexity only dependent on the size of the data

Example: Consider the RPQ (aa)∗

1. It asks whether there is a simple path of even length from x to y

2. This problem is NP-complete



Adding RPQs to graph patterns

Give rise to the class of conjunctive RPQs

◮ Has received considerable attention in theory

◮ (Essentially) unexplored from a practical point of view

◮ Challenging because of matching and RPQ evaluation



Adding RPQs to graph patterns

Give rise to the class of conjunctive RPQs

◮ Has received considerable attention in theory

◮ (Essentially) unexplored from a practical point of view

◮ Challenging because of matching and RPQ evaluation



Adding RPQs to graph patterns

Give rise to the class of conjunctive RPQs

◮ Has received considerable attention in theory

◮ (Essentially) unexplored from a practical point of view

◮ Challenging because of matching and RPQ evaluation



Adding RPQs to graph patterns

Give rise to the class of conjunctive RPQs

◮ Has received considerable attention in theory

◮ (Essentially) unexplored from a practical point of view

◮ Challenging because of matching and RPQ evaluation



Are paths the only form of navigation?



Are paths the only form of navigation?

No! We can allow stronger forms of recursion (DB theory, DL, MC):

◮ Navigate with branching
(nested regexs, similar evaluation to RPQs)

◮ Allow transitive closure on top of conjunctive RPQs
(regular queries, harder to evaluate)

◮ Allow arbitrary recursion
(datalog, very hard to evaluate, non-parallelizable)



Are paths the only form of navigation?

No! We can allow stronger forms of recursion (DB theory, DL, MC):

◮ Navigate with branching
(nested regexs, similar evaluation to RPQs)

◮ Allow transitive closure on top of conjunctive RPQs
(regular queries, harder to evaluate)

◮ Allow arbitrary recursion
(datalog, very hard to evaluate, non-parallelizable)



Are paths the only form of navigation?

No! We can allow stronger forms of recursion (DB theory, DL, MC):

◮ Navigate with branching
(nested regexs, similar evaluation to RPQs)

◮ Allow transitive closure on top of conjunctive RPQs
(regular queries, harder to evaluate)

◮ Allow arbitrary recursion
(datalog, very hard to evaluate, non-parallelizable)



Are paths the only form of navigation?

No! We can allow stronger forms of recursion (DB theory, DL, MC):

◮ Navigate with branching
(nested regexs, similar evaluation to RPQs)

◮ Allow transitive closure on top of conjunctive RPQs
(regular queries, harder to evaluate)

◮ Allow arbitrary recursion
(datalog, very hard to evaluate, non-parallelizable)



Conclusions (really, questions)

◮ Are RPQs useful in practice?

◮ Can they be implemented?

◮ Under which semantics?

◮ What about conjunctive RPQs?

◮ Or even stronger forms of recursion?



Conclusions (really, questions)

◮ Are RPQs useful in practice?

◮ Can they be implemented?

◮ Under which semantics?

◮ What about conjunctive RPQs?

◮ Or even stronger forms of recursion?



Conclusions (really, questions)

◮ Are RPQs useful in practice?

◮ Can they be implemented?

◮ Under which semantics?

◮ What about conjunctive RPQs?

◮ Or even stronger forms of recursion?



Conclusions (really, questions)

◮ Are RPQs useful in practice?

◮ Can they be implemented?

◮ Under which semantics?

◮ What about conjunctive RPQs?

◮ Or even stronger forms of recursion?



Conclusions (really, questions)

◮ Are RPQs useful in practice?

◮ Can they be implemented?

◮ Under which semantics?

◮ What about conjunctive RPQs?

◮ Or even stronger forms of recursion?



Conclusions (really, questions)

◮ Are RPQs useful in practice?

◮ Can they be implemented?

◮ Under which semantics?

◮ What about conjunctive RPQs?

◮ Or even stronger forms of recursion?



RETURNING PATHS



Paths in the output

Query languages such as Cypher & PGQL allow:

◮ Return one path

◮ Return one shortest path (DFS)

◮ Return all paths

◮ Return all shortest paths



Paths in the output

Query languages such as Cypher & PGQL allow:

◮ Return one path

◮ Return one shortest path (DFS)

◮ Return all paths

◮ Return all shortest paths

But, what does it mean to return all paths?

... there can be infinitely many



Paths in the output

Query languages such as Cypher & PGQL allow:

◮ Return one path

◮ Return one shortest path (DFS)

◮ Return all paths

◮ Return all shortest paths

But, what does it mean to return all paths?

... there can be infinitely many

Systems return simple paths

... but there can be exponentially many



Even more interesting for RPQs

◮ Return a shortest path whose label satisfies a regex

◮ And all shortest paths

◮ Return all paths whose label satisfies a regex

◮ And all paths



A solution from database theory

Instead of returning all paths ...

return a compact representation of them



A solution from database theory

Instead of returning all paths ...

return a compact representation of them

Compact representation: A property graph with all paths in the output

◮ Can be constructed efficiently (in data) for arbitrary paths

◮ Impossible for simple paths



A solution from database theory

Instead of returning all paths ...

return a compact representation of them

Compact representation: A property graph with all paths in the output

◮ Can be constructed efficiently (in data) for arbitrary paths

◮ Impossible for simple paths



A solution from database theory

Instead of returning all paths ...

return a compact representation of them

Compact representation: A property graph with all paths in the output

◮ Can be constructed efficiently (in data) for arbitrary paths

◮ Impossible for simple paths



Conclusions

◮ Returning paths is difficult under all interpretations

◮ “All paths” can be compactly represented, but simple paths cannot

◮ The right semantics still needs to be settled



UNGROUPING



Paths can appear in the output



Paths can appear in the output

We can ungroup them

◮ List the nodes that appear in them



Paths can appear in the output

We can ungroup them

◮ List the nodes that appear in them

We can check if a path visits all nodes

◮ Travelling salesman problem!



Paths can appear in the output

We can ungroup them

◮ List the nodes that appear in them

We can check if a path visits all nodes

◮ Travelling salesman problem!



Paths can appear in the output

We can ungroup them

◮ List the nodes that appear in them

We can check if a path visits all nodes

◮ Travelling salesman problem!

Interaction with other operators expresses even more complex properties



A query language for paths

◮ Variables for paths and nodes

◮ Can check if a node belongs to a path

◮ Can check if the label of a path satisfies a regex

◮ Closure under quantification over nodes and paths



A query language for paths

◮ Variables for paths and nodes

◮ Can check if a node belongs to a path

◮ Can check if the label of a path satisfies a regex

◮ Closure under quantification over nodes and paths



A query language for paths

◮ Variables for paths and nodes

◮ Can check if a node belongs to a path

◮ Can check if the label of a path satisfies a regex

◮ Closure under quantification over nodes and paths



A query language for paths

◮ Variables for paths and nodes

◮ Can check if a node belongs to a path

◮ Can check if the label of a path satisfies a regex

◮ Closure under quantification over nodes and paths



A query language for paths

◮ Variables for paths and nodes

◮ Can check if a node belongs to a path

◮ Can check if the label of a path satisfies a regex

◮ Closure under quantification over nodes and paths



A query language for paths

◮ Variables for paths and nodes

◮ Can check if a node belongs to a path

◮ Can check if the label of a path satisfies a regex

◮ Closure under quantification over nodes and paths

Complexity of evaluation is astronomical (in data)

◮ (Severely) restricting the language leads to efficiency



A query language for paths

◮ Variables for paths and nodes

◮ Can check if a node belongs to a path

◮ Can check if the label of a path satisfies a regex

◮ Closure under quantification over nodes and paths

Complexity of evaluation is astronomical (in data)

◮ (Severely) restricting the language leads to efficiency



Question

◮ What ungropuing can do and should do?



FINAL THOUGHTS



Final thoughts

◮ Exciting times for studying graph DBs (theory/practice)

◮ Lots of fine tuning needed

◮ Some issues still unexplored:
◮ Comparing paths
◮ Ranking of answers
◮ Constraints



MANY THANKS



Bibliography

Surveys:

◮ P. Wood. Query languages for graph databases. SIGMOD Record, 2012.

◮ P. Barceló. Querying graph databases. PODS, 2013.

Regular path queries:

◮ A. Mendelzon and P. Wood. Finding regular simple paths in graph databases.

SIAM J. on Comp, 1995.

◮ D. Calvanese, G. de Giacomo, M. Lenzerini, M. Vardi. Reasoning on regular path

queries. SIGMOD Record, 2003.

Conjunctive regular path queries:

◮ D. Calvanese, G. de Giacomo, M. Lenzerini, M. Vardi. Containment of

conjunctive regular path queries with inverse. KR, 2000.



Bibliography
Queries with more expressive recursion:

◮ P. Barceló, J. Pérez, J. Reutter. Relative expressiveness of nested regular

expressions. AMW, 2012.

◮ J. Reutter, M. Romero, M. Vardi. Regular queries on graph databases. ICDT,

2015.

Queries that compare nodes:

◮ L. Libkin, D,. Vrgoc. Regular path queries on graphs with data. ICDT, 2012.

◮ G. Fletcher, M. Gyssens, D. Leinders, et al. Relative expressive power of

navigational querying on graphs. ICDT, 2011.

◮ P. Barceló, G. Fontaine, A. W. Lin. Expressive path queries over graphs with

data. LMCS, 2015.

Queries with paths as first-class citizens and negation:

◮ P. Barceló, L. Libkin, A. W. Lin, P. Wood. Expressive path queries over

graph-structured data. ACM TODS, 2012.


